JP6066276B2 - Method and system for preventing liquefaction - Google Patents

Method and system for preventing liquefaction Download PDF

Info

Publication number
JP6066276B2
JP6066276B2 JP2012250431A JP2012250431A JP6066276B2 JP 6066276 B2 JP6066276 B2 JP 6066276B2 JP 2012250431 A JP2012250431 A JP 2012250431A JP 2012250431 A JP2012250431 A JP 2012250431A JP 6066276 B2 JP6066276 B2 JP 6066276B2
Authority
JP
Japan
Prior art keywords
hollow body
ground
treatment
liquefaction
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012250431A
Other languages
Japanese (ja)
Other versions
JP2014012980A (en
Inventor
寿春 岡本
寿春 岡本
山田 宏
宏 山田
邦彦 浜井
邦彦 浜井
伊藤 浩二
浩二 伊藤
祐樹 山田
祐樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2012250431A priority Critical patent/JP6066276B2/en
Publication of JP2014012980A publication Critical patent/JP2014012980A/en
Application granted granted Critical
Publication of JP6066276B2 publication Critical patent/JP6066276B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Foundations (AREA)

Description

本発明は、盛土等の既設構造物の直下に拡がる液状化地盤をはじめ、さまざまな液状化地盤に広く適用される液状化防止方法及びシステムに関する。   The present invention relates to a liquefaction prevention method and system widely applied to various liquefied grounds including a liquefied ground spreading directly under existing structures such as embankments.

地盤の液状化は、地震による振動が地盤に作用したとき、該地盤のせん断変形によって砂粒子間の間隙水圧が上昇し、その間隙水圧上昇に伴って有効応力がゼロになる結果、砂粒子間での応力伝達ができなくなって流動性が高くなる現象であり、緩い飽和砂質地盤で起こりやすい(以下、液状化が発生しやすい地盤を液状化地盤と呼ぶ)。   Liquefaction of the ground is caused by the fact that when the vibration due to earthquake acts on the ground, the pore water pressure between the sand particles increases due to the shear deformation of the ground, and as the pore water pressure increases, the effective stress becomes zero. This is a phenomenon in which the stress cannot be transmitted and the fluidity becomes high, and is likely to occur in loose saturated sandy ground (hereinafter, the ground where liquefaction is likely to occur is called liquefied ground).

液状化が進行すると、地盤が鉛直支持力を失って建物の倒壊を招くほか、地盤の側方流動によって杭が損壊するなどの被害が生じ、我が国では、古くは新潟地震から液状化の被害が明確に認識されるようになった。   As liquefaction progresses, the ground loses its vertical bearing capacity, leading to collapse of the building, and damage to the piles due to lateral flow of the ground occurs. It has come to be clearly recognized.

このような液状化被害に対し、従来からさまざまな対策が研究開発されており、例えば、液状化地盤を締め固める、液状化地盤に薬剤を注入して地盤強度を向上させる、地下水位を下げることで液状化地盤の飽和度を小さくするといった対策工が知られているほか、マイクロバブルを含有させた水(以下、単にマイクロバブル含有水と呼ぶ)を液状化地盤に注入することで該液状化地盤の土粒子間隙に微細気泡を送り込む工法も開発されている。   Various countermeasures against such liquefaction damage have been researched and developed in the past, such as compacting the liquefied ground, injecting chemicals into the liquefied ground, improving the ground strength, and lowering the groundwater level. In addition to known countermeasures such as reducing the degree of saturation of the liquefied ground, water containing microbubbles (hereinafter simply referred to as microbubble-containing water) is injected into the liquefied ground. A method has also been developed to send fine bubbles into the soil particle gaps of the ground.

これらのうち、マイクロバブル含有水を用いた対策工によれば、マイクロバブルがその体積を縮小させることによって地震時の間隙水圧上昇を吸収するため、水位低下による対策工のように地盤沈下を生じさせることなく、さらには薬剤注入による対策工よりも合理的なコストで地盤の液状化を防止することができる。   Among these, according to countermeasures using microbubble-containing water, microbubbles absorb the increase in pore water pressure during earthquakes by reducing their volume, resulting in ground subsidence like countermeasures due to water level reduction. In addition, the ground can be prevented from being liquefied at a more reasonable cost than the countermeasure work by the drug injection.

特開2007−211537号公報JP 2007-2111537 A 特開2008−002170号公報JP 2008-002170 A

ここで、マイクロバブル含有水を用いた対策工では、注入したマイクロバブルが消滅しても、マイクロバブルに含まれていた空気が通常の気泡として土粒子間隙に残留するため、間隙水圧抑制作用はある程度維持される。   Here, in the countermeasure work using microbubble-containing water, even if the injected microbubbles disappear, the air contained in the microbubbles remains as normal bubbles in the soil particle gap, so the pore water pressure suppression action is Maintained to some extent.

しかしながら、気泡中の空気は、時間の経過とともに大気に放散するため、それに伴って地盤中の飽和度が徐々に上昇し、やがては地震時の間隙水圧上昇を吸収できなくなるという問題があった。   However, since the air in the bubbles diffuses into the atmosphere over time, the degree of saturation in the ground gradually increases along with this, and there is a problem that it becomes impossible to absorb the increase in pore water pressure during an earthquake.

かかる問題は、マイクロバブルを液状化地盤に適宜補充することで解決できるが、経済性等の観点では、保守点検等を行わずとも、液状化防止の作用が長期間維持できることが望ましい。   Such a problem can be solved by appropriately replenishing microbubbles to the liquefied ground. However, from the viewpoint of economy and the like, it is desirable that the action of preventing liquefaction can be maintained for a long time without performing maintenance and inspection.

特に、線路が敷設された盛土など長大な既設構造物の直下に拡がる液状化地盤を改良しようとする場合においては、対策範囲が膨大となるため、その後の保守費用が不要な対策工が望まれていた。   In particular, when trying to improve the liquefied ground that extends directly under long existing structures such as embankments where tracks are laid, the scope of countermeasures becomes enormous, and countermeasures that do not require subsequent maintenance costs are desired. It was.

本発明は、上述した事情を考慮してなされたもので、飽和度を下げて液状化を防止する場合、該飽和度を長期間にわたって低く維持することが可能な液状化防止方法及びシステムを提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and provides a liquefaction prevention method and system capable of maintaining the saturation level low over a long period of time when the saturation level is lowered to prevent liquefaction. The purpose is to do.

上記目的を達成するため、本発明に係る液状化防止方法は請求項1に記載したように、液状化防止の対象となる地盤に形成された処理領域に周囲の圧力増大に伴って収縮又は破砕可能な微小中空体が液体に添加混合されてなる処理液を注入する液状化防止方法において、
前記微小中空体を、周囲の圧力変動に伴って膨張収縮可能となるように、内部に空気その他の気体が封入され樹脂膜あるいは樹脂殻で球状に構成された膨張収縮性中空体としたものである。
In order to achieve the above object, the liquefaction prevention method according to the present invention, as described in claim 1, shrinks or crushes as the surrounding pressure increases in the treatment area formed in the ground to be liquefaction-prevented. In the liquefaction prevention method of injecting a treatment liquid in which a possible micro hollow body is added to and mixed with a liquid,
The micro hollow body is an expansion / shrinkable hollow body that is encapsulated with air or other gas and is spherically formed of a resin film or a resin shell so that the micro hollow body can be expanded and contracted in accordance with fluctuations in ambient pressure. is there.

また、本発明に係る液状化防止方法は、前記微小中空体の外径を50μm以下としたものである。   In the liquefaction prevention method according to the present invention, the outer diameter of the micro hollow body is 50 μm or less.

また、本発明に係る液状化防止方法は、前記処理領域を前記地盤内に配置された遮水壁で取り囲まれ又は挟み込まれた領域としたものである。   In the liquefaction prevention method according to the present invention, the treatment region is a region surrounded or sandwiched by a water shielding wall arranged in the ground.

また、本発明に係る液状化防止方法は、前記処理領域内の地下水を揚水した後、該揚水工程で生じた脱水領域の土粒子間隙に空気が捕捉されるように該脱水領域に前記処理液を注入するものである。   Further, the liquefaction prevention method according to the present invention includes the treatment liquid in the dewatering region so that air is trapped in the soil particle gap in the dewatering region generated in the pumping process after pumping up the groundwater in the treatment region. Is to inject.

また、本発明に係る液状化防止方法は、前記揚水工程の後であってかつ前記注入工程の前に、前記脱水領域に通気処理を行い、又は前記脱水領域内の減圧及びそれに続く送気処理を行うものである。   Further, the liquefaction prevention method according to the present invention performs the aeration process on the dehydration area after the pumping process and before the injection process, or decompression in the dehydration area and the subsequent air supply process Is to do.

また、本発明に係る液状化防止システムは請求項に記載したように、周囲の圧力増大に伴って収縮又は破砕可能な微小中空体が液体に添加混合されてなる処理液を供給可能な処理液供給手段と、該処理液供給手段から供給された前記処理液を液状化防止の対象となる地盤に形成された処理領域に注入する注入手段とを備えた液状化防止システムにおいて、
前記微小中空体を、周囲の圧力変動に伴って膨張収縮可能となるように、内部に空気その他の気体が封入され樹脂膜あるいは樹脂殻で球状に構成された膨張収縮性中空体としたものである。
Moreover, liquefaction prevention system according to the present invention as described in claim 6, capable of supplying the treatment a treatment liquid shrinkage or frangible microballoons with the periphery of the pressure increase is formed by adding and mixing the liquid In a liquefaction prevention system comprising: a liquid supply means; and an injection means for injecting the treatment liquid supplied from the treatment liquid supply means into a treatment region formed in a ground to be liquefaction-prevented,
The micro hollow body is an expansion / shrinkable hollow body that is encapsulated with air or other gas and is spherically formed of a resin film or a resin shell so that the micro hollow body can be expanded and contracted in accordance with fluctuations in ambient pressure. is there.

また、本発明に係る液状化防止システムは、前記処理領域を前記地盤内に配置された遮水壁で取り囲まれ又は挟み込まれた領域としたものである。   Moreover, the liquefaction prevention system which concerns on this invention makes the said process area | region the area | region enclosed or pinched by the water-impervious wall arrange | positioned in the said ground.

本発明に係る液状化防止方法及びシステムを用いて液状化地盤に対策工を施すには、微小中空体が液体に添加混合されてなる処理液を、処理液供給手段から注入手段を介して液状化防止の対象となる地盤に形成された処理領域に注入する。   In order to apply countermeasures to the liquefied ground using the liquefaction prevention method and system according to the present invention, a treatment liquid in which a micro hollow body is added to and mixed with a liquid is liquefied from the treatment liquid supply means through the injection means. It injects into the processing area formed in the ground which becomes the object of prevention.

処理液は、処理液供給手段で作製貯留するようにしてもよいし、別途調達したものを処理液供給手段に貯留するようにしてもよい。微小中空体は、周囲の圧力増大に伴って収縮又は破砕可能なものとする。   The processing liquid may be prepared and stored by the processing liquid supply means, or a separately procured liquid may be stored in the processing liquid supply means. The micro hollow body can be shrunk or crushed as the surrounding pressure increases.

このようにすると、注入された処理液が処理領域内に浸透拡散して該処理領域内の既存の地下水が処理液で置換されるとともに、処理液に添加混合されていた微小中空体が土粒子間隙に分散するので、土粒子間隙に占める水の体積は、微小中空体が占める体積分だけ減少し、その結果、処理領域の飽和度が低下する。   In this way, the injected processing liquid permeates and diffuses into the processing area, and the existing groundwater in the processing area is replaced with the processing liquid, and the micro hollow body added to and mixed with the processing liquid becomes soil particles. Since it is dispersed in the gap, the volume of water in the soil particle gap is reduced by the volume of the fine hollow body, and as a result, the saturation of the treatment area is lowered.

そのため、上述した対策工を施した後、地震による地盤せん断変形を受けて間隙水圧が上昇しようとすると、微小中空体は、周辺圧力である間隙水圧の増大によって収縮又は破砕し、間隙水圧の上昇を吸収する。   Therefore, after the above countermeasures are taken, if the pore water pressure increases due to the ground shear deformation due to the earthquake, the micro hollow body contracts or breaks due to the increase of the pore water pressure, which is the peripheral pressure, and the pore water pressure increases. Absorbs.

ここで、本発明に係る液状化防止方法及びシステムにおいては、マイクロバブルあるいは気泡によって飽和度を低下させる従来の対策工とは異なり、微小中空体の収縮又は破砕による間隙水圧抑制作用が時間が経過しても維持されるため、地盤の液状化を長期間防止することが可能となる。   Here, in the liquefaction prevention method and system according to the present invention, unlike conventional countermeasures for reducing saturation by microbubbles or bubbles, the pore water pressure suppression action by shrinkage or crushing of the micro hollow body has elapsed over time. Even so, it is possible to prevent liquefaction of the ground for a long time.

本発明における飽和度とは、土粒子間隙中を水が占める割合、すなわち水分飽和度を意味するものとする。   The saturation in the present invention means the ratio of water in the soil particle gap, that is, the water saturation.

微小中空体に関し、地震による地盤のせん断変形を受けて土粒子構造がいったん密な状況に移行した地盤領域では、その後、液状化が生じにくくなるので、微小中空体を、周囲の圧力増大に伴って破砕可能に構成することも考えられるが、本発明では、周囲の圧力変動に伴って膨張収縮可能な微小中空体とする。このようにしたならば、土粒子構造の状況にかかわらず、微小中空体の収縮による間隙水圧抑制作用が維持されるため、長期間にわたり液状化を防止することが可能となる。 Relates microballoons, in the ground region has shifted to the soil particle structure once dense situations undergoing shear deformation of the ground caused by an earthquake, then since liquefaction is less likely to occur, the hollow microspheres, with the periphery of the pressure increase However, in the present invention, the micro hollow body is capable of expanding and contracting as the surrounding pressure fluctuates . If it does in this way, since the pore water pressure suppression effect | action by shrinkage | contraction of a micro hollow body is maintained irrespective of the condition of a soil particle structure, it becomes possible to prevent liquefaction over a long period of time.

微小中空体、内部に空気その他の気体が封入され樹脂膜あるいは樹脂殻で球状に構成された膨張収縮性中空体とするThe micro hollow body is an expandable / shrinkable hollow body in which air or other gas is enclosed and formed in a spherical shape with a resin film or a resin shell.

微小中空体の外径は、例えば100μm以下、さらに50μmとするのが望ましい。これは、地下水位の深さや締固めの状況にもよるが、液状化は、「平均粒径(D50)が0.02〜2mmの均等径の砂、つまり均等係数の小さい細砂や中砂」(「土質力学」、岡二三生著、朝倉書店発行)で起こりやすいため、例えば粒径1mmの砂地盤で微小中空体が土粒子間隙を通過して拡散するためには、その10分の1、できれば20分の1程度以下であることが必要であると思われるからである。   The outer diameter of the micro hollow body is preferably 100 μm or less, and more preferably 50 μm. Although this depends on the depth of the groundwater level and the compaction situation, liquefaction is "sand with an average particle diameter (D50) of 0.02 to 2 mm, that is, fine sand and medium sand with a small uniformity coefficient. ”(“ Soil Mechanics ”, published by Fumio Oka, published by Asakura Shoten), for example, in order to allow a micro hollow body to diffuse through a soil particle gap on sand ground with a particle size of 1 mm, it takes 10 minutes. This is because it is considered necessary to be about 1/20 or less if possible.

注入手段は、地盤内の処理領域に処理液を注入することができる限り、その構成は任意であって、地盤内にほぼ鉛直に配置された注入井戸を介して注入する、地盤内にほぼ水平に配置された水平孔を介して注入する、地盤における地表面の相異なる2つの位置に各端部が開口するように該地盤内に配置された湾曲孔を介して注入するといった構成が可能である。   The injection means may be of any configuration as long as the treatment liquid can be injected into the treatment area in the ground, and is injected through an injection well disposed substantially vertically in the ground, and is substantially horizontal in the ground. It is possible to inject through a horizontal hole arranged in the ground, or through a curved hole arranged in the ground so that each end opens at two different positions on the ground surface in the ground. is there.

また、処理領域内の既存の地下水を処理液で置換するにあたり、処理液の自重による押し出し作用で既存の地下水を周辺地盤に排出するようにしてもかまわないが、処理領域の地下水を揚水する揚水手段を備えるとともに、該揚水手段で揚水された地下水に微小中空体を添加混合することで処理液が作製されるように処理液供給手段を構成すれば、既存地下水の有効利用が可能になるとともに、処理液による既存地下水の置換を効率よく行うことも可能となる。   In addition, when replacing the existing groundwater in the treatment area with the treatment liquid, the existing groundwater may be discharged to the surrounding ground by the pushing action due to the weight of the treatment liquid. If the treatment liquid supply means is configured so that the treatment liquid is prepared by adding and mixing the micro hollow body to the groundwater pumped by the pumping means, the existing groundwater can be effectively used. It is also possible to efficiently replace existing groundwater with the treatment liquid.

処理液が注入される処理領域は、液状化防止が必要になる地盤内の任意の領域に設定可能であって、地下水が滞留している領域に液状化防止が必要な場合には、その滞留領域を処理領域として処理液を注入すればよいが、地下水に流れがありその流れに乗って処理液が周囲に拡散する懸念がある場合には、地盤内に遮水壁を配置し、該遮水壁で取り囲まれ又は挟み込まれた領域を処理領域とするのが望ましい。   The treatment area into which the treatment liquid is injected can be set to any area in the ground where liquefaction prevention is required, and if liquefaction prevention is necessary in the area where groundwater is accumulated, the retention The treatment liquid can be injected using the area as the treatment area.However, if there is a flow in the groundwater and there is a concern that the treatment liquid may spread around the groundwater, place a water-impervious wall in the ground, and It is desirable that a region surrounded or sandwiched by water walls is a processing region.

遮水壁は、処理領域とその周辺地盤との間における地下水の水平移動に起因して、処理領域内の地下水が大量かつ短期間に周辺地盤に流出しあるいは周辺地盤から流入することがない限り、下端が不透水層に貫入されている必要はなく、季節要因等の比較的緩慢な地下水位の変動による下端での地下水の廻り込みは許容される。   As long as the groundwater in the treatment area does not flow into or out of the ground in a short period of time due to horizontal movement of groundwater between the treatment area and the surrounding ground, the impermeable wall However, it is not necessary for the lower end to penetrate the impermeable layer, and groundwater wraparound at the lower end due to relatively slow changes in the groundwater level such as seasonal factors is allowed.

この場合、周辺地盤における地下水位の変動で処理領域内の地下水も上下し、処理領域内と周辺地盤との間で地下水交換が生じて処理領域内の微小中空体の濃度が低下し、飽和度が上昇することが想定されるが、かかる場合には、本発明に係る液状化防止システムを用いて、処理液を処理領域に随時供給するようにすればよい。遮水壁を設けない場合において地下水が移動したときもまた同様である。   In this case, groundwater in the treatment area also rises and falls due to fluctuations in the groundwater level in the surrounding ground, and groundwater exchange occurs between the treatment area and the surrounding ground, resulting in a decrease in the concentration of micro hollow bodies in the treatment area, and saturation level. However, in such a case, the processing liquid may be supplied to the processing region as needed using the liquefaction prevention system according to the present invention. The same applies to the case where groundwater moves when no water barrier is provided.

処理領域が、地盤内に配置された遮水壁で取り囲まれ又は挟み込まれた領域である場合、処理領域への処理液の注入に先立ち、該処理領域内の地下水を揚水し、しかる後、揚水工程で生じた脱水領域の土粒子間隙に空気が捕捉されるように該脱水領域に処理液を注入するようにしてもよい。   When the treatment area is an area surrounded or sandwiched by a water-impervious wall arranged in the ground, the groundwater in the treatment area is pumped before injecting the treatment liquid into the treatment area, and then pumped You may make it inject | pour a process liquid into this dehydration area | region so that air may be trapped in the soil particle gap of the dehydration area | region produced in the process.

かかる構成によれば、既存地下水が微小中空体を含む処理液に置換されることによる飽和度低下に加えて、土粒子間隙での捕捉空気による飽和度低下が加わることとなり、かくして微小中空体や通常気泡あるいは空隙による間隙水圧抑制作用がさらに高まり、既設構造物下方の液状化をいっそう確実に防止することが可能となる。   According to such a configuration, in addition to the decrease in the saturation due to the replacement of the existing groundwater with the treatment liquid containing the microhollow body, the decrease in the saturation due to the trapped air in the soil particle gap is added, and thus the microhollow body and Usually, the pore water pressure suppression effect by air bubbles or voids is further enhanced, and liquefaction below the existing structure can be more reliably prevented.

上記揚水工程において地下水位を低下させるための方法は任意であるが、重力排水と減圧による強制排水とを併用したいわゆるバキュームディープウェル工法を用いるようにすれば、地下水位を短時間に低下させることができるため、本発明を用いた液状化防止工を短工期で実現することが可能となる。   Although the method for lowering the groundwater level in the pumping process is arbitrary, the groundwater level can be lowered in a short time by using the so-called vacuum deep well method that combines gravity drainage and forced drainage by decompression. Therefore, the liquefaction prevention work using the present invention can be realized in a short construction period.

処理領域内の地下水を揚水した後、該揚水工程で生じた脱水領域にそのまま微小中空体を含む処理液を注入するようにしてもかまわないが、揚水工程の後であってかつ注入工程の前に、脱水領域に通気処理を行い、又は脱水領域内の減圧及びそれに続く送気処理を行うようにしたならば、土粒子表面や土粒子間隙に付着残存していた水分も除去されるため、より多くの空気が気泡として土粒子間隙に捕捉されることとなり、かくして飽和度をさらに低く抑えることが可能となる。   After pumping up the groundwater in the treatment area, the treatment liquid containing the fine hollow body may be injected as it is into the dewatering area generated in the pumping process, but after the pumping process and before the injection process. In addition, if the aeration treatment is performed on the dehydration region, or if the depressurization in the dehydration region and the subsequent air supply treatment are performed, the moisture remaining on the soil particle surface and the soil particle gap is also removed. More air is trapped in the gap between the soil particles as bubbles, and thus the degree of saturation can be further reduced.

通気処理は、脱水領域への送気若しくは該領域からの吸引又はそれらの併用で実施が可能であり、例えば温風を用いた処理が有効である。   The aeration treatment can be performed by supplying air to the dehydration region, suction from the region, or a combination thereof, and for example, treatment using warm air is effective.

一方、脱水領域内の減圧及びそれに続く送気処理においては、減圧による水の沸点降下によってほぼ完全に水分が蒸発するとともにその状態での送気処理によって土粒子間隙の隅々にまで空気が入り込むため、処理液の注入を行った後の土粒子間隙に空気がより残留しやすくなる。   On the other hand, in the depressurization in the dehydration region and the subsequent air supply process, the water evaporates almost completely due to the lowering of the boiling point of the water due to the reduced pressure, and air enters the corners of the soil particle gap by the air supply process in that state. For this reason, air tends to remain in the soil particle gap after the treatment liquid is injected.

脱水領域内の減圧は、地盤面に気密シートを敷設するなどして脱水領域を気密にした上、該脱水領域内の空間に存在する空気を真空ポンプで引き抜くことで実施が可能である。   The depressurization in the dehydration region can be performed by making the dehydration region airtight by laying an airtight sheet on the ground surface and drawing out the air existing in the space in the dehydration region with a vacuum pump.

第1実施形態に係る液状化防止システムの概略図。The schematic diagram of the liquefaction prevention system concerning a 1st embodiment. 第1実施形態に係る液状化防止システムの作用を示した図であり、(a)は、土粒子22の間隙23に地下水が満たされている状態を示した断面図、(b)は、地下水が処理液で置換されるとともに、該処理液中の微小中空体21が間隙23に分散した様子を示した断面図。It is the figure which showed the effect | action of the liquefaction prevention system which concerns on 1st Embodiment, (a) is sectional drawing which showed the state with which the gap 23 of the soil particle 22 is filled with groundwater, (b) is groundwater. Sectional drawing which showed a mode that the micro hollow body 21 in this processing liquid was disperse | distributed to the gap | interval 23 while being replaced by the processing liquid. 変形例に係る液状化防止システムの概略図。Schematic of the liquefaction prevention system which concerns on a modification. 別の変形例に係る液状化防止システムの概略図。Schematic of the liquefaction prevention system which concerns on another modification. さらに別の変形例に係る液状化防止システムの概略図であり、(a)は鉛直断面図、(b)はA−A線方向から見た矢視図。It is the schematic of the liquefaction prevention system which concerns on another modification, (a) is a vertical sectional view, (b) is the arrow view seen from the AA line direction. 第2実施形態に係る液状化防止方法を実施する手順を示した説明図。Explanatory drawing which showed the procedure which implements the liquefaction prevention method which concerns on 2nd Embodiment. 引き続き第2実施形態に係る液状化防止方法を実施する手順を示した説明図。Explanatory drawing which showed the procedure of implementing the liquefaction prevention method which concerns on 2nd Embodiment continuously.

以下、本発明に係る液状化防止方法及びシステムの実施の形態について、添付図面を参照して説明する。   Embodiments of a liquefaction prevention method and system according to the present invention will be described below with reference to the accompanying drawings.

[第1実施形態]
図1は、第1実施形態に係る液状化防止システムを示した図である。同図に示すように、本実施形態に係る液状化防止システム1は、地盤2の地表面に構築された既設構造物としての盛土9の下方に拡がる地盤範囲を液状化防止の対象としたものであって、該地盤範囲が側方で挟み込まれるように地盤2内に配置された遮水壁3,3と、処理液を作製するとともに作製された処理液を貯留する処理液供給手段としての混合槽4と、該混合槽4から供給される処理液を遮水壁3,3に挟み込まれた地盤2内の処理領域5に注入する注入手段としての注入井戸6と、処理領域5の地下水を真空ポンプ8で揚水する揚水井戸7とを備え、該揚水井戸は、真空ポンプ8とともに揚水手段を構成する。
[First Embodiment]
FIG. 1 is a diagram showing a liquefaction prevention system according to the first embodiment. As shown in the figure, the liquefaction prevention system 1 according to the present embodiment is intended for liquefaction prevention in the ground range extending below the embankment 9 as an existing structure constructed on the ground surface of the ground 2. As the treatment liquid supply means for producing the treatment liquid and storing the produced treatment liquid, the impermeable walls 3 and 3 disposed in the ground 2 so that the ground range is sandwiched laterally. A mixing tank 4, an injection well 6 as an injection means for injecting the processing liquid supplied from the mixing tank 4 into the processing region 5 in the ground 2 sandwiched between the water shielding walls 3, 3, and groundwater in the processing region 5 The pumping well 7 pumps up the water with a vacuum pump 8, and the pumping well constitutes a pumping means together with the vacuum pump 8.

混合槽4は、揚水井戸7を介して処理領域5から揚水された既存の地下水に微小中空体が添加された状態で該地下水を攪拌混合して処理液を作製貯留するとともに該処理液を注入井戸6に供給できるようになっている。   The mixing tank 4 stirs and mixes the groundwater in a state where a micro hollow body is added to the existing groundwater pumped from the processing region 5 through the pumping well 7, and prepares and stores the processing liquid and injects the processing liquid. It can be supplied to the well 6.

微小中空体は、内部に空気その他の気体が封入され樹脂膜あるいは樹脂殻で球状に構成された膨張収縮性中空体で構成するとともに、その外径を50μm以下としてある。   The micro hollow body is composed of an expandable / shrinkable hollow body in which air or other gas is enclosed and formed in a spherical shape with a resin film or resin shell, and has an outer diameter of 50 μm or less.

微小中空体は例えば、日本フィライト株式会社から"EXPANCEL"(登録商標)の商品名で販売されているプラスチック球体で構成すればよい。   The micro hollow body may be formed of, for example, a plastic sphere sold under the trade name “EXPANCEL” (registered trademark) by Nippon Philite Co., Ltd.

本実施形態に係る液状化防止システム1を用いて液状化防止を行うには、まず、液状化防止の対象となる地盤2内に遮水壁3,3を配置する。   In order to prevent liquefaction using the liquefaction prevention system 1 according to this embodiment, first, the impermeable walls 3 and 3 are arranged in the ground 2 to be liquefied.

遮水壁3は、液状化を防止したい深さまで下方に延びていれば足り、下端を不透水層10に貫入させる必要はない。なお、遮水壁3は、例えばシートパイルで構成することができる。   The impermeable wall 3 only needs to extend downward to a depth at which it is desired to prevent liquefaction, and it is not necessary for the lower end to penetrate the impermeable layer 10. In addition, the impermeable wall 3 can be comprised by a sheet pile, for example.

一方、遮水壁3,3に挟み込まれた処理領域5に注入井戸6及び揚水井戸7を建て込む。注入井戸6及び揚水井戸7は、それらが対向するようにほぼ鉛直に配置する。   On the other hand, the injection well 6 and the pumping well 7 are built in the treatment region 5 sandwiched between the impermeable walls 3 and 3. The injection well 6 and the pumping well 7 are arranged substantially vertically so that they face each other.

次に、揚水井戸7を介して処理領域5から揚水された既存の地下水を混合槽4に注水するとともに該地下水に微小中空体を添加し、次いで、これらを攪拌混合することで混合槽4内に処理液を作製貯留する。   Next, the existing groundwater pumped from the treatment area 5 through the pumping well 7 is poured into the mixing tank 4 and a micro hollow body is added to the groundwater, and then these are stirred and mixed to mix the inside of the mixing tank 4. A processing solution is prepared and stored.

次に、混合槽4に貯留された処理液を注入井戸6に供給するとともに、該注入井戸を介して処理液を処理領域5に注入する。   Next, the processing liquid stored in the mixing tank 4 is supplied to the injection well 6 and the processing liquid is injected into the processing region 5 through the injection well.

処理液は上述したように、揚水井戸7を介して揚水された処理領域5の地下水に微小中空体を添加して混合攪拌し、これを注入井戸6を介して処理領域5に注入するが、かかる作業を行うにあたっては、遮水壁3,3の下端よりも浅い深さに存在していた既存の地下水がすべて置換されるまで行う。これら揚水、混合攪拌及び注入という一連の作業は、周辺地盤との間で地下水交換が起こらないよう、処理領域5内の水位を周辺地盤の地下水位に一致させた状態で一定のまま行うのが望ましい。   As described above, the treatment liquid is added to the micro hollow body in the ground water in the treatment region 5 pumped through the pumping well 7 and mixed and stirred, and this is injected into the treatment region 5 through the injection well 6. This operation is performed until all existing groundwater existing at a depth shallower than the lower ends of the impermeable walls 3 and 3 is replaced. The series of operations such as pumping, mixing and mixing and pouring should be performed in a state where the water level in the treatment area 5 is matched with the groundwater level of the surrounding ground so that groundwater exchange with the surrounding ground does not occur. desirable.

このように処理液を処理領域5に注入すると、注入された処理液は、処理領域5内の既存の地下水と置換される形で処理領域5内に浸透拡散するとともに、それに伴い、図2に示すように処理液に添加混合されていた微小中空体21は、土粒子22の間隙23に分散するので、土粒子間隙23に占める水の体積は、微小中空体21が占める体積分だけ減少し、その結果、処理領域5の飽和度が低下する。   When the processing liquid is injected into the processing area 5 in this way, the injected processing liquid permeates and diffuses into the processing area 5 in a form that replaces the existing groundwater in the processing area 5, and accordingly, FIG. As shown, since the micro hollow body 21 added and mixed in the treatment liquid is dispersed in the gaps 23 of the soil particles 22, the volume of water in the soil particle gaps 23 is reduced by the volume occupied by the micro hollow bodies 21. As a result, the saturation of the processing area 5 is lowered.

そのため、上述した対策工を施した後、地震による地盤せん断変形を受けて間隙水圧が上昇しようとすると、微小中空体は、周辺圧力である間隙水圧の増大によって収縮し、該間隙水圧の上昇を吸収する。   For this reason, when the pore water pressure increases due to the ground shear deformation due to the earthquake after the above countermeasure work is taken, the micro hollow body contracts due to the increase in the pore water pressure, which is the peripheral pressure, and the increase in the pore water pressure is reduced. Absorb.

なお、周辺地盤における地下水位の変動で該周辺地盤との間で地下水交換が生じ、それによって微小中空体の存在量が低下した場合には、液状化防止システム1を用いて処理液を処理領域5に随時供給することにより、該処理領域内の飽和度を下げるようにすればよい。   In addition, when groundwater exchange occurs between the surrounding ground due to the fluctuation of the groundwater level in the surrounding ground, and the amount of the minute hollow body is thereby reduced, the liquefaction prevention system 1 is used to treat the processing liquid. 5 may be supplied at any time to lower the degree of saturation in the processing region.

以上説明したように、本実施形態に係る液状化防止方法及びシステム1によれば、マイクロバブルあるいは気泡によって飽和度を低下させる従来の対策工とは異なり、微小中空体の収縮による間隙水圧抑制作用が時間が経過しても維持されるため、地盤2の液状化を長期間防止することが可能となる。   As described above, according to the liquefaction prevention method and system 1 according to the present embodiment, unlike conventional countermeasures for reducing the degree of saturation by microbubbles or bubbles, the pore water pressure suppressing action by contraction of the micro hollow body However, it is possible to prevent the ground 2 from being liquefied for a long period of time.

本実施形態では、既設構造物である盛土9が地表面に存在する場合を想定したが、本発明に係る液状化防止方法及びシステムは、既設構造物の存在を前提としたものではなく、既設構造物が存在しない場合にも適用が可能である。   In the present embodiment, it is assumed that the embankment 9 that is an existing structure is present on the ground surface. However, the liquefaction prevention method and system according to the present invention are not premised on the existence of an existing structure. The present invention can also be applied when there is no structure.

また、本実施形態では、処理領域5内の地下水を利用して処理液を作製すべく、該地下水を真空ポンプ8及び揚水井戸7を介して揚水するようにしたが、処理液の作製に用いる水については、処理領域5の地下水に代えて、別途調達するようにしてもかまわない。この場合、真空ポンプ8及び揚水井戸7を省略することが可能である。なお、かかる変形例においては、注入された処理液に押し下げられる形で、既存の地下水が遮水壁3の下方から周辺に排出されることとなる。   In the present embodiment, the groundwater is pumped through the vacuum pump 8 and the pumping well 7 in order to use the groundwater in the processing region 5 to prepare the processing liquid. About water, it may replace with the groundwater of the process area 5, and may be procured separately. In this case, the vacuum pump 8 and the pumping well 7 can be omitted. In this modification, the existing groundwater is discharged from the lower side of the impermeable wall 3 to the periphery while being pushed down by the injected processing liquid.

また、本実施形態では、処理領域5への処理液の注入を注入井戸6を介して行うように構成したが、これに代えて、図3に示すように、地盤2の処理領域5に立坑31を掘削するとともに該立坑内から水平孔32を穿孔形成した上、該水平孔に有孔管33を配置し、該有孔管を介して混合槽4の処理液を処理領域5に注入するように構成することができる。   Further, in the present embodiment, the processing liquid is injected into the processing region 5 through the injection well 6, but instead, as shown in FIG. In addition to excavating 31 and forming a horizontal hole 32 from within the shaft, a perforated pipe 33 is disposed in the horizontal hole, and the processing liquid in the mixing tank 4 is injected into the processing region 5 through the perforated pipe. It can be constituted as follows.

なお、かかる変形例は、処理液作製の際に必要となる水を処理領域5の地下水に代えて、別途調達した清水を用いる変形例でもあり、上述したように、注入された処理液に押し下げられる形で、既存の地下水が遮水壁3の下方から周辺に排出されるため、真空ポンプ8及び揚水井戸7は不要である。   In addition, such a modification is also a modification using freshly procured water instead of the groundwater in the treatment area 5 for the water required for the preparation of the treatment liquid. As described above, it is pushed down to the injected treatment liquid. In this way, the existing groundwater is discharged from below the impermeable wall 3 to the periphery, so that the vacuum pump 8 and the pumping well 7 are unnecessary.

また、図4に示すように、地盤2における地表面の相異なる2つの位置に各端部が開口するように、同図では盛土9の一方の側と他方の側に各端部が開口するように、処理領域5に湾曲孔41を穿孔形成した上、該湾曲孔に配置された有孔管42の一端、図4では右側端部を介して処理領域5の既存地下水を揚水しつつ、該揚水された地下水に微小中空体が添加混合されてなる処理液を混合槽4で作製した後、該混合槽から有孔管42の他端、図4では左側端部を介して処理領域5に注入するように構成することができる。   Moreover, as shown in FIG. 4, in the same figure, each edge part opens on one side and the other side of the embankment 9 so that each edge part opens in two different positions on the ground surface in the ground 2. As shown in FIG. 4, while forming the curved hole 41 in the treatment area 5 and pumping the existing groundwater in the treatment area 5 through one end of the perforated pipe 42 arranged in the curved hole, in FIG. After preparing a processing liquid in which a micro hollow body is added and mixed in the pumped groundwater in the mixing tank 4, the processing area 5 is passed through the other end of the perforated pipe 42 from the mixing tank, in FIG. Can be configured to be injected.

ここで、湾曲孔は、曲線ボーリング、曲がりボーリング、曲がり削孔といった薬液注入の分野で公知の曲線削孔技術を用いて適宜形成することが可能であり、例えば可撓性を有するロッドを地上に設置した削孔機で把持し、該ロッドを削孔機で斜め下方に送り出しながら、ロッドの先端に取り付けられた掘削ビットで地盤2を掘削して湾曲孔41を形成するとともに、ロッド先端近傍に設けられたジャイロ等の姿勢検出センサあるいは位置検出センサで湾曲孔41の形状を管理するようにすればよい。   Here, the curved hole can be appropriately formed using a curved drilling technique known in the field of chemical injection such as curved boring, curved boring, and curved drilling. For example, a flexible rod is formed on the ground. While grasping with the installed drilling machine and feeding the rod diagonally downward with the drilling machine, the ground 2 is excavated with the excavating bit attached to the tip of the rod to form the curved hole 41 and in the vicinity of the rod tip What is necessary is just to manage the shape of the curved hole 41 with attitude | position detection sensors or position detection sensors, such as the provided gyro.

また、本実施形態では、地盤2内に遮水壁3,3を配置して該遮水壁に挟み込まれた地盤2内の領域を処理領域5としたが、本発明においては遮水壁の配置は任意であり、盛土9の下方に拡がる液状化防止の対象範囲において地下水が滞留している場合には、実施形態の構成に代えて、遮水壁3,3を省略した構成としてもかまわない。   Moreover, in this embodiment, although the impermeable walls 3 and 3 are arrange | positioned in the ground 2 and the area | region in the ground 2 pinched | interposed into this impermeable wall was made into the process area 5, in this invention, the impermeable wall of Arrangement is arbitrary, and when groundwater is stagnant in the target range of liquefaction prevention that spreads below the embankment 9, the configuration of the embodiment may be omitted and the water shielding walls 3 and 3 may be omitted. Absent.

かかる変形例においては、遮水壁がなくても、処理液が既存の地下水に置換されるよう、注入井戸6及び揚水井戸7を対向配置する本実施形態の構成に代えて、例えば図5に示したように、処理領域5のほぼ中央に注入井戸6を設置するとともに該処理領域の周縁に沿ってかつ注入井戸6を取り囲むように複数の揚水井戸7を設置する構成を採用することができる。   In such a modification, instead of the configuration of the present embodiment in which the injection well 6 and the pumping well 7 are opposed to each other so that the treatment liquid is replaced with the existing groundwater even without a water shielding wall, for example, FIG. As shown, it is possible to adopt a configuration in which the injection well 6 is installed in the approximate center of the processing region 5 and a plurality of pumping wells 7 are installed so as to surround the injection well 6 along the periphery of the processing region. .

かかる構成によれば、処理液の周囲への拡散が防止されるため、注入された処理液を既存の地下水に適切に置換することが可能となる。   According to such a configuration, since the diffusion of the treatment liquid to the surroundings is prevented, the injected treatment liquid can be appropriately replaced with existing groundwater.

[第2実施形態]
次に、第2実施形態について説明する。なお、第1実施形態と実質同一の部品等については同一の符号を付してその説明を省略する。
[Second Embodiment]
Next, a second embodiment will be described. Note that components that are substantially the same as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

図6及び図7は、本実施形態に係る液状化防止方法を実施する様子を示した説明図である。同図でわかるように、本実施形態に係る液状化防止方法を実施するには予め、図6(a)に示すように、地盤2のうち、盛土9の下方に拡がる液状化防止範囲が側方で挟み込まれるように該地盤内に遮水壁3,3を配置するとともに、該遮水壁に挟み込まれた処理領域5に注入井戸6及び揚水井戸7を建て込む。注入井戸6及び揚水井戸7は、それらが対向するようにほぼ鉛直に配置しておく。   6 and 7 are explanatory views showing a state in which the liquefaction prevention method according to the present embodiment is performed. As shown in FIG. 6, in order to implement the liquefaction prevention method according to this embodiment, as shown in FIG. 6 (a), the liquefaction prevention range extending below the embankment 9 in the ground 2 is in advance. The impermeable walls 3 and 3 are arranged in the ground so as to be sandwiched between the injection well 6 and the pumping well 7 in the treatment region 5 sandwiched between the impermeable walls. The injection well 6 and the pumping well 7 are arranged substantially vertically so that they face each other.

本実施形態に係る液状化防止方法を実施するには、まず、揚水井戸7介して処理領域5内の地下水を揚水する。   In order to implement the liquefaction prevention method according to this embodiment, first, groundwater in the treatment area 5 is pumped through the pumping well 7.

次に、処理領域5から揚水された既存の地下水を混合槽4に注水するとともに該地下水に微小中空体を添加し、次いで、これらを攪拌混合することで混合槽4内に処理液を作製貯留する。   Next, the existing groundwater pumped up from the treatment area 5 is poured into the mixing tank 4 and a micro hollow body is added to the groundwater, and then the processing liquid is prepared and stored in the mixing tank 4 by stirring and mixing them. To do.

微小中空体は第1実施形態と同様、内部に空気その他の気体が封入され樹脂膜あるいは樹脂殻で球状に構成された膨張収縮性中空体で構成するとともに、その外径を50μm以下としたものを用いればよい。   As in the first embodiment, the micro hollow body is composed of an expandable / shrinkable hollow body in which air or other gas is enclosed and formed in a spherical shape with a resin film or resin shell, and its outer diameter is 50 μm or less. May be used.

揚水井戸7を介した地下水の揚水は、例えば重力排水と強制排水とを併用したいわゆるバキュームディープウェル工法を用いて行うことが可能であり、かかる工法によれば、地下水位を短時間に低下させることが可能である。   The pumping of the groundwater through the pumping well 7 can be performed by using, for example, a so-called vacuum deep well method using both gravity drainage and forced drainage, and according to such a method, the groundwater level is lowered in a short time. It is possible.

上述した揚水によって処理領域5内の地下水位が液状化防止範囲の下方まで低下したならば、揚水前の地下水位から揚水後の地下水位を範囲とする脱水領域12に対し、該揚水後の水位を維持しながら通気処理を行う。   If the groundwater level in the treatment area 5 is lowered below the liquefaction prevention range due to the above-mentioned pumping, the water level after the pumping with respect to the dewatering area 12 ranging from the groundwater level before pumping to the groundwater level after pumping. Aeration treatment is performed while maintaining

通気処理では図6(b)に示すように、注入井戸6に接続されたエアコンプレッサー(図示せず)を用いて該注入井戸から脱水領域12内に送気するとともに、揚水井戸7に接続された真空ポンプ(図示せず)を用いて該揚水井戸から脱水領域12内の空気を吸引する。   In the aeration process, as shown in FIG. 6 (b), an air compressor (not shown) connected to the injection well 6 is used to send air from the injection well into the dehydration region 12 and to the pumping well 7. A vacuum pump (not shown) is used to suck air in the dewatering region 12 from the pumping well.

このようにすると、脱水領域12内の土粒子表面や土粒子間隙に付着残存する水分が揮発するとともに、該水分が土粒子間隙を流れる空気の流れに連行される形で除去される。なお、土粒子表面や土粒子間隙に付着残存する水分の揮発を促進させるべく、温風を用いて通気処理を行うようにしてもよい。   If it does in this way, the water | moisture content adhering and remaining on the soil particle surface in the dehydration area | region 12 and a soil particle gap will volatilize, and this moisture will be removed in the form entrained by the air flow which flows through a soil particle gap. In addition, in order to promote the volatilization of the moisture remaining on the surface of the soil particles and the space between the soil particles, aeration treatment may be performed using warm air.

次に、図7に示すように、混合槽4に貯留された処理液を注入井戸6を介して処理領域5に注入する。   Next, as shown in FIG. 7, the processing liquid stored in the mixing tank 4 is injected into the processing region 5 through the injection well 6.

処理液を処理領域5に注入すると、脱水領域12は、微小中空体が含まれた処理液が満たされてなる復水領域となるが、かかる復水領域では、処理液が処理領域5内に浸透拡散するとともに、それに伴い、図2で説明したように処理液に添加混合されていた微小中空体21が土粒子22の間隙23に分散するので、土粒子間隙23に占める水の体積は、微小中空体21が占める体積分だけ減少し、その結果、処理領域5の飽和度が低下する。   When the treatment liquid is injected into the treatment area 5, the dehydration area 12 becomes a condensate area filled with the treatment liquid containing the minute hollow body. In this condensate area, the treatment liquid is contained in the treatment area 5. Along with the permeation and diffusion, the micro hollow body 21 added and mixed in the treatment liquid as described with reference to FIG. 2 is dispersed in the gaps 23 of the soil particles 22, so the volume of water in the soil particle gaps 23 is Only the volume occupied by the minute hollow body 21 is reduced, and as a result, the saturation of the processing region 5 is lowered.

加えて、処理液が注入される前に土粒子間隙を占めていた空気の一部は、処理液が注入される際に土粒子間隙に捕捉されて気泡や空隙としてそのまま残留し、特に本実施形態では、上述した通気処理によって脱水領域12の土粒子間隙から水分が除去され、該土粒子間隙のほとんどが空気で占められているので、処理液注水時には、十分な量の空気が土粒子間隙に捕捉されて気泡や空隙として残留し、処理領域5の飽和度はさらに低下する。   In addition, part of the air that occupied the soil particle gap before the treatment liquid was injected is trapped in the soil particle gap when the treatment liquid is injected, and remains as bubbles or voids. In the embodiment, moisture is removed from the soil particle gaps in the dewatering region 12 by the above-described aeration treatment, and most of the soil particle gaps are occupied by air. Trapped and remain as bubbles or voids, and the saturation of the processing region 5 further decreases.

そのため、上述した対策工を施した後、地震による地盤せん断変形を受けて間隙水圧が上昇しようとすると、微小中空体は、周辺圧力である間隙水圧の増大によって収縮し、該間隙水圧の上昇を吸収する。   For this reason, when the pore water pressure increases due to the ground shear deformation due to the earthquake after the above countermeasure work is taken, the micro hollow body contracts due to the increase in the pore water pressure, which is the peripheral pressure, and the increase in the pore water pressure is reduced. Absorb.

なお、周辺地盤における地下水位の変動で該周辺地盤との間で地下水交換が生じ、それによって微小中空体の存在量が低下した場合には、例えば液状化防止システム1を用いて処理液を処理領域5に随時供給することにより、該処理領域内の飽和度を下げるようにすればよい。   If groundwater exchange occurs with the surrounding ground due to changes in the groundwater level in the surrounding ground, thereby reducing the abundance of micro hollow bodies, the processing liquid is treated using, for example, the liquefaction prevention system 1. What is necessary is just to make it reduce the saturation in this process area | region by supplying to the area | region 5 at any time.

以上説明したように、本実施形態に係る液状化防止方法によれば、マイクロバブルあるいは気泡によって飽和度を低下させる従来の対策工とは異なり、微小中空体の収縮による間隙水圧抑制作用が時間が経過しても維持されるため、地盤2の液状化を長期間防止することが可能となる。   As described above, according to the liquefaction prevention method according to the present embodiment, unlike conventional countermeasures that reduce the degree of saturation by microbubbles or bubbles, the pore water pressure suppression action due to the contraction of the micro hollow body takes time. Since it is maintained even after the lapse of time, liquefaction of the ground 2 can be prevented for a long time.

また、本実施形態に係る液状化防止方法によれば、微小中空体が含まれた処理液を注入する前に処理領域5内の地下水をいったん揚水し、該揚水工程で生じた脱水領域12の土粒子間隙に空気が捕捉されるように該脱水領域に処理液をあらためて注水するようにしたので、既存地下水が処理液に置換されることによる飽和度低下に加えて、土粒子間隙に空気が捕捉されることによる飽和度低下が加わることとなり、かくして微小中空体や気泡あるいは空隙による間隙水圧抑制作用がさらに高まり、盛土9下方の液状化をいっそう確実に防止することが可能となる。   Moreover, according to the liquefaction prevention method according to the present embodiment, the ground water in the treatment region 5 is once pumped before injecting the treatment liquid containing the minute hollow body, and the dehydration region 12 generated in the pumping step is removed. Since the treatment liquid was injected again into the dewatering region so that air was trapped in the soil particle gap, in addition to the decrease in saturation due to the replacement of the existing groundwater with the treatment liquid, air was introduced into the soil particle gap. A reduction in the saturation due to the trapping is added, and thus the pore water pressure suppression action by the fine hollow body, the bubbles or the voids is further enhanced, and the liquefaction below the embankment 9 can be more reliably prevented.

また、本実施形態に係る液状化防止方法によれば、揚水工程の後であってかつ注入工程の前に、脱水領域12に通気処理を行うようにしたので、土粒子表面や土粒子間隙に付着残存していた水分が除去され、より多くの空気が気泡あるいは空隙として土粒子間隙に捕捉されることとなり、かくして飽和度をさらに低く抑えることが可能となる。   In addition, according to the liquefaction prevention method according to the present embodiment, since the dehydration region 12 is subjected to the aeration process after the pumping process and before the injection process, Moisture that remains attached is removed, and more air is trapped in the soil particle gaps as bubbles or voids, thus making it possible to further reduce the degree of saturation.

本実施形態では、既設構造物である盛土9が地表面に存在する場合を想定したが、本発明に係る液状化防止方法は、既設構造物の存在を前提としたものではなく、既設構造物が存在しない場合にも適用が可能である。   In the present embodiment, it is assumed that the embankment 9 that is an existing structure is present on the ground surface. However, the liquefaction prevention method according to the present invention is not based on the existence of an existing structure, but an existing structure. It can also be applied when no exists.

また、本実施形態では、処理領域5から揚水された地下水を利用して処理液を作製するようにしたが、これに代えて、処理液作製用の水を別途調達するようにしてもかまわない。   In the present embodiment, the processing liquid is prepared using the groundwater pumped from the processing area 5, but instead of this, water for preparing the processing liquid may be procured separately. .

また、本実施形態では、注入井戸6と揚水井戸7を用いて、通気処理のための送気と吸引をそれぞれ行うようにしたが、これに代えて、送気用の井戸あるいは吸引用の井戸を専用に設けるようにしてもかまわない。   In the present embodiment, the injection well 6 and the pumping well 7 are used to perform air supply and suction for aeration treatment, but instead, an air supply well or a suction well. May be provided for exclusive use.

また、本実施形態では、処理液を注入するための注入井戸を鉛直配置された井戸としたが、これに代えて、第1実施形態の図3で説明した有孔管33や図4で説明した有孔管42を介して処理液を注入する構成が可能である。   In the present embodiment, the injection well for injecting the processing liquid is a vertically arranged well. Instead, the well is described with reference to the perforated tube 33 described in FIG. 3 of the first embodiment and FIG. A configuration in which the processing liquid is injected through the perforated tube 42 is possible.

また、本実施形態では、微小中空体が含まれた処理液を脱水領域12に注入する際、土粒子間隙に空気が捕捉されやすくなるよう、予め通気処理を行うようにしたが、揚水だけで十分に水分除去ができるのであれば、これを省略してもかまわないし、逆に、単なる通気処理では十分に水分除去ができないのであれば、通気処理に代えて、脱水領域12内の減圧及びそれに続く送気処理を行うようにしてもよい。   In this embodiment, when the treatment liquid containing the micro hollow body is injected into the dehydration region 12, the aeration treatment is performed in advance so that air is easily trapped in the gap between the soil particles. If sufficient moisture removal is possible, this may be omitted. Conversely, if sufficient moisture removal cannot be achieved by simple ventilation, instead of ventilation, You may make it perform the subsequent air supply process.

このようにすると、減圧による水の沸点降下によってほぼ完全に水分が蒸発するとともに、その状態で送気処理を行うことによって土粒子間隙の隅々にまで空気が入り込むため、微小中空体が含まれた処理液の注入を行った後の土粒子間隙に空気がより捕捉されやすくなる。   In this way, moisture is evaporated almost completely due to a drop in the boiling point of water due to reduced pressure, and air enters the corners of the soil particle gap by performing the air supply treatment in this state, so that a micro hollow body is included. Air is more easily trapped in the soil particle gap after the treatment liquid is injected.

脱水領域12内の減圧は、盛土9の表面やその両側に拡がる地盤2の表面に気密シートを敷設するなどして脱水領域12を気密にした上、該脱水領域内の空間に存在する空気を真空ポンプで引き抜くようにすればよい。   The depressurization in the dehydration region 12 is performed by air-tightening the dehydration region 12 by laying an airtight sheet on the surface of the embankment 9 or the surface of the ground 2 spreading on both sides of the embankment 9, and the air present in the space in the dehydration region What is necessary is just to pull out with a vacuum pump.

1 液状化防止システム
2 地盤
3 遮水壁
4 混合槽(処理液供給手段)
5 処理領域
6 注入井戸(注入手段)
7 揚水井戸
12 脱水領域
21 微小中空体
32 水平孔(注入手段)
33,42 有孔管(注入手段)
41 湾曲孔(注入手段)
1 Liquefaction prevention system 2 Ground 3 Water-impervious wall 4 Mixing tank (treatment liquid supply means)
5 Process area 6 Injection well (injection means)
7 Pumping well 12 Dewatering area 21 Micro hollow body 32 Horizontal hole (injection means)
33, 42 Perforated tube (injection means)
41 Curved hole (injection means)

Claims (7)

液状化防止の対象となる地盤に形成された処理領域に周囲の圧力増大に伴って収縮又は破砕可能な微小中空体が液体に添加混合されてなる処理液を注入する液状化防止方法において、
前記微小中空体を、周囲の圧力変動に伴って膨張収縮可能となるように、内部に空気その他の気体が封入され樹脂膜あるいは樹脂殻で球状に構成された膨張収縮性中空体としたことを特徴とする液状化防止方法。
In the liquefaction prevention method of injecting a treatment liquid in which a micro hollow body that can be shrunk or crushed in accordance with an increase in ambient pressure is added to a liquid in a treatment region formed on the ground to be liquefaction-prevented,
The micro-hollow body is an expansion / contraction hollow body in which air or other gas is enclosed and formed in a spherical shape with a resin film or a resin shell so that the micro-hollow body can be expanded and contracted in accordance with fluctuations in ambient pressure. A characteristic liquefaction prevention method.
前記微小中空体の外径を50μm以下とした請求項1記載の液状化防止方法。 The method for preventing liquefaction according to claim 1, wherein an outer diameter of the micro hollow body is 50 μm or less. 前記処理領域を前記地盤内に配置された遮水壁で取り囲まれ又は挟み込まれた領域とした請求項1又は請求項2記載の液状化防止方法。 The liquefaction prevention method according to claim 1 or 2, wherein the treatment region is a region surrounded or sandwiched by a water-impervious wall disposed in the ground. 前記処理領域内の地下水を揚水した後、該揚水工程で生じた脱水領域の土粒子間隙に空気が捕捉されるように該脱水領域に前記処理液を注入する請求項記載の液状化防止方法。 The liquefaction prevention method according to claim 3 , wherein after the groundwater in the treatment area is pumped, the treatment liquid is injected into the dewatering area so that air is trapped in the soil particle gaps of the dewatering area generated in the pumping process. . 前記揚水工程の後であってかつ前記注入工程の前に、前記脱水領域に通気処理を行い、又は前記脱水領域内の減圧及びそれに続く送気処理を行う請求項記載の液状化防止方法。 The liquefaction prevention method according to claim 4 , wherein after the pumping step and before the pouring step, the dehydration region is subjected to aeration treatment, or the depressurization in the dehydration region and the subsequent air supply treatment are performed. 周囲の圧力増大に伴って収縮又は破砕可能な微小中空体が液体に添加混合されてなる処理液を供給可能な処理液供給手段と、該処理液供給手段から供給された前記処理液を液状化防止の対象となる地盤に形成された処理領域に注入する注入手段とを備えた液状化防止システムにおいて、
前記微小中空体を、周囲の圧力変動に伴って膨張収縮可能となるように、内部に空気その他の気体が封入され樹脂膜あるいは樹脂殻で球状に構成された膨張収縮性中空体としたことを特徴とする液状化防止システム。
A processing liquid supply means capable of supplying a processing liquid obtained by adding and mixing a micro hollow body that can be shrunk or crushed with an increase in the ambient pressure into the liquid, and liquefying the processing liquid supplied from the processing liquid supply means In a liquefaction prevention system comprising an injection means for injecting into a treatment region formed in the ground to be prevented,
The micro-hollow body is an expansion / contraction hollow body in which air or other gas is enclosed and formed in a spherical shape with a resin film or a resin shell so that the micro-hollow body can be expanded and contracted in accordance with fluctuations in ambient pressure. Characterized liquefaction prevention system.
前記処理領域を前記地盤内に配置された遮水壁で取り囲まれ又は挟み込まれた領域とした請求項記載の液状化防止システム。 The liquefaction prevention system according to claim 6, wherein the treatment area is an area surrounded or sandwiched by a water-impervious wall disposed in the ground.
JP2012250431A 2012-06-08 2012-11-14 Method and system for preventing liquefaction Expired - Fee Related JP6066276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012250431A JP6066276B2 (en) 2012-06-08 2012-11-14 Method and system for preventing liquefaction

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012130322 2012-06-08
JP2012130322 2012-06-08
JP2012250431A JP6066276B2 (en) 2012-06-08 2012-11-14 Method and system for preventing liquefaction

Publications (2)

Publication Number Publication Date
JP2014012980A JP2014012980A (en) 2014-01-23
JP6066276B2 true JP6066276B2 (en) 2017-01-25

Family

ID=50108786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012250431A Expired - Fee Related JP6066276B2 (en) 2012-06-08 2012-11-14 Method and system for preventing liquefaction

Country Status (1)

Country Link
JP (1) JP6066276B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6338096B2 (en) * 2014-06-02 2018-06-06 清水建設株式会社 Ground improvement method and improved ground
WO2018223286A1 (en) * 2017-06-06 2018-12-13 中山大学 Novel water drainage consolidation system and method
CN107190727B (en) * 2017-06-06 2018-11-27 中山大学 A kind of novel drain consolidation system and method
CN109944263B (en) * 2019-03-22 2021-05-11 同济大学 Double-vacuum dewatering system and method
JP6675628B1 (en) * 2019-09-06 2020-04-01 株式会社エーバイシー Fine bubble water replacement method
JP2021055300A (en) * 2019-09-27 2021-04-08 有限会社久美川鉄工所 Liquefaction countermeasure ground
JP7461211B2 (en) * 2020-05-15 2024-04-03 鹿島建設株式会社 Ground improvement method
CN111827256B (en) * 2020-07-09 2022-02-01 浙江海逸环科院有限公司 Bottom mud concentration and solidification method and device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226620A (en) * 2001-02-02 2002-08-14 Nippon Fuiraito Kk Manufacturing method of article
JP2004204573A (en) * 2002-12-26 2004-07-22 Shimizu Corp Method of preventing liquefaction of ground
JP2004360243A (en) * 2003-06-03 2004-12-24 Shimizu Corp Ground liquefaction preventive method
JP4869805B2 (en) * 2006-06-22 2012-02-08 佐藤工業株式会社 Ground improvement method
JP2011074282A (en) * 2009-09-30 2011-04-14 Sekisui Chem Co Ltd Thermally expandable microcapsule

Also Published As

Publication number Publication date
JP2014012980A (en) 2014-01-23

Similar Documents

Publication Publication Date Title
JP6066276B2 (en) Method and system for preventing liquefaction
JP6248424B2 (en) Ground improvement method
JP2013112984A (en) Ground improvement method by getting ground unsaturated and ground improvement device
JP3342000B2 (en) Liquefaction prevention method for sandy ground by injection method
JP5918521B2 (en) Ground improvement method
KR100550359B1 (en) Construction method for reinforcing the ground using steel pipes and prestressed concrete piles
JP5190615B1 (en) Ground improvement method by desaturation of ground
CN109440759A (en) It is a kind of to make the processing unit and processing method that soil layer precipitation consolidates in submarine soil layer
JP2006274646A (en) Ground injection method
US20120163923A1 (en) Structure supporting system
JPS6282113A (en) Construction process for stabilizing ground
CN106836201A (en) Immersed tube is into mould draining cast-in-situ steel reinforced concrete stake machine and soft soil foundation reinforcing method
JP3213240B2 (en) Support pile reinforcement structure of existing structure and its reinforcement method
JP2019203314A (en) Suction foundation structure
CN203755332U (en) Device for treating collapsible loess with lime-soil compaction piles and CFG rigid piles combined
CN205501991U (en) Prevent blockking up multi -functional precast tubular pile
JP2000080638A (en) Foundation improving method
JP4927113B2 (en) Ground stabilization method
JP3126603B2 (en) Ground improvement method
JP2014181484A (en) Ground improvement method
JP4346078B2 (en) Ground improvement method
JP6066275B2 (en) Liquefaction prevention system and method
JP2857803B2 (en) Piles and continuous underground walls with large tip bearing capacity
US20230151573A1 (en) Soft soil foundation porous-depth air compression drainage device and working method thereof
JP2009144421A (en) Tank ground improving method and tank ground structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161215

R150 Certificate of patent or registration of utility model

Ref document number: 6066276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees