JP6074943B2 - Thermosetting resin composition, and prepreg and laminate using the same - Google Patents

Thermosetting resin composition, and prepreg and laminate using the same Download PDF

Info

Publication number
JP6074943B2
JP6074943B2 JP2012176144A JP2012176144A JP6074943B2 JP 6074943 B2 JP6074943 B2 JP 6074943B2 JP 2012176144 A JP2012176144 A JP 2012176144A JP 2012176144 A JP2012176144 A JP 2012176144A JP 6074943 B2 JP6074943 B2 JP 6074943B2
Authority
JP
Japan
Prior art keywords
group
formula
resin composition
mass
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012176144A
Other languages
Japanese (ja)
Other versions
JP2014034630A (en
Inventor
寛之 泉
寛之 泉
森田 高示
高示 森田
信次 土川
信次 土川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012176144A priority Critical patent/JP6074943B2/en
Publication of JP2014034630A publication Critical patent/JP2014034630A/en
Application granted granted Critical
Publication of JP6074943B2 publication Critical patent/JP6074943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、熱硬化性樹脂組成物、プリプレグ及び積層板に関し、詳しくは、低熱膨張性、高ガラス転移温度、良好な誘電特性を有し、また銅箔接着性、はんだ耐熱性、銅付き耐熱性、難燃性の全てにバランス良く優れ、更に毒性が低く安全性や作業環境に優れる、電子部品等に好適な熱硬化性樹脂組成物、プリプレグ及び積層板に関する。   The present invention relates to a thermosetting resin composition, a prepreg, and a laminate, and in particular, has low thermal expansion, high glass transition temperature, good dielectric properties, and also has copper foil adhesion, solder heat resistance, and heat resistance with copper. The present invention relates to a thermosetting resin composition, a prepreg, and a laminated board suitable for electronic parts and the like, which are well-balanced in all properties and flame retardancy, and have low toxicity and excellent safety and work environment.

熱硬化性樹脂は、熱硬化性樹脂に特有な架橋構造が高い耐熱性や寸法安定性を発現するため、電子部品等の分野において広く使われている。特に、銅張積層板や層間絶縁材料においては、近年の高密度化や高信頼性への要求から、高い銅箔接着性や耐熱性(高ガラス転移温度)、良好な低熱膨張性等の特性が強く要求されている。
また、近年の環境問題から、鉛フリーはんだによる電子部品の搭載やハロゲンフリーによる難燃化が要求され、そのため従来のものよりも高い耐熱性及び難燃性が必要とされる。
さらに、製品の安全性や作業環境の向上化のため、毒性の低い成分のみで構成され、毒性ガス等が発生しない熱硬化性樹脂が望まれている。
Thermosetting resins are widely used in the field of electronic components and the like because the cross-linked structure unique to thermosetting resins exhibits high heat resistance and dimensional stability. In particular, in copper-clad laminates and interlayer insulation materials, characteristics such as high copper foil adhesion, heat resistance (high glass transition temperature), and good low thermal expansion properties have been demanded in recent years for higher density and higher reliability. Is strongly demanded.
Moreover, due to recent environmental problems, mounting of electronic parts using lead-free solder and flame resistance using halogen-free are required, and therefore higher heat resistance and flame resistance than conventional ones are required.
Furthermore, in order to improve the safety of the product and the working environment, there is a demand for a thermosetting resin that includes only low-toxic components and does not generate toxic gases.

この点、液晶性高分子は、良好な誘電特性、低熱膨張性、難燃性等に優れる熱硬化性樹脂となるものであるが、ポリエステル系やポリアミド系、ポリカーボネート系、ポリチオール系、ポリエーテル系、ポリアゾメチン系等の公知の液晶高分子を熱硬化性樹脂にそのまま使用した場合、溶融温度が高すぎ加工性や成形性が不足するという問題や、有機溶剤への溶解性が不足し取り扱い難いという問題があった。   In this respect, the liquid crystalline polymer is a thermosetting resin that has excellent dielectric properties, low thermal expansion, flame retardancy, etc., but is polyester, polyamide, polycarbonate, polythiol, or polyether. When a known liquid crystal polymer such as polyazomethine is used as it is in a thermosetting resin, the melting temperature is too high, and the processability and moldability are insufficient, and the solubility in organic solvents is insufficient, making it difficult to handle. There was a problem.

これらの液晶性高分子の中でも、G.F.D’Alelioが液晶性オリゴマであるポリアゾメチン(非特許文献1参照)を見出して以来、多くのポリアゾメチンを使用する樹脂に関する特許事例が報告されている(例えば、特許文献1〜7参照)。
特許文献1には種々のポリアゾメチンが開示され、特許文献2〜7には特定構造を有するポリアゾメチンが開示されている。また、特許文献8には不飽和基を含有する熱硬化性ポリアゾメチン樹脂が開示され、これらの樹脂により高耐熱性を発現することが記載されている。
Among these liquid crystalline polymers, since GFD'Alelio found polyazomethine (see Non-Patent Document 1), which is a liquid crystalline oligomer, many patent cases relating to resins using polyazomethine have been reported (for example, And Patent Documents 1 to 7).
Patent Document 1 discloses various polyazomethines, and Patent Documents 2 to 7 disclose polyazomethines having specific structures. Patent Document 8 discloses thermosetting polyazomethine resins containing unsaturated groups, and describes that these resins exhibit high heat resistance.

特開昭51−138800号公報JP 51-138800 A 特開昭60−181127号公報JP-A-60-181127 特開昭60−101123号公報JP-A-60-101123 特開2003−073470号公報JP 2003-073470 A 特開昭63−193925号公報JP-A-63-193925 特開平01−069631号公報Japanese Patent Laid-Open No. 01-069631 特開平01−079233号公報Japanese Patent Laid-Open No. 01-079233 特開平05−140067号公報Japanese Patent Laid-Open No. 05-140067

Polymer Sci. Tech., Wiley-Interscience, NewYork, 1969, Vol.10, pp.659-670Polymer Sci. Tech., Wiley-Interscience, NewYork, 1969, Vol.10, pp.659-670

しかしながら、特許文献1〜7に記載のポリアゾメチンは、三次元に架橋し不融、不溶化する熱硬化性樹脂とは異なり、銅張積層板や層間絶縁材料として使用した場合、耐熱性や成形性が不足する場合がある。
また、特許文献8に記載の熱硬化性ポリアゾメチン樹脂は、耐熱性や強靭性の改良が依然不足であり、これらを近年要求される銅張積層板や層間絶縁材料として使用した場合も、耐熱性や信頼性、加工性等が不足する場合がある。
However, the polyazomethines described in Patent Documents 1 to 7 are different from thermosetting resins that are three-dimensionally cross-linked and infusible and insolubilized. When used as a copper-clad laminate or an interlayer insulating material, heat resistance and moldability May be insufficient.
Further, the thermosetting polyazomethine resin described in Patent Document 8 still lacks improvement in heat resistance and toughness, and even when these are used as a copper clad laminate or an interlayer insulating material that has recently been required, In some cases, the reliability, reliability, workability and the like are insufficient.

前記のように、積層板材料には近年の高密度化や高信頼性への要求から、高い銅箔接着性や耐熱性、良好な低熱膨張性等が必要とされている。例えば、微細配線形成のため銅箔接着性としては、銅箔引き剥がし強さが1.0kN/m以上であること、特に1.2kN/m以上であることが望まれている。
また、高密度化に伴い基材は、より薄型化される方向にあり、熱処理時における基材のそりが小さいことが必要となる。低そり化のためには基材が低熱膨張性であることが有効であり、その熱膨張係数は25ppm/℃以下であること、特に20ppm/℃以下であることが望まれている。高密度化のためビルドアップ材等を用いてより高多層化することも必要であり、高いリフロー耐熱性が必要であるが、リフロー耐熱性評価の指針となる銅付き耐熱性(T−300)は、30分以上ふくれ等が生じないことが望まれている。
高速応答性の要求も増え続けており、基材の比誘電率は4.0以下であること、また誘電正接は0.0050以下であることが望まれている。
As described above, the laminated board material is required to have high copper foil adhesiveness, heat resistance, good low thermal expansion property, and the like due to the recent demand for higher density and higher reliability. For example, it is desired that the copper foil peel strength is 1.0 kN / m or more, particularly 1.2 kN / m or more as the copper foil adhesion for forming fine wiring.
In addition, as the density increases, the base material tends to be thinner, and the warp of the base material during heat treatment needs to be small. In order to reduce warpage, it is effective that the base material has low thermal expansion, and it is desired that the thermal expansion coefficient is 25 ppm / ° C. or less, particularly 20 ppm / ° C. or less. It is necessary to increase the number of layers using a build-up material to increase the density, and high reflow heat resistance is required, but heat resistance with copper (T-300), which is a guideline for reflow heat resistance evaluation It is desired that no blistering occurs for 30 minutes or more.
The demand for high-speed response continues to increase, and it is desired that the relative dielectric constant of the substrate is 4.0 or less and the dielectric loss tangent is 0.0050 or less.

本発明の目的は、こうした現状に鑑み、低熱膨張性、高ガラス転移温度、良好な誘電特性を有し、また銅箔接着性、はんだ耐熱性、銅付き耐熱性、難燃性の全てにバランス良く優れ、更に毒性が低く安全性や作業環境に優れる、電子部品等に好適な熱硬化性樹脂組成物を提供することである。   In view of the current situation, the object of the present invention has low thermal expansion, high glass transition temperature, good dielectric properties, and balances all of copper foil adhesion, solder heat resistance, heat resistance with copper, and flame retardancy. It is to provide a thermosetting resin composition suitable for electronic parts and the like, which is excellent and excellent in toxicity and is excellent in safety and working environment.

本発明者らは、積層板材料で以上のような様々な特性の要求がある状況の中、鋭意研究した結果、特定の化学式で表される分子構造中に少なくとも1個のマレイミド基と少なくとも1個の1級アミノ基を有する化合物(A)、分子構造中に2個のアルデヒド基を有する化合物(B)及び芳香族縮合リン酸エステル(C)を樹脂組成物に含有させることにより、上記の目的に適う樹脂組成物が得られることを見出し、本発明を完成するに至った。
すなわち、本発明は、以下の熱硬化性樹脂組成物、プリプレグ及び積層板を提供するものである。
As a result of earnest research in the situation where the laminated plate material has various characteristics as described above, the present inventors have found that at least one maleimide group and at least one in the molecular structure represented by a specific chemical formula. By containing the compound (A) having one primary amino group, the compound (B) having two aldehyde groups in the molecular structure and the aromatic condensed phosphate ester (C) in the resin composition, The inventors have found that a resin composition suitable for the purpose can be obtained, and have completed the present invention.
That is, the present invention provides the following thermosetting resin composition, prepreg and laminate.

1.下記一般式(I)で表される分子構造中に少なくとも1個のマレイミド基と少なくとも1個の1級アミノ基を有する化合物(A)、下記一般式(II)で表される分子構造中に2個のアルデヒド基を有する化合物(B)及び下記一般式(III)で表される構造の芳香族縮合リン酸エステル(C)を含有することを特徴とする熱硬化性樹脂組成物。 1. In the molecular structure represented by the following general formula (I), the compound (A) having at least one maleimide group and at least one primary amino group in the molecular structure represented by the following general formula (I), A thermosetting resin composition comprising a compound (B) having two aldehyde groups and an aromatic condensed phosphate ester (C) having a structure represented by the following general formula (III).

(式中、Ar1は独立に一般式(I−1)、(I−2)、(I−3)又は(I−4)で表される残基であり、Ar2は下記一般式(I−5)又は(I−6)で示される残基であり、複数あるAr2は同一でも異なっていても良い。) (In the formula, Ar 1 is independently a residue represented by general formula (I-1), (I-2), (I-3) or (I-4), and Ar 2 is represented by the following general formula ( The residues represented by I-5) or (I-6), and a plurality of Ar 2 may be the same or different.


(式中、R1は炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示し、pは0〜4の整数である。)

(In the formula, R 1 represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom, and p is an integer of 0 to 4.)

(式中、R2及びR3は各々独立に炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示し、q、rは各々独立に0〜4の整数であり、A1は炭素数1〜5のアルキレン基、アルキリデン基、エーテル基、又はスルフォニル基で表される残基である。) (In the formula, R 2 and R 3 each independently represent an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom, q and r are each independently an integer of 0 to 4, and A 1 represents the number of carbon atoms. It is a residue represented by an alkylene group of 1 to 5, an alkylidene group, an ether group, or a sulfonyl group.)

(式中、mは1〜10である。) (In the formula, m is 1 to 10.)

(式中、*は結合部分を示す。なお、この*は結合部分が明確でない場合のみに使用する。以下の化学式においても同様である。) (In the formula, * represents a bonding part. The * is used only when the bonding part is not clear. The same applies to the following chemical formulas.)

(式中、R5及びR6は各々独立に炭素数1〜5の脂肪族炭化水素基、メトキシ基、水酸基又はハロゲン原子を示し、Y、Zは各々独立に0〜4の整数であり、A2は単結合、炭素数1〜5のアルキレン基、アルキリデン基、エーテル基、スルフォニル基、ケトン基、フルオレン基、又はフェニレンジオキシ基で表される残基である。) (Wherein R 5 and R 6 each independently represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms, a methoxy group, a hydroxyl group or a halogen atom, Y and Z are each independently an integer of 0 to 4; A 2 is a residue represented by a single bond, an alkylene group having 1 to 5 carbon atoms, an alkylidene group, an ether group, a sulfonyl group, a ketone group, a fluorene group, or a phenylenedioxy group.

(式中、A3は、単結合、炭素数1〜5のアルキレン基、イソプロピリデン基、エーテル基、又はスルフォニル基である。) (In the formula, A 3 is a single bond, an alkylene group having 1 to 5 carbon atoms, an isopropylidene group, an ether group, or a sulfonyl group.)

(式中、Ar4はベンゼン環、又は(III−1)で示される残基であり、R7及びR8は各々独立に水素原子又は炭素数1〜5の炭化水素基である。) (In the formula, Ar 4 is a benzene ring or a residue represented by (III-1), and R 7 and R 8 are each independently a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms.)

2.更に、下記一般式(IV)で表されるN−フェニル−3−アミノプロピルトリメトキシシランにより表面処理された溶融シリカ(D)を含有する上記1の熱硬化性樹脂組成物。
2. Furthermore, said 1 thermosetting resin composition containing the fused silica (D) surface-treated by N-phenyl-3-aminopropyl trimethoxysilane represented by the following general formula (IV).

3.更に、硬化促進剤(E)を含有する上記1又は2の熱硬化性樹脂組成物。
4.上記1〜3のいずれかに記載の熱硬化性絶縁樹脂組成物をシート状補強基材中に含又は塗工し、半硬化(Bステージ化)したプリプレグ。
5.絶縁樹脂層が、上記1〜3のいずれかに記載の熱硬化性絶縁樹脂組成物又は上記4のプリプレグを用いて形成された積層板。
3. Furthermore, the said 1 or 2 thermosetting resin composition containing a hardening accelerator (E).
4). The thermosetting insulating resin composition according to any one of the above 1 to 3 and including immersion or coating in the sheet-shaped reinforcing substrate, a semi-cured (B-staged) prepregs.
5. The laminated board in which the insulating resin layer was formed using the thermosetting insulating resin composition in any one of said 1-3, or the said 4 prepreg.

本発明の熱硬化性樹脂組成物は、特に、優れた低熱膨張性、高ガラス転移温度、良好な誘電特性を有し、また銅箔接着性、はんだ耐熱性、銅付き耐熱性、難燃性の全てにバランス良く優れ、更に毒性が低く安全性や作業環境に優れる、電子部品等に好適に使用することができる。   The thermosetting resin composition of the present invention has excellent low thermal expansion property, high glass transition temperature, good dielectric properties, and copper foil adhesion, solder heat resistance, heat resistance with copper, flame resistance It can be suitably used for electronic parts, etc. that are excellent in balance, excellent in safety and work environment with low toxicity.

先ず、本発明の熱硬化性樹脂組成物で用いられる分子構造中に少なくとも1個のマレイミド基と少なくとも1個の1級アミノ基を有する化合物(A)(「マレイミド誘導体」とも云う)について説明する。
本発明の熱硬化性樹脂組成物で成分(A)に分子構造中に少なくとも1個のマレイミド基と少なくとも1個の1級アミノ基を有する化合物(A)は、下記一般式(I)で表される化合物である。
First, the compound (A) (also referred to as “maleimide derivative”) having at least one maleimide group and at least one primary amino group in the molecular structure used in the thermosetting resin composition of the present invention will be described. .
The compound (A) having at least one maleimide group and at least one primary amino group in the molecular structure of the component (A) in the thermosetting resin composition of the present invention is represented by the following general formula (I). It is a compound.

(式中、Ar1は独立に下記一般式(I−1)、(I−2)、(I−3)又は(I−4)で表される残基であり、Ar2は下記一般式(I−5)又は(I−6)で示される残基であり、複数あるAr2は同一でも異なっていても良い。nは0〜10である。) (In the formula, Ar 1 is independently a residue represented by the following general formula (I-1), (I-2), (I-3) or (I-4), and Ar 2 is represented by the following general formula: (It is a residue represented by (I-5) or (I-6), and a plurality of Ar 2 may be the same or different. N is 0 to 10.)


(式中、R1は炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示し、pは0〜4の整数である。)

(In the formula, R 1 represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom, and p is an integer of 0 to 4.)

(式中、R2及びR3は各々独立に炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示し、q、rは各々独立に0〜4の整数であり、A1は炭素数1〜5のアルキレン基、アルキリデン基、エーテル基、又はスルフォニル基で表される残基である。) (In the formula, R 2 and R 3 each independently represent an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom, q and r are each independently an integer of 0 to 4, and A 1 represents the number of carbon atoms. It is a residue represented by an alkylene group of 1 to 5, an alkylidene group, an ether group, or a sulfonyl group.)

(式中、mは1〜10である。) (In the formula, m is 1 to 10.)

(式中、*は結合部分を示す。なお、この*は結合部分が明確でない場合のみに使用する。以下の化学式においても同様である。) (In the formula, * represents a bonding part. The * is used only when the bonding part is not clear. The same applies to the following chemical formulas.)

(式中、R5及びR6は各々独立に炭素数1〜5の脂肪族炭化水素基、メトキシ基、水酸基又はハロゲン原子を示し、Y、Zは各々独立に0〜4の整数であり、A2は単結合、炭素数1〜5のアルキレン基、アルキリデン基、エーテル基、スルフォニル基、ケトン基、フルオレン基、又はフェニレンジオキシ基で表される残基である。) (Wherein R 5 and R 6 each independently represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms, a methoxy group, a hydroxyl group or a halogen atom, Y and Z are each independently an integer of 0 to 4; A 2 is a residue represented by a single bond, an alkylene group having 1 to 5 carbon atoms, an alkylidene group, an ether group, a sulfonyl group, a ketone group, a fluorene group, or a phenylenedioxy group.

(式中、A3は、単結合、炭素数1〜5のアルキレン基、イソプロピリデン基、エーテル基、又はスルフォニル基である。) (In the formula, A 3 is a single bond, an alkylene group having 1 to 5 carbon atoms, an isopropylidene group, an ether group, or a sulfonyl group.)

成分(A)として用いられる一般式(I)で表される分子構造中に少なくとも1個のマレイミド基と少なくとも1個の1級アミノ基を有する化合物(A)は、例えば下記一般式(V)で表される分子中に2個の1級アミノ基を有する化合物(a)(以下、アミノ化合物(a)とも云う)と下記一般式(VI)に示す1分子中に少なくとも2個のN−置換マレイミド基を有するマレイミド化合物(b)(以下、マレイミド化合物(b)とも云う)を有機溶媒中でマイケル付加反応させることにより製造することができる。   The compound (A) having at least one maleimide group and at least one primary amino group in the molecular structure represented by the general formula (I) used as the component (A) is, for example, the following general formula (V) And a compound (a) having two primary amino groups in the molecule represented by the formula (hereinafter also referred to as amino compound (a)) and at least two N— in one molecule represented by the following general formula (VI): It can be produced by subjecting a maleimide compound (b) having a substituted maleimide group (hereinafter also referred to as a maleimide compound (b)) to a Michael addition reaction in an organic solvent.

(式中、Ar2は一般式(I)のものと同様である。) (In the formula, Ar 2 is the same as that of the general formula (I).)

(式中、Ar1は一般式(I)のものと同様である。) (In the formula, Ar 1 is the same as that of the general formula (I).)

アミノ化合物(a)としては、例えば、p−フェニレンジアミン、m−フェニレンジアミン、o−フェニレンジアミン、3−メチル−1,4−ジアミノベンゼン、2,5−ジメチル−1,4−ジアミノベンゼン、4,4'−ジアミノジフェニルメタン、4,4'−ジアミノ−3,3'−ジメチル−ジフェニルメタン、4,4'−ジアミノ−3,3'−ジエチル−ジフェニルメタン、4,4'−ジアミノジフェニルエーテル、4,4'−ジアミノジフェニルスルホン、3,3'−ジアミノジフェニルスルホン、4,4'−ジアミノジフェニルケトン、ベンジジン、3,3'−ジメチル−4,4'−ジアミノビフェニル、2,2'−ジメチル−4,4'−ジアミノビフェニル、3,3'−ジヒドロキシベンジジン、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン、3,3−ジメチル−5,5−ジエチル−4,4−ジフェニルメタンジアミン、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4'−ビス(4−アミノフェノキシ)ビフェニル、ビス(4−(4−アミノフェノキシ)フェニル)スルホン、ビス(4−(3−アミノフェノキシ)フェニル)スルホン、9,9−ビス(4−アミノフェニル)フルオレン等の芳香族アミン類が挙げられる。   Examples of the amino compound (a) include p-phenylenediamine, m-phenylenediamine, o-phenylenediamine, 3-methyl-1,4-diaminobenzene, 2,5-dimethyl-1,4-diaminobenzene, 4 , 4'-diaminodiphenylmethane, 4,4'-diamino-3,3'-dimethyl-diphenylmethane, 4,4'-diamino-3,3'-diethyl-diphenylmethane, 4,4'-diaminodiphenyl ether, 4,4 '-Diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ketone, benzidine, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4, 4′-diaminobiphenyl, 3,3′-dihydroxybenzidine, 2,2-bis (3-amino-4-hydroxypheny ) Propane, 3,3-dimethyl-5,5-diethyl-4,4-diphenylmethanediamine, 2,2-bis (4-aminophenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl ) Propane, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4′-bis (4 -Aromatic such as aminophenoxy) biphenyl, bis (4- (4-aminophenoxy) phenyl) sulfone, bis (4- (3-aminophenoxy) phenyl) sulfone, 9,9-bis (4-aminophenyl) fluorene Examples include amines.

アミノ化合物(a)は、これらの中で、合成時の反応率が高く、より高耐熱性化できる4,4'−ジアミノジフェニルメタン、3,3'−ジメチル−4,4'−ジアミノビフェニル、4,4'−ジアミノ−3,3'−ジメチル−ジフェニルメタン、4,4'−ジアミノ−3,3'−ジエチル−ジフェニルメタン、4,4'−ビス(4−アミノフェノキシ)ビフェニル、ビス(4−(4−アミノフェノキシ)フェニル)プロパン等がより好ましく、安価であることや溶剤への溶解性の点から4,4'−ジアミノジフェニルメタン、3,3'−ジメチル−4,4'−ジアミノビフェニル、4,4'−ジアミノ−3,3'−ジエチル−ジフェニルメタン、ビス(4−(4−アミノフェノキシ)フェニル)プロパンが好ましく、低熱膨張性や誘電特性の点から、3,3'−ジメチル−4,4'−ジアミノビフェニル、ビス(4−(4−アミノフェノキシ)フェニル)プロパンが特に好ましい。また、高弾性率であることから、p−フェニレンジアミン、m−フェニレンジアミン、3−メチル−1,4−ジアミノベンゼン、2,5−ジメチル−1,4−ジアミノベンゼンも特に好ましい。   Among these, the amino compound (a) has a high reaction rate at the time of synthesis, and 4,4′-diaminodiphenylmethane, 3,3′-dimethyl-4,4′-diaminobiphenyl, which can have higher heat resistance. , 4′-diamino-3,3′-dimethyl-diphenylmethane, 4,4′-diamino-3,3′-diethyl-diphenylmethane, 4,4′-bis (4-aminophenoxy) biphenyl, bis (4- ( 4-aminophenoxy) phenyl) propane and the like are more preferable and 4,4′-diaminodiphenylmethane, 3,3′-dimethyl-4,4′-diaminobiphenyl, 4 in view of low cost and solubility in a solvent. , 4′-diamino-3,3′-diethyl-diphenylmethane and bis (4- (4-aminophenoxy) phenyl) propane are preferred, and 3,3 ′ is preferred from the viewpoint of low thermal expansion and dielectric properties. Dimethyl-4,4'-diamino biphenyl, bis (4- (4-aminophenoxy) phenyl) propane is particularly preferred. Moreover, since it is a high elastic modulus, p-phenylenediamine, m-phenylenediamine, 3-methyl-1,4-diaminobenzene, and 2,5-dimethyl-1,4-diaminobenzene are particularly preferable.

マレイミド化合物(b)としては、例えば、ビス(4−マレイミドフェニル)メタン、下記一般式(VII)で表されるポリフェニルメタンマレイミド、ビス(4−マレイミドフェニル)エーテル、ビス(4−マレイミドフェニル)スルホン、3,3−ジメチル−5,5−ジエチル−4,4−ジフェニルメタンビスマレイミド、4−メチル−1,3−フェニレンビスマレイミド、m−フェニレンビスマレイミド、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパンなどが挙げられる。   As the maleimide compound (b), for example, bis (4-maleimidophenyl) methane, polyphenylmethanemaleimide represented by the following general formula (VII), bis (4-maleimidophenyl) ether, bis (4-maleimidophenyl) Sulfone, 3,3-dimethyl-5,5-diethyl-4,4-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, m-phenylene bismaleimide, 2,2-bis (4- (4 -Maleimidophenoxy) phenyl) propane and the like.

(式中、mは1〜10である。) (In the formula, m is 1 to 10.)

マレイミド化合物(b)として、これらの中で、反応率が高く、より高耐熱性化できるビス(4−マレイミドフェニル)メタン、ビス(4−マレイミドフェニル)スルホン、3,3−ジメチル−5,5−ジエチル−4,4−ジフェニルメタンビスマレイミド、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパンが好ましく、溶剤への溶解性の点から、3,3−ジメチル−5,5−ジエチル−4,4−ジフェニルメタンビスマレイミド、ビス(4−マレイミドフェニル)メタンがより好ましく、安価である点からビス(4−マレイミドフェニル)メタンが特に好ましい。   Among these, as the maleimide compound (b), bis (4-maleimidophenyl) methane, bis (4-maleimidophenyl) sulfone, 3,3-dimethyl-5,5 having a high reaction rate and higher heat resistance can be obtained. -Diethyl-4,4-diphenylmethane bismaleimide and 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane are preferred. From the viewpoint of solubility in a solvent, 3,3-dimethyl-5,5- Diethyl-4,4-diphenylmethane bismaleimide and bis (4-maleimidophenyl) methane are more preferred, and bis (4-maleimidophenyl) methane is particularly preferred because it is inexpensive.

マイケル反応に使用される有機溶媒は、特に制限されないが、例えばエタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、テトラヒドロフラン等のエーテル系溶剤、トルエン、キシレン、メシチレン等の芳香族系溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の窒素原子含有溶剤、ジメチルスルホキシド等の硫黄原子含有溶剤、γ−ブチロラクトン等のエステル系溶剤等が挙げられ、1種又は2種以上を混合して使用できる。これらの中で、溶解性の点からジメチルホルムアミド、ジメチルアセトアミド、シクロヘキサノン、γ−ブチロラクトン等が好ましく、揮発性が高くプリプレグの製造時に残溶剤として残りにくいジメチルアセトアミド、プロピレングリコールモノメチルエーテルがより好ましい。また、この合成反応は脱水縮合反応であるため副生成物として水が生成されるため、この副生成物である水を除去する目的でトルエン、キシレン、メシチレン等の芳香族系溶剤を併用することが特に好ましく、芳香族系溶剤との共沸により副生成物である水を除去しながら合成することが望ましい。   The organic solvent used for the Michael reaction is not particularly limited. For example, alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, and ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Solvents, ether solvents such as tetrahydrofuran, aromatic solvents such as toluene, xylene, mesitylene, nitrogen atom containing solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, sulfur atom containing solvents such as dimethyl sulfoxide, γ-butyrolactone Ester solvent etc. are mentioned, etc., 1 type (s) or 2 or more types can be mixed and used. Among these, dimethylformamide, dimethylacetamide, cyclohexanone, γ-butyrolactone and the like are preferable from the viewpoint of solubility, and dimethylacetamide and propylene glycol monomethyl ether, which are highly volatile and hardly remain as a residual solvent at the time of producing a prepreg, are more preferable. In addition, since this synthesis reaction is a dehydration condensation reaction, water is produced as a by-product. Therefore, an aromatic solvent such as toluene, xylene, mesitylene, etc. should be used in combination for the purpose of removing this by-product water. Is particularly preferable, and it is desirable to synthesize while removing water as a by-product by azeotropy with an aromatic solvent.

マイケル付加反応において、アミノ化合物(a)とマレイミド化合物(b)の使用量は、マレイミド化合物(b)のマレイミド基数〔マレイミド化合物(b)の使用量/マレイミド化合物(b)のマレイミド基当量〕が、アミノ化合物(a)の一級アミノ基数〔アミノ化合物(a)の使用量/アミノ化合物(a)の一級アミノ基当量〕の2〜10倍になる範囲であることが望ましい。2倍以上とすることによりゲル化を起こしたり、熱硬化性樹脂の耐熱性が低下することがなく、10倍以下とすることにより有機溶媒への溶解性が不足したり、熱硬化性樹脂の耐熱性が低下することがない。   In the Michael addition reaction, the amount of amino compound (a) and maleimide compound (b) used is the number of maleimide groups in maleimide compound (b) [the amount of maleimide compound (b) used / maleimide group equivalent of maleimide compound (b)]. The number of primary amino groups of the amino compound (a) [amount of amino compound (a) used / equivalent of primary amino group of amino compound (a)] is preferably in the range of 2 to 10 times. When it is 2 times or more, gelation does not occur, and the heat resistance of the thermosetting resin does not decrease, and when it is 10 times or less, the solubility in an organic solvent is insufficient. Heat resistance does not decrease.

また、有機溶媒の使用量は、マレイミド化合物(d)とアミノ化合物(a)の合計量(固形分)100質量部当たり、25〜2000質量部とすることが好ましく、40〜1000質量部とすることがより好ましく、40〜500質量部とすることが特に好ましい。有機溶剤の配合量が40質量部以上とすることにより溶解性が不足することがなく、また500質量部以下とすることにより合成に長時間を要することがなく、製造コストが低下する。   Moreover, it is preferable that the usage-amount of an organic solvent shall be 25-2000 mass parts per 100 mass parts of total amounts (solid content) of a maleimide compound (d) and an amino compound (a), and shall be 40-1000 mass parts. It is more preferable to set it as 40-500 mass parts. When the blending amount of the organic solvent is 40 parts by mass or more, the solubility is not insufficient, and when it is 500 parts by mass or less, the synthesis does not take a long time and the manufacturing cost is reduced.

マイケル付加反応には、必要により任意に反応触媒を使用することができ、該触媒は特に限定されない。反応触媒の例としては、p−トルエンスルホン酸等の酸性触媒、トリエチルアミン、ピリジン、トリブチルアミン等のアミン類、メチルイミダゾール、フェニルイミダゾール等のイミダゾール類、トリフェニルホスフィン等のリン系触媒等が挙げられ、1種又は2種以上を混合して使用できる。脱水縮合反応を効率よく進行させるため、p−トルエンスルホン酸等の酸性触媒が特に好ましい。   In the Michael addition reaction, a reaction catalyst can be optionally used as necessary, and the catalyst is not particularly limited. Examples of reaction catalysts include acidic catalysts such as p-toluenesulfonic acid, amines such as triethylamine, pyridine, and tributylamine, imidazoles such as methylimidazole and phenylimidazole, and phosphorus-based catalysts such as triphenylphosphine. 1 type (s) or 2 or more types can be mixed and used. An acidic catalyst such as p-toluenesulfonic acid is particularly preferred in order to allow the dehydration condensation reaction to proceed efficiently.

上記の原料、有機溶媒、必要により反応触媒を合成釜に仕込み、必要により加熱・保温しながら0.1時間から10時間攪拌し脱水縮合反応させることにより、上記一般式(I)で表される分子構造中に少なくとも1個のマレイミド基と少なくとも1個の1級アミノ基を有する化合物(A)が製造される。
反応温度は80〜200℃が好ましく、100〜160℃が特に好ましい。80℃以上とすることにより反応速度が遅くなり過ぎることがなく、200℃以下ではゲル化を引き起こすことがない。
The above-mentioned raw material, organic solvent, and if necessary, a reaction catalyst are charged into a synthesis kettle, and if necessary, stirred for 0.1 to 10 hours while being heated and kept warm, and subjected to a dehydration condensation reaction. A compound (A) having at least one maleimide group and at least one primary amino group in the molecular structure is produced.
The reaction temperature is preferably 80 to 200 ° C, particularly preferably 100 to 160 ° C. When the temperature is 80 ° C. or higher, the reaction rate does not become too slow, and when it is 200 ° C. or lower, gelation does not occur.

マイケル付加反応により得られた一般式(I)で表される分子構造中に少なくとも1個のマレイミド基と少なくとも1個の1級アミノ基を有する化合物(A)は、少量の試料を取り出し、再沈殿により精製した試料のGPC測定を行うことにより確認することができる。GPC測定により合成されたビスマレイミド誘導体のピークが出現することや、合成原料である1分子中に少なくとも2個の1級アミノ基を有する化合物の消失を確認することにより、良好に合成反応が進行し所望の化合物が製造されていることを確認できる。   The compound (A) having at least one maleimide group and at least one primary amino group in the molecular structure represented by the general formula (I) obtained by the Michael addition reaction is taken out from a small amount of sample. It can confirm by performing the GPC measurement of the sample refine | purified by precipitation. The synthesis reaction proceeds well by confirming the appearance of the peak of the bismaleimide derivative synthesized by GPC measurement and the disappearance of the compound having at least two primary amino groups in one molecule as a raw material for synthesis. It can be confirmed that the desired compound is produced.

本発明の熱硬化性樹脂組成物の成分(B)として用いられる一般式(II)で表される分子構造中に2個のアルデヒド基を有する化合物としては、例えばテレフタルアルデヒド、イソフタルアルデヒド、o−フタルアルデヒドが挙げられる。これらの中で、より低熱膨張化が可能であり、合成時の反応率が高く、溶剤溶解性にも優れ、商業的にも入手し易いテレフタルアルデヒドが特に好ましい。
ここで、成分(A)と成分(B)の使用量は、成分(A)の一級アミノ基数〔成分(A)の使用量/成分(A)の一級アミノ基当量〕が、成分(B)のアルデヒド基数〔成分(B)の使用量/成分(B)のアルデヒド基当量〕の1.0〜4.0倍の範囲に使用されることが望ましい。1.0倍以上とすることにより熱硬化性樹脂の耐熱性や弾性率が低下することがなく、4.0倍以下とすることにより熱硬化性樹脂の耐熱性や銅箔接着性が低下することがない。
Examples of the compound having two aldehyde groups in the molecular structure represented by the general formula (II) used as the component (B) of the thermosetting resin composition of the present invention include terephthalaldehyde, isophthalaldehyde, o- Examples include phthalaldehyde. Among these, terephthalaldehyde, which can be further reduced in thermal expansion, has a high reaction rate during synthesis, is excellent in solvent solubility, and is easily available commercially, is particularly preferable.
Here, the amount of component (A) and component (B) used is the number of primary amino groups in component (A) [the amount of component (A) used / the primary amino group equivalent of component (A)]. It is desirable to be used in the range of 1.0 to 4.0 times the number of aldehyde groups of [the amount of component (B) used / the amount of aldehyde groups of component (B)]. The heat resistance and elastic modulus of the thermosetting resin do not decrease by setting it to 1.0 times or more, and the heat resistance and copper foil adhesion of the thermosetting resin are reduced by setting it to 4.0 times or less. There is nothing.

本発明の熱硬化性樹脂組成物の成分(C)として用いられる下記一般式(III)で表される芳香族縮合リン酸エステル(C)は、大八化学社などから商業的に入手することができ、例えば、下記式(VIII)に示す大八化学社製の商品名;PX−200、下記式(IX)に示す大八化学社製の商品名;CR-733S、下記式(X)に示す大八化学社製の商品名;CR−741などがある。   The aromatic condensed phosphate ester (C) represented by the following general formula (III) used as the component (C) of the thermosetting resin composition of the present invention is commercially available from Daihachi Chemical Co., Ltd. For example, the trade name of Daihachi Chemical Co., Ltd. shown in the following formula (VIII); PX-200, the trade name of Daihachi Chemical Co., Ltd. shown in the following formula (IX); CR-733S, the following formula (X) Product name manufactured by Daihachi Chemical Co., Ltd .;

(式中、Ar4はベンゼン環、又は(III−1)で示される残基であり、R7及びR8は各々独立に水素原子又は炭素数1〜5の炭化水素基である。) (In the formula, Ar 4 is a benzene ring or a residue represented by (III-1), and R 7 and R 8 are each independently a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms.)

これら芳香族縮合リン酸エステル(C)を本発明の熱硬化性樹脂組成物に用いることにより、良好な誘電特性と難燃性、耐熱性の全てに優れる熱硬化性樹脂を得ることができる。芳香族縮合リン酸エステル(C)の使用量は、固形分換算の成分(A)と成分(B)の合計量100質量部に対し、5〜50質量部とすることが好ましく、5〜30質量部とすることがより好ましい。5質量部以上とすることにより難燃性が不足することがなく、また、50質量部以下とすることによりガラス転移温度が低下することがない。   By using these aromatic condensed phosphates (C) in the thermosetting resin composition of the present invention, a thermosetting resin excellent in all of good dielectric properties, flame retardancy and heat resistance can be obtained. The amount of the aromatic condensed phosphate ester (C) used is preferably 5 to 50 parts by mass with respect to 100 parts by mass of the total amount of the component (A) and the component (B) in terms of solid content, and 5 to 30 parts. It is more preferable to set it as a mass part. By setting it as 5 mass parts or more, a flame retardance does not become insufficient, and by setting it as 50 mass parts or less, a glass transition temperature does not fall.

本発明の熱硬化性樹脂組成物に任意に用いられる下記式(IV)で表されるN−フェニル−3−アミノプロピルトリメトキシシランにより表面処理された溶融シリカ(D)は、溶融シリカをN−フェニル−3−アミノプロピルトリメトキシシランを使用し、例えば湿式処理により表面処理することにより得られる。   The fused silica (D) surface-treated with N-phenyl-3-aminopropyltrimethoxysilane represented by the following formula (IV) optionally used in the thermosetting resin composition of the present invention is obtained by converting fused silica to N Using phenyl-3-aminopropyltrimethoxysilane, for example, by surface treatment by wet treatment.

N−フェニル−3−アミノプロピルトリメトキシシランにより表面処理された溶融シリカ(C)は、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系有機溶剤やエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール系有機溶剤に、溶融シリカを添加して混合した後、上記式(III)で表されるトリメトキシシラン化合物を添加して60〜120℃で、0.5〜5時間程度攪拌しながら反応(表面処理)させることにより得られる。
また、N−フェニル−3−アミノプロピルトリメトキシシランにより表面処理された溶融シリカ(C)は、アドマテックス社等から商業的にも入手でき、例えば、アドマテックス社製の商品名SC−2050KNKや、SC−2050HNK等がある。
Fused silica (C) surface-treated with N-phenyl-3-aminopropyltrimethoxysilane is a ketone organic solvent such as methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, or an alcohol type such as ethylene glycol monomethyl ether or propylene glycol monomethyl ether. After adding fused silica to the organic solvent and mixing, the trimethoxysilane compound represented by the above formula (III) is added and reacted at 60 to 120 ° C. with stirring for about 0.5 to 5 hours (surface) Processed).
Moreover, the fused silica (C) surface-treated with N-phenyl-3-aminopropyltrimethoxysilane can also be obtained commercially from Admatechs Co., Ltd., for example, trade name SC-2050KNK manufactured by Admatechs Co., Ltd. SC-2050HNK, etc.

N−フェニル−3−アミノプロピルトリメトキシシランにより表面処理された溶融シリカ(D)の使用量は、固形分換算の成分(A)と成分(B)の合計量100質量部に対し、10〜300質量部とすることが好ましく、100〜250質量部とすることがより好ましく、150〜250質量部とすることが特に好ましい。10質量部以上とすることにより、基材の剛性や、耐湿耐熱性、難燃性が不足することがなく、また、300質量部以下とすることにより、成形性や耐めっき液性等の耐薬品性が低下することがない。   The amount of fused silica (D) surface-treated with N-phenyl-3-aminopropyltrimethoxysilane is 10 to 10 parts by mass with respect to 100 parts by mass of the total amount of component (A) and component (B) in terms of solid content. The amount is preferably 300 parts by mass, more preferably 100 to 250 parts by mass, and particularly preferably 150 to 250 parts by mass. By setting it to 10 parts by mass or more, the rigidity of the base material, moisture heat resistance, and flame resistance are not insufficient, and by setting it to 300 parts by mass or less, resistance to moldability, plating solution resistance, etc. There is no deterioration in chemical properties.

本発明の熱硬化性樹脂組成物は、必要により硬化促進剤(E)、芳香族縮合リン酸エステル(C)以外の難燃剤(F)、前記溶融シリカ(D)以外の無機充填剤(G)等を併用してもよい。これらの材料を適切に併用することにより更に諸特性を向上することができる。
本発明の熱硬化性樹脂組成物に、適切な硬化促進剤(D)を併用することにより、成形温度250℃以下での低温硬化性を付与することができ、更に高弾性率性や難燃性、銅箔接着性等を向上させることができる。
本発明の熱硬化性樹脂組成物に用いられる硬化促進剤(E)としては、イミダゾール類及びその誘導体、第三級アミン類及び第四級アンモニウム塩等が挙げられる。その中でもイミダゾール類及びその誘導体が高弾性率性や難燃性、銅箔接着性等の点から好ましい。
更に下記一般式(XI)で表されるイミダゾール基がエポキシ樹脂によって置換された化合物や、下記一般式(XII)で表されるイソシアネート樹脂によって置換された化合物が200℃以下での比較的低温での硬化成形性とワニスやプリプレグの経日安定性に優れるためより好ましく、下記一般式(XIII)又は(XIV)で表される化合物が少量の配合使用量でよく、また商業的にも安価であることから特に好ましい。
If necessary, the thermosetting resin composition of the present invention comprises a curing accelerator (E), a flame retardant (F) other than the aromatic condensed phosphate ester (C), and an inorganic filler (G) other than the fused silica (D). ) Etc. may be used in combination. Various properties can be further improved by appropriately using these materials together.
By using an appropriate curing accelerator (D) in combination with the thermosetting resin composition of the present invention, low temperature curability at a molding temperature of 250 ° C. or lower can be imparted, and further, high elasticity and flame retardancy. Property, copper foil adhesiveness, etc. can be improved.
Examples of the curing accelerator (E) used in the thermosetting resin composition of the present invention include imidazoles and derivatives thereof, tertiary amines and quaternary ammonium salts. Among them, imidazoles and derivatives thereof are preferable from the viewpoints of high elastic modulus, flame retardancy, copper foil adhesion, and the like.
Further, a compound in which an imidazole group represented by the following general formula (XI) is substituted by an epoxy resin, or a compound substituted by an isocyanate resin represented by the following general formula (XII) is a relatively low temperature of 200 ° C. or less. It is more preferable because it is excellent in curing moldability and aging stability of varnish and prepreg, and the compound represented by the following general formula (XIII) or (XIV) may be used in a small amount, and is also commercially inexpensive. This is particularly preferable.

(式中、R6、R7、R8、R9は各々独立に水素原子、又は炭素数1〜5の脂肪族炭化水素基、フェニル基を示し、Bは単結合、又はアルキレン基、アルキリデン基、エーテル基、スルフォニル基のいずれかである。) (Wherein R 6 , R 7 , R 8 and R 9 each independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or a phenyl group, and B represents a single bond, an alkylene group or an alkylidene group) A group, an ether group, or a sulfonyl group.)

(式中、R6、R7、R8、R9は各々独立に水素原子、又は炭素数1〜5の脂肪族炭化水素基、フェニル基を示し、Dはアルキレン基、芳香族炭化水素基等のイソシアネート樹脂の残基である) (In the formula, R 6 , R 7 , R 8 and R 9 each independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or a phenyl group, and D represents an alkylene group or an aromatic hydrocarbon group. Is a residue of isocyanate resin, etc.)

更に、本発明の熱硬化性樹脂組成物に、難燃性を向上させることを目的に、芳香族縮合リン酸エステル(C)以外の難燃剤(F)を含有させることができる。適切な難燃剤を併用することにより、耐熱性や銅箔接着性、高弾性率、低熱膨張率性等の諸特性の低下が少なく、高難燃性を付与することができる。
難燃剤(F)の例としては、水酸化アルミニウムや水酸化マグネシウム等の金属水和物、トリフェニルホスフェート、トリクレジルホスフェート、トリスジクロロプロピルホスフェート、リン酸エステル系化合物、ホスファゼン、赤リン等のリン系難燃剤、三酸化アンチモン、モリブデン酸亜鉛等の無機難燃助剤等が挙げられる。臭素や塩素を含有する含ハロゲン系難燃剤は、近年の環境問題から本発明の目的にそぐわない。
これらの難燃剤の中で、水酸化アルミニウムや水酸化マグネシウム等の金属水和物が、高いガラス転移温度や銅箔接着性を発現することができ、またリンを含有しないことから安全性や環境適応性もかなり高いので好ましい。
金属水和物の中でも、ベーマイト型水酸化アルミニウム(AlOOH)、あるいはギブサイト型水酸化アルミニウム〔Al(OH)3〕を熱処理によりその熱分解温度を300℃以上に調整した化合物、水酸化マグネシウム等の、熱分解温度が300℃以上である金属水和物は、優れた耐熱性を有するためより好ましい。特に、ベーマイト型水酸化アルミニウム(AlOOH)は、350℃以上の特に高い熱分解温度を有するため、難燃性と、特に高い耐熱性が両立することや、耐酸性等の耐薬液性、低吸水率性等に優れるため、特に好ましい。
Furthermore, the thermosetting resin composition of the present invention can contain a flame retardant (F) other than the aromatic condensed phosphate ester (C) for the purpose of improving flame retardancy. By using an appropriate flame retardant in combination, it is possible to impart high flame retardancy with little reduction in various properties such as heat resistance, copper foil adhesion, high elastic modulus, and low thermal expansion.
Examples of flame retardants (F) include metal hydrates such as aluminum hydroxide and magnesium hydroxide, triphenyl phosphate, tricresyl phosphate, trisdichloropropyl phosphate, phosphate ester compounds, phosphazenes, red phosphorus, etc. Examples thereof include inorganic flame retardant aids such as phosphorus-based flame retardants, antimony trioxide, and zinc molybdate. Halogen-containing flame retardants containing bromine and chlorine are not suitable for the purpose of the present invention due to recent environmental problems.
Among these flame retardants, metal hydrates such as aluminum hydroxide and magnesium hydroxide can express high glass transition temperature and copper foil adhesiveness, and do not contain phosphorus, so safety and environment It is preferable because it is highly adaptable.
Among metal hydrates, compounds such as boehmite type aluminum hydroxide (AlOOH) or gibbsite type aluminum hydroxide [Al (OH) 3] whose heat decomposition temperature is adjusted to 300 ° C. or higher by heat treatment, such as magnesium hydroxide A metal hydrate having a thermal decomposition temperature of 300 ° C. or higher is more preferable because it has excellent heat resistance. In particular, boehmite-type aluminum hydroxide (AlOOH) has a particularly high thermal decomposition temperature of 350 ° C. or higher, so that both flame retardancy and particularly high heat resistance are compatible, chemical resistance such as acid resistance, and low water absorption. Since it is excellent in efficiency etc., it is especially preferable.

また、本発明の熱硬化性樹脂組成物には、低熱膨張率や高弾性率、耐熱性、難燃性を向上させることを目的に、前記溶融シリカ(D)以外の無機充填剤(G)を任意に含有させることができる。
無機充填剤(G)としては、シリカ、アルミナ、マイカ、タルク、ガラス短繊維又は微粉末及び中空ガラス、炭酸カルシウム、石英粉末等が挙げられるが、これらの中で、銅箔接着性、耐熱性、難燃性の点からシリカ、アルミナ、マイカ、タルク等が好ましく、高放熱性の点からシリカ、アルミナが特に好ましい。
In addition, the thermosetting resin composition of the present invention has an inorganic filler (G) other than the fused silica (D) for the purpose of improving the low thermal expansion coefficient, high elastic modulus, heat resistance, and flame retardancy. Can be optionally contained.
Examples of the inorganic filler (G) include silica, alumina, mica, talc, short glass fiber or fine powder, hollow glass, calcium carbonate, and quartz powder. Among these, copper foil adhesion, heat resistance Silica, alumina, mica, talc and the like are preferable from the viewpoint of flame retardancy, and silica and alumina are particularly preferable from the viewpoint of high heat dissipation.

本発明の熱硬化性樹脂組成物に、硬化促進剤(F)を併用する場合、その使用量は、固形分換算の成分(A)と成分(B)の合計量100質量部当たり、0.1〜10質量部とすることが好ましく、0.1〜5質量部とすることがより好ましい。硬化促進剤(E)の使用量を0.1質量部以上とすることにより耐熱性や難燃性、銅箔接着性などが不足することがなく、10質量部以下とすることにより耐熱性や経日安定性が低下することがない。   When using together a hardening accelerator (F) with the thermosetting resin composition of this invention, the usage-amount is 0.00 per mass part of total amount of the component (A) of a solid content conversion, and a component (B). It is preferable to set it as 1-10 mass parts, and it is more preferable to set it as 0.1-5 mass parts. When the amount of the curing accelerator (E) used is 0.1 parts by mass or more, heat resistance, flame retardancy, copper foil adhesiveness, etc. are not insufficient, and heat resistance or The stability over time does not decrease.

同様に、難燃剤(F)を併用する場合、その使用量は、難燃剤(E)が金属水和物である場合は、固形分換算の成分(A)と成分(B)の合計量100質量部当たり、10〜300質量部とすることが好ましく、10〜250質量部とすることがより好ましく、50〜200質量部とすることが特に好ましい。10質量部以上とすることにより難燃性が不足することがなく、300質量部以下とすることにより耐めっき液性などの耐薬品性が低下することがない。   Similarly, when the flame retardant (F) is used in combination, when the flame retardant (E) is a metal hydrate, the total amount of the component (A) and the component (B) in terms of solid content is 100. It is preferable to set it as 10-300 mass parts per mass part, It is more preferable to set it as 10-250 mass parts, It is especially preferable to set it as 50-200 mass parts. When the amount is 10 parts by mass or more, the flame retardancy is not insufficient, and when the amount is 300 parts by mass or less, chemical resistance such as plating solution resistance is not deteriorated.

難燃剤(F)がリン系難燃剤である場合は、固形分換算の成分(A)と成分(B)の合計量100質量部当たり、リン原子の含有量が0.1〜10.0質量部となるように配合することが好ましく、1.0〜10.0質量部となるように配合することがより好ましく、1.0〜8.0質量%となるように配合することが特に好ましい。0.1質量%以上とすることにより難燃性が不足することがなく、10.0質量部以下とすることにより耐めっき液性などの耐薬品性や耐熱性、銅箔接着性が低下することがない。   When the flame retardant (F) is a phosphorus-based flame retardant, the content of phosphorus atoms is 0.1 to 10.0 mass per 100 parts by mass of the total amount of the component (A) and the component (B) in terms of solid content. It is preferable to mix | blend so that it may become a part, It is more preferable to mix | blend so that it may become 1.0-10.0 mass part, It is especially preferable to mix | blend so that it may become 1.0-8.0 mass%. . Flame retardancy does not become insufficient when the content is 0.1% by mass or more, and chemical resistance such as plating solution resistance, heat resistance, and copper foil adhesiveness are reduced when the content is 10.0 parts by mass or less. There is nothing.

また、難燃剤(F)に難燃助剤を使用することができる。難燃助剤としては、三酸化アンチモン、モリブデン酸亜鉛等の無機難燃助剤を使用することができる。その使用量は、固形分換算のポリアゾメチンを有するビスマレイミド誘導体(A)100質量部当たり、0.1〜20質量部とすることが好ましく、0.1〜10質量部とすることがより好ましい。20質量部以下とすることにより耐めっき液性等の耐薬品性が低下することがない。   Moreover, a flame retardant adjuvant can be used for a flame retardant (F). As the flame retardant aid, inorganic flame retardant aids such as antimony trioxide and zinc molybdate can be used. The amount used is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 10 parts by mass per 100 parts by mass of the bismaleimide derivative (A) having polyazomethine in terms of solid content. . By making it 20 parts by mass or less, chemical resistance such as plating solution resistance does not deteriorate.

本発明の熱硬化性樹脂組成物に、無機充填剤(G)を含有させる場合、その使用量は、固形分換算の成分(A)と成分(B)の合計量100質量部当たり、10〜300質量部とすることが好ましく、20〜200質量部とすることがより好ましく、30〜200質量部とすることが特に好ましい。無機充填剤(F)の含有量を300質量部以下とすることにより耐めっき液性等の耐薬品性や成形性が低下することがない。   When the inorganic filler (G) is contained in the thermosetting resin composition of the present invention, the amount used is 10 to 10 parts by mass per 100 parts by mass of the total amount of the component (A) and the component (B) in terms of solid content. The amount is preferably 300 parts by mass, more preferably 20 to 200 parts by mass, and particularly preferably 30 to 200 parts by mass. By setting the content of the inorganic filler (F) to 300 parts by mass or less, chemical resistance such as plating solution resistance and moldability are not deteriorated.

本発明の熱硬化性樹脂組成物には、任意に公知の熱可塑性樹脂、エラストマー、有機充填剤などを含有させることができる。
熱可塑性樹脂としては、テトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリフェニレンエーテル樹脂、フェノキシ樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、キシレン樹脂、石油樹脂及びシリコーン樹脂などが挙げられる。
エラストマーとしては、ポリブタジエン、アクリロニトリル、エポキシ変性ポリブタジエン、無水マレイン酸変性ポリブタジエン、フェノール変性ポリブタジエン及びカルボキシ変性アクリロニトリルなどが挙げられる。
有機充填剤としては、シリコーンパウダー、テトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリスチレン、及びポリフェニレンエーテル等の有機物粉末等が挙げられる。
The thermosetting resin composition of the present invention can optionally contain a known thermoplastic resin, elastomer, organic filler and the like.
Examples of the thermoplastic resin include tetrafluoroethylene, polyethylene, polypropylene, polystyrene, polyphenylene ether resin, phenoxy resin, polycarbonate resin, polyester resin, polyamide resin, polyimide resin, xylene resin, petroleum resin, and silicone resin.
Examples of the elastomer include polybutadiene, acrylonitrile, epoxy-modified polybutadiene, maleic anhydride-modified polybutadiene, phenol-modified polybutadiene, and carboxy-modified acrylonitrile.
Examples of the organic filler include organic powders such as silicone powder, tetrafluoroethylene, polyethylene, polypropylene, polystyrene, and polyphenylene ether.

本発明の熱硬化性樹脂組成物には、任意に、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤及び密着性向上剤などを含有させることもできる。これらの例としては、ベンゾトリアゾール系等の紫外線吸収剤、ヒンダードフェノール系やスチレン化フェノール等の酸化防止剤、ベンゾフェノン類、ベンジルケタール類、チオキサントン系等の光重合開始剤、スチルベン誘導体等の蛍光増白剤、尿素シラン等の尿素化合物やシランカップリング剤等の密着性向上剤などが挙げられる。   The thermosetting resin composition of the present invention can optionally contain an ultraviolet absorber, an antioxidant, a photopolymerization initiator, a fluorescent whitening agent, an adhesion improver, and the like. Examples of these include UV absorbers such as benzotriazoles, antioxidants such as hindered phenols and styrenated phenols, photopolymerization initiators such as benzophenones, benzyl ketals, and thioxanthones, and fluorescence such as stilbene derivatives. Examples include brighteners, urea compounds such as urea silane, and adhesion improvers such as silane coupling agents.

なお、本発明の熱硬化性樹脂組成物には、その取り扱い上から、有機溶剤が用いられる。使用される有機溶媒は特に制限されないが、例えばエタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、テトラヒドロフラン等のエーテル系溶剤、トルエン、キシレン、メシチレン等の芳香族系溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の窒素原子含有溶剤、ジメチルスルホキシド等の硫黄原子含有溶剤、γ−ブチロラクトン等のエステル系溶剤等が挙げられ、1種又は2種以上を混合して使用できる。使用される有機溶媒は、これらの中で溶解性の点からジメチルホルムアミド、ジメチルアセトアミド、シクロヘキサノン、γ−ブチロラクトン、プロピレングリコールモノメチルエーテル等が好ましく、揮発性が高くプリプレグの製造時に残溶剤として残り難いジメチルアセトアミド、プロピレングリコールモノメチルエーテルがより好ましい。   In addition, the organic solvent is used for the thermosetting resin composition of this invention on the handling. The organic solvent to be used is not particularly limited, but alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, tetrahydrofuran, etc. Ether solvents, aromatic solvents such as toluene, xylene and mesitylene, nitrogen atom-containing solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone, sulfur atom-containing solvents such as dimethylsulfoxide, and ester systems such as γ-butyrolactone A solvent etc. are mentioned, 1 type (s) or 2 or more types can be mixed and used. Among these, dimethylformamide, dimethylacetamide, cyclohexanone, γ-butyrolactone, propylene glycol monomethyl ether, etc. are preferable from the viewpoint of solubility, and dimethyl dimethyl which has high volatility and hardly remains as a residual solvent at the time of producing a prepreg. Acetamide and propylene glycol monomethyl ether are more preferred.

本発明のプリプレグは、本発明の熱硬化性樹脂組成物を、シート状補強基材に含浸又は塗工し、Bステージ化して得られるものである。本発明のプリプレグは、上記の熱硬化性樹脂組成物を、シート状補強基材に含浸・塗工し、加熱等により半硬化(Bステージ化)して製造することができる。
プリプレグのシート状補強基材として、各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。その材質としては、Eガラス、Dガラス、Sガラス及びQガラス等の無機物繊維、ポリイミド、ポリエステル及びテトラフルオロエチレン等の有機繊維、並びにそれらの混合物等が挙げられる。これらの基材は、例えば、織布、不織布、ロービンク、チョップドストランドマット及びサーフェシングマット等の形状を有するが、材質及び形状は、目的とする成形物の用途や性能により選択され、必要により、単独又は2種類以上の材質及び形状を組み合わせることができる。
シート状補強基材の厚さは、特に制限されず、例えば、約0.03〜0.5mmを使用することができ、シランカップリング剤等で表面処理したもの又は機械的に開繊処理を施したものが、耐熱性や耐湿性、加工性の面から好適である。該基材に対する樹脂組成物の付着量が、乾燥後のプリプレグの樹脂含有率で、20〜90質量%となるように、基材に含浸又は塗工した後、通常、100〜200℃の温度で1〜30分加熱乾燥し、半硬化(Bステージ化)させて、本発明のプリプレグを得ることができる。
The prepreg of the present invention is obtained by impregnating or coating the thermosetting resin composition of the present invention on a sheet-like reinforcing base material and forming a B-stage. The prepreg of the present invention can be produced by impregnating and coating the above thermosetting resin composition on a sheet-like reinforcing base material and semi-curing (B-stage) by heating or the like.
The well-known thing used for the laminated board for various electrical insulation materials can be used as a sheet-like reinforcement base material of a prepreg. Examples of the material include inorganic fibers such as E glass, D glass, S glass, and Q glass, organic fibers such as polyimide, polyester, and tetrafluoroethylene, and mixtures thereof. These base materials have, for example, shapes such as woven fabric, non-woven fabric, robink, chopped strand mat, and surfacing mat, but the material and shape are selected depending on the intended use and performance of the molded product, and if necessary, A single material or two or more materials and shapes can be combined.
The thickness of the sheet-like reinforcing base material is not particularly limited, and for example, about 0.03 to 0.5 mm can be used, and the surface treatment with a silane coupling agent or the like or mechanical fiber opening treatment is performed. What was given is suitable from the surface of heat resistance, moisture resistance, and workability. After impregnating or coating the base material so that the amount of the resin composition attached to the base material is 20 to 90% by mass in terms of the resin content of the prepreg after drying, the temperature is usually 100 to 200 ° C. Can be heated and dried for 1 to 30 minutes and semi-cured (B-stage) to obtain the prepreg of the present invention.

本発明の積層板は、前述の熱硬化性樹脂組成物又はプリプレグを用いて積層成形して得られたものである。例えば、プリプレグを1〜20枚重ね、その片面又は両面に銅及びアルミニウム等の金属箔を配置した構成で積層成形することにより製造することができる。金属箔は、電気絶縁材料用途で用いるものであれば特に制限されない。
成形条件は、電気絶縁材料用積層板及び多層板の手法が適用でき、例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、温度100〜250℃、圧力0.2〜10MPa、加熱時間0.1〜5時間の範囲で成形することができる。
また、本発明のプリプレグと内層用配線板とを組合せ、積層成形して、多層板を製造することもできる。
The laminate of the present invention is obtained by laminate molding using the aforementioned thermosetting resin composition or prepreg. For example, it can be manufactured by stacking 1 to 20 prepregs and laminate-molding them with a configuration in which a metal foil such as copper and aluminum is disposed on one or both sides thereof. The metal foil is not particularly limited as long as it is used for electrical insulating material applications.
The molding conditions can be applied to a laminate for an electrical insulating material and a multilayer board, for example, using a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine, etc. It can be molded in a range of 10 MPa and a heating time of 0.1 to 5 hours.
Further, the prepreg of the present invention and the inner layer wiring board can be combined and laminated to produce a multilayer board.

次に、実施例により本発明を更に詳しく説明するが、本発明はこれらの記載に限定されるものではない。
なお、各実施例及び比較例で得られた銅張積層板は、以下の方法により性能を測定・評価した。
EXAMPLES Next, although an Example demonstrates this invention in more detail, this invention is not limited to these description.
In addition, the performance of the copper clad laminates obtained in each example and comparative example was measured and evaluated by the following method.

(1)銅箔接着性(銅箔ピール強度)
銅張積層板を銅エッチング液に浸漬することにより1cm幅の銅箔を形成して評価基板を作製し、引張り試験機を用いて銅箔接着性(ピール強度)を測定した。
(1) Copper foil adhesion (copper foil peel strength)
A copper foil having a width of 1 cm was formed by immersing the copper-clad laminate in a copper etching solution to produce an evaluation substrate, and the copper foil adhesion (peel strength) was measured using a tensile tester.

(2)ガラス転移温度(Tg)
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置(デュポン社製、TMA2940)を用い、評価基板の厚み方向(Z方向)の熱膨張特性から測定した。
(2) Glass transition temperature (Tg)
A 5 mm square evaluation board from which the copper foil was removed by immersing the copper-clad laminate in a copper etching solution was prepared, and a TMA test apparatus (manufactured by DuPont, TMA2940) was used in the thickness direction (Z direction) of the evaluation board Measured from thermal expansion characteristics.

(3)はんだ耐熱性
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた5cm角の評価基板を作製し、平山製作所(株)製プレッシャー・クッカー試験装置を用いて、121℃、2atmの条件で4時間プレッシャー・クッカー処理を行った後、温度288℃のはんだ浴に、評価基板を20秒間浸漬した後、外観を観察することによりはんだ耐熱性を評価した。(外観にふくれがあったものを「ふくれ」と記す。)
(3) Solder heat resistance A 5 cm square evaluation board from which the copper foil has been removed by immersing a copper clad laminate in a copper etching solution is prepared and 121 ° C. using a pressure cooker test apparatus manufactured by Hirayama Seisakusho. After performing the pressure-cooker treatment for 4 hours under the condition of 2 atm, the evaluation substrate was immersed in a solder bath at a temperature of 288 ° C. for 20 seconds, and then the solder heat resistance was evaluated by observing the appearance. (If there is a blister on the exterior, mark it “blister”.)

(4)線熱膨張係数
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置(デュポン社製、TMA2940)を用い、評価基板の厚み方向(Z方向)の30〜100℃の線熱膨張率を測定した。
(4) Linear thermal expansion coefficient A 5-mm square evaluation board | substrate which removed the copper foil by immersing a copper clad laminated board in a copper etching liquid was produced, and the evaluation board | substrate was used using the TMA test apparatus (made by DuPont, TMA2940). The linear thermal expansion coefficient of 30 to 100 ° C. in the thickness direction (Z direction) was measured.

(5)難燃性
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた評価基板から、長さ127mm、幅12.7mmに切り出した試験片を作製し、UL94の試験法(V法)に準じて評価した。
(5) Flame retardance A test piece cut out to a length of 127 mm and a width of 12.7 mm was prepared from an evaluation substrate obtained by removing a copper foil by immersing a copper clad laminate in a copper etching solution, and a UL94 test method ( Evaluation was made according to V method.

(6)銅付き耐熱性(T−300)
銅張積層板から5mm角の評価基板を作製し、TMA試験装置(デュポン社製、TMA2940)を用い、300℃で評価基板の膨れが発生するまでの時間を測定することにより評価した。(昇温時にふくれがあったものを「昇温時ふくれ」と記す。)
(6) Heat resistance with copper (T-300)
A 5 mm square evaluation board was produced from the copper clad laminate, and evaluation was performed by measuring the time until the evaluation board swells at 300 ° C. using a TMA test apparatus (manufactured by DuPont, TMA2940). (Things that were blistered when the temperature was raised are referred to as “bulges when the temperature is raised.”)

(7)誘電特性(比誘電率及び誘電正接)
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた評価基板を作製し、Hewllet・Packerd社製比誘電率測定装置(製品名:HP4291B)を用いて、周波数1GHzでの比誘電率及び誘電正接を測定した。
(7) Dielectric properties (dielectric constant and dielectric loss tangent)
An evaluation board from which copper foil is removed by immersing a copper clad laminate in a copper etching solution is prepared, and a relative dielectric constant at a frequency of 1 GHz is measured using a relative dielectric constant measuring apparatus (product name: HP4291B) manufactured by Hewllet Packerd. The rate and dielectric loss tangent were measured.

製造例1:分子構造中にマレイミド基と1級アミノ基を有する化合物(A−1)の製造
温度計、攪拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積5リットルの反応容器に、ビス(4−マレイミドフェニル)メタン:716.0g、ビス(4−(4−アミノフェノキシ)フェニル)プロパン:410.0g、及びプロピレングリコールモノメチルエーテル:842.2gとトルエン:514.5gを配合し、攪拌しながら115〜125℃で2時間還流した。次いで、130℃まで昇温して常圧濃縮した後、冷却し、100℃でシクロヘキサノン:1318.8gを添加し、攪拌しながら室温まで冷却して化合物(A−1)の溶液を得た。
この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.0分付近に出現するビス(4−(4−アミノフェノキシ)フェニル)プロパンに由来するピークが消失し、また、溶出時間が約11.1分付近に合成原料と異なるピークが出現し、下記化学式(XV)の化合物が製造されていることを確認した。
なお、製造例1において、ビス(4−マレイミドフェニル)メタンのマレイミド基数は、ビス(4−(4−アミノフェノキシ)フェニル)プロパンの一級アミノ基数の2.0倍であり、製造された化合物(A−1)を含む、樹脂固形分中の1級アミノ基当量は1126g/molである。
Production Example 1: Production of Compound (A-1) Having Maleimide Group and Primary Amino Group in Molecular Structure Heating and cooling capacity of 5 liters equipped with thermometer, stirrer, moisture meter with reflux condenser In a reaction vessel, bis (4-maleimidophenyl) methane: 716.0 g, bis (4- (4-aminophenoxy) phenyl) propane: 410.0 g, and propylene glycol monomethyl ether: 842.2 g and toluene: 514.5 g And refluxed at 115 to 125 ° C. for 2 hours with stirring. Subsequently, after heating up to 130 degreeC and concentrating at normal pressure, it cooled, the cyclohexanone: 1318.8g was added at 100 degreeC, and it cooled to room temperature, stirring, and obtained the solution of the compound (A-1).
When a small amount of this reaction solution was taken out and subjected to GPC measurement (polystyrene conversion, eluent: tetrahydrofuran), it was derived from bis (4- (4-aminophenoxy) phenyl) propane that appeared at around 12.0 minutes. In addition, a peak different from the synthetic raw material appeared at an elution time of about 11.1 minutes, and it was confirmed that the compound of the following chemical formula (XV) was produced.
In Production Example 1, the number of maleimide groups in bis (4-maleimidophenyl) methane is 2.0 times the number of primary amino groups in bis (4- (4-aminophenoxy) phenyl) propane, and the produced compound ( The primary amino group equivalent in the resin solid content containing A-1) is 1126 g / mol.

製造例2:分子構造中にマレイミド基と1級アミノ基を有する化合物(A−2)の製造
温度計、攪拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積5リットルの反応容器に、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン:1140.0g、4,4'−ジアミノ−3,3'−ジメチル−ジフェニルメタン:113.0g、及びプロピレングリコールモノメチルエーテル:325.6gとトルエン:191.3gを配合し、攪拌しながら115〜125℃で2時間還流した。次いで、130℃まで昇温して常圧濃縮した後、冷却し、100℃でシクロヘキサノン:477.7gを添加し、攪拌しながら室温まで冷却してビスマレイミド誘導体(A−2)の溶液を得た。
この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.8分付近に出現する4,4'−ジアミノ−3,3'−ジメチル−ジフェニルメタンに由来するピークが消失し、また、溶出時間が約11.1分付近に合成原料と異なるピークが出現し、下記化学式(XVI)の化合物が製造されていることを確認した。
なお、製造例2において、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパンのマレイミド基数は、4,4'−ジアミノ−3,3'−ジメチル−ジフェニルメタンの一級アミノ基数の4.0倍であり、製造された化合物(A−2)を含む、樹脂固形分中の1級アミノ基当量は2506g/molである。
Production Example 2: Production of Compound (A-2) Having Maleimide Group and Primary Amino Group in Molecular Structure Heating and cooling capacity of 5 liters equipped with thermometer, stirrer, moisture meter with reflux condenser In a reaction vessel, 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane: 1140.0 g, 4,4′-diamino-3,3′-dimethyl-diphenylmethane: 113.0 g, and propylene glycol monomethyl Ether: 325.6 g and toluene: 191.3 g were blended and refluxed at 115-125 ° C. for 2 hours with stirring. Next, the temperature was raised to 130 ° C. and concentrated at normal pressure, followed by cooling, adding 477.7 g of cyclohexanone at 100 ° C., and cooling to room temperature with stirring to obtain a solution of the bismaleimide derivative (A-2). It was.
A small amount of this reaction solution was taken out and subjected to GPC measurement (polystyrene conversion, eluent: tetrahydrofuran). As a result, 4,4′-diamino-3,3′-dimethyl-diphenylmethane appeared at an elution time of about 12.8 minutes. In addition, a peak different from the synthetic raw material appeared at an elution time of about 11.1 minutes, and it was confirmed that the compound of the following chemical formula (XVI) was produced.
In Production Example 2, the number of maleimide groups of 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane is 4 as the number of primary amino groups of 4,4′-diamino-3,3′-dimethyl-diphenylmethane. The primary amino group equivalent in the resin solid content containing the produced compound (A-2) is 2.06 g / mol.

製造例3:トリメトキシシラン化合物により表面処理された溶融シリカ(D−1)の製造
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、溶融シリカ(アドマテックス社製;商品名SO−25R):700.0gと、プロピレングリコールモノメチルエーテル:1000.0gを配合し、攪拌しながらN−フェニル−3−アミノプロピルトリメトキシシラン(信越化学社製;商品名KBM−573):7.0gを添加した。次いで80℃に昇温し、80℃で1時間反応を行い溶融シリカの表面処理(湿式処理)を行った後、室温に冷却し、N−フェニル−3−アミノプロピルトリメトキシシランにより表面処理(湿式処理)された溶融シリカ(D−1)の溶液を得た。
Production Example 3: Production of fused silica (D-1) surface-treated with a trimethoxysilane compound In a reaction vessel having a thermometer, a stirrer, a reflux condenser and a heat-coolable volume of 3 liters, fused silica ( Admatechs Co., Ltd .; trade name SO-25R): 700.0 g and propylene glycol monomethyl ether: 1000.0 g were mixed and stirred with N-phenyl-3-aminopropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd .; product) Name KBM-573): 7.0 g was added. Next, the temperature was raised to 80 ° C., reacted at 80 ° C. for 1 hour to perform surface treatment of the fused silica (wet treatment), then cooled to room temperature, and surface treatment with N-phenyl-3-aminopropyltrimethoxysilane ( A wet silica solution (D-1) was obtained.

実施例1〜6、比較例1〜3
希釈溶剤にメチルエチルケトンを使用し、マレイミド誘導体である成分(A)の製造例1及び製造例2で得られ分子構造中にマレイミド基と1級アミノ基を有する化合物(A−1)、(A−2)、又は比較例に用いるビスマレイミド誘導体、成分(B)のテレフタルアルデヒド、成分(C)の商業的に入手した芳香族縮合リン酸エステル、(D)成分の製造実施例5又は商業的に入手した溶融シリカ、(E)成分の硬化促進剤、無機充填剤及び難燃剤を、第1表及び第2表に示した配合割合(質量部)で混合して樹脂分60質量%の均一なワニスを得た。
次に、上記ワニスを厚さ0.2mmのEガラスクロスに含浸塗工し、160℃で10分加熱乾燥して樹脂含有量55質量%のプリプレグを得た。
さらに、これらのプリプレグを4枚重ね、18μmの電解銅箔を上下に配置し、圧力2.5MPa、温度230℃で120分間プレスを行って銅張積層板を得た。
このようにして得られた銅張積層板を用いて、銅箔接着性(銅箔ピール強度)、耐熱性〔ガラス転移温度(Tg)及びはんだ耐熱性〕、難燃性、誘電特性〔比誘電率(1GHz)及び誘電正接(1GHz)〕を、前記の方法で測定・評価した。その結果を第1表及び第2表に示す。
Examples 1-6, Comparative Examples 1-3
Compound (A-1) having a maleimide group and a primary amino group in the molecular structure obtained in Production Example 1 and Production Example 2 of component (A), which is a maleimide derivative, using methyl ethyl ketone as the diluent solvent, (A- 2), or bismaleimide derivatives used in comparative examples, terephthalaldehyde of component (B), commercially available aromatic condensed phosphate ester of component (C), production example 5 of component (D) or commercially The obtained fused silica, (E) component curing accelerator, inorganic filler, and flame retardant are mixed in the blending ratios (parts by mass) shown in Tables 1 and 2 to obtain a uniform resin content of 60% by mass. A varnish was obtained.
Next, the varnish was impregnated and applied to an E glass cloth having a thickness of 0.2 mm and dried by heating at 160 ° C. for 10 minutes to obtain a prepreg having a resin content of 55% by mass.
Furthermore, four of these prepregs were stacked, 18 μm electrolytic copper foils were placed one above the other, and pressed at a pressure of 2.5 MPa and a temperature of 230 ° C. for 120 minutes to obtain a copper-clad laminate.
Using the copper-clad laminate thus obtained, copper foil adhesion (copper foil peel strength), heat resistance [glass transition temperature (Tg) and solder heat resistance], flame retardancy, dielectric properties [relative dielectric Rate (1 GHz) and dielectric loss tangent (1 GHz)] were measured and evaluated by the above-described methods. The results are shown in Tables 1 and 2.

なお、第1表、第2表において、商業的に入手した芳香族縮合リン酸エステル(C)、表面処理された溶融シリカ(D)、硬化促進剤(E)、および比較例に使用したビスマレイミド誘導体、無機充填剤、難燃剤は以下の通りである。   In Tables 1 and 2, commercially available aromatic condensed phosphate ester (C), surface-treated fused silica (D), curing accelerator (E), and bis used in Comparative Examples Maleimide derivatives, inorganic fillers, and flame retardants are as follows.

(1)芳香族縮合リン酸エステル(C)
C−1:前記(VIII)式の構造の芳香族縮合リン酸エステル(大八化学社製;商品名PX-200)
C−2:前記(IX)式の構造の芳香族縮合リン酸エステル(大八化学社製;商品名CR-733S)
C−3:前記(X)式の構造の芳香族縮合リン酸エステル(大八化学社製;商品名CR-741)
(1) Aromatic condensed phosphate (C)
C-1: Aromatic condensed phosphate ester having the structure of formula (VIII) (Daihachi Chemical Co., Ltd .; trade name PX-200)
C-2: Aromatic condensed phosphate ester having the structure of the formula (IX) (Daihachi Chemical Co., Ltd .; trade name CR-733S)
C-3: Aromatic condensed phosphate ester having the structure of the formula (X) (Daihachi Chemical Co., Ltd .; trade name CR-741)

(2)表面処理された溶融シリカ(D)
D−2:溶融シリカに対し1.0質量%N−フェニル−3−アミノプロピルトリメトキシシランにより表面処理された溶融シリカ(アドマテック社製;商品名SC−2050KNK、希釈溶剤;メチルイソブチルケトン)
D−3:溶融シリカに対し1.0質量%N−フェニル−3−アミノプロピルトリメトキシシランにより表面処理された溶融シリカ(アドマテック社製;商品名SC−2050HNK、希釈溶剤;シクロヘキサノン)
(2) Surface-treated fused silica (D)
D-2: Fused silica surface-treated with 1.0 mass% N-phenyl-3-aminopropyltrimethoxysilane with respect to fused silica (manufactured by Admatech; trade name SC-2050KNK, diluent solvent: methyl isobutyl ketone)
D-3: Fused silica surface-treated with 1.0% by mass of N-phenyl-3-aminopropyltrimethoxysilane with respect to fused silica (manufactured by Admatech; trade name SC-2050HNK, diluent solvent: cyclohexanone)

(3)硬化促進剤(E)
・P−200(ジャパンエポキシレジン社製:商品名、前記(XIII)式で表されるエポキシマスクイミダゾール)
・G−8009L(第一工業製薬社製:商品名、前記(XIV)式で表されるイソシアネートマスクイミダゾール)
(3) Curing accelerator (E)
・ P-200 (Japan Epoxy Resin Co., Ltd .: trade name, epoxy mask imidazole represented by the formula (XIII))
G-8809L (Daiichi Kogyo Seiyaku Co., Ltd .: trade name, isocyanate mask imidazole represented by the formula (XIV))

(4)ビスマレイミド誘導体(比較例で使用)
・BMI:ビス(4−マレイミドフェニル)メタン(ケイアイ化成社製:商品名、マレイミド当量179)
・BMI−80:2,2'−ビス[4−(4−マレイミドフェノキシ)フェニル]プロパン(ケイアイ化成社製:商品名、マレイミド当量285)
(4) Bismaleimide derivatives (used in comparative examples)
BMI: bis (4-maleimidophenyl) methane (manufactured by Keisei Kasei Co., Ltd .: trade name, maleimide equivalent 179)
BMI-80: 2,2′-bis [4- (4-maleimidophenoxy) phenyl] propane (manufactured by Keiai Kasei Co., Ltd .: trade name, maleimide equivalent 285)

(5)無機充填剤(比較例で使用)
・溶融シリカ(アドマテックス社製:商品名SO−25R)
(5) Inorganic filler (used in comparative examples)
・ Fused silica (manufactured by Admatechs: trade name SO-25R)

(6)難燃剤(比較例で使用)
・AlOOH:ベーマイト型水酸化アルミニウム(河合石灰社製:商品名BMT−3L、熱分解温度:400℃)
・Mg(OH)2:水酸化マグネシウム(関東化学社製、熱分解温度:350℃)
・TPP:トリフェニルホスフェート(関東化学社製、リン含有量:9.6〜9.7質量%)
(6) Flame retardant (used in comparative examples)
AlOOH: Boehmite type aluminum hydroxide (manufactured by Kawai Lime Co., Ltd .: trade name BMT-3L, thermal decomposition temperature: 400 ° C.)
Mg (OH) 2 : Magnesium hydroxide (Kanto Chemical Co., Inc., thermal decomposition temperature: 350 ° C.)
TPP: Triphenyl phosphate (manufactured by Kanto Chemical Co., Inc., phosphorus content: 9.6 to 9.7% by mass)

第1表から明らかなように、分子構造中にマレイミド基と1級アミノ基を有する化合物(A)、分子構造中に2個のアルデヒド基を有する化合物(B)及び芳香族縮合リン酸エステル(C)を含有する実施例では、低熱膨張性、高ガラス転移温度、良好な誘電特性を有し、かつ銅箔接着性(銅箔ピール強度)、はんだ耐熱性、銅付き耐熱性、難燃性の全てにバランスよく優れているプレプリグ及び積層板が得られている。
これに対し、第2表から明らかなように、分子構造中にマレイミド基と1級アミノ基を有する化合物(A)、分子構造中に2個のアルデヒド基を有する化合物(B)及び芳香族縮合リン酸エステル(C)を含有しない比較例1〜3では、銅箔接着性(銅箔ピール強度)、高ガラス転移温度、はんだ耐熱性、熱膨張性、銅付き耐熱性、難燃性、誘電特性の全ての特性が、実施例より劣ったプレプリグ及び積層板しか得られていない。
As is apparent from Table 1, the compound (A) having a maleimide group and a primary amino group in the molecular structure, the compound (B) having two aldehyde groups in the molecular structure, and the aromatic condensed phosphate ester ( Examples containing C) have low thermal expansion, high glass transition temperature, good dielectric properties, copper foil adhesion (copper foil peel strength), solder heat resistance, heat resistance with copper, flame resistance Thus, prepregs and laminates excellent in balance are obtained.
In contrast, as apparent from Table 2, the compound (A) having a maleimide group and a primary amino group in the molecular structure, the compound (B) having two aldehyde groups in the molecular structure, and aromatic condensation In Comparative Examples 1 to 3 containing no phosphate ester (C), copper foil adhesion (copper foil peel strength), high glass transition temperature, solder heat resistance, thermal expansion, heat resistance with copper, flame retardancy, dielectric Only prepregs and laminates that are inferior to the examples in all properties are obtained.

本発明において、分子構造中にマレイミド基と1級アミノ基を有する化合物(A)、分子構造中に2個のアルデヒド基を有する化合物(B)及び芳香族縮合リン酸エステル(C)を用いることにより、低熱膨張性、高ガラス転移温度、良好な誘電特性を有し、また銅箔接着性、はんだ耐熱性、銅付き耐熱性、難燃性、ドリル加工性の全てにバランス良く優れ、更に毒性が低く安全性や作業環境に優れる、電子部品等に好適な熱硬化性樹脂組成物が得られ、これを用いたプリプレグ及び積層板を提供することが可能となり、多層プリント配線板として電子機器などに有利に使用される。   In the present invention, a compound (A) having a maleimide group and a primary amino group in the molecular structure, a compound (B) having two aldehyde groups in the molecular structure, and an aromatic condensed phosphate ester (C) are used. It has low thermal expansion, high glass transition temperature, good dielectric properties, and is well balanced in all of copper foil adhesion, solder heat resistance, heat resistance with copper, flame resistance, and drill workability, and further toxic Can provide a thermosetting resin composition that is low in safety and excellent in work environment and suitable for electronic parts, and can provide a prepreg and a laminate using the same, and can be used as a multilayer printed wiring board for electronic devices, etc. Is advantageously used.

Claims (5)

下記一般式(I)で表される分子構造中に少なくとも1個のマレイミド基と少なくとも1個の1級アミノ基を有する化合物(A)、下記一般式(II)で表される分子構造中に2個のアルデヒド基を有する化合物(B)、下記一般式(IX)又は下記一般式(X)で表される構造の芳香族縮合リン酸エステル(C)及び下記一般式(IV)で表されるN−フェニル−3−アミノプロピルトリメトキシシランにより表面処理された溶融シリカ(D)を含有し、前記芳香族縮合リン酸エステル(C)の含有量が、成分(A)100質量部に対して、15〜25質量部であることを特徴とする熱硬化性樹脂組成物。

(式中、Arは独立に一般式(I−1)、(I−2)、(I−3)又は(I−4)で表される残基であり、Arは下記一般式(I−5)又は(I−6)で示される残基である。)

(式中、Rは炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示し、pは0〜4の整数である。)

(式中、R及びRは各々独立に炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示し、q、rは各々独立に0〜4の整数であり、Aは炭素数1〜5のアルキレン基、アルキリデン基、エーテル基、又はスルフォニル基で表される残基である。)

(式中、mは1〜10である。)

(式中、*は結合部分を示す。なお、この*は結合部分が明確でない場合のみに使用する。以下の化学式においても同様である。)

(式中、R及びRは各々独立に炭素数1〜5の脂肪族炭化水素基、メトキシ基、水酸基又はハロゲン原子を示し、Y、Zは各々独立に0〜4の整数であり、Aは単結合、炭素数1〜5のアルキレン基、アルキリデン基、エーテル基、スルフォニル基、ケトン基、フルオレン基、又はフェニレンジオキシ基で表される残基である。)

(式中、Aは、単結合、炭素数1〜5のアルキレン基、イソプロピリデン基、エーテル基、又はスルフォニル基である。)



In the molecular structure represented by the following general formula (I), the compound (A) having at least one maleimide group and at least one primary amino group in the molecular structure represented by the following general formula (I), It is represented by the compound (B) having two aldehyde groups, the aromatic condensed phosphate ester (C) having the structure represented by the following general formula (IX) or the following general formula (X), and the following general formula (IV). Containing fused silica (D) surface-treated with N-phenyl-3-aminopropyltrimethoxysilane, wherein the content of the aromatic condensed phosphate ester (C) is 100 parts by mass of component (A) The thermosetting resin composition is 15 to 25 parts by mass.

(In the formula, Ar 1 is a residue independently represented by general formula (I-1), (I-2), (I-3) or (I-4), and Ar 2 is represented by the following general formula ( I-5) or a residue represented by (I-6).)

(In the formula, R 1 represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom, and p is an integer of 0 to 4).

(In the formula, R 2 and R 3 each independently represent an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom, q and r each independently represent an integer of 0 to 4, and A 1 represents the number of carbon atoms. It is a residue represented by an alkylene group of 1 to 5, an alkylidene group, an ether group, or a sulfonyl group.)

(In the formula, m is 1 to 10.)

(In the formula, * represents a bonding part. The * is used only when the bonding part is not clear. The same applies to the following chemical formulas.)

(In the formula, R 5 and R 6 each independently represent an aliphatic hydrocarbon group having 1 to 5 carbon atoms, a methoxy group, a hydroxyl group or a halogen atom, and Y and Z are each independently an integer of 0 to 4, A 2 is a residue represented by a single bond, an alkylene group having 1 to 5 carbon atoms, an alkylidene group, an ether group, a sulfonyl group, a ketone group, a fluorene group, or a phenylenedioxy group.

(In the formula, A 3 is a single bond, an alkylene group having 1 to 5 carbon atoms, an isopropylidene group, an ether group, or a sulfonyl group.)



前記N−フェニル−3−アミノプロピルトリメトキシシランにより表面処理された溶融シリカ(D)の使用量が、固形分換算の成分(A)と成分(B)の合計量100質量部に対して、10〜300質量部である、請求項1に記載の熱硬化性樹脂組成物。   The use amount of the fused silica (D) surface-treated with the N-phenyl-3-aminopropyltrimethoxysilane is 100 parts by mass of the total amount of the component (A) and the component (B) in terms of solid content. The thermosetting resin composition of Claim 1 which is 10-300 mass parts. 更に、硬化促進剤(E)を含有する請求項1又は2に記載の熱硬化性樹脂組成物。   Furthermore, the thermosetting resin composition of Claim 1 or 2 containing a hardening accelerator (E). 請求項1〜3のいずれかに記載の熱硬化性絶縁樹脂組成物をシート状補強基材中に含浸又は塗工し、半硬化(Bステージ化)したプリプレグ。   A prepreg obtained by impregnating or coating the thermosetting insulating resin composition according to any one of claims 1 to 3 in a sheet-like reinforcing base material and semi-curing (B-stage). 絶縁樹脂層が、請求項1〜3のいずれかに記載の熱硬化性絶縁樹脂組成物又は請求項4に記載のプリプレグを用いて形成された積層板。
The laminated board in which the insulating resin layer was formed using the thermosetting insulating resin composition in any one of Claims 1-3, or the prepreg of Claim 4.
JP2012176144A 2012-08-08 2012-08-08 Thermosetting resin composition, and prepreg and laminate using the same Active JP6074943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012176144A JP6074943B2 (en) 2012-08-08 2012-08-08 Thermosetting resin composition, and prepreg and laminate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012176144A JP6074943B2 (en) 2012-08-08 2012-08-08 Thermosetting resin composition, and prepreg and laminate using the same

Publications (2)

Publication Number Publication Date
JP2014034630A JP2014034630A (en) 2014-02-24
JP6074943B2 true JP6074943B2 (en) 2017-02-08

Family

ID=50283815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012176144A Active JP6074943B2 (en) 2012-08-08 2012-08-08 Thermosetting resin composition, and prepreg and laminate using the same

Country Status (1)

Country Link
JP (1) JP6074943B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11286346B2 (en) 2015-01-13 2022-03-29 Showa Denko Materials Co., Ltd. Resin composition, support with resin layer, prepreg, laminate, multilayered printed wiring board, and printed wiring board for millimeter-wave radar
JP6756107B2 (en) * 2015-01-13 2020-09-16 日立化成株式会社 Resin film, resin film with support, prepreg, metal-clad laminate for high multilayer and high multilayer printed wiring board
JP6756108B2 (en) * 2015-01-13 2020-09-16 日立化成株式会社 Resin film, resin film with support, prepreg, metal-clad laminate and multi-layer printed wiring board
KR102489990B1 (en) * 2016-07-19 2023-01-17 쇼와덴코머티리얼즈가부시끼가이샤 Resin composition, laminate sheet, and multilayer printed wiring board
KR102478957B1 (en) * 2016-07-20 2022-12-16 쇼와덴코머티리얼즈가부시끼가이샤 Resin composition, resin layer-provided support, prepreg, laminate sheet, multilayer printed wiring board, and printed wiring board for millimeter-wave radar
WO2020095422A1 (en) * 2018-11-08 2020-05-14 日立化成株式会社 Resin composition, cured object obtained from resin composition, prepreg, laminate, resin film, multilayered printed wiring board, multilayered printed wiring board for millimeter-wave radar, and poly(phenylene ether) derivative

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101083453B1 (en) * 2006-04-24 2011-11-16 덴끼 가가꾸 고교 가부시키가이샤 Inorganic hollow particle, process for producing the same, and composition containing the same
JP5672788B2 (en) * 2010-06-16 2015-02-18 日立化成株式会社 Bismaleimide derivative having polyazomethine and method for producing the same, thermosetting resin composition, prepreg and laminate
EP2602277B1 (en) * 2010-08-06 2014-11-05 Hitachi Chemical Company, Ltd. Process for producing compatibilized resin, thermosetting resin composition, prepreg, and laminate
US9133308B2 (en) * 2011-01-18 2015-09-15 Hitachi Chemical Company, Ltd. Resin composition, and printed wiring board, laminated sheet, and prepreg using same

Also Published As

Publication number Publication date
JP2014034630A (en) 2014-02-24

Similar Documents

Publication Publication Date Title
US10604641B2 (en) Thermosetting resin composition and prepreg and laminate both made with the same
JP5672788B2 (en) Bismaleimide derivative having polyazomethine and method for producing the same, thermosetting resin composition, prepreg and laminate
JP5589470B2 (en) Bismaleimide derivative and method for producing the same, thermosetting resin composition, prepreg and laminate
JP5320699B2 (en) Thermosetting resin composition, prepreg and laminate using the same
WO2008041453A1 (en) Thermosetting resin composition and prepreg and laminate obtained with the same
JP4968044B2 (en) Method for producing polyimide compound, thermosetting resin composition, and prepreg and laminate using the same
JP5540494B2 (en) Thermosetting resin composition, and prepreg, laminate and printed wiring board using the same
JP6074943B2 (en) Thermosetting resin composition, and prepreg and laminate using the same
JP5736944B2 (en) Thermosetting resin composition, prepreg and laminate
JP5417799B2 (en) Thermosetting resin composition, and prepreg and laminate using the same
JP2009024146A (en) Thermosetting resin composition and prepreg and laminate using the same
JP5682664B2 (en) Thermosetting resin composition, prepreg and laminate using the same
JP6311922B2 (en) Thermosetting resin composition, prepreg using the same, laminate, and printed wiring board
JP5652028B2 (en) Thermosetting resin composition, prepreg and laminate using the same
JP5668517B2 (en) Thermosetting resin composition, prepreg and laminate
JP6106931B2 (en) Compatibilizing resin, and thermosetting resin composition, prepreg, and laminate using the same
JP5447268B2 (en) Thermosetting resin composition, prepreg and laminate
JP5381016B2 (en) Thermosetting resin composition, and prepreg and laminate using the same
JP5909916B2 (en) Resin production method, thermosetting resin composition, prepreg and laminate
JP6353633B2 (en) Compatibilizing resin, thermosetting resin composition, prepreg and laminate
JP2013237844A (en) Thermosetting resin composition, prepreg using the same, and laminate
JP2013108067A (en) Method for producing compatibilized resin, compatibilized resin, thermosetting resin composition, prepreg and laminated plate
JP2014019773A (en) Thermosetting resin composition, and prepreg and laminate using the same
JP2015063608A (en) Thermosetting resin composition, prepreg using the same, and laminate using the same
JP2013189579A (en) Thermosetting resin composition, and prepreg and laminated plate using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161226

R151 Written notification of patent or utility model registration

Ref document number: 6074943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350