JP6338096B2 - Ground improvement method and improved ground - Google Patents

Ground improvement method and improved ground Download PDF

Info

Publication number
JP6338096B2
JP6338096B2 JP2014114292A JP2014114292A JP6338096B2 JP 6338096 B2 JP6338096 B2 JP 6338096B2 JP 2014114292 A JP2014114292 A JP 2014114292A JP 2014114292 A JP2014114292 A JP 2014114292A JP 6338096 B2 JP6338096 B2 JP 6338096B2
Authority
JP
Japan
Prior art keywords
ground
improvement
improved
wall
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014114292A
Other languages
Japanese (ja)
Other versions
JP2015227595A (en
Inventor
石川 明
明 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2014114292A priority Critical patent/JP6338096B2/en
Publication of JP2015227595A publication Critical patent/JP2015227595A/en
Application granted granted Critical
Publication of JP6338096B2 publication Critical patent/JP6338096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Foundations (AREA)

Description

本発明は、地盤の液状化を防止するための地盤改良工法および改良地盤に関する。   The present invention relates to a ground improvement method and ground for preventing liquefaction of the ground.

従来、地震が生じた際の地盤の液状化対策として、格子状に形成された格子状改良体を施工する地盤改良工法が広く用いられている。この地盤改良工法は、地盤に施工された剛性の高い格子状改良体によって、地盤のせん断変形を抑制し、地盤の液状化を防止している。(例えば、特許文献1参照)。   Conventionally, as a countermeasure for liquefaction of the ground when an earthquake occurs, a ground improvement method for constructing a grid-like improved body formed in a grid has been widely used. This ground improvement method suppresses shear deformation of the ground and prevents liquefaction of the ground by a highly rigid grid-like improvement body constructed on the ground. (For example, refer to Patent Document 1).

特許第5190655号公報Japanese Patent No. 5190655

ところで、格子状改良体は、格子状に配置された改良壁から構成されていて、地盤の条件によって、隣り合う改良壁の間隔を数m〜10数mとする必要がある。そして、上側に建築される建物(構造物)の建築面積が広い場合、多くの改良壁を必要とするため、格子状改良体の施工に多くの労力が必要となるとともに、コストや工期がかかるという問題がある。   By the way, the lattice-shaped improvement body is comprised from the improvement wall arrange | positioned at the grid | lattice form, and it is necessary to make the space | interval of adjacent improvement walls into several m-10 several m by the conditions of the ground. And if the building area of the building (structure) built on the upper side is large, many improvement walls are required, so a lot of labor is required for the construction of the lattice-shaped improvement body, and costs and construction periods are required. There is a problem.

そこで、本発明は、工期や労力、コストを抑えることができる地盤改良工法および改良地盤を提供することを目的とする。   Then, an object of this invention is to provide the ground improvement construction method and improved ground which can suppress a construction period, labor, and cost.

上記目的を達成するため、本発明に係る地盤改良工法は、液状化を防止するべき地盤に、下端部が難透水性の下層地盤に達する複数の改良壁を格子状に配置して格子状改良体を構築する格子状改良体構築工程と、前記格子状改良体が構築された地盤に井戸を設置して地下水の揚水を行い、前記格子状改良体が構築された地盤の地下水位を自然水位から所定の地下水位に低下させる揚水工程と、該揚水工程によって低下した地下水位を前記自然水位に回復させて、前記格子状改良体が構築された地盤を気泡が混在した不飽和地盤にする地盤不飽和化工程と、を有し、前記格子状改良体構築工程における地盤の改良率は、不飽和化した際の地盤のせん断ひずみ量と不飽和化した際の地盤に生じる過剰間隙水圧比との関係から評価された不飽和地盤の液状化強度に基づいて設計することを特徴とする。
また、本発明に係る地盤改良工法は、前記不飽和化した際の地盤に生じる過剰間隙水圧比Δu/σ ´は、以下の数式から算出されるようにしてもよい。

Figure 0006338096
In order to achieve the above object, the ground improvement method according to the present invention is to improve the grid by arranging a plurality of improvement walls in a grid shape in which the lower end reaches the low-permeability lower ground on the ground to prevent liquefaction. A grid-like improvement body construction process for constructing a body, a well is installed on the ground where the grid-like improvement body is built, and groundwater is pumped, and the groundwater level of the ground where the grid-like improvement body is built is determined as a natural water level. A groundwater level that is lowered from the groundwater level to a predetermined groundwater level, and the groundwater level that has been lowered by the pumping step is restored to the natural water level, so that the ground in which the grid-like improvement body is constructed becomes an unsaturated ground in which bubbles are mixed possess a desaturation process, the improved rate of ground in the lattice-shaped improved body construction step, the excess pore water pressure ratio occurring ground when the shear strain amount and the desaturation of the ground upon which desaturate Unsaturated ground evaluated from the relationship Characterized in that it designed based on liquefaction strength.
In the ground improvement method according to the present invention, the excess pore water pressure ratio Δu / σ v generated in the ground when the desaturation is performed may be calculated from the following mathematical formula.
Figure 0006338096

また、本発明に係る改良地盤は、地盤に構築されて下端部が難透水性の下層地盤に達する複数の改良壁が格子状に配置された格子状改良体と、該格子状改良体が構築された地盤の地下水の揚水可能な井戸と、を備え、前記格子状改良体が構築された地盤は、前記井戸による地下水の揚水が行われると、地下水位が自然水位から所定の地下水位に低下し、前記井戸による地下水の揚水が停止されると、低下した地下水位が前記自然水位に回復し、気泡が混在した不飽和地盤となり、前記格子状改良体が構築された地盤の改良率は、不飽和化した際の地盤のせん断ひずみ量と不飽和化した際の地盤に生じる過剰間隙水圧比との関係から評価された不飽和地盤の液状化強度に基づいて設計されていることを特徴とする。 Further, the improved ground according to the present invention is constructed of a grid-like improved body in which a plurality of improved walls that are constructed in the ground and reach the lower-layer ground having a low-permeability bottom portion are arranged in a grid shape, and the grid-like improved body is constructed. The ground in which the grid-like improvement body is constructed is lowered from the natural water level to a predetermined groundwater level when the groundwater is pumped up by the well. and, when the pumping of groundwater by the well is stopped, reduced water table is restored to the natural water level, Ri Do unsaturated ground bubbles are mixed, improvement ratio of the ground which the lattice-shaped improved body is constructed Is designed based on the liquefaction strength of unsaturated ground evaluated from the relationship between the amount of shear strain of the ground when desaturated and the excess pore water pressure ratio generated in the ground when desaturated. Features.

本発明では、格子状改良体が構築された地盤を不飽和化させて不飽和地盤とすることができるため、飽和地盤と比べて地盤の液状化強度を高めることができる。
そして、不飽和地盤は、飽和地盤と比べて地盤の液状化強度が高いことにより、飽和地盤に格子状改良体を構築する場合と比べて、格子状改良体の体積を小さくすることができ、隣り合う改良壁の間隔を大きくしたり、改良壁の厚さを薄くしたりすることができるため、地盤改良にかかる工期や労力、コストを抑えることができる。
In the present invention, since the ground on which the grid-like improvement body is constructed can be desaturated to become an unsaturated ground, the liquefaction strength of the ground can be increased as compared with the saturated ground.
And the unsaturated ground can reduce the volume of the grid improvement body compared to the case where the grid improvement body is constructed on the saturated ground due to the high liquefaction strength of the ground compared to the saturated ground, Since the interval between adjacent improvement walls can be increased and the thickness of the improvement walls can be reduced, the construction period, labor and cost for ground improvement can be suppressed.

また、本発明に係る地盤改良工法では、前記改良壁は、前記格子状改良体の外縁部に配置される外側改良壁と、該外側改良壁の内側に格子状に配置される内側改良壁とから構成され、該内側改良壁には、一方の壁面側と他方の壁面側とを連通させ前記地下水が通過可能な通水部が形成されていて、前記揚水工程では、前記内側改良壁によって複数に区画された領域の1ヶ所以上に前記井戸を配置し、該井戸で揚水を行うことが好ましい。
格子状改良体が構築された地盤は、格子状に配置された内側改良壁によって複数の領域に区分されているが、区分された領域の少なくとも1ヶ所に井戸を設置し揚水を行えば、井戸が設置されていない領域の地下水も内側改良壁の通水部を通過させて揚水することができる。
これにより、格子状改良体が構築された地盤に、内側改良壁によって区分された領域ごとに井戸を設置する必要がないため、井戸の設置にかかる工期や労力、コストを抑えることができる。
In the ground improvement method according to the present invention, the improvement wall includes an outer improvement wall arranged at an outer edge portion of the lattice-like improvement body, and an inner improvement wall arranged in a lattice shape inside the outer improvement wall. The inner improved wall is formed with a water passage portion through which one wall surface side communicates with the other wall surface side and through which the ground water can pass. In the pumping process, a plurality of inner improved walls are formed by the inner improved wall. It is preferable to arrange the wells at one or more places in the area divided into two and to pump water in the wells.
The ground on which the grid-like improvement body is constructed is divided into a plurality of areas by the inner improvement walls arranged in a grid, but if a well is installed in at least one of the divided areas, The groundwater in the area where is not installed can also be pumped by passing through the water passing part of the inner improvement wall.
Thereby, since it is not necessary to install a well for every area | region divided by the inner side improvement wall in the ground where the lattice-shaped improvement body was constructed | assembled, the construction period, labor, and cost concerning installation of a well can be suppressed.

本発明によれば、飽和地盤に格子状改良体を構築する場合と比べて、格子状改良体の体積を小さくすることができ、隣り合う改良壁の間隔を大きくしたり、改良壁の厚さを薄くしたりすることができるため、地盤改良にかかる工期や労力、コストを抑えることができる。   According to the present invention, it is possible to reduce the volume of the lattice-shaped improvement body, as compared with the case of constructing the lattice-shaped improvement body on the saturated ground, increase the interval between adjacent improvement walls, or improve the thickness of the improvement wall. Therefore, it is possible to reduce the construction period, labor and cost for ground improvement.

本発明の実施形態による改良地盤の一例を説明する平面図である。It is a top view explaining an example of the improvement ground by the embodiment of the present invention. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 通水部の一例を示す斜視図である。It is a perspective view which shows an example of a water flow part. 地盤の単位排水量(通水量)と飽和度との関係を示すグラフである。It is a graph which shows the relationship between the unit drainage amount (water flow rate) of a ground, and a saturation degree. 地盤の飽和度と液状化強度の増加率の関係を示すグラフである。It is a graph which shows the relationship between the saturation degree of a ground, and the increase rate of liquefaction strength. 飽和地盤の格子状改良体の設計における初期せん断ひずみと過剰間隙水圧比との関係を示すグラフである。It is a graph which shows the relationship between the initial shear strain and excess pore water pressure ratio in the design of the lattice improvement body of a saturated ground. 不飽和地盤の格子状改良体の設計における初期せん断ひずみと過剰間隙水圧比との関係を示すグラフである。It is a graph which shows the relationship between the initial shear strain and excess pore water pressure ratio in the design of the lattice improvement body of unsaturated ground. 飽和地盤に構築された格子状改良体の形状を示す平面図、(b)は不飽和地盤に構築された格子状改良体の形状を示す平面図である。The top view which shows the shape of the lattice-shaped improvement body constructed | assembled in the saturated ground, (b) is a top view which shows the shape of the lattice-shaped improvement body constructed | assembled in the unsaturated ground. (a)は格子状改良体の形状を示す平面図、(b)は格子状改良体の他の形状を示す平面図である。(A) is a top view which shows the shape of a lattice-shaped improvement body, (b) is a top view which shows the other shape of a lattice-shaped improvement body.

以下、本発明の実施形態による地盤改良工法および改良地盤について、図1乃至図9に基づいて説明する。
図1および図2に示すように、本実施形態による地盤改良工法によって改良された改良地盤1には、液状化を防止するべく地盤11に構築された格子状改良体2と、格子状改良体2が構築されている地盤11の地下水を揚水可能なディープウェル(井戸)3と、が設けられている。
この改良地盤1が構築される地盤11は、地表11a(図2参照)側に透水性の砂質層などで構成された上層地盤12(図2参照)が配置され、上層地盤12の下側には、難透水性の下層地盤13(図2参照)が配置されている。
そして、この改良地盤1の上部には建物などの構造物14(図2参照)が建設されている。
Hereinafter, a ground improvement method and an improved ground according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIGS. 1 and 2, the improved ground 1 improved by the ground improvement method according to the present embodiment includes a grid-like improved body 2 constructed on the ground 11 to prevent liquefaction, and a grid-like improved body. And a deep well (well) 3 capable of pumping ground water of the ground 11 on which 2 is constructed.
In the ground 11 on which the improved ground 1 is constructed, an upper ground 12 (see FIG. 2) composed of a water-permeable sandy layer or the like is arranged on the ground surface 11a (see FIG. 2), and the lower side of the upper ground 12 Is provided with a low-permeability lower layer ground 13 (see FIG. 2).
And the structure 14 (refer FIG. 2), such as a building, is constructed in the upper part of this improved ground 1. FIG.

格子状改良体2は、地盤11に角筒を形成するように配置された複数の外側改良壁(改良壁)4と、外側改良壁4の内側に格子状に配置された複数の内側改良壁(改良壁)5とから構成されている。このため、改良地盤1は、内側改良壁5によって複数の領域に区分されている。
これらの外側改良壁4および内側改良壁5は、下端部4a,5a(図2参照)がそれぞれ下層地盤13に達していて、上端部4b,5b(図2参照)がそれぞれ地表11a近傍に達している。
The grid-like improvement body 2 includes a plurality of outer improvement walls (improvement walls) 4 arranged to form a square tube on the ground 11, and a plurality of inner improvement walls arranged in a grid pattern inside the outer improvement wall 4. (Improved wall) 5. For this reason, the improved ground 1 is divided into a plurality of regions by the inner improved wall 5.
The outer improved wall 4 and the inner improved wall 5 have lower end portions 4a and 5a (see FIG. 2) reaching the lower layer ground 13, respectively, and upper end portions 4b and 5b (see FIG. 2) reach the vicinity of the ground surface 11a. ing.

また、複数の内側改良壁5には、一方の壁面側と他方の壁面側とを連通させ、地盤の地下水が通過可能な通水部51がそれぞれ形成されている。図3に示すように、本実施形態では、通水部51は、内側改良壁5の下端部5aに形成された切欠き部で構成されている。なお、内側改良壁5に形成される通水部51の数や形成される場所は適宜設定されてよい。
また、複数の外側改良壁4には、内側改良壁5のような通水部51が形成されていないが、外側改良壁4の下端部4aと下層地盤13との間は、完全に封水されておらず、外側改良壁4の一方の壁面側と他方の壁面側とは、内側改良壁5と比べて少量ずつであるが、通水している。
Further, the plurality of inner improved walls 5 are respectively formed with water passage portions 51 that allow one wall surface side and the other wall surface side to communicate with each other and allow ground water of the ground to pass therethrough. As shown in FIG. 3, in the present embodiment, the water flow portion 51 is configured by a notch formed at the lower end portion 5 a of the inner improved wall 5. In addition, the number of the water flow parts 51 formed in the inner improved wall 5 and the place to be formed may be set as appropriate.
Moreover, although the water flow part 51 like the inner improvement wall 5 is not formed in the some outer improvement wall 4, water is completely sealed between the lower end part 4a of the outer improvement wall 4 and the lower layer ground 13. Although it is not carried out, the one wall surface side and the other wall surface side of the outer improved wall 4 are small in volume compared to the inner improved wall 5, but water is passed.

図2に戻り、ディープウェル3は、下層地盤13のやや上側まで達するように設置されていて、上層地盤12の地下水を揚水可能に構成されている。
ディープウェル3は、改良地盤1のうち、内側改良壁5によって複数に区分された領域の一部(以下、ディープウェル設置地盤15とする)に設置されている。
そして、ディープウェル3で地盤11地下水の揚水を行うと、改良地盤1のうちディープウェル設置地盤15以外の地盤(以下、ディープウェル非設置地盤16とする)の地下水も内側改良壁5の通水部51を通過して、ディープウェル設置地盤15へ移動し、ディープウェル3によって揚水されるように構成されている。
このようにディープウェル3で地盤11の地下水の揚水を行うことで、外側改良壁4の内側の地盤11全体の地下水が揚水されるように構成されている。
Returning to FIG. 2, the deep well 3 is installed so as to reach a slightly upper side of the lower layer ground 13, and is configured to be able to pump the ground water of the upper layer ground 12.
The deep well 3 is installed in a part of the improved ground 1 divided into a plurality of areas by the inner improved wall 5 (hereinafter referred to as a deep well installation ground 15).
And when ground 11 groundwater is pumped in the deep well 3, groundwater other than the deepwell installation ground 15 in the improved ground 1 (hereinafter referred to as the deepwell non-installation ground 16) also flows through the inner improved wall 5. It passes through the part 51, moves to the deep well installation ground 15, and is pumped by the deep well 3.
Thus, the groundwater of the ground 11 of the ground 11 is pumped by the deep well 3 so that the groundwater of the entire ground 11 inside the outer improved wall 4 is pumped.

また、本実施形態のような地盤改良工法を行う場合は、格子状改良体2の上部に建設される構造物14が地下免震構造となることが多く、この構造物14の建設の際に例えば3m程度の掘削工事を行うため、掘削工事の際にディープウェルを使用している。このため、本実施形態による改良地盤1のディープウェル3は、掘削工事の際に使用されたディープウェル3を利用している。   Moreover, when performing the ground improvement construction method like this embodiment, the structure 14 constructed in the upper part of the lattice-shaped improvement body 2 becomes an underground seismic isolation structure in many cases, and in the case of construction of this structure 14 For example, a deep well is used for excavation work in order to perform excavation work of about 3 m. For this reason, the deep well 3 of the improved ground 1 according to the present embodiment uses the deep well 3 used in the excavation work.

次に、本実施形態による地盤改良工法について説明する。
(格子状改良体構築工程)
まず、地盤11に外側改良壁4および内側改良壁5が格子状に配置されるように格子状改良体2を構築する。このとき、内側改良壁5の下端部5aには通水部51を形成する。
外側改良壁4および内側改良壁5は、例えば、セメントやセメント系固化材と原位置の土とを混合撹拌して壁状に形成するなど公知の方法によって構築する。
Next, the ground improvement method according to the present embodiment will be described.
(Lattice improvement body construction process)
First, the grid-like improved body 2 is constructed so that the outer improved wall 4 and the inner improved wall 5 are arranged in a grid pattern on the ground 11. At this time, a water flow portion 51 is formed at the lower end portion 5 a of the inner improved wall 5.
The outer improved wall 4 and the inner improved wall 5 are constructed by a known method, for example, by mixing and stirring cement or cement-based solidified material and in situ soil to form a wall shape.

(揚水工程)
続いて、改良地盤1のうちディープウェル設置地盤15となる領域にディープウェル3を設置する。本実施形態では、ディープウェル3に地盤11の掘削工事に使用されたディープウェルを利用している。
そして、ディープウェル3で改良地盤1の地下水の揚水を行い、改良地盤1の地下水位を自然水位17(図2参照)から低下させる。そして、地下水位が所定の地下水位18(図2参照)まで低下したら揚水を停止する。
(Pumping process)
Subsequently, the deep well 3 is installed in an area that becomes the deep well installation ground 15 in the improved ground 1. In this embodiment, the deep well used for the excavation work of the ground 11 is used for the deep well 3.
And the groundwater of the improved ground 1 is pumped up by the deep well 3, and the groundwater level of the improved ground 1 is lowered from the natural water level 17 (refer FIG. 2). Then, when the groundwater level drops to a predetermined groundwater level 18 (see FIG. 2), the pumping is stopped.

(地盤不飽和化工程)
続いて、低下した所定の地下水位18を自然水位17まで回復させる。低下した所定の地下水位18を自然水位17まで回復させるには、外側改良壁4の外側の地盤11から外側改良壁4の内側の改良地盤1へ地下水が通水することによって行ったり、地表面11aから注水を行って地盤11に浸水させることによって行ったりする。
これにより、地盤11に空気(気泡)が混在して地盤11が不飽和状態となり、地盤11の液状化強度を高めることができる。
(Ground unsaturation process)
Subsequently, the lowered predetermined groundwater level 18 is recovered to the natural water level 17. In order to restore the lowered predetermined groundwater level 18 to the natural water level 17, the groundwater is passed from the ground 11 outside the outer improved wall 4 to the improved ground 1 inside the outer improved wall 4, or the ground surface. The water is poured from 11a and the ground 11 is submerged.
Thereby, air (bubbles) is mixed in the ground 11 and the ground 11 becomes unsaturated, and the liquefaction strength of the ground 11 can be increased.

なお、地盤11の飽和度は、時間とともに変化するため、地盤11が不飽和状態に維持されるように、半年から数年に一度など、定期的または不定期に地盤11の地下水の揚水を行う。   In addition, since the saturation degree of the ground 11 changes with time, the ground water of the ground 11 is pumped regularly or irregularly such as once every six months to several years so that the ground 11 is maintained in an unsaturated state. .

ここで、図4からわかるように、揚水工程および地盤不飽和化工程を行うことによって、改良地盤1の飽和度を約70〜90%とすることができ、改良地盤1を不飽和地盤とすることができる。
また、図5からわかるように、飽和度が70%の不飽和地盤は、その液状化強度が、飽和度が100%の飽和地盤の約3倍とすることができ、飽和度が90%の不飽和地盤では、その液状化強度が、飽和度が100%の飽和砂の約2倍とすることができる。
このように、揚水工程および地盤不飽和化工程を行い、改良地盤1を不飽和地盤とすることによって改良地盤1の液状化強度を増大させることができる。
Here, as can be seen from FIG. 4, by performing the pumping process and the ground desaturation process, the degree of saturation of the improved ground 1 can be about 70 to 90%, and the improved ground 1 is an unsaturated ground. be able to.
Further, as can be seen from FIG. 5, the unsaturated ground having a saturation degree of 70% can have a liquefaction strength approximately three times that of the saturated ground having a saturation degree of 100%, and the saturation degree is 90%. In unsaturated ground, the liquefaction strength can be about twice that of saturated sand with 100% saturation.
In this way, the liquefaction strength of the improved ground 1 can be increased by performing the pumping process and the ground desaturation process and making the improved ground 1 an unsaturated ground.

続いて、本実施形態による改良地盤1の設計法について説明する。
改良地盤1の設計法は、例えば、特許5190655号公報に記載されている「部分改良地盤の変形量の評価法」をもとに行う。
この「部分改良地盤の変形量の評価法」では、改良地盤の初期せん断ひずみと液状化の際に生じる過剰間隙水圧比との関係を下記の式(1)〜(4)から導いている。
Then, the design method of the improved ground 1 by this embodiment is demonstrated.
The design method of the improved ground 1 is performed based on, for example, the “evaluation method of the deformation amount of the partially improved ground” described in Japanese Patent No. 5190655.
In this “evaluation method of deformation amount of partially improved ground”, the relationship between the initial shear strain of the improved ground and the excess pore water pressure ratio generated during liquefaction is derived from the following formulas (1) to (4).

Figure 0006338096
Figure 0006338096

本実施形態では、地盤が不飽和化しているため、式(2)を下記の式(2)´に変更する。これ以外は、特許5190655号公報に記載されている「部分改良地盤の変形量の評価法」と同様に設計を行う。   In the present embodiment, since the ground is unsaturated, the formula (2) is changed to the following formula (2) ′. Other than this, the design is performed in the same manner as the “evaluation method of the deformation amount of the partially improved ground” described in Japanese Patent No. 5190655.

Figure 0006338096
Figure 0006338096

続いて、改良地盤の格子状改良体2の設計例について説明する。
まず、例えば、せん断波速度V=140m/s、湿潤密度ρ=1.8g/cm、初期せん断剛性G=35MPa、基準せん断ひずみγref=2.9e−4、最大減衰hmax=0.12、定数β=1.46、鉛直有効応力σ´=54kPa、等価繰り返しせん断応力比τ/σ´=0.41、液状化抵抗比R20=τlq/σ´=0.15、実験定数k=−0.25、実験定数αrf=0.7の飽和地盤に対して、せん断波速度V=500m/sの格子状改良体2を構築する改良地盤を作成する。
このとき、地盤の改良率R=20%とすると、改良地盤の液状化安全率は1.5となる。なお、未改良時の地盤の液状化安全率は0.37である。
図6に飽和地盤の格子状改良体の設計における初期せん断ひずみと過剰間隙水圧比との関係を示している。
Subsequently, a design example of the grid-like improved body 2 of the improved ground will be described.
First, for example, shear wave velocity V S = 140 m / s, wet density ρ = 1.8 g / cm 3 , initial shear stiffness G 0 = 35 MPa, reference shear strain γ ref = 2.9 e−4, maximum attenuation h max = 0.12, constant beta = 1.46, vertical effective stress σ'v = 54kPa, equivalent cyclic shear stress ratio τ d / σ'v = 0.41, liquefaction resistance ratio R 20 = τ lq / σ'v = An improved ground for constructing a grid-like improved body 2 having a shear wave velocity V s = 500 m / s is created for a saturated ground having an experimental constant k = −0.25 and an experimental constant α rf = 0.7. To do.
At this time, if the improvement rate R of the ground is 20%, the liquefaction safety factor of the improved ground is 1.5. In addition, the liquefaction safety factor of the ground when not improved is 0.37.
FIG. 6 shows the relationship between the initial shear strain and the excess pore water pressure ratio in the design of the grid improvement body of the saturated ground.

これに対し、飽和度S=90%の不飽和地盤の液状化強度をRun(90)=2R20=2×0.15=0.3とした場合、地盤の改良率R=5%とすると、改良地盤の液状化安全率は1.4となる。なお、未改良時の地盤の液状化安全率は、0.73である。
図7に不飽和地盤の格子状改良体の設計における初期せん断ひずみと過剰間隙水圧比との関係を示している。
On the other hand, when the liquefaction strength of the unsaturated ground with the saturation degree S r = 90% is R un (90) = 2R 20 = 2 × 0.15 = 0.3 , the ground improvement rate R = 5% Then, the liquefaction safety factor of the improved ground is 1.4. In addition, the liquefaction safety factor of the ground when not improved is 0.73.
FIG. 7 shows the relationship between the initial shear strain and the excess pore water pressure ratio in the design of the improved lattice structure of unsaturated ground.

以上のことから、飽和地盤において改良率Rを20%とする地盤改良を行った場合と、飽和度S=90%の不飽和地盤において改良率を5%とする地盤改良を行った場合とでは、改良地盤の液状化安全率は略等しくなることがわかる。
このため、格子状改良体2を構築する地盤改良において、地盤改良を行う敷地面積、格子状改良体2の外側改良壁4および内側改良壁5の厚さがそれぞれ等しい場合、飽和度S=90%の不飽和地盤のほうが、飽和地盤と比べて、隣り合う外側改良壁4と内側改良壁5、および隣り合う内側改良壁5の間隔を大きくすることができる。
From the above, when the ground improvement is performed with the improvement rate R being 20% in the saturated ground, and when the ground improvement is performed with the improvement rate being 5% in the unsaturated ground with the saturation degree S r = 90% Then, it turns out that the liquefaction safety factor of the improved ground becomes substantially equal.
For this reason, in the ground improvement for constructing the grid-like improvement body 2, when the site area where the ground improvement is performed and the thickness of the outer improvement wall 4 and the inner improvement wall 5 of the grid-like improvement body 2 are equal, the saturation degree S r = In the 90% unsaturated ground, the distance between the adjacent outer improved wall 4 and the inner improved wall 5 and the adjacent inner improved wall 5 can be increased as compared with the saturated ground.

例えば、80m×80mの略正方形敷地に外側改良壁4および内側改良壁5の厚さが1mの格子状改良体2構築する地盤改良を行う場合、図8(a)に示すように、飽和地盤において隣り合う外側改良壁4Bと内側改良壁5Bまたは隣り合う2つの内側改良壁5Bの間隔を10mとする格子状改良体2Bを構築する場合と、図8(b)に示すように、飽和度S=90%の不飽和地盤において隣り合う外側改良壁4と内側改良壁5、および隣り合う内側改良壁5の間隔を40mとする格子状改良体2を構築する場合とでは、改良地盤1,1Bの液状化強度は、略同じ大きさとなることがわかる。 For example, when performing ground improvement to construct a grid-like improvement body 2 in which the thickness of the outer improvement wall 4 and the inner improvement wall 5 is 1 m on a substantially square site of 80 m × 80 m, as shown in FIG. In the case of constructing a lattice-like improvement body 2B in which the interval between the adjacent outer improvement wall 4B and the inner improvement wall 5B or the two adjacent inner improvement walls 5B is 10 m, as shown in FIG. In the case of constructing the grid-like improved body 2 in which the interval between the adjacent outer improved wall 4 and the inner improved wall 5 and the adjacent inner improved wall 5 is 40 m in the unsaturated ground of S r = 90%, the improved ground 1 1B, the liquefaction strength is almost the same.

次に、上述した地盤改良工法および改良地盤の作用・効果について説明する。
上述した本実施形態による地盤改良工法および改良地盤では、格子状改良体2が構築された改良地盤1を不飽和化させて不飽和地盤とすることができるため、飽和地盤と比べて改良地盤1の液状化強度を高めることができる。
そして、不飽和地盤は、飽和地盤と比べて改良地盤1の液状化強度が高いことにより、飽和地盤に格子状改良体を構築する場合と比べて、格子状改良体2の体積を小さくすることができ、隣り合う外側改良壁4や内側改良壁5の間隔を大きくすることができるため、地盤改良にかかる工期や労力、コストを抑えることができる。
Next, the above-described ground improvement method and the function and effect of the improved ground will be described.
In the ground improvement method and the improved ground according to the above-described embodiment, the improved ground 1 in which the lattice-like improved body 2 is constructed can be desaturated to become an unsaturated ground, and therefore the improved ground 1 compared to the saturated ground. The liquefaction strength can be increased.
And in unsaturated ground, the liquefaction strength of the improved ground 1 is higher than that of the saturated ground, so that the volume of the grid-like improved body 2 is reduced compared to the case where the grid-like improved body is constructed on the saturated ground. Since the distance between the adjacent outer improved walls 4 and the inner improved walls 5 can be increased, the construction period, labor, and cost for ground improvement can be suppressed.

また、内側改良壁5には、通水部51が形成されていることにより、改良地盤1の内側改良壁5によって複数に区分された領域の少なくとも一部のディープウェル設置地盤15にディープウェル3を設置し、このディープウェル3で揚水を行えば、ディープウェル非設置地盤16の地下水も内側改良壁5の通水部51を通過させて揚水することができる。
これにより、改良地盤1に、内側改良壁5によって複数に区分されている領域ごとにディープウェル3を設置する必要がないため、ディープウェル3の設置にかかる工期や労力、コストを抑えることができる。
In addition, since the inner improvement wall 5 is formed with a water flow portion 51, the deep well 3 is provided on at least a part of the deep well installation ground 15 in a region divided by the inner improvement wall 5 of the improved ground 1. If the deep well 3 is pumped up, the groundwater in the deep well non-installed ground 16 can also be pumped through the water passage 51 of the inner improved wall 5.
Thereby, since it is not necessary to install the deep well 3 for every area | region divided by the inner improvement wall 5 in the improved ground 1, the construction period, labor, and cost concerning installation of the deep well 3 can be suppressed. .

以上、本発明による地盤改良工法および改良地盤の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上記の実施形態では、地盤改良工法で使用するディープウェル3は、地盤11の掘削工事に使用したディープウェルを利用しているが、地盤11の掘削工事に使用したディープウェルは撤去し、地盤改良工法のために別のディープウェルを設置してもよい。また、設置されるディープウェル3の台数は、適宜設定されてよく、ディープウェル3を複数設置することで、ディープウェル非設置地盤16がなくなる場合は、内側改良壁5に通水部51が形成されていなくてもよい。
また、上記の本実施形態では、通水部51は、内側改良壁5の下端部5aに形成された切欠き部で構成されているが、内側改良壁体5の下端部近傍5aに形成されて内側改良壁体5の一方の壁面側と他方の壁面側とを連通させる孔部で構成されていてもよい。また、通水部51の切欠き部や孔部の数は適宜設定されてよい。
As mentioned above, although the ground improvement construction method by this invention and embodiment of the improved ground were demonstrated, this invention is not limited to said embodiment, In the range which does not deviate from the meaning, it can change suitably.
For example, in the above embodiment, the deep well 3 used in the ground improvement method uses the deep well used for the excavation work of the ground 11, but the deep well used for the excavation work of the ground 11 is removed, Another deep well may be installed for the ground improvement method. Further, the number of deep wells 3 to be installed may be set as appropriate. When a plurality of deep wells 3 are installed and the deep well non-installed ground 16 is eliminated, a water flow portion 51 is formed on the inner improved wall 5. It does not have to be.
Further, in the above-described embodiment, the water flow portion 51 is formed by a notch portion formed in the lower end portion 5 a of the inner improved wall 5, but is formed in the vicinity of the lower end portion 5 a of the inner improved wall body 5. The inner improved wall 5 may be configured with a hole that allows one wall surface side to communicate with the other wall surface side. Moreover, the number of the notch parts and hole parts of the water flow part 51 may be set as appropriate.

また、上記の実施形態では、隣り合う外側改良壁4と内側改良壁5、および隣り合う内側改良壁5の間隔を、飽和地盤に格子状改良体を構築する場合と比べて大きくしているが、隣り合う外側改良壁4と内側改良壁5、および隣り合う内側改良壁5の間隔を飽和地盤に格子状改良体を構築する場合と同じ間隔として、外側改良壁4および内側改良壁5の一方または両方の厚さを飽和地盤に格子状改良体を構築する場合と比べて薄くしてもよい。
また、上記の実施形態では、図1や図9(a)に示すように、格子状改良体2は、外側改良壁4と、格子状に配置された複数の内側改良壁5とから構成されているが、平面視において矩形状に形成された外側改良壁4のみで構成されていてもよい。また、格子状改良体2は、平面視において矩形状に形成された外側改良壁4の内部に内側改良壁5が1つだけ設けられている構成としてもよい。また、外側改良壁4は、矩形状以外に形成されていてもよい。
Moreover, in said embodiment, although the space | interval of the adjacent outer improvement wall 4, the inner improvement wall 5, and the adjacent inner improvement wall 5 is enlarged compared with the case where a grid | lattice improvement body is constructed | assembled in a saturated ground. One of the outer improvement wall 4 and the inner improvement wall 5 is set so that the interval between the adjacent outer improvement wall 4 and the inner improvement wall 5 and the adjacent inner improvement wall 5 is the same as that when the lattice-like improvement body is constructed on the saturated ground. Or you may make both thickness thin compared with the case where a lattice-shaped improvement body is constructed | assembled in a saturated ground.
Moreover, in said embodiment, as shown in FIG.1 and FIG.9 (a), the grid | lattice-like improvement body 2 is comprised from the outer side improvement wall 4 and the several inner improvement wall 5 arrange | positioned at grid | lattice form. However, it may be composed only of the outer improved wall 4 formed in a rectangular shape in plan view. Moreover, the lattice-shaped improvement body 2 is good also as a structure by which only one inner improvement wall 5 is provided in the inside of the outer improvement wall 4 formed in the rectangular shape in planar view. The outer improved wall 4 may be formed in a shape other than a rectangular shape.

1 改良地盤
2 格子状改良体
3 ディープウェル(井戸)
4 外側改良壁(改良壁)
5 内側改良壁(改良壁)
11 地盤
13 下層地盤
17 自然水位
18 所定の地下水位
51 通水部
1 Improved ground 2 Lattice improved body 3 Deep well
4 outer improved wall (improved wall)
5 inner improved wall (improved wall)
11 Ground 13 Lower ground 17 Natural water level 18 Predetermined groundwater level 51 Water flow section

Claims (4)

液状化を防止するべき地盤に、下端部が難透水性の下層地盤に達する複数の改良壁を格子状に配置して格子状改良体を構築する格子状改良体構築工程と、
前記格子状改良体が構築された地盤に井戸を設置して地下水の揚水を行い、前記格子状改良体が構築された地盤の地下水位を自然水位から所定の地下水位に低下させる揚水工程と、
該揚水工程によって低下した地下水位を前記自然水位に回復させて、前記格子状改良体が構築された地盤を気泡が混在した不飽和地盤にする地盤不飽和化工程と、を有し、
前記格子状改良体構築工程における地盤の改良率は、不飽和化した際の地盤のせん断ひずみ量と不飽和化した際の地盤に生じる過剰間隙水圧比との関係から評価された不飽和地盤の液状化強度に基づいて設計することを特徴とする地盤改良工法。
In the ground to prevent liquefaction, a grid-like improvement body construction step of constructing a grid-like improvement body by arranging a plurality of improvement walls in a grid shape with the lower end reaching the low-permeability lower ground,
A well is installed on the ground where the lattice-like improvement body is constructed to pump groundwater, and the groundwater level of the ground where the lattice-like improvement body is constructed is lowered from a natural water level to a predetermined groundwater level, and
The groundwater level was reduced by該揚water step by restoring the natural water level, the ground in which the lattice-shaped improved body is constructed possess the soil desaturation step of the unsaturated soil bubbles are mixed, and
The improvement rate of the ground in the grid-like improvement body construction process is that of the unsaturated ground evaluated from the relationship between the shear strain amount of the ground when desaturated and the excess pore water pressure ratio generated in the ground when desaturated. A ground improvement method that is designed based on liquefaction strength .
前記不飽和化した際の地盤に生じる過剰間隙水圧比Δu/σExcess pore water pressure ratio Δu / σ generated in the ground when desaturated v ´は、以下の数式から算出されることを特徴とする請求項1に記載の地盤改良工法。'Is calculated from the following mathematical formula, the ground improvement method according to claim 1.
Figure 0006338096
Figure 0006338096
前記改良壁は、前記格子状改良体の外縁部に配置される外側改良壁と、該外側改良壁の内側に格子状に配置される内側改良壁とから構成され、
該内側改良壁には、一方の壁面側と他方の壁面側とを連通させ前記地下水が通過可能な通水部が形成されていて、
前記揚水工程では、前記内側改良壁によって複数に区画された領域の1ヶ所以上に前記井戸を配置し、該井戸で揚水を行うことを特徴とする請求項1または2に記載の地盤改良工法。
The improvement wall is composed of an outer improvement wall arranged at the outer edge of the lattice-like improvement body, and an inner improvement wall arranged in a lattice shape inside the outer improvement wall,
The inner improved wall is formed with a water passage portion through which one wall surface side and the other wall surface side communicate with each other and through which the groundwater can pass.
3. The ground improvement method according to claim 1 , wherein in the pumping step, the well is disposed at one or more locations in a region partitioned by the inner improvement wall, and pumping is performed in the well.
地盤に構築されて下端部が難透水性の下層地盤に達する複数の改良壁が格子状に配置された格子状改良体と、
該格子状改良体が構築された地盤の地下水の揚水可能な井戸と、を備え、
前記格子状改良体が構築された地盤は、前記井戸による地下水の揚水が行われると、地下水位が自然水位から所定の地下水位に低下し、前記井戸による地下水の揚水が停止されると、低下した地下水位が前記自然水位に回復し、気泡が混在した不飽和地盤となり、
前記格子状改良体が構築された地盤の改良率は、不飽和化した際の地盤のせん断ひずみ量と不飽和化した際の地盤に生じる過剰間隙水圧比との関係から評価された不飽和地盤の液状化強度に基づいて設計されていることを特徴とする改良地盤。
A lattice-shaped improvement body in which a plurality of improvement walls that are constructed on the ground and reach the lower ground where the lower end portion is hardly permeable are arranged in a lattice shape,
A well capable of pumping ground ground water in which the grid-like improvement body is constructed,
The ground where the lattice-shaped improvement body is constructed is reduced when the groundwater is pumped by the well, the groundwater level is lowered from the natural water level to a predetermined groundwater level, and the pumping of the groundwater by the well is stopped. the underground water level is restored to the natural water level, Ri Do the unsaturated soil in which bubbles are mixed,
The improvement rate of the ground on which the grid-like improvement body was constructed was determined based on the relationship between the amount of shear strain of the ground when desaturated and the excess pore water pressure ratio generated in the ground when desaturated. Improved ground, which is designed based on the liquefaction strength of
JP2014114292A 2014-06-02 2014-06-02 Ground improvement method and improved ground Active JP6338096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014114292A JP6338096B2 (en) 2014-06-02 2014-06-02 Ground improvement method and improved ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014114292A JP6338096B2 (en) 2014-06-02 2014-06-02 Ground improvement method and improved ground

Publications (2)

Publication Number Publication Date
JP2015227595A JP2015227595A (en) 2015-12-17
JP6338096B2 true JP6338096B2 (en) 2018-06-06

Family

ID=54885189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014114292A Active JP6338096B2 (en) 2014-06-02 2014-06-02 Ground improvement method and improved ground

Country Status (1)

Country Link
JP (1) JP6338096B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105507610B (en) * 2016-01-07 2017-07-04 浙江理工大学 The lower base isolation reinforcement method for digging increasing layer of existing pile foundation building
CN105649100B (en) * 2016-01-07 2017-07-04 浙江理工大学 The base isolation reinforcement method of existing pile foundation building
JP6959732B2 (en) * 2016-12-02 2021-11-05 株式会社竹中工務店 Geothermal utilization system
JP6989083B2 (en) * 2016-12-02 2022-01-05 株式会社竹中工務店 Ground improvement structure
JP2018091040A (en) * 2016-12-02 2018-06-14 株式会社竹中工務店 Withdrawal method of underground water

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3374224B2 (en) * 1994-06-20 2003-02-04 清水建設株式会社 Ground liquefaction prevention method
JP2002256540A (en) * 2001-03-02 2002-09-11 Shimizu Corp Liquefaction preventive method of ground
JP5039854B1 (en) * 2011-12-21 2012-10-03 株式会社サムシング Underground continuous wall structure
JP6066276B2 (en) * 2012-06-08 2017-01-25 株式会社大林組 Method and system for preventing liquefaction

Also Published As

Publication number Publication date
JP2015227595A (en) 2015-12-17

Similar Documents

Publication Publication Date Title
JP6338096B2 (en) Ground improvement method and improved ground
JP2019011678A (en) Ground improvement foundation structure
JP5124697B1 (en) Liquefaction prevention structure and liquefaction prevention method
JP5782734B2 (en) Wall sheet with liquefaction measures and steel sheet pile with liquefaction suppression function
JP2013174097A (en) Foundation structure of outdoor structure
JP6007092B2 (en) Ground liquefaction countermeasure structure using structural load
JP2020169567A (en) Method and structure for flow inhibition of slope ground
JP2008095352A (en) Small-scale building provided with countermeasures against liquefaction
JP6073617B2 (en) Ground improvement body for liquefaction countermeasure and formation method thereof
JP2013155558A (en) Foundation structure for structure
JP6424060B2 (en) How to rebuild a structure
JP7077600B2 (en) Drain pile and liquefaction countermeasure construction method
JP2017206851A (en) Coastal structure
JP4183137B2 (en) Seismic structure
JP6273645B2 (en) Ground liquefaction prevention structure
JP2019210652A (en) Ground water level lowering method
JP4960920B2 (en) Construction method of temporary structure and underground structure
JP5670595B2 (en) Vertical shaft construction method
JP6558890B2 (en) Slope stabilization structure
JP5039854B1 (en) Underground continuous wall structure
JP7469608B2 (en) Support structure, gravity breakwater and construction method of gravity breakwater
JP2012017584A (en) Improvement body for suppressing deformation of earth-retaining wall, and suppression method
JP2018178562A5 (en) Seawall, seawall construction method and seawall panel
TWM505513U (en) Filtering wide port well suitable for construction work using caisson method
JP2009144421A (en) Tank ground improving method and tank ground structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180425

R150 Certificate of patent or registration of utility model

Ref document number: 6338096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150