JP6078236B2 - Processing waste liquid treatment equipment - Google Patents

Processing waste liquid treatment equipment Download PDF

Info

Publication number
JP6078236B2
JP6078236B2 JP2012125912A JP2012125912A JP6078236B2 JP 6078236 B2 JP6078236 B2 JP 6078236B2 JP 2012125912 A JP2012125912 A JP 2012125912A JP 2012125912 A JP2012125912 A JP 2012125912A JP 6078236 B2 JP6078236 B2 JP 6078236B2
Authority
JP
Japan
Prior art keywords
waste liquid
processing waste
liquid treatment
treatment tank
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012125912A
Other languages
Japanese (ja)
Other versions
JP2013251435A (en
Inventor
吉田 幹
幹 吉田
裕隆 石黒
裕隆 石黒
敦史 藤田
敦史 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2012125912A priority Critical patent/JP6078236B2/en
Publication of JP2013251435A publication Critical patent/JP2013251435A/en
Application granted granted Critical
Publication of JP6078236B2 publication Critical patent/JP6078236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、半導体ウエーハ等の被加工物を切削する切削装置や被加工物を研削する研削装置等の加工装置に付設され、加工時に供給される加工液の廃液を処理する加工廃液処理装置に関する。   The present invention relates to a processing waste liquid processing apparatus attached to a processing apparatus such as a cutting apparatus for cutting a workpiece such as a semiconductor wafer or a grinding apparatus for grinding a workpiece, and processing a waste liquid of a processing liquid supplied during processing. .

半導体デバイス製造工程においては、略円板形状である半導体ウエーハの表面に格子状に配列されたストリートと呼ばれる分割予定ラインによって複数の領域が区画され、この区画された領域にIC、LSI等のデバイスを形成する。このように表面にデバイスが形成された半導体ウエーハをストリートに沿って切断することにより、デバイスが形成された領域を分割して個々の半導体デバイスを製造している。   In the semiconductor device manufacturing process, a plurality of regions are partitioned by dividing lines called streets arranged in a lattice pattern on the surface of a substantially wafer-shaped semiconductor wafer, and devices such as ICs, LSIs, etc. are partitioned in the partitioned regions. Form. By cutting the semiconductor wafer having the device formed on the surface in this way along the street, the region where the device is formed is divided to manufacture individual semiconductor devices.

上述した半導体ウエーハのストリートに沿った切断は、通常、ダイサーと呼ばれる切削装置によって行われている。この切削装置は、半導体ウエーハ等の被加工物を保持するチャックテーブルと、該チャックテーブルに保持された被加工物を切削するための切削ブレードを備えた切削手段と、切削ブレードに加工水を供給する加工水供給手段を具備し、該加工水供給手段によって加工水を回転する切削ブレードに供給することにより切削ブレードを冷却するとともに、切削ブレードによる被加工物の切削部に加工水を供給しつつ切削作業を実施する。   The above-described cutting along the street of the semiconductor wafer is usually performed by a cutting device called a dicer. This cutting apparatus includes a chuck table for holding a workpiece such as a semiconductor wafer, a cutting means having a cutting blade for cutting the workpiece held on the chuck table, and supplying cutting water to the cutting blade. A cutting water supply means for cooling the cutting blade by supplying the processing water to the rotating cutting blade by the processing water supply means and supplying the cutting water to the cutting portion of the workpiece by the cutting blade. Carry out cutting work.

このようにして分割されるウエーハは、ストリートに沿って切断する前に研削装置によって裏面が研削され、所定の厚さに加工される。研削装置は、被加工物を保持するチャックテーブルと、該チャックテーブル上に保持された被加工物を研削する研削手段とを具備している。この研削手段は、回転スピンドルと、該回転スピンドルの下端に設けられたホイールマウントと、該ホイールマウントの下面に着脱可能に装着される研削ホイールとを具備しており、該研削ホイールがホイール基台と該ホイール基台の下面における外周部の砥石装着部に装着された複数の研削砥石とからなっており、研削ホイールを回転し加工水を供給しつつ研削砥石をチャックテーブルに保持された被加工物に押圧することにより被加工物を研削する。   The wafer divided in this way is ground to a predetermined thickness by a grinding device before being cut along the street. The grinding apparatus includes a chuck table that holds a workpiece, and a grinding unit that grinds the workpiece held on the chuck table. The grinding means includes a rotating spindle, a wheel mount provided at the lower end of the rotating spindle, and a grinding wheel that is detachably attached to the lower surface of the wheel mount. And a plurality of grinding wheels mounted on the outer peripheral grinding wheel mounting portion on the lower surface of the wheel base, and the grinding wheel is held on the chuck table while rotating the grinding wheel and supplying processing water The workpiece is ground by pressing against the workpiece.

上述したように切削装置による切削時や研削装置による研削時に供給された加工水にはシリコンを切削や研削することによって発生するシリコン微粒子が混入される。このシリコン微粒子が混入された加工廃液は環境を汚染することから、加工廃液を処理して排水しなければならず、廃液処理コストがかかるという問題がある。また、特に研削装置においては、被加工物であるウエーハの厚みを例えば600μmから100μm前後まで研削することから、1台の研削装置で使用される加工水は1日に2〜3tにおよびランニングコストが高額になるという問題がある。更に、ウエーハは比較的高価なシリコンによって形成されているが、上述したように研削及び切削によってシリコンが90%近く廃棄されており、資源が有効活用されていないという問題がある。   As described above, silicon fine particles generated by cutting or grinding silicon are mixed in the processing water supplied during cutting by the cutting device or grinding by the grinding device. Since the processing waste liquid mixed with the silicon fine particles contaminates the environment, the processing waste liquid has to be treated and drained, resulting in a problem of waste liquid processing cost. In particular, in the grinding apparatus, the thickness of the wafer as a workpiece is ground from, for example, 600 μm to around 100 μm, so that the processing water used in one grinding apparatus is 2 to 3 t per day and the running cost. There is a problem that becomes expensive. Furthermore, although the wafer is formed of relatively expensive silicon, as described above, there is a problem that silicon is discarded by nearly 90% by grinding and cutting, and resources are not effectively utilized.

上記問題を解消するために、加工廃液をフィルターで濾過して清水を生成し、切削水または研削水として循環して使用する加工廃液処理装置が提案されている。(例えば、特許文献1参照。)   In order to solve the above problem, a processing waste liquid treatment apparatus has been proposed in which processing waste liquid is filtered through a filter to produce fresh water, which is circulated and used as cutting water or grinding water. (For example, refer to Patent Document 1.)

特開2009−95941号公報JP 2009-95941 A

而して、上述した加工廃液処理装置は、フィルターを交換しなければならず、生産性が悪いという新たな問題が生じた。特に、厚みが600μm程度のシリコンウエーハを100μm程度の厚みに研削する研削装置に付設する加工廃液処理装置においては、研削屑が多量に発生するため、フィルターを交換する作業が頻繁となる。
また、研削屑としてのシリコン微粒子はフィルターに捕捉されるので、フィルターからシリコン微粒子を回収してシリコンインゴットを再生することも可能であるが、フィルターに浸透したシリコン微粒子を効率よく回収することは困難である。
Thus, the above-described processing waste liquid treatment apparatus has to be replaced with a new filter, resulting in a new problem of poor productivity. In particular, in a processing waste liquid treatment apparatus attached to a grinding apparatus for grinding a silicon wafer having a thickness of about 600 μm to a thickness of about 100 μm, a large amount of grinding debris is generated, and therefore, the work of exchanging the filter is frequent.
In addition, since silicon fine particles as grinding waste are captured by the filter, it is possible to recover the silicon ingot by collecting the silicon fine particles from the filter, but it is difficult to efficiently recover the silicon fine particles that have penetrated the filter. It is.

本発明は上記事実に鑑みてなされたものであり、その主たる技術課題は、切削屑や研削屑としてのシリコン微粒子を含む加工廃液からシリコン微粒子を分離して清水を生成することができるとともに、シリコン微粒子を効率よく回収することができる加工廃液処理装置を提供することにある。   The present invention has been made in view of the above-mentioned facts, and the main technical problem thereof is that silicon fine particles can be separated from processing waste liquid containing silicon fine particles as cutting scraps or grinding scraps to generate clean water, and silicon An object of the present invention is to provide a processing waste liquid treatment apparatus capable of efficiently collecting fine particles.

上記主たる技術課題を解決するため、本発明によれば、シリコン微粒子が混入された加工廃液をシリコン微粒子と清水に分離する加工廃液処理装置において、
加工廃液供給手段に連通する加工廃液流入口が底部に設けられた廃液処理槽と、該廃液処理槽に配設されマイナスに帯電される陰極手段と、該陰極手段と対面して配設されプラスに帯電される陽極手段と、該陰極手段の上部に配設され清水を吸引する清水吸引手段と、該加工廃液供給手段から廃液処理槽に流入する加工廃液のpHを調整するためのpH調整手段と、を備え、
該pH調整手段は、該廃液処理槽に供給される加工廃液に混入されているシリコン微粒子の該陽極手段による捕獲力が増大するpH値になるように調整する、
ことを特徴とする加工廃液処理装置が提供される。
In order to solve the main technical problem, according to the present invention, in a processing waste liquid treatment apparatus for separating processing waste liquid mixed with silicon fine particles into silicon fine particles and fresh water,
A waste liquid treatment tank provided at the bottom with a processing waste liquid inlet communicating with the processing waste liquid supply means, a negatively charged cathode means disposed in the waste liquid treatment tank, and a positive electrode disposed opposite to the negative electrode means. Positively charged anode means, fresh water suction means disposed above the cathode means for sucking fresh water , and pH adjusting means for adjusting the pH of the processing waste liquid flowing from the processing waste liquid supply means into the waste liquid treatment tank And comprising
The pH adjusting means adjusts the pH so that the trapping power of the silicon fine particles mixed in the processing waste liquid supplied to the waste liquid treatment tank is increased by the anode means.
A processing waste liquid treatment apparatus is provided.

記pH調整手段は、加工廃液に酸を供給する酸供給手段と、該廃液処理槽に流入する加工廃液の電気抵抗値を計測する電気抵抗計測手段と、該電気抵抗計測手段からの計測信号に基づいて酸供給手段を制御する制御手段とを具備している。 Upper Symbol p H adjusting means, an acid supply means for supplying an acid to the machining waste, and the electrical resistance measuring means for measuring the electrical resistance value of the processing effluent flowing into the waste liquid treatment tank, measured from the electric resistance measuring means Control means for controlling the acid supply means based on the signal.

本発明による加工廃液処理装置は、加工廃液供給手段に連通する加工廃液流入口が底部に設けられた廃液処理槽と、該廃液処理槽に配設されマイナスに帯電される陰極手段と、該陰極手段と対面して配設されプラスに帯電される陽極手段と、該陰極手段の上部に配設され清水を吸引する清水吸引手段と、該加工廃液供給手段から廃液処理槽に流入する加工廃液のpHを調整するためのpH調整手段と、を備え、該pH調整手段は、該廃液処理槽に供給される加工廃液に混入されているシリコン微粒子の該陽極手段による捕獲力が増大するpH値になるように調整するので、廃液処理槽に設けられた加工廃液流入口から廃液処理槽に流入した加工廃液は、陽極手段に吸着されるシリコン微粒子と、清水に分離される。このようにして、分離されたシリコン微粒子は複数の陽極手段に吸着されて堆積し、清水は主に陰極手段の上部に生成される。陰極手段の上部に生成された清水は、陰極手段の上部に配設された清水吸引手段を介して清水タンクに搬送される。そして、陽極手段に吸着されて堆積したシリコン微粒子を回収してシリコンインゴットを再生することが可能となる。従って、廃液処理槽の一方の側壁に設けられた加工廃液流入口から加工廃液を所定量ずつ流入することにより、シリコン微粒子を効率よく分離できるとともに、加工廃液から容易に清水を生成することができる。 A processing waste liquid treatment apparatus according to the present invention comprises a waste liquid treatment tank provided at the bottom with a processing waste liquid inlet communicating with a processing waste liquid supply means, a cathode means disposed in the waste liquid treatment tank and negatively charged, and the cathode A positive means that is disposed to face the means and is positively charged, a fresh water suction means that is disposed above the cathode means and sucks fresh water , and a processing waste liquid that flows into the waste liquid treatment tank from the processing waste liquid supply means. pH adjusting means for adjusting pH, and the pH adjusting means has a pH value that increases the trapping power of the silicon fine particles mixed in the processing waste liquid supplied to the waste liquid treatment tank by the anode means. so as to adjust to Runode, processed waste which has flowed from the machining waste inlet provided in the waste liquid treatment tank to the waste liquid treatment tank, and silicon particles are attracted to the anode means is separated into fresh water. Thus, the separated silicon fine particles are adsorbed and deposited on the plurality of anode means, and fresh water is mainly generated on the upper part of the cathode means. The fresh water generated at the upper part of the cathode means is conveyed to the fresh water tank through the fresh water suction means provided at the upper part of the cathode means. The silicon ingot can be regenerated by collecting the silicon fine particles adsorbed and deposited on the anode means. Therefore, silicon fine particles can be separated efficiently and fresh water can be easily generated from the processing waste liquid by flowing a predetermined amount of the processing waste liquid from the processing waste liquid inlet provided on one side wall of the waste liquid treatment tank. .

本発明に従って構成された加工廃液処理装置の斜視図。The perspective view of the processing waste liquid processing apparatus comprised according to this invention. 図1に示す加工廃液処理装置を構成する部材を分解して示す斜視図。The perspective view which decomposes | disassembles and shows the member which comprises the process waste liquid processing apparatus shown in FIG. 図1に示す加工廃液処理装置の断面図。Sectional drawing of the processing waste liquid processing apparatus shown in FIG. 図1に示す加工廃液処理装置に装備されるpH調整手段の構成図。The block diagram of the pH adjustment means with which the process waste liquid processing apparatus shown in FIG. 1 is equipped.

以下、本発明に従って構成された加工廃液処理装置の好適な実施形態について、添付図面を参照して詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a processing waste liquid treatment apparatus configured according to the present invention will be described in detail with reference to the accompanying drawings.

図1には本発明に従って構成された加工廃液処理装置の斜視図が示されており、図2には図1に示す加工廃液処理装置を構成する部材を分解して示す斜視図が示されている。図示の実施形態における加工廃液処理装置は、廃液処理槽2と、該廃液処理槽2に配設されマイナスに帯電される陰極手段3と、該陰極手段3と対面して配設されプラスに帯電される陽極手段4を具備している。廃液処理槽2は、図2に示すように幅方向に対して長さ方向が大きい底壁21と、底壁21の幅方向両側縁から立設された側壁22、23と、底壁21の長手方向両側縁から立設された端壁24、25によって形成され上側が解放されている。廃液処理槽2を構成する一方の端壁24の下部に加工廃液流入口241が設けられており、この加工廃液流入口241が図3に示しように加工廃液供給手段5の加工廃液供給管51に連通されている。   FIG. 1 is a perspective view of a processing waste liquid treatment apparatus constructed according to the present invention, and FIG. 2 is a perspective view showing an exploded view of members constituting the processing waste liquid treatment apparatus shown in FIG. Yes. The processing waste liquid treatment apparatus in the illustrated embodiment includes a waste liquid treatment tank 2, a cathode means 3 that is disposed in the waste liquid treatment tank 2 and is negatively charged, and is disposed so as to face the cathode means 3 and is positively charged. The anode means 4 is provided. As shown in FIG. 2, the waste liquid treatment tank 2 includes a bottom wall 21 having a large length with respect to the width direction, side walls 22 and 23 erected from both side edges of the bottom wall 21, and the bottom wall 21. Formed by end walls 24 and 25 erected from both side edges in the longitudinal direction, the upper side is released. A processing waste liquid inlet 241 is provided below one end wall 24 constituting the waste liquid treatment tank 2, and this processing waste liquid inlet 241 is a processing waste liquid supply pipe 51 of the processing waste liquid supply means 5 as shown in FIG. It is communicated to.

廃液処理槽2を構成する側壁22、23の内面には、陰極手段3を支持するための複数の第1の支持溝221と231および陽極手段4を支持するための複数の第2の支持溝222、232が設けられている。この複数の第1の支持溝221、231と複数の第2の支持溝222、232は、配列方向に互いに交互に設けられている。このように構成された廃液処理槽2は、合成樹脂等の絶縁部材によって形成されている。   A plurality of first support grooves 221 and 231 for supporting the cathode means 3 and a plurality of second support grooves for supporting the anode means 4 are formed on the inner surfaces of the side walls 22 and 23 constituting the waste liquid treatment tank 2. 222, 232 are provided. The plurality of first support grooves 221 and 231 and the plurality of second support grooves 222 and 232 are alternately provided in the arrangement direction. The waste liquid treatment tank 2 configured as described above is formed of an insulating member such as a synthetic resin.

陰極手段3は、銅やステンレス鋼等の導電性部材からなる複数の陰極板31とからなっている。この複数の陰極板31は、廃液処理槽2内に長手方向である側壁22、23に設けられた複数の第1の支持溝221と231に嵌合される。陽極手段4は、銅やステンレス鋼等の導電性部材からなる複数の陽極板41とからなっており、上端中央部に把手411が設けられている。このように形成された複数の陽極板41は、廃液処理槽2内に長手方向である側壁22、23に設けられた複数の第2の支持溝222と232に嵌合される。このようにして、廃液処理槽2内に長手方向である側壁22、23に設けられた複数の第1の支持溝221と231および複数の第2の支持溝222と232に嵌合された陰極板31と陽極板41は、図3に示すように互いに交互に対面して配設されたことになる。このように配設された陽極板41が直流電源6のプラス(+)に接続され、陰極板31が直流電源6のマイナス(−)に接続される。   The cathode means 3 is composed of a plurality of cathode plates 31 made of a conductive member such as copper or stainless steel. The plurality of cathode plates 31 are fitted in the plurality of first support grooves 221 and 231 provided in the side walls 22 and 23 in the longitudinal direction in the waste liquid treatment tank 2. The anode means 4 is composed of a plurality of anode plates 41 made of a conductive member such as copper or stainless steel, and a handle 411 is provided at the center of the upper end. The plurality of anode plates 41 formed in this way are fitted into the plurality of second support grooves 222 and 232 provided in the side walls 22 and 23 in the longitudinal direction in the waste liquid treatment tank 2. In this way, the cathode fitted into the plurality of first support grooves 221 and 231 and the plurality of second support grooves 222 and 232 provided in the side walls 22 and 23 in the longitudinal direction in the waste liquid treatment tank 2. The plate 31 and the anode plate 41 are disposed alternately facing each other as shown in FIG. The anode plate 41 arranged in this way is connected to the plus (+) of the DC power source 6, and the cathode plate 31 is connected to the minus (−) of the DC power source 6.

図2および図3を参照して説明を続けると、図示の実施形態における加工廃液処理装置は、上記陰極手段3を構成する複数の陰極板31の上端に配設された清水吸引手段7を具備している。この清水吸引手段7は、複数の陰極板31の上端に沿って装着され両端が閉塞された清水吸引パイプ71を備えている。この清水吸引パイプ71の側面には長手方向に沿って複数の清水吸引口711設けられているとともに、端部に清水送出口712が設けられている。このように構成された清水吸引パイプ71の清水送出口712は、清水送給ポンプ72に連通されている。   2 and 3, the processing waste liquid treatment apparatus in the illustrated embodiment includes fresh water suction means 7 disposed at the upper ends of a plurality of cathode plates 31 constituting the cathode means 3. doing. The fresh water suction means 7 includes a fresh water suction pipe 71 attached along the upper ends of the plurality of cathode plates 31 and closed at both ends. The side surface of the fresh water suction pipe 71 is provided with a plurality of fresh water suction ports 711 along the longitudinal direction, and a fresh water delivery port 712 is provided at the end. The fresh water delivery port 712 of the fresh water suction pipe 71 configured as described above is in communication with the fresh water feed pump 72.

図4を参照して説明を続けると、図示に実施形態における加工廃液処理装置は、加工廃液供給手段5から廃液処理槽2に流入する加工廃液のpHを調整するためのpH調整手段8を備えている。このpH調整手段8は、加工廃液に酸を供給する酸供給手段81と、廃液処理槽に流入する加工廃液の電気抵抗値を計測する電気抵抗計測手段82と、該電気抵抗計測手段82からの計測信号に基づいて酸供給手段81を制御する制御手段83とを具備している。加工廃液供給手段5の加工廃液供給管51にはバイパス管52が設けられており、このバイパス管52にpH調整手段8を構成する酸供給手段81から酸が供給されるようになっている。なお、加工廃液供給管51の直径とバイパス管52の直径との比は、図示の実施形態においては50:1に設定されている。上記酸供給手段81は、図示の実施形態においては二酸化炭素供給手段811と、水供給手段812と、二酸化炭素供給手段811と水供給手段812によって供給された二酸化炭素と水を混合して炭酸水を生成する混合室813と、該混合室813とバイパス管52とを接続する配管中に配設された流量制御弁814とからなっている。電気抵抗計測手段82は、上記加工廃液供給手段5の加工廃液供給管51におけるバイパス管52より下流側に配設され上記酸供給手段81によって酸が供給され廃液処理槽2に流入する加工廃液のpHを計測し、計測信号を制御手段83に送る。制御手段83は、pH調整手段8を構成する電気抵抗計測手段82からの検出信号に基づいて流量制御弁814を制御することにより、廃液処理槽2に流入する加工廃液のpHが所定の値を維持するように機能する。なお、加工廃液に供給する酸として塩酸を用いてもよいが安全のため炭酸水を用いることが好ましい。   4, the processing waste liquid treatment apparatus in the illustrated embodiment includes pH adjusting means 8 for adjusting the pH of the processing waste liquid flowing from the processing waste liquid supply means 5 into the waste liquid treatment tank 2. ing. The pH adjusting means 8 includes an acid supply means 81 for supplying an acid to the processing waste liquid, an electric resistance measuring means 82 for measuring an electric resistance value of the processing waste liquid flowing into the waste liquid treatment tank, and an electric resistance measuring means 82 And control means 83 for controlling the acid supply means 81 based on the measurement signal. The processing waste liquid supply pipe 51 of the processing waste liquid supply means 5 is provided with a bypass pipe 52, and an acid is supplied to the bypass pipe 52 from an acid supply means 81 constituting the pH adjusting means 8. Note that the ratio of the diameter of the processing waste liquid supply pipe 51 to the diameter of the bypass pipe 52 is set to 50: 1 in the illustrated embodiment. In the illustrated embodiment, the acid supply means 81 is a mixture of carbon dioxide and water supplied by the carbon dioxide supply means 811, the water supply means 812, the carbon dioxide supply means 811 and the water supply means 812, and carbonated water. And a flow rate control valve 814 disposed in a pipe connecting the mixing chamber 813 and the bypass pipe 52. The electrical resistance measuring means 82 is disposed downstream of the bypass pipe 52 in the machining waste liquid supply pipe 51 of the machining waste liquid supply means 5 and is supplied with acid by the acid supply means 81 and flows into the waste liquid treatment tank 2. The pH is measured and a measurement signal is sent to the control means 83. The control means 83 controls the flow rate control valve 814 based on the detection signal from the electrical resistance measuring means 82 that constitutes the pH adjusting means 8, so that the pH of the processing waste liquid flowing into the waste liquid treatment tank 2 has a predetermined value. Act to maintain. Although hydrochloric acid may be used as the acid supplied to the processing waste liquid, it is preferable to use carbonated water for safety.

図示の実施形態における加工廃液処理装置は以上のように構成されており、以下その作用について説明する。
図示しない研削装置等の加工装置に装備される加工廃液送出手段から送られ図示しない廃液タンクに収容された加工廃液は、加工廃液供給手段5によって廃液処理槽2の一方の端壁24に設けられた加工廃液流入口241から廃液処理槽2に供給される。このとき、上記pH調整手段8を作動して二酸化炭素と水を加工廃液に供給する。そして、pH調整手段8は、電気抵抗計測手段82からの計測信号が1MΩcm即ち廃液処理槽2に供給される加工廃液がpH5を維持するように調整する。本発明者らの実験によると、シリコン微粒子に帯電したマイナス(−)のゼータ電位を調整すると、陽極板によるシリコン微粒子の捕獲力が増大することが判った。即ち、シリコン微粒子に帯電したマイナス(−)のゼータ電位は、高ければ陽極板によるシリコン微粒子の捕獲力が増大するということではなく、廃液処理槽に供給される加工廃液に混入されているシリコン微粒子のゼータ電位がマイナス(−)40mV程度のとき最も陽極板によるシリコン微粒子の捕獲力が増大することが判った。シリコンがマイナス(−)40mV程度のゼータ電位を示すpHはpH5程度であり、このときの加工廃液の電気抵抗は1MΩcmである。
The processing waste liquid treatment apparatus in the illustrated embodiment is configured as described above, and the operation thereof will be described below.
The processing waste liquid sent from the processing waste liquid sending means installed in a processing apparatus such as a grinding apparatus (not shown) and stored in a waste liquid tank (not shown) is provided on one end wall 24 of the waste liquid treatment tank 2 by the processing waste liquid supply means 5. Then, it is supplied to the waste liquid treatment tank 2 from the processing waste liquid inlet 241. At this time, the pH adjusting means 8 is operated to supply carbon dioxide and water to the processing waste liquid. Then, the pH adjusting means 8 adjusts so that the measurement signal from the electric resistance measuring means 82 is 1 MΩcm, that is, the processing waste liquid supplied to the waste liquid treatment tank 2 maintains pH 5. According to the experiments by the present inventors, it has been found that when the negative (−) zeta potential charged in the silicon fine particles is adjusted, the capturing power of the silicon fine particles by the anode plate is increased. That is, if the negative (−) zeta potential charged in the silicon fine particles is high, the silicon fine particle capturing force by the anode plate does not increase, but the silicon fine particles mixed in the processing waste liquid supplied to the waste liquid treatment tank. It was found that when the zeta potential of the negative electrode is about minus (−) 40 mV, the trapping power of the silicon fine particles by the anode plate increases most. The pH at which silicon exhibits a zeta potential of about minus (−) 40 mV is about pH 5, and the electrical resistance of the processing waste liquid at this time is 1 MΩcm.

上述したようにpHが調整されて廃液処理槽2に送られた加工廃液にはシリコン微粒子が混入されており、このシリコン微粒子はマイナス(−)40mV程度に帯電されている。このようにして廃液処理槽2に収容された加工廃液に混入されているシリコン微粒子を分離するには、陽極手段4の陽極板41に直流電源6のプラス(+)を印加するとともに、陰極手段3の陰極板31に直流電源6のマイナス(−)を印加する。この結果、加工廃液に混入されマイナス(−)に帯電されているシリコン微粒子は、マイナス(−)に帯電された陰極板31から反発されプラス(+)に帯電された陽極板41に吸着する。このとき、廃液処理槽2に供給された加工廃液は上述したようにpH5程度に調整され加工廃液に混入されているシリコン微粒子のゼータ電位がマイナス(−)40mV程度に維持されているので、シリコン微粒子は効率よく陽極板41に捕獲される。   As described above, silicon fine particles are mixed in the processing waste liquid whose pH is adjusted and sent to the waste liquid treatment tank 2, and the silicon fine particles are charged to about minus (−) 40 mV. In order to separate the silicon fine particles mixed in the processing waste liquid stored in the waste liquid treatment tank 2 in this way, a positive (+) of the DC power source 6 is applied to the anode plate 41 of the anode means 4 and the cathode means. The negative (−) of the DC power source 6 is applied to the three cathode plates 31. As a result, the silicon fine particles mixed in the processing waste liquid and charged negative (−) are repelled from the negative (−) charged cathode plate 31 and adsorbed on the positive (+) charged anode plate 41. At this time, the processing waste liquid supplied to the waste liquid treatment tank 2 is adjusted to about pH 5 as described above, and the zeta potential of the silicon fine particles mixed in the processing waste liquid is maintained at about minus (−) 40 mV. The fine particles are efficiently captured by the anode plate 41.

以上のように、廃液処理槽2の一方の端壁24に設けられた加工廃液流入口241から廃液処理槽2に流入した加工廃液は、陽極板41に吸着されるシリコン微粒子と、清水に分離される。このようにして、分離されたシリコン微粒子は複数の陽極板41に吸着されて堆積し、清水は主に陰極手段3を構成する複数の陰極板31の上部に生成される。陰極手段3を構成する複数の陰極板31の上部に生成された清水は、複数の陰極板31の上端にそれぞれ配設された複数の清水吸引パイプ71に設けられた複数の清水吸引口711から複数の清水吸引パイプ71に吸引され、複数の清水吸引パイプ71の清水送出口712から送出され清水送給ポンプ72を介して図示しない清水タンクに搬送される。従って、廃液処理槽2の一方の端壁24に設けられた加工廃液流入口241から加工廃液を所定量ずつ流入することにより、シリコン微粒子を効率よく分離できるとともに、加工廃液から容易に清水を生成することができる。   As described above, the processing waste liquid flowing into the waste liquid treatment tank 2 from the processing waste liquid inlet 241 provided on one end wall 24 of the waste liquid treatment tank 2 is separated into silicon fine particles adsorbed on the anode plate 41 and fresh water. Is done. In this way, the separated silicon fine particles are adsorbed and deposited on the plurality of anode plates 41, and fresh water is mainly generated on top of the plurality of cathode plates 31 constituting the cathode means 3. The fresh water generated on the top of the plurality of cathode plates 31 constituting the cathode means 3 is supplied from a plurality of fresh water suction ports 711 provided in a plurality of fresh water suction pipes 71 respectively disposed at the upper ends of the plurality of cathode plates 31. The water is sucked into the plurality of fresh water suction pipes 71, sent out from the fresh water feed ports 712 of the plurality of fresh water suction pipes 71, and conveyed to the fresh water tank (not shown) via the fresh water feed pump 72. Therefore, silicon fine particles can be separated efficiently by flowing a predetermined amount of processing waste liquid from a processing waste liquid inlet 241 provided on one end wall 24 of the waste liquid treatment tank 2, and clean water can be easily generated from the processing waste liquid. can do.

上述した加工廃液の処理工程を所定時間実施し、陽極手段4を構成する複数の陽極板41にシリコン微粒子が堆積したならば、シリコン微粒子が堆積した複数の陽極板41を廃液処理槽2の側壁22、23に形成された複数の第2の支持溝222と232から抜き取り、シリコン微粒子回収工程に搬送される。シリコン微粒子回収工程においては、複数の陽極板41に堆積したシリコン微粒子を剥離して回収する。このようにして回収されたシリコン微粒子は、シリコンインゴットに再生される。   If the processing process of the processing waste liquid described above is performed for a predetermined time and silicon fine particles are deposited on the plurality of anode plates 41 constituting the anode means 4, the plurality of anode plates 41 on which the silicon fine particles are deposited is placed on the side wall of the waste liquid treatment tank 2. A plurality of second support grooves 222 and 232 formed in 22 and 23 are extracted and conveyed to a silicon fine particle recovery process. In the silicon fine particle collecting step, the silicon fine particles deposited on the plurality of anode plates 41 are separated and collected. The silicon fine particles collected in this way are regenerated into a silicon ingot.

2:廃液処理槽
241:加工廃液流入口
3:陰極手段
31:陰極板
4:陽極手段
41:陽極板
5:加工廃液供給手段
51:加工廃液供給管
52:バイパス管
6:直流電源
7:清水吸引手段
71:清水吸引パイプ
72:清水送給ポンプ
8:pH調整手段
81:酸供給手段
82:電気抵抗計測手段
83:制御手段
2: Waste liquid treatment tank 241: Processing waste liquid inlet 3: Cathode means 31: Cathode plate 4: Anode means 41: Anode plate 5: Processing waste liquid supply means 51: Processing waste liquid supply pipe 52: Bypass pipe 6: DC power supply 7: Shimizu Suction means 71: Fresh water suction pipe 72: Fresh water feed pump 8: pH adjusting means 81: Acid supply means 82: Electrical resistance measuring means 83: Control means

Claims (2)

シリコン微粒子が混入された加工廃液をシリコン微粒子と清水に分離する加工廃液処理装置において、
加工廃液供給手段に連通する加工廃液流入口が底部に設けられた廃液処理槽と、該廃液処理槽に配設されマイナスに帯電される陰極手段と、該陰極手段と対面して配設されプラスに帯電される陽極手段と、該陰極手段の上部に配設され清水を吸引する清水吸引手段と、該加工廃液供給手段から廃液処理槽に流入する加工廃液のpHを調整するためのpH調整手段と、を備え、
該pH調整手段は、該廃液処理槽に供給される加工廃液に混入されているシリコン微粒子の該陽極手段による捕獲力が増大するpH値になるように調整する、
ことを特徴とする加工廃液処理装置。
In processing waste liquid treatment equipment that separates processing waste liquid mixed with silicon fine particles into silicon fine particles and fresh water,
A waste liquid treatment tank provided at the bottom with a processing waste liquid inlet communicating with the processing waste liquid supply means, a negatively charged cathode means disposed in the waste liquid treatment tank, and a positive electrode disposed opposite to the negative electrode means. Positively charged anode means, fresh water suction means disposed above the cathode means for sucking fresh water , and pH adjusting means for adjusting the pH of the processing waste liquid flowing from the processing waste liquid supply means into the waste liquid treatment tank And comprising
The pH adjusting means adjusts the pH so that the trapping power of the silicon fine particles mixed in the processing waste liquid supplied to the waste liquid treatment tank is increased by the anode means.
A processing waste liquid treatment apparatus characterized by that.
該pH調整手段は、加工廃液に酸を供給する酸供給手段と、該廃液処理槽に流入する加工廃液の電気抵抗値を計測する電気抵抗計測手段と、該電気抵抗計測手段からの計測信号に基づいて酸供給手段を制御する制御手段とを具備している、請求項1記載の加工廃液処理装置。The pH adjusting means includes an acid supply means for supplying an acid to the processing waste liquid, an electrical resistance measuring means for measuring an electrical resistance value of the processing waste liquid flowing into the waste liquid treatment tank, and a measurement signal from the electrical resistance measuring means. The processing waste liquid treatment apparatus according to claim 1, further comprising a control unit that controls the acid supply unit based on the control unit.
JP2012125912A 2012-06-01 2012-06-01 Processing waste liquid treatment equipment Active JP6078236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012125912A JP6078236B2 (en) 2012-06-01 2012-06-01 Processing waste liquid treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012125912A JP6078236B2 (en) 2012-06-01 2012-06-01 Processing waste liquid treatment equipment

Publications (2)

Publication Number Publication Date
JP2013251435A JP2013251435A (en) 2013-12-12
JP6078236B2 true JP6078236B2 (en) 2017-02-08

Family

ID=49849828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012125912A Active JP6078236B2 (en) 2012-06-01 2012-06-01 Processing waste liquid treatment equipment

Country Status (1)

Country Link
JP (1) JP6078236B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6328978B2 (en) * 2014-04-02 2018-05-23 株式会社ディスコ Waste liquid treatment equipment
JP7341611B2 (en) 2019-12-20 2023-09-11 株式会社ディスコ Waste liquid treatment equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3315971B2 (en) * 1999-05-27 2002-08-19 三洋電機株式会社 Wastewater regeneration system
JP3508712B2 (en) * 2000-09-25 2004-03-22 カシオ計算機株式会社 Resist stripping apparatus and device manufacturing method using the same
JP2002113499A (en) * 2000-10-11 2002-04-16 Hitachi Zosen Tomioka Machinery Co Ltd Slurry waste liquid treatment method
JP2010017835A (en) * 2008-07-14 2010-01-28 Nippon Spindle Mfg Co Ltd Processing liquid cleaning device
JP5638300B2 (en) * 2010-07-20 2014-12-10 株式会社ディスコ Separation device
JP2012081385A (en) * 2010-10-07 2012-04-26 Disco Corp Separation apparatus

Also Published As

Publication number Publication date
JP2013251435A (en) 2013-12-12

Similar Documents

Publication Publication Date Title
US9649744B2 (en) Reducing small colloidal particle concentrations in feed and/or byproduct fluids in the context of waterjet processing
TWI245744B (en) System and method for removing deep sub-micron particles from water
US9011204B2 (en) Reducing small colloidal particle concentrations in feed and/or byproduct fluids in the context of waterjet processing
CN203843696U (en) Grinding machine cutting fluid recovery device
JP2007000978A (en) Mixed fluid separation apparatus and method, and manufacturing method for recycled coolant
EP2205387A1 (en) Method and system for manufacturing wafer-like slices from a substrate material
JP6078236B2 (en) Processing waste liquid treatment equipment
CN1621355A (en) Water treatment device and water treatment method using the same
JP5779081B2 (en) Processing waste liquid treatment equipment
JP2012178418A (en) Method and apparatus for collecting polishing agent
JP5779083B2 (en) Processing waste liquid treatment equipment
JP6093566B2 (en) Waste liquid treatment equipment
KR101109551B1 (en) Semiconductor Wastewater treatment plant
JP2016215300A (en) Filter device
TWI286998B (en) Equipment for treating wastewater
JP2009297618A (en) Method and apparatus for collecting particulate chip
JP7086694B2 (en) Coagulant, filter and waste liquid treatment method
JP7341611B2 (en) Waste liquid treatment equipment
JP2009285819A (en) Medicinal solution receiving member, and apparatus and method for collecting medicinal solution
JP2012000705A (en) Waste liquid processing device
JP7446668B2 (en) Processing waste liquid treatment equipment
JP3505710B2 (en) Coolant cleaning device
US20100243548A1 (en) Seawater filter
JP6246537B2 (en) Sampling mechanism
TWI839511B (en) Polycrystalline silicon rod cutting method, polycrystalline silicon rod cutting rod manufacturing method, polycrystalline silicon rod block manufacturing method and polycrystalline silicon rod cutting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170116

R150 Certificate of patent or registration of utility model

Ref document number: 6078236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250