JP6074787B2 - Silicon carbide semiconductor device and manufacturing method thereof - Google Patents

Silicon carbide semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP6074787B2
JP6074787B2 JP2012120263A JP2012120263A JP6074787B2 JP 6074787 B2 JP6074787 B2 JP 6074787B2 JP 2012120263 A JP2012120263 A JP 2012120263A JP 2012120263 A JP2012120263 A JP 2012120263A JP 6074787 B2 JP6074787 B2 JP 6074787B2
Authority
JP
Japan
Prior art keywords
layer
conductivity type
region
type semiconductor
source region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012120263A
Other languages
Japanese (ja)
Other versions
JP2013247252A (en
Inventor
敦之 田中
敦之 田中
憲幸 岩室
憲幸 岩室
原田 信介
信介 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Fuji Electric Co Ltd
Priority to JP2012120263A priority Critical patent/JP6074787B2/en
Priority to US14/403,422 priority patent/US9673313B2/en
Priority to PCT/JP2013/057746 priority patent/WO2013175840A1/en
Publication of JP2013247252A publication Critical patent/JP2013247252A/en
Application granted granted Critical
Publication of JP6074787B2 publication Critical patent/JP6074787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

本発明は、ワイドバンドギャップ材料のひとつである炭化珪素を半導体として用い高耐圧大電流を制御する炭化珪素半導体装置およびその製造方法に関する。   The present invention relates to a silicon carbide semiconductor device that uses silicon carbide, which is one of wide band gap materials, as a semiconductor to control a high breakdown voltage and large current and a method for manufacturing the same.

高耐圧、大電流を制御するパワー半導体素子の材料として、従来はシリコン(Si)単結晶が用いられていた。パワー半導体素子はいくつかの種類があり、用途に合わせてそれらが使い分けられている。例えば、バイポーラトランジスタやIGBT(絶縁ゲート型バイポーラトランジスタ)は、電流密度は多く取れるものの高速でのスイッチングができず、バイポーラトランジスタでは、数kHz、IGBTでは20kHz程度の周波数がその使用限界である。一方、パワーMOSFETは、大電流は取れないものの、数MHzと高速に使用できる。しかしながら、市場では大電流と高速性を兼ね備えたパワーデバイスへの要求が強く、IGBTやパワーMOSFETの改良に力が注がれてきており、現在では、ほぼ材料限界に近いところまで開発が進んできた。   Conventionally, a silicon (Si) single crystal has been used as a material of a power semiconductor element that controls a high breakdown voltage and a large current. There are several types of power semiconductor elements, and they are properly used according to the application. For example, although bipolar transistors and IGBTs (insulated gate bipolar transistors) have a high current density, they cannot be switched at a high speed, and the use limit is a frequency of several kHz for bipolar transistors and 20 kHz for IGBTs. On the other hand, a power MOSFET cannot be used with a large current, but can be used at a high speed of several MHz. However, there is a strong demand for power devices that have both high current and high speed in the market, and efforts are being made to improve IGBTs and power MOSFETs. At present, development has progressed almost to the limit of materials. It was.

図12は、一般的なMOSFETの断面図である。n+基板101上にn-ドリフト層102を積層形成し、このn-ドリフト層102上に、pベース層103を形成し、このpベース層103の表面層に選択的にn+ソース層104を形成している。そして、n-ドリフト層102と、pベース層103、ならびにn+ソース層104の上に、ゲート絶縁膜106を介してゲート電極107が形成されている。 FIG. 12 is a cross-sectional view of a general MOSFET. An n drift layer 102 is stacked on the n + substrate 101, a p base layer 103 is formed on the n drift layer 102, and an n + source layer 104 is selectively formed on the surface layer of the p base layer 103. Is forming. A gate electrode 107 is formed on the n − drift layer 102, the p base layer 103, and the n + source layer 104 with a gate insulating film 106 interposed therebetween.

さらに、近年では超接合型MOSFETが注目を浴びている。図13〜15に代表的な素子の断面構造を示す。超接合型MOSFETは、例えば下記非特許文献1が開示され、CoolMOSFETとして下記非特許文献2が開示されている。これらの技術では、n-ドリフト層に縦方向にp層110を柱状構造に形成することで、ソース・ドレイン間の耐圧特性を劣化させることなく、オン抵抗を格段に向上できる。 In recent years, super-junction MOSFETs have attracted attention. 13 to 15 show typical element cross-sectional structures. For example, the following non-patent document 1 is disclosed as a super junction type MOSFET, and the following non-patent document 2 is disclosed as a cool MOSFET. In these techniques, by forming the p layer 110 in the columnar structure in the vertical direction in the n drift layer, the on-resistance can be remarkably improved without deteriorating the breakdown voltage characteristics between the source and the drain.

また、パワー半導体素子の観点からの材料検討も行われ、下記非特許文献3に開示されているように、炭化珪素(SiC)が次世代のパワー半導体素子として、低オン電圧、高速・高温特性に優れた素子として最近注目を集めている。このSiCは、化学的に非常に安定な材料であり、バンドギャップが3eVと広く、高温でも半導体として極めて安定的に使用できる。また、最大電界強度もシリコンより1桁以上大きい。SiCは、シリコンにおける材料限界を超える可能性が大きいことから、パワー半導体用途、例えば、MOSFETのおける今後の伸長が大きく期待される。そして、そのオン抵抗が小さいことにより、高耐圧特性を維持したまま、より一層の低オン抵抗を有する縦型SiC−MOSFETが期待されている。   In addition, materials have been studied from the viewpoint of power semiconductor elements, and as disclosed in Non-Patent Document 3 below, silicon carbide (SiC) is a next-generation power semiconductor element that has low on-voltage, high-speed and high-temperature characteristics. Recently, it has attracted attention as an excellent device. This SiC is a chemically very stable material, has a wide band gap of 3 eV, and can be used extremely stably as a semiconductor even at high temperatures. Also, the maximum electric field strength is one digit or more larger than that of silicon. Since SiC is likely to exceed the material limit in silicon, future growth in power semiconductor applications such as MOSFETs is greatly expected. And since the on-resistance is small, a vertical SiC-MOSFET having a further low on-resistance while maintaining high withstand voltage characteristics is expected.

一般的なSiC−MOSFETの断面構造についても、シリコンと同様(図12)に示すものである。n-ドリフト層102の上に積層されたpベース層103の表面層に、選択的にn+ソース層104を形成し、n-ドリフト層102とpベース層103、ならびにn+ソース層104の上に、ゲート絶縁膜106を介してゲート電極107が形成されて、基板101の裏面にドレイン電極108が形成される。 The cross-sectional structure of a general SiC-MOSFET is also the same as that of silicon (FIG. 12). the n - surface layer of the p base layer 103 which is stacked on the drift layer 102, to form a selectively n + source layer 104, n - drift layer 102 and the p base layer 103 and n + source layer 104, A gate electrode 107 is formed thereon via a gate insulating film 106, and a drain electrode 108 is formed on the back surface of the substrate 101.

このように形成されたSiC−MOSFETは、スイッチングデバイスとして、低オン抵抗で高速スイッチングが可能な素子である。例えば、モータコントロール用インバータや無停電電源装置(UPS)などの電力変換装置に活用されることが期待されている。SiCは、ワイドバンドギャップ半導体材料であるために、上述したように、破壊電界強度がシリコンの約10倍と高く、オン抵抗が十分小さくなることが期待される。   The SiC-MOSFET formed in this way is an element capable of high-speed switching with a low on-resistance as a switching device. For example, it is expected to be used in power conversion devices such as an inverter for motor control and an uninterruptible power supply (UPS). Since SiC is a wide band gap semiconductor material, as described above, the breakdown electric field strength is about 10 times higher than that of silicon, and the on-resistance is expected to be sufficiently small.

また、さらなる低オン抵抗化についての施策について、有効素子面積を広げる上でゲートパッド下の領域にも素子構造を作り込む方法が開示されている(例えば、下記特許文献1〜5参照。)。   As a measure for further lowering the on-resistance, a method is disclosed in which an element structure is also formed in a region under a gate pad in order to increase the effective element area (see, for example, Patent Documents 1 to 5 below).

特開2010−177454号公報JP 2010-177454 A 特開2010−87126号公報JP 2010-87126 A 特開2009−105177号公報JP 2009-105177 A 特開平8−102495号公報JP-A-8-102495 特開平4−239137号公報JP-A-4-239137

Fujihira et al,JJAP vol.36 part1 no.10,pp.6254,1997Fujihira et al, JJ vol vol. 36 part1 no. 10, pp. 6254, 1997 Deboy et al,IEEE IEDM 1998,pp.683Deboy et al, IEEE IEDM 1998, pp. 683 IEEE Transaction on Electron Devices Vol.36,p.1811,1989IEEE Transaction on Electron Devices Vol. 36, p. 1811, 1989

しかしながら、SiCは、半導体の破壊電界強度がシリコン素子に比べて10倍高くなることから、特に、高電圧印加時の酸化膜への電界の負荷もシリコン素子に比べて大きくなる。このため、シリコンパワーデバイスでは酸化膜に大きな電界が加わる前にシリコンの破壊電界強度に達するために問題にならなかったことがSiCでは新たに生じる。すなわち、SiCでは大きな電界が加わることにより、酸化膜が破壊されることが問題となる。図12に示すSiC−MOSFETのゲート酸化膜106に大きな電界強度が印加されることとなり、ゲート酸化膜106が破壊されると信頼性に大きな問題が生じる。これは、SiC−MOSFETだけでなく、SiC−IGBTでも同様である。   However, since SiC has a breakdown electric field strength of a semiconductor 10 times higher than that of a silicon element, the load of an electric field on an oxide film when a high voltage is applied is particularly higher than that of a silicon element. For this reason, it is newly generated in SiC that the silicon power device does not become a problem because the breakdown electric field strength of silicon is reached before a large electric field is applied to the oxide film. That is, the problem with SiC is that the oxide film is destroyed by applying a large electric field. A large electric field strength is applied to the gate oxide film 106 of the SiC-MOSFET shown in FIG. 12, and if the gate oxide film 106 is destroyed, a serious problem arises in reliability. This is the same not only in SiC-MOSFET but also in SiC-IGBT.

また、上述したゲートパッド下の素子は、ゲートパッドと素子外部を接続する際に損傷を受けやすいことから、低オン抵抗化のための構造は具体化されていない。   Further, since the element under the gate pad described above is easily damaged when the gate pad is connected to the outside of the element, the structure for reducing the on-resistance is not realized.

本発明は、上記課題に鑑み、高電圧印加時においても、ゲート酸化膜が破壊されることがなく信頼性を有し、低オン抵抗を有する炭化珪素半導体装置およびその製造方法を提供することを目的とする。   In view of the above-described problems, the present invention provides a silicon carbide semiconductor device having a low on-resistance and a reliability without a gate oxide film being destroyed even when a high voltage is applied, and a method for manufacturing the same. Objective.

上記目的を達成するため、本発明にかかる炭化珪素半導体装置は、半導体基板内部に半導体装置構造が作り込まれ、前記半導体装置構造に電気的接触をとるための電極と、外部から前記電極と電気的接触をとるための電極パッドとを備え、前記電極パッドの下部の前記半導体基板にも前記半導体装置構造が作成された炭化珪素半導体装置であって、前記半導体装置構造は、第1導電型の半導体基板と、前記半導体基板上に形成された低不純物濃度の第1導電型の半導体層と、前記第1導電型の半導体層に選択的に形成された高不純物濃度の第2導電型の半導体層と、前記第2導電型の半導体層の表面に形成された低不純物濃度の第2導電型のベース層と、前記ベース層の表面層に選択的に形成された第1導電型のソース領域と、表面から前記ベース層を貫通して前記第1導電型の半導体層に達するように形成された第1導電型のウェル領域と、前記ソース領域と前記ウェル領域とに挟まれた前記ベース層の表面にゲート絶縁膜を介して形成された制御電極とを具備し、異なるセルのそれぞれの前記第2導電型の半導体層の一部同士が、前記ウェル領域の下の領域で互いに結合され、前記ゲートパッド部分の前記ソース領域が前記ゲートパッドの部分以外の前記半導体装置構造のソース領域と電気的に結合され、前記ソース領域が第2導電型領域に覆われ、ソースパッド部分におけるソースパッド領域に対する前記ソース領域の面積比より、前記ゲートパッド部分におけるゲートパッド領域に対する前記ソース領域の面積比が大きいことを特徴とする。
In order to achieve the above object, a silicon carbide semiconductor device according to the present invention includes a semiconductor device structure formed in a semiconductor substrate, an electrode for making electrical contact with the semiconductor device structure, and an external connection between the electrode and the electrode. A silicon carbide semiconductor device in which the semiconductor device structure is formed also on the semiconductor substrate below the electrode pad, the semiconductor device structure having a first conductivity type A semiconductor substrate; a low-conductivity first-conductivity-type semiconductor layer formed on the semiconductor substrate; and a high-impurity-concentration second-conductivity-type semiconductor selectively formed on the first-conductivity-type semiconductor layer. A second conductivity type base layer having a low impurity concentration formed on the surface of the second conductivity type semiconductor layer, and a first conductivity type source region selectively formed on the surface layer of the base layer And from the surface A first conductivity type well region formed so as to penetrate the source layer and reach the first conductivity type semiconductor layer; and a gate on the surface of the base layer sandwiched between the source region and the well region And a control electrode formed through an insulating film, wherein a part of each of the second conductivity type semiconductor layers of different cells is coupled to each other in a region under the well region, and the gate pad portion The source region is electrically coupled to a source region of the semiconductor device structure other than the gate pad portion, the source region is covered with a second conductivity type region, and the source region with respect to the source pad region in the source pad portion The area ratio of the source region to the gate pad region in the gate pad portion is larger than the area ratio of.

また、前記第1導電型の半導体基板の結晶学的面指数は(000−1)面に対して平行な面もしくは10度以内に傾いた面であることを特徴とする。   The crystallographic plane index of the first conductivity type semiconductor substrate is a plane parallel to the (000-1) plane or a plane tilted within 10 degrees.

また、前記第1導電型の半導体基板の結晶学的面指数は(0001)面に対して平行な面もしくは10度以内に傾いた面であることを特徴とする。   Further, the crystallographic plane index of the first conductivity type semiconductor substrate is a plane parallel to the (0001) plane or a plane tilted within 10 degrees.

また、前記ゲートパッド部分の前記ソース領域が直線状に形成されたことを特徴とする。   Further, the source region of the gate pad portion is formed in a straight line.

また、前記ゲートパッド部分の前記ソース領域が多角形の網の目状に形成されたことを特徴とする。   Further, the source region of the gate pad portion is formed in a polygonal mesh shape.

また、本発明にかかる炭化珪素半導体装置の製造方法は、第1導電型の半導体基板と、前記半導体基板上に形成された低不純物濃度の第1導電型の半導体層と、前記第1導電型の半導体層に選択的に形成された高不純物濃度の第2導電型の半導体層と、前記第2導電型の半導体層の表面に形成された低不純物濃度の第2導電型のベース層と、前記ベース層の表面層に選択的に形成された第1導電型のソース領域と、表面から前記ベース層を貫通して前記第1導電型の半導体層に達するように形成された第1導電型のウェル領域と、前記ソース領域と前記ウェル領域とに挟まれた前記ベース層の表面にゲート絶縁膜を介して形成された制御電極と、を具備し、異なるセルのそれぞれの前記第2導電型の半導体層の一部同士が、前記ウェル領域の下の領域で互いに結合された炭化珪素半導体装置であって、前記半導体基板上に前記第1導電型の半導体層をエピタキシャル成長により形成し、前記第1導電型の半導体層の表面に前記第2導電型の半導体層をイオン注入法により選択的に形成し、前記第1導電型の半導体層と前記第2導電型の半導体層の上に、前記ベース層をエピタキシャル成長法により形成し、前記ベース層の表面層に前記ソース領域と、表面から前記ベース層を貫通して前記第1導電型の半導体層に達する前記ウェル領域とをイオン注入法により選択的に形成したことを特徴とする。   In addition, a method for manufacturing a silicon carbide semiconductor device according to the present invention includes a first conductivity type semiconductor substrate, a low conductivity concentration first conductivity type semiconductor layer formed on the semiconductor substrate, and the first conductivity type. A second conductivity type semiconductor layer having a high impurity concentration selectively formed in the semiconductor layer; a second conductivity type base layer having a low impurity concentration formed on the surface of the second conductivity type semiconductor layer; A source region of a first conductivity type selectively formed on a surface layer of the base layer, and a first conductivity type formed so as to penetrate the base layer from the surface and reach the semiconductor layer of the first conductivity type And a control electrode formed on the surface of the base layer sandwiched between the source region and the well region via a gate insulating film, and each of the second conductivity types of different cells. A portion of the semiconductor layer of the well region Silicon carbide semiconductor devices coupled to each other in the region, wherein the semiconductor layer of the first conductivity type is formed on the semiconductor substrate by epitaxial growth, and the second conductivity type is formed on the surface of the semiconductor layer of the first conductivity type. The semiconductor layer is selectively formed by ion implantation, the base layer is formed on the first conductive type semiconductor layer and the second conductive type semiconductor layer by epitaxial growth, and the surface of the base layer is formed. The source region and the well region that penetrates the base layer from the surface and reaches the first conductivity type semiconductor layer are selectively formed in a layer by an ion implantation method.

上記構成によれば、ソース・ドレイン間に高電圧を印加しても、n型半導体ウェル領域の上のゲート酸化膜に大きな電界がかからず十分な素子耐圧を保持することができる。同様に、n型半導体層ならびにn型半導体ウェル領域の不純物濃度を大きく上げて、オン抵抗を十分下げた場合でも十分な素子耐圧を保持することができる。   According to the above configuration, even when a high voltage is applied between the source and drain, a large electric field is not applied to the gate oxide film on the n-type semiconductor well region, and a sufficient device breakdown voltage can be maintained. Similarly, even when the impurity concentration of the n-type semiconductor layer and the n-type semiconductor well region is greatly increased to sufficiently reduce the on-resistance, a sufficient device breakdown voltage can be maintained.

本発明によれば、高電圧印加時においても、ゲート酸化膜が破壊されることがなく信頼性を有し、低オン抵抗化できるという効果を奏する。   According to the present invention, even when a high voltage is applied, the gate oxide film is not destroyed, and there is an effect that the on-resistance can be reduced with reliability.

本発明の第1実施例のSiC−MOSFETの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of SiC-MOSFET of 1st Example of this invention. 本発明の第1実施例のSiC−MOSFETのp+層とセルの配置を表す平面図である。It is a top view showing arrangement | positioning of the p <+> layer and cell of SiC-MOSFET of 1st Example of this invention. 本発明の各実施例により作成したSiC−MOSFETの電気特性の測定結果を示す図表である。It is a graph which shows the measurement result of the electrical property of SiC-MOSFET created by each Example of this invention. 実施例1と比較例の素子耐圧およびn打ち返し層の幅を変えた時の素子耐圧の実測結果を示す図表である。It is a graph which shows the actual measurement result of the element withstand voltage when changing the element withstand voltage of Example 1 and a comparative example, and the width | variety of n napping layer. 実施例1のSiC−MOSFETの負荷短絡耐量の測定結果を示す図表である。6 is a chart showing measurement results of load short-circuit withstand capability of the SiC-MOSFET of Example 1. 実施例1のSiC−MOSFETのターンオフ破壊耐量の評価結果を示す図表である。6 is a chart showing evaluation results of turn-off breakdown resistance of the SiC-MOSFET of Example 1. 実施例1のSiC−MOSFETのゲートパッド下の装置構造を示す図である。It is a figure which shows the apparatus structure under the gate pad of SiC-MOSFET of Example 1. FIG. 実施例1のSiC−MOSFETのゲートパッド下の他の装置構造を示す図である。6 is a view showing another device structure under the gate pad of the SiC-MOSFET of Example 1. FIG. 本発明の実施例3のSiC−MOSFETのp+層とセルの配置を表す図である。It is a figure showing arrangement | positioning of the p <+> layer and cell of SiC-MOSFET of Example 3 of this invention. 各実施例のSiC−MOSFETのターンオフスイッチング波形を示す図表である。It is a graph which shows the turn-off switching waveform of SiC-MOSFET of each Example. 各実施例のSiC−MOSFETのターンオンスイッチング波形を示す図表である。It is a graph which shows the turn-on switching waveform of SiC-MOSFET of each Example. 一般的なMOSFETの断面図である。It is sectional drawing of a common MOSFET. 従来のシリコン超接合MOSFET断面構造を示す図である。It is a figure which shows the conventional silicon super junction MOSFET cross-section. 従来のシリコン超接合MOSFET断面構造を示す図である。(マルチエピ法)It is a figure which shows the conventional silicon super junction MOSFET cross-section. (Multi-epi method) 従来のシリコン超接合MOSFET断面構造を示す図である。(トレンチ埋め込み法)It is a figure which shows the conventional silicon super junction MOSFET cross-section. (Trench filling method)

以下に添付図面を参照して、この発明にかかる炭化珪素半導体装置およびその製造方法の好適な実施例を詳細に説明する。   Exemplary embodiments of a silicon carbide semiconductor device and a method for manufacturing the same according to the present invention will be described below in detail with reference to the accompanying drawings.

(実施例1)
図1は、本発明の第1実施例のSiC−MOSFETの製造工程を示す断面図である。図1の(a)はp+層が結合していない部分の断面図、(b)は、p+層が結合している部分の断面図である。
Example 1
FIG. 1 is a cross-sectional view showing a manufacturing process of the SiC-MOSFET of the first embodiment of the present invention. (A) of FIG. 1 is a sectional view of a portion p + layer is not bound, (b) are cross-sectional views of a portion p + layer is bonded.

本実施例では、縦型プレーナーゲートMOSFETとして、半導体材料として炭化珪素素(SiC)を用い、素子耐圧1200VのMOSFETを示している。はじめに、(1)に示すように、n+(第1導電型)のSiC半導体基板1を用意する。IGBTの場合には、p+の半導体基板1を用いる。ここでは、不純物として窒素を2×1019cm-3程度含む低抵抗のSiC半導体基板1とした。このn+型半導体基板1の結晶学的面指数が(000−1)面に対して、4度傾いた面の上に、窒素を1.8×1016cm-3程度含むn-型(第1導電型)のSiC層2を10μm程度エピタキシャル成長により積層する。 In the present embodiment, as a vertical planar gate MOSFET, a silicon carbide (SiC) is used as a semiconductor material, and a MOSFET having an element withstand voltage of 1200 V is shown. First, as shown in (1), an n + (first conductivity type) SiC semiconductor substrate 1 is prepared. In the case of an IGBT, a p + semiconductor substrate 1 is used. Here, a low-resistance SiC semiconductor substrate 1 containing about 2 × 10 19 cm −3 of nitrogen as an impurity is used. The n + -type semiconductor substrate 1 has an n type containing about 1.8 × 10 16 cm −3 of nitrogen on a plane whose crystallographic plane index is inclined by 4 degrees with respect to the (000-1) plane. A SiC layer 2 of the first conductivity type is stacked by epitaxial growth of about 10 μm.

次に、(2)に示すように、SiC層2の上に幅13μmで深さ0.5μmの第2導電型のp+層3をイオン注入法により形成する。その際のイオンは、例えばアルミニウムを用いる。また、不純物濃度は、1.0×1018cm-3となるようにドーズ量を設定した。その際、後述する第1導電型のn打ち返し層6の下でp+層3の一部を他のセル20との間で互いに結合するようにする(図1(b)の(4)参照、および平面図は図2参照)。また、p+層3間において結合していない箇所の距離は2μmとした。 Next, as shown in (2), a second conductivity type p + layer 3 having a width of 13 μm and a depth of 0.5 μm is formed on the SiC layer 2 by ion implantation. For example, aluminum is used as the ions at that time. The dose was set so that the impurity concentration was 1.0 × 10 18 cm −3 . At that time, a part of the p + layer 3 is coupled to another cell 20 under the n-type napping layer 6 of the first conductivity type described later (see (4) in FIG. 1B). FIG. 2 for a plan view). Further, the distance between the unbonded portions between the p + layers 3 was 2 μm.

その後、(3)に示すように、第2導電型のpベース層4をエピタキシャル成長法により0.5μm厚で前記p+層3ならびにn-型のSiC層2上に形成する。その際の不純物は、アルミニウムとし、不純物濃度は2.0×1016cm-3となるようにした。 Thereafter, as shown in (3), a second conductivity type p base layer 4 is formed on the p + layer 3 and the n type SiC layer 2 to a thickness of 0.5 μm by epitaxial growth. The impurity at that time was aluminum, and the impurity concentration was set to 2.0 × 10 16 cm −3 .

その後、(4)に示すように、n打ち返し層6として、窒素イオンが5.0×1016cm-3、深さ1.5μm、幅2.0μmになるように選択的に注入する。そして、(5)に示すように、pベース層4内に第1導電型のn+ソース層7と、第2導電型のp+コンタクト層8を選択的に形成する。 Thereafter, as shown in (4), as the n-turnback layer 6, nitrogen ions are selectively implanted so as to be 5.0 × 10 16 cm −3 , a depth of 1.5 μm, and a width of 2.0 μm. Then, as shown in (5), the first conductivity type n + source layer 7 and the second conductivity type p + contact layer 8 are selectively formed in the p base layer 4.

その後、活性化アニールを実施する。熱処理温度・時間は1620℃・2分である。これにより、(6)に示すように、ゲート酸化膜を100nmの厚さで熱酸化により形成し、水素雰囲気中にて1000℃付近でアニールする。そして、リンがドープされた多結晶シリコン層をゲート酸化膜上にゲート電極9として形成し、パターニングする。   Thereafter, activation annealing is performed. The heat treatment temperature and time are 1620 ° C. and 2 minutes. Thereby, as shown in (6), a gate oxide film is formed by thermal oxidation with a thickness of 100 nm, and annealed in the vicinity of 1000 ° C. in a hydrogen atmosphere. Then, a polycrystalline silicon layer doped with phosphorus is formed as a gate electrode 9 on the gate oxide film and patterned.

この後、(7)に示すように、層間絶縁膜10としてリンガラスを1.0μm厚で成膜後、パターニングしてから熱処理する。また、1%シリコンを含んだアルミニウムを表面にスパッタ法にて厚さ5μmで成膜し、表面電極(ソース電極)11を形成する。素子裏面にはニッケルを成膜し970℃で熱処理後、チタン、ニッケル、金からなる裏面電極12を成膜した。この後、保護膜を表面に付加して素子は完成する。   Thereafter, as shown in (7), a phosphorus glass film having a thickness of 1.0 μm is formed as the interlayer insulating film 10 and then heat-treated after patterning. Further, a surface electrode (source electrode) 11 is formed by depositing aluminum containing 1% silicon on the surface with a thickness of 5 μm by sputtering. A nickel film was formed on the back surface of the device, and after heat treatment at 970 ° C., a back electrode 12 made of titanium, nickel, and gold was formed. Thereafter, a protective film is added to the surface to complete the device.

図2は、本発明の第1実施例のSiC−MOSFETのp+層とセルの配置を表す平面図である。図2の例では、n打ち返し層6の下でp+層3の各角部から他のセル20の角部に向けて互いに結合部3aにより結合している。図2の例では、各セル20を6角形セルパターンにて作成した。これに限らず、各セル20を4角形セルとしてもよい。 FIG. 2 is a plan view showing the arrangement of the p + layer and the cell of the SiC-MOSFET of the first embodiment of the present invention. In the example of FIG. 2, the n + layers 6 are coupled to each other from the corners of the p + layer 3 toward the corners of the other cells 20 by the coupling portions 3 a. In the example of FIG. 2, each cell 20 is created with a hexagonal cell pattern. Not only this but each cell 20 is good also as a square cell.

図3は、本発明の各実施例により作成したSiC−MOSFETの電気特性の測定結果を示す図表である。本発明の実施例のチップサイズは3mm角であり、活性面積は5.27mm2であり、定格電流は25Aである。オン抵抗(RonA)は2.8mΩcm2と十分低い値を示し、初期の素子耐圧も1450Vとなり、1200V素子として十分良好な特性を示している。 FIG. 3 is a chart showing the measurement results of the electrical characteristics of the SiC-MOSFETs produced according to the examples of the present invention. The chip size of the embodiment of the present invention is 3 mm square, the active area is 5.27 mm 2 , and the rated current is 25A. The on-resistance (RonA) is a sufficiently low value of 2.8 mΩcm 2, and the initial device breakdown voltage is 1450 V, indicating sufficiently good characteristics as a 1200 V device.

また、比較例(従来技術)として、p+層3同士をまったく結合させないようにして作成したSiC−MOSFETを測定した。この比較例の場合、オン抵抗は、同等の2.8mΩcm2と十分低い値を示したが、ソース・ドレイン間に880Vを印加したところで、ゲート酸化膜が破壊した。このことから、本発明は十分な素子耐圧を維持しながら、極めて小さいオン抵抗を示していることが分かる。 In addition, as a comparative example (prior art), an SiC-MOSFET prepared so as not to bond the p + layers 3 to each other was measured. In the case of this comparative example, the on-resistance was as low as 2.8 mΩcm 2 , but the gate oxide film was destroyed when 880 V was applied between the source and drain. From this, it can be seen that the present invention shows an extremely small on-resistance while maintaining a sufficient element breakdown voltage.

図4は、実施例1と比較例の素子耐圧およびn打ち返し層の幅を変えた時の素子耐圧の実測結果を示す図表である。比較例は、上述したように、p+層3をセル間で全く結合させないSiC−MOSFETである。素子の各層の濃度厚さは上述のとおりである。その結果、本発明の実施例1の方が、1200Vデバイスとして十分な耐圧特性である1400V以上の高耐圧特性を実現していることが分かる。なお、オン抵抗は実施例1および比較例共に同一であり、実施例1のようにゲートパッド下にセルを作り込むことは、オン抵抗低減に効果があることが分かった。 FIG. 4 is a table showing the actual measurement results of the device breakdown voltage when the device breakdown voltage and the width of the n-type striking layer are changed between Example 1 and the comparative example. As described above, the comparative example is a SiC-MOSFET in which the p + layer 3 is not coupled between cells at all. The concentration thickness of each layer of the element is as described above. As a result, it can be seen that Example 1 of the present invention achieves a high breakdown voltage characteristic of 1400 V or higher, which is a sufficient breakdown voltage characteristic for a 1200 V device. The on-resistance is the same in both Example 1 and Comparative Example, and it has been found that forming a cell under the gate pad as in Example 1 is effective in reducing the on-resistance.

比較例のSiC−MOSFETで本実施例1と同等の1400V以上の高耐圧特性を満足させるには、p+層3の間の距離を1.0μm以下にし、かつn打ち返し層6の打ち返し濃度を5分の1まで低減させなくてはならないことが分かった。また、この条件の比較例におけるオン抵抗は10.8mΩcm2と極めて高い値を示した。これにより、本発明は、比較例に比してオン抵抗が小さく、同時に素子耐圧特性を高めることができる。 In order to satisfy the high breakdown voltage characteristic equal to or higher than 1400 V equivalent to the first embodiment in the SiC-MOSFET of the comparative example, the distance between the p + layers 3 is set to 1.0 μm or less, and the napping layer 6 has a bounce concentration. It has been found that it must be reduced to one fifth. In addition, the on-resistance in the comparative example under this condition showed an extremely high value of 10.8 mΩcm 2 . Thereby, the present invention has a smaller on-resistance than that of the comparative example, and can simultaneously improve the element withstand voltage characteristic.

図5は、実施例1のSiC−MOSFETの負荷短絡耐量の測定結果を示す図表である。負荷短絡耐量試験では、電源電圧を直接ソース・ドレイン間に印加し、その状態でゲート電極にVg=20Vの電圧を印加し、何μsecの期間、ゲート酸化膜の破壊が生じないかを評価する。測定時の条件は、電源電圧Vcc=800Vとし、また測定温度(Tj)は175℃とした。図5の測定波形に示すように、最大電流が素子定格の5倍である125Aを導通させても破壊せず、さらに15μsecでも破壊しないという十分な特性を示した。   FIG. 5 is a table showing the measurement results of the load short-circuit withstand capability of the SiC-MOSFET of Example 1. In the load short-circuit tolerance test, a power supply voltage is directly applied between the source and the drain, and a voltage of Vg = 20 V is applied to the gate electrode in that state, and evaluation is made for how many μsec the gate oxide film is not destroyed. . The measurement conditions were the power supply voltage Vcc = 800 V and the measurement temperature (Tj) was 175 ° C. As shown in the measurement waveform of FIG. 5, it showed sufficient characteristics that it does not break even when 125A, whose maximum current is five times the element rating, is conducted, and does not break even after 15 μsec.

図6は、実施例1のSiC−MOSFETのターンオフ破壊耐量の評価結果を示す図表である。ターンオフ耐量を評価したところ、ソース・ドレイン間電圧は1630Vにクランプされ(図6中のVds clamp)、破壊することなく100A(定格電流の4倍)を150℃にてオフできることを確認した。このことから、実施例1では低オン抵抗を実現し、かつ負荷短絡耐量、ターンオフ耐量が極めて大きい素子であるということがわかる。比較例のSiC−MOSFETの耐量を評価したところ、素子耐圧が十分でないために負荷短絡耐量、ターンオフ耐量とも本実施例1の素子に大きく劣る結果となった(図3参照)。   6 is a table showing the evaluation results of the turn-off breakdown resistance of the SiC-MOSFET of Example 1. FIG. When the turn-off resistance was evaluated, the source-drain voltage was clamped at 1630 V (Vds clamp in FIG. 6), and it was confirmed that 100 A (four times the rated current) could be turned off at 150 ° C. without destruction. From this, it can be seen that Example 1 is an element that achieves a low on-resistance and has extremely large load short-circuit withstand capability and turn-off capability. When the tolerance of the SiC-MOSFET of the comparative example was evaluated, the device withstand voltage was not sufficient, so that both the load short-circuit tolerance and the turn-off tolerance were significantly inferior to those of the element of Example 1 (see FIG. 3).

なお、前記n型半導体基板1の結晶学的面指数は(000−1)面に対し、SiC層2を0度、2度、8度、10度傾いた面上にそれぞれ同様に成膜し、作成した素子であっても特性の変化はほとんどなく良好であった。   The crystallographic plane index of the n-type semiconductor substrate 1 is the same as that of the SiC layer 2 formed on the plane inclined by 0 °, 2 °, 8 °, and 10 ° with respect to the (000-1) plane. Even in the fabricated element, there was almost no change in characteristics and it was good.

図7は、実施例1のSiC−MOSFETのゲートパッド下の装置構造を示す図である。図7の(a)は平面図、(b)は(a)のA−A線断面図、(c)は(a)のB−B線断面図であり、ゲート電極及び酸化膜は省略してある。実施例1の構成において、さらに、オン抵抗を低抵抗化するには、図7に示すように、ゲートパッド下に、ソースパッド下のソース領域71からn型半導体を用いて電気的に接続されたソース領域70を形成する。このn型半導体のソース領域70はp型半導体領域72ウェルによってn型半導体領域73から分離されていなければならない。図7では、ゲートパッド下のソース領域70が一直線状になっており、ゲート酸化膜保護のためのp層(第2導電型領域)74をこのソース領域70に直交して設けている。
FIG. 7 is a diagram illustrating a device structure under the gate pad of the SiC-MOSFET according to the first embodiment. 7A is a plan view, FIG. 7B is a cross-sectional view taken along line AA of FIG. 7A, and FIG. 7C is a cross - sectional view taken along line BB of FIG. 7A, omitting the gate electrode and the oxide film. It is. In the configuration of the first embodiment, in order to further reduce the on-resistance, as shown in FIG. 7, the n-type semiconductor is electrically connected from the source region 71 under the source pad under the gate pad. The source region 70 is formed. This n-type semiconductor source region 70 must be separated from the n-type semiconductor region 73 by the well of the p-type semiconductor region 72. In FIG. 7, the source region 70 under the gate pad is in a straight line, and a p layer (second conductivity type region) 74 for protecting the gate oxide film is provided orthogonal to the source region 70.

図8は、実施例1のSiC−MOSFETのゲートパッド下の他の装置構造を示す図である。図8の(a)は平面図、(b)は(a)のC−C線断面図であり、ゲート電極及び酸化膜は省略してある。ゲートパッド下のソース領域71を6角形の網の目状に形成している。そして、ゲート酸化膜保護のためのp層74が6角形のソース領域70の中心に浮遊しているものである。ソース領域71の形状は6角形に限らず多角形にできる。   FIG. 8 is a diagram illustrating another device structure under the gate pad of the SiC-MOSFET according to the first embodiment. 8A is a plan view, and FIG. 8B is a sectional view taken along the line CC of FIG. 8A, omitting the gate electrode and the oxide film. A source region 71 under the gate pad is formed in a hexagonal mesh pattern. A p layer 74 for protecting the gate oxide film is floating in the center of the hexagonal source region 70. The shape of the source region 71 is not limited to a hexagon and can be a polygon.

これら図7、図8のように、ゲートパッド下にも素子を作製することにより、同一装置の面積内での素子利用面積を増やすことができ、オン抵抗を低減できるようになる。   As shown in FIGS. 7 and 8, by fabricating an element also under the gate pad, it is possible to increase the element use area within the area of the same device, and to reduce the on-resistance.

(実施例2)
本発明の実施例2では、実施例1と同様の製造工程にて1200V、25AのSiC−MOSFETを作成した。この実施例2ではn型半導体基板1の結晶学的面指数は(0001)面に対して4度傾いた面の上に、窒素を1.8×1016cm-3程度含むn型SiC層2を10μm程度エピタキシャル成長させている。その他の工程、およびセル構造は全く同一である。実施例2の素子の電気特性評価結果は、上記図3に示されており、オン抵抗は、実施例1に対し、55%ほど増加するが、通常のSiC−MOSFETに対しては十分低いオン抵抗特性を示していることがわかる。なお、n型半導体基板1の結晶学的面指数は(0001)面に対して0度、2度、8度、10度傾いた面上に、n型SiC層2を同様に成膜し、作成した素子についても素子評価を行ったところ、特性の変化はほとんどなく良好であった。
(Example 2)
In Example 2 of the present invention, a 1200 V, 25 A SiC-MOSFET was produced by the same manufacturing process as in Example 1. In Example 2, the crystallographic plane index of the n-type semiconductor substrate 1 is an n-type SiC layer containing about 1.8 × 10 16 cm −3 of nitrogen on a plane inclined by 4 degrees with respect to the (0001) plane. 2 is epitaxially grown by about 10 μm. Other processes and the cell structure are exactly the same. The electrical characteristic evaluation result of the element of Example 2 is shown in FIG. 3 above, and the on-resistance increases by 55% compared to Example 1, but it is sufficiently low for the normal SiC-MOSFET. It can be seen that the resistance characteristic is exhibited. In addition, the n-type SiC layer 2 is similarly formed on a surface inclined by 0 °, 2 °, 8 °, and 10 ° with respect to the (0001) plane of the crystallographic plane index of the n-type semiconductor substrate 1. When the device was evaluated for the fabricated device, the characteristics were almost unchanged and good.

(実施例3)
本発明の実施例3では、実施例1と同様の製造工程にて1200V、25AのSiC−MOSFETを作製した。n型半導体基板1の結晶学的面指数は(000−1)面に対して4度傾いた面の上に窒素を1.8×1016cm-3程度含むn型SiC層2を10μm程度エピタキシャル成長させている。
(Example 3)
In Example 3 of the present invention, a 1200 V, 25 A SiC-MOSFET was manufactured by the same manufacturing process as in Example 1. The crystallographic plane index of the n-type semiconductor substrate 1 is about 10 μm of an n-type SiC layer 2 containing about 1.8 × 10 16 cm −3 of nitrogen on a plane inclined by 4 degrees with respect to the (000-1) plane. Epitaxial growth.

図9は、本発明の実施例3のSiC−MOSFETのp+層とセルの配置を表す図である。図9に示すように、セルはストライプパターンで形成している。そのため、p+層3の配置は、セル20,20間のp+層3を結合部3aにより結合させている。その他の工程は実施例1と同一である。作成した素子の電気特性評価結果は、上記図3に示されており、オン抵抗は実施例1に対し、10%ほど増加するものの、通常のSiC−MOSFETに対しては十分低いオン抵抗特性と高耐圧特性を示していることがわかる。 FIG. 9 is a diagram illustrating the arrangement of the p + layer and the cell of the SiC-MOSFET according to the third embodiment of the present invention. As shown in FIG. 9, the cells are formed in a stripe pattern. Therefore, the arrangement of the p + layer 3 is coupled by the coupling portion 3a of the p + layer 3 between the cells 20, 20. Other steps are the same as those in the first embodiment. The electrical property evaluation result of the fabricated element is shown in FIG. 3, and the on-resistance increases by about 10% compared to Example 1, but the on-resistance characteristics are sufficiently low for a normal SiC-MOSFET. It can be seen that high breakdown voltage characteristics are exhibited.

(実施例4)
本発明の実施例4の製造方法について説明する。まず、n型のSiC半導体基板1を用意する。不純物として窒素を2×1019cm-3程度含む低抵抗のSiC半導体基板1を用いた。次に、n型半導体基板1の結晶学的面指数は(000−1)面に対して4度傾いた面の上に窒素を1.8×1016cm-3程度含むn型SiC層2を10μm程度エピタキシャル成長させる。つぎに、n型SiC層2の上に幅13μm、厚さ0.5μmのp+層3をエピタキシャル法で形成する。その際の不純物イオンにアルミニウムを用いた。また、不純物濃度は、1.0×1018cm-3となるようにドーズ量を設定した。その際、実施例1と同様、n打ち返し層6の下でp+層3の一部を互いに結合するようにする(図2参照)。実施例4では、6角形セルパターンにて作成したが、4角形セルなどでも問題ない。また、p+層3間において結合していない箇所のp+層3間の距離は2μmとした。
Example 4
A manufacturing method of Example 4 of the present invention will be described. First, an n-type SiC semiconductor substrate 1 is prepared. A low resistance SiC semiconductor substrate 1 containing about 2 × 10 19 cm −3 of nitrogen as an impurity was used. Next, the crystallographic plane index of the n-type semiconductor substrate 1 is an n-type SiC layer 2 containing about 1.8 × 10 16 cm −3 of nitrogen on a plane inclined by 4 degrees with respect to the (000-1) plane. Is grown about 10 μm epitaxially. Next, a p + layer 3 having a width of 13 μm and a thickness of 0.5 μm is formed on the n-type SiC layer 2 by an epitaxial method. Aluminum was used as impurity ions at that time. The dose was set so that the impurity concentration was 1.0 × 10 18 cm −3 . At this time, as in the first embodiment, a part of the p + layer 3 is coupled to each other under the n-turnback layer 6 (see FIG. 2). In the fourth embodiment, a hexagonal cell pattern is used, but there is no problem even with a quadrangular cell. The distance between the p + layer 3 of a portion not bonded in between the p + layer 3 was set to 2 [mu] m.

その後、pベース層4をエピタキシャル成長法により0.5μm厚でp+層3ならびにn型SiC層2上に形成する。その際の不純物はアルミニウムとし、不純物濃度は2.0×1016cm-3となるようにした。その後、n打ち返し層6として窒素イオンを選択的に注入し、n+ソース層7、p+コンタクト層8をpベース層4内に選択的に形成する。n打ち返し層6の濃度、厚さ、幅は実施例1と同じである。 Thereafter, the p base layer 4 is formed on the p + layer 3 and the n-type SiC layer 2 to a thickness of 0.5 μm by an epitaxial growth method. The impurity at that time was aluminum, and the impurity concentration was set to 2.0 × 10 16 cm −3 . Thereafter, nitrogen ions are selectively implanted as the n-back layer 6 to selectively form the n + source layer 7 and the p + contact layer 8 in the p base layer 4. The concentration, thickness, and width of the n-turnback layer 6 are the same as those in the first embodiment.

その後活性化アニールを実施する。活性化アニール時の熱処理温度と時間は、それぞれ1620℃、2分である。その後、ゲート酸化膜100nmの厚さを熱酸化で形成し、水素雰囲気中にて1000℃付近でアニールする。リンがドープされた多結晶シリコン層をゲート電極として形成、パターニング後、層間絶縁膜10としてリンガラスを1.0μm厚で成膜およびパターニングして熱処理し、1%シリコンを含んだアルミニウムを表面にスパッタ法にて厚さ5μmで成膜した。素子裏面にはニッケルを成膜し970℃で熱処理後、チタン、ニッケル、金からなる裏面電極12を成膜した。そして保護膜を表面に付加して素子は完成する。   Thereafter, activation annealing is performed. The heat treatment temperature and time during activation annealing are 1620 ° C. and 2 minutes, respectively. Thereafter, a gate oxide film having a thickness of 100 nm is formed by thermal oxidation and annealed in the hydrogen atmosphere at around 1000 ° C. Forming and patterning a polycrystalline silicon layer doped with phosphorus as a gate electrode, patterning, forming and patterning phosphorus glass with a thickness of 1.0 μm as an interlayer insulating film 10, and heat-treating aluminum containing 1% silicon on the surface A film was formed with a thickness of 5 μm by sputtering. A nickel film was formed on the back surface of the device, and after heat treatment at 970 ° C., a back electrode 12 made of titanium, nickel, and gold was formed. Then, a protective film is added to the surface to complete the device.

このようにして作成した実施例4のSiC−MOSFETの電気特性の測定結果を図3に示す。チップサイズは3mm角であり、活性面積は5.27mm2であり、定格電流は25Aである。オン抵抗(RonA)は2.85mΩcm2と十分低い値を示し、初期の素子耐圧も1455Vと、1200V素子として十分良好な特性を示している。なお、n型半導体基板1の結晶学的面指数は(000−1)面に対して0度、2度、8度、10度傾いた面上同様に成膜し、作成した素子についても素子評価を行ったところ、特性の変化はほとんどなく良好であった。 FIG. 3 shows the measurement results of the electrical characteristics of the SiC-MOSFET of Example 4 created in this way. The chip size is 3 mm square, the active area is 5.27 mm 2 , and the rated current is 25A. The on-resistance (RonA) is a sufficiently low value of 2.85 mΩcm 2, and the initial device breakdown voltage is 1455 V, which is sufficiently good for a 1200 V device. Note that the crystallographic plane index of the n-type semiconductor substrate 1 is similarly formed on a plane inclined at 0 °, 2 °, 8 °, and 10 ° with respect to the (000-1) plane, and the created device is also an element. As a result of evaluation, there was almost no change in characteristics, and it was good.

(実施例5)
実施例5では、実施例4と同様の製造工程にて1200V、25AのSiC−MOSFETを作製した。ただし、実施例5では、n型半導体基板1の結晶学的面指数は(0001)面に対して4度傾いた面の上に窒素を1.8×1016cm-3程度含むn型SiC層2を10μm程度エピタキシャル成長させた。その他の工程は全く同一である。作製した素子の電気特性評価結果を図4に示す。オン抵抗は、実施例4に対し、50%ほど増加するものの、通常のSiC−MOSFETに対しては十分低いオン抵抗特性を示していることがわかる。なお、n型半導体基板1の結晶学的面指数は(0001)面に対して0度、2度、8度、10度傾いた面上同様に成膜し、作成した素子についても素子評価を行ったところ、特性の変化はほとんどなく良好であった。
(Example 5)
In Example 5, a 1200 V, 25 A SiC-MOSFET was manufactured by the same manufacturing process as in Example 4. However, in Example 5, the crystallographic plane index of the n-type semiconductor substrate 1 is n-type SiC containing about 1.8 × 10 16 cm −3 of nitrogen on a plane inclined by 4 degrees with respect to the (0001) plane. Layer 2 was epitaxially grown by about 10 μm. Other processes are exactly the same. FIG. 4 shows the result of evaluating the electrical characteristics of the manufactured element. Although the on-resistance increases by about 50% with respect to Example 4, it can be seen that the on-resistance characteristics are sufficiently low for a normal SiC-MOSFET. The crystallographic plane index of the n-type semiconductor substrate 1 was similarly formed on a plane inclined at 0 °, 2 °, 8 °, and 10 ° with respect to the (0001) plane. As a result, there was almost no change in characteristics and it was good.

図10は、各実施例のSiC−MOSFETのターンオフスイッチング波形を示す図表、図11は、各実施例のSiC−MOSFETのターンオンスイッチング波形を示す図表である。実施例1〜4により作成したSiC-MOSFETのスイッチング損失評価を示している。それぞれ(a)は室温(RT)、(b)は温度200度の測定結果である。ターンオン損失およびターンオフ損失を低減でき、ターンオンおよびターンオフのスイッチングともに良好な波形が得られた。本発明のSiC−MOSFETによれば、図3に示すように、ターンオン、ターンオフ損失とも、同一定格のSi−IGBT(1200V、25A)に対し、60%以上もの低減を図ることができる。   FIG. 10 is a chart showing the turn-off switching waveform of the SiC-MOSFET in each embodiment, and FIG. 11 is a chart showing the turn-on switching waveform of the SiC-MOSFET in each embodiment. The switching loss evaluation of the SiC-MOSFET produced by Examples 1-4 is shown. (A) is a measurement result at room temperature (RT), and (b) is a measurement result at a temperature of 200 degrees. Turn-on loss and turn-off loss could be reduced, and good waveforms were obtained for both turn-on and turn-off switching. According to the SiC-MOSFET of the present invention, as shown in FIG. 3, both the turn-on and turn-off losses can be reduced by 60% or more with respect to the same rated Si-IGBT (1200 V, 25 A).

上記構成によれば、n型半導体層ならびにn型半導体ウェル領域の不純物濃度を大きく上げて、オン抵抗を十分下げた場合、またはp型半導体層の間、およびベース層の間の距離を広げてオン抵抗を十分下げた場合、またはソース・ドレイン間に高電圧を印加した場合(ソースが0V、ドレインに+電圧を印加)、のいずれにおいても、n型半導体ウェル領域の上のゲート酸化膜に大きな電界がかからず十分な素子耐圧を保持することができる。これは空乏層がp+コンタクト層に沿って横方向に広がりやすくなるためである。その結果、n型半導体層ならびにn型半導体ウェル領域の不純物濃度を従来のSi−MOSFETよりも高く設定しても空乏層が広がりやすい設計であるため、p型のコンタクト層の間、ならびにp型のベース層の間の距離を広げて素子耐圧を十分保ちつつオン抵抗を小さくできる。 According to the above configuration, the impurity concentration in the n-type semiconductor layer and the n-type semiconductor well region is greatly increased to sufficiently reduce the on-resistance, or the distance between the p-type semiconductor layer and the base layer is increased. In either case where the on-resistance is sufficiently lowered or a high voltage is applied between the source and the drain (the source is 0 V and the + voltage is applied to the drain), the gate oxide film on the n-type semiconductor well region is applied. A large electric field is not applied and a sufficient element breakdown voltage can be maintained. This is because the depletion layer tends to spread laterally along the p + contact layer. As a result, the depletion layer tends to spread even if the impurity concentration of the n-type semiconductor layer and the n-type semiconductor well region is set higher than that of the conventional Si-MOSFET. By increasing the distance between the base layers, the on-resistance can be reduced while maintaining a sufficient device breakdown voltage.

また、p型のベース層をエピタキシャル成長法によって形成した場合、表面荒れがほとんどない程度に平坦にできるため、表面のMOSFET部分の移動度が極めて大きくなり、その結果、オン抵抗をさらに小さくすることができる。   Further, when the p-type base layer is formed by the epitaxial growth method, it can be flattened to the extent that there is almost no surface roughness, so that the mobility of the MOSFET portion on the surface becomes extremely high, and as a result, the on-resistance can be further reduced. it can.

さらに、半導体材料に炭化珪素も用いる場合、n型半導体基板の結晶学的面指数は、(000−1)面に対して平行な面もしくは10度以内、またはn型半導体基板の結晶学的面指数は(0001)面に対して平行な面もしくは10度以内に設定することにより、ゲート酸化膜と半導体界面の界面準位密度を低減でき、MOSFET部分の移動度をさらに向上させることができる。その結果、オン抵抗を極めて小さくすることができる。   Further, when silicon carbide is also used as the semiconductor material, the crystallographic plane index of the n-type semiconductor substrate is a plane parallel to the (000-1) plane or within 10 degrees, or the crystallographic plane of the n-type semiconductor substrate. By setting the index to a plane parallel to the (0001) plane or within 10 degrees, the interface state density between the gate oxide film and the semiconductor interface can be reduced, and the mobility of the MOSFET portion can be further improved. As a result, the on-resistance can be made extremely small.

そして、ゲートパッド下にもソース領域を形成し、素子構造を作り込む構造とすることによって、複雑な階層状の電極構造を必要とせずとも有効素子面積を増大し、オン抵抗を小さくすることができるようになる。   Further, by forming a source region under the gate pad and forming an element structure, the effective element area can be increased and the on-resistance can be reduced without requiring a complicated hierarchical electrode structure. become able to.

上記の実施例では、本発明の炭化珪素半導体装置として、MOSFETを例に説明したが、これに限るものではない。例えば、IGBTにも同様に適用でき、高電圧印加時においても、ゲート酸化膜が破壊されることがなく信頼性を有し、低オン抵抗を有することができる。   In the above embodiment, the MOSFET is described as an example of the silicon carbide semiconductor device of the present invention, but the present invention is not limited to this. For example, the present invention can be similarly applied to an IGBT, and even when a high voltage is applied, the gate oxide film is not destroyed and has reliability and low on-resistance.

そして、本発明によれば、基板の結晶面方位によらず十分な素子耐圧特性を保持したまま、低オン抵抗で破壊耐量が大きく、さらに高速スイッチング特性が可能なMOSFETならびにIGBT等のパワーデバイスを提供することが可能になる。   According to the present invention, power devices such as MOSFETs and IGBTs that have a low on-resistance, a large breakdown resistance, and a high-speed switching characteristic while maintaining a sufficient element breakdown voltage characteristic regardless of the crystal plane orientation of the substrate. It becomes possible to provide.

以上のように、本発明は、SiC基板を用いたパワーデバイス全般に適用することができ、MOSFETやIGBTの製造に有用である。   As described above, the present invention can be applied to all power devices using a SiC substrate, and is useful for manufacturing MOSFETs and IGBTs.

1 SiC半導体基板
2 SiC層
3 p+
4 ベース層
6 n打ち返し層
7 ソース層
8 コンタクト層
11 ソース電極
12 裏面電極
20 セル
DESCRIPTION OF SYMBOLS 1 SiC semiconductor substrate 2 SiC layer 3 p + layer 4 Base layer 6 n Return layer 7 Source layer 8 Contact layer 11 Source electrode 12 Back surface electrode 20 Cell

Claims (6)

半導体基板内部に半導体装置構造が作り込まれ、前記半導体装置構造に電気的接触をとるための電極と、外部から前記電極と電気的接触をとるためのゲートパッドとを備え、前記ゲートパッドの下部の前記半導体基板にも前記半導体装置構造が作成された炭化珪素半導体装置であって、
前記半導体装置構造は、
第1導電型の半導体基板と、前記半導体基板上に形成された低不純物濃度の第1導電型の半導体層と、前記第1導電型の半導体層に選択的に形成された高不純物濃度の第2導電型の半導体層と、前記第2導電型の半導体層の表面に形成された低不純物濃度の第2導電型のベース層と、前記ベース層の表面層に選択的に形成された第1導電型のソース領域と、表面から前記ベース層を貫通して前記第1導電型の半導体層に達するように形成された第1導電型のウェル領域と、前記ソース領域と前記ウェル領域とに挟まれた前記ベース層の表面にゲート絶縁膜を介して形成された制御電極とを具備し、
異なるセルのそれぞれの前記第2導電型の半導体層の一部同士が、前記ウェル領域の下の領域で互いに結合され、
前記ゲートパッド部分の前記ソース領域が前記ゲートパッドの部分以外の前記半導体装置構造のソース領域と電気的に結合され、
前記ソース領域が第2導電型領域に覆われ、
ソースパッド部分におけるソースパッド領域に対する前記ソース領域の面積比より、前記ゲートパッド部分におけるゲートパッド領域に対する前記ソース領域の面積比が大きいことを特徴とする炭化珪素半導体装置。
A semiconductor device structure is formed inside a semiconductor substrate, and includes an electrode for making electrical contact with the semiconductor device structure, and a gate pad for making electrical contact with the electrode from the outside, and a lower portion of the gate pad A silicon carbide semiconductor device in which the semiconductor device structure is also formed on the semiconductor substrate,
The semiconductor device structure is:
A first conductivity type semiconductor substrate; a low impurity concentration first conductivity type semiconductor layer formed on the semiconductor substrate; and a high impurity concentration first layer selectively formed on the first conductivity type semiconductor layer. A second conductivity type semiconductor layer; a low conductivity second conductivity type base layer formed on the surface of the second conductivity type semiconductor layer; and a first selectively formed on the surface layer of the base layer. A conductive type source region, a first conductive type well region formed so as to penetrate the base layer from the surface and reach the first conductive type semiconductor layer, and sandwiched between the source region and the well region A control electrode formed on the surface of the base layer through a gate insulating film,
A portion of each of the second conductivity type semiconductor layers of different cells are coupled together in a region below the well region;
The source region of the gate pad portion is electrically coupled to the source region of the semiconductor device structure other than the gate pad portion;
The source region is covered with a second conductivity type region;
A silicon carbide semiconductor device, wherein an area ratio of the source region to the gate pad region in the gate pad portion is larger than an area ratio of the source region to the source pad region in the source pad portion.
前記第1導電型の半導体基板の結晶学的面指数は(000−1)面に対して平行な面もしくは10度以内に傾いた面であることを特徴とする請求項1に記載の炭化珪素半導体装置。   2. The silicon carbide according to claim 1, wherein the crystallographic plane index of the semiconductor substrate of the first conductivity type is a plane parallel to a (000-1) plane or a plane tilted within 10 degrees. Semiconductor device. 前記第1導電型の半導体基板の結晶学的面指数は(0001)面に対して平行な面もしくは10度以内に傾いた面であることを特徴とする請求項1に記載の炭化珪素半導体装置。   2. The silicon carbide semiconductor device according to claim 1, wherein a crystallographic plane index of the first conductivity type semiconductor substrate is a plane parallel to a (0001) plane or a plane tilted within 10 degrees. . 前記ゲートパッド部分の前記ソース領域が直線状に形成されたことを特徴とする請求項1に記載の炭化珪素半導体装置。   The silicon carbide semiconductor device according to claim 1, wherein the source region of the gate pad portion is formed linearly. 前記ゲートパッド部分の前記ソース領域が多角形の網の目状に形成されたことを特徴とする請求項1に記載の炭化珪素半導体装置。   The silicon carbide semiconductor device according to claim 1, wherein the source region of the gate pad portion is formed in a polygonal mesh pattern. 第1導電型の半導体基板と、前記半導体基板上に形成された低不純物濃度の第1導電型の半導体層と、前記第1導電型の半導体層に選択的に形成された高不純物濃度の第2導電型の半導体層と、前記第2導電型の半導体層の表面に形成された低不純物濃度の第2導電型のベース層と、前記ベース層の表面層に選択的に形成された第1導電型のソース領域と、表面から前記ベース層を貫通して前記第1導電型の半導体層に達するように形成された第1導電型のウェル領域と、前記ソース領域と前記ウェル領域とに挟まれた前記ベース層の表面にゲート絶縁膜を介して形成された制御電極と、を具備し、異なるセルのそれぞれの前記第2導電型の半導体層の一部同士が、前記ウェル領域の下の領域で互いに結合され、前記ゲートパッド部分の前記ソース領域が前記ゲートパッドの部分以外の前記半導体装置構造のソース領域と電気的に結合され、前記ソース領域が第2導電型領域に覆われ、ソースパッド部分におけるソースパッド領域に対する前記ソース領域の面積比より、前記ゲートパッド部分におけるゲートパッド領域に対する前記ソース領域の面積比が大きい炭化珪素半導体装置であって、
前記半導体基板上に前記第1導電型の半導体層をエピタキシャル成長により形成し、
前記第1導電型の半導体層の表面に前記第2導電型の半導体層をイオン注入法により選択的に形成し、
前記第1導電型の半導体層と前記第2導電型の半導体層の上に、前記ベース層をエピタキシャル成長法により形成し、
前記ベース層の表面層に前記ソース領域と、表面から前記ベース層を貫通して前記第1導電型の半導体層に達する前記ウェル領域とをイオン注入法により選択的に形成した
ことを特徴とする炭化珪素半導体装置の製造方法。
A first conductivity type semiconductor substrate; a low impurity concentration first conductivity type semiconductor layer formed on the semiconductor substrate; and a high impurity concentration first layer selectively formed on the first conductivity type semiconductor layer. A second conductivity type semiconductor layer; a low conductivity second conductivity type base layer formed on the surface of the second conductivity type semiconductor layer; and a first selectively formed on the surface layer of the base layer. A conductive type source region, a first conductive type well region formed so as to penetrate the base layer from the surface and reach the first conductive type semiconductor layer, and sandwiched between the source region and the well region A control electrode formed on the surface of the base layer through a gate insulating film, and a part of each of the second conductivity type semiconductor layers of different cells is formed under the well region. Bonded to each other in the region, and the gate pad portion Over scan region is a source region and electrically coupling the semiconductor device structures other than the portion of the gate pad, the source region is covered with the second conductive type region, the source region to the source pad region in the source pad portion A silicon carbide semiconductor device having a larger area ratio of the source region to a gate pad region in the gate pad portion than an area ratio,
Forming the first conductivity type semiconductor layer on the semiconductor substrate by epitaxial growth;
Forming the second conductive type semiconductor layer selectively on the surface of the first conductive type semiconductor layer by ion implantation;
Forming the base layer on the first conductive type semiconductor layer and the second conductive type semiconductor layer by an epitaxial growth method;
The source region in the surface layer of the base layer and the well region that penetrates the base layer from the surface and reaches the semiconductor layer of the first conductivity type are selectively formed by an ion implantation method. A method for manufacturing a silicon carbide semiconductor device.
JP2012120263A 2012-05-25 2012-05-25 Silicon carbide semiconductor device and manufacturing method thereof Active JP6074787B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012120263A JP6074787B2 (en) 2012-05-25 2012-05-25 Silicon carbide semiconductor device and manufacturing method thereof
US14/403,422 US9673313B2 (en) 2012-05-25 2013-03-18 Silicon carbide semiconductor device and fabrication method thereof
PCT/JP2013/057746 WO2013175840A1 (en) 2012-05-25 2013-03-18 Silicon carbide semiconductor device and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012120263A JP6074787B2 (en) 2012-05-25 2012-05-25 Silicon carbide semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013247252A JP2013247252A (en) 2013-12-09
JP6074787B2 true JP6074787B2 (en) 2017-02-08

Family

ID=49623544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012120263A Active JP6074787B2 (en) 2012-05-25 2012-05-25 Silicon carbide semiconductor device and manufacturing method thereof

Country Status (3)

Country Link
US (1) US9673313B2 (en)
JP (1) JP6074787B2 (en)
WO (1) WO2013175840A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6523621B2 (en) * 2014-06-19 2019-06-05 富士電機株式会社 Semiconductor device and method of manufacturing semiconductor device
JP2016029707A (en) * 2014-07-24 2016-03-03 住友電気工業株式会社 Silicon carbide semiconductor device
JP6277902B2 (en) * 2014-07-24 2018-02-14 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
JP6295891B2 (en) * 2014-08-27 2018-03-20 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
WO2016039071A1 (en) * 2014-09-08 2016-03-17 富士電機株式会社 Semiconductor device and method for manufacturing same
JP2016058530A (en) 2014-09-09 2016-04-21 住友電気工業株式会社 Silicon carbide semiconductor device manufacturing method
JP6206599B2 (en) * 2014-09-11 2017-10-04 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
JP2016058661A (en) * 2014-09-11 2016-04-21 国立研究開発法人産業技術総合研究所 Semiconductor device
JP6652055B2 (en) * 2015-07-08 2020-02-19 住友電気工業株式会社 Silicon carbide semiconductor substrate and method for manufacturing silicon carbide semiconductor device
JP6965499B2 (en) * 2016-03-16 2021-11-10 富士電機株式会社 Silicon Carbide Semiconductor Device and Method for Manufacturing Silicon Carbide Semiconductor Device
JP6844163B2 (en) * 2016-09-14 2021-03-17 富士電機株式会社 Silicon carbide semiconductor device
JP6903931B2 (en) * 2017-02-13 2021-07-14 富士電機株式会社 Semiconductor devices and methods for manufacturing semiconductor devices
US11075295B2 (en) * 2018-07-13 2021-07-27 Cree, Inc. Wide bandgap semiconductor device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04239137A (en) * 1991-01-11 1992-08-27 Nec Corp Vertical type field effect transistor
JPH08102495A (en) 1994-09-30 1996-04-16 Toshiba Corp Semiconductor device
AU2003275541A1 (en) * 2002-10-18 2004-05-04 National Institute Of Advanced Industrial Science And Technology Silicon carbide semiconductor device and its manufacturing method
JP4800286B2 (en) * 2007-10-16 2011-10-26 Okiセミコンダクタ株式会社 Semiconductor device and manufacturing method thereof
JP2009105177A (en) * 2007-10-23 2009-05-14 Shindengen Electric Mfg Co Ltd Semiconductor device
JP2010087126A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Insulated-gate semiconductor device
JP2010177454A (en) 2009-01-29 2010-08-12 Sanyo Electric Co Ltd Insulated gate semiconductor device
JP2011258635A (en) * 2010-06-07 2011-12-22 Mitsubishi Electric Corp Semiconductor device
JP5858934B2 (en) * 2011-02-02 2016-02-10 ローム株式会社 Semiconductor power device and manufacturing method thereof

Also Published As

Publication number Publication date
WO2013175840A1 (en) 2013-11-28
US20150102363A1 (en) 2015-04-16
US9673313B2 (en) 2017-06-06
JP2013247252A (en) 2013-12-09

Similar Documents

Publication Publication Date Title
JP6074787B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP5818099B2 (en) Semiconductor device
JP5771678B2 (en) High power insulated gate bipolar transistor
JP5617175B2 (en) Wide band gap semiconductor device and manufacturing method thereof
US9362392B2 (en) Vertical high-voltage semiconductor device and fabrication method thereof
US10263105B2 (en) High voltage semiconductor device
WO2011129443A1 (en) Semiconductor device
JP5995252B2 (en) Vertical high voltage semiconductor device and method for manufacturing vertical high voltage semiconductor device
JP2010206002A (en) P-channel silicon carbide mosfet
JP6183087B2 (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
JP5939624B2 (en) Method for manufacturing vertical high voltage semiconductor device and vertical high voltage semiconductor device
CN110534576B (en) Split-gate 4H-SiC VDMOS device
JP6919713B2 (en) Silicon Carbide Semiconductor Device and Method for Manufacturing Silicon Carbide Semiconductor Device
JP2018064047A (en) Semiconductor device and semiconductor device manufacturing method
CN116613210A (en) High-voltage-resistant silicon carbide UMOSFET device and preparation method thereof
JP7333509B2 (en) Silicon carbide semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161221

R150 Certificate of patent or registration of utility model

Ref document number: 6074787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250