JP2018091040A - Withdrawal method of underground water - Google Patents
Withdrawal method of underground water Download PDFInfo
- Publication number
- JP2018091040A JP2018091040A JP2016235184A JP2016235184A JP2018091040A JP 2018091040 A JP2018091040 A JP 2018091040A JP 2016235184 A JP2016235184 A JP 2016235184A JP 2016235184 A JP2016235184 A JP 2016235184A JP 2018091040 A JP2018091040 A JP 2018091040A
- Authority
- JP
- Japan
- Prior art keywords
- ground
- improvement body
- groundwater
- partition
- pumping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Foundations (AREA)
Abstract
Description
本発明は、地下水の揚水方法に関する。 The present invention relates to a method for pumping groundwater.
平面視にて格子状に形成された格子状地盤改良体が知られている(例えば、特許文献1参照)。 A lattice-like ground improvement body formed in a lattice shape in plan view is known (see, for example, Patent Document 1).
ところで、地下水位が高い地盤を掘削する場合、例えば、地盤に形成された揚水井戸から地下水を汲み上げることにより、地下水位を下げる必要がある。 By the way, when excavating a ground having a high groundwater level, it is necessary to lower the groundwater level by, for example, drawing groundwater from a pumping well formed in the ground.
しかしながら、格子状地盤改良体を形成された地盤では、格子状地盤改良体によって地盤が複数の領域(以下、「区画領域」という)に区画される。そのため、各区画領域に揚水井戸を設けなければならず、揚水井戸の本数が増加する可能性がある。 However, in the ground on which the grid-like ground improvement body is formed, the ground is partitioned into a plurality of areas (hereinafter referred to as “partition areas”) by the grid-like ground improvement body. Therefore, a pumping well must be provided in each division area, and the number of pumping wells may increase.
本発明は、上記の事実を考慮し、揚水井戸の本数を削減することを目的とする。 In view of the above facts, the present invention aims to reduce the number of pumping wells.
請求項1に記載の地下水の揚水方法は、地盤改良体によって区画された地盤の第一区画領域及び第二区画領域の地下水を汲み上げる地下水の揚水方法であって、前記第一区画領域に設けられた揚水井戸から、前記地盤改良体に設けられた通水部を介して、前記第二区画領域の地下水を汲み上げる。 The groundwater pumping method according to claim 1 is a groundwater pumping method for pumping up groundwater in the first section area and the second section area of the ground sectioned by the ground improvement body, and is provided in the first section area. The groundwater in the second section area is pumped up from the pumped well through a water passage provided in the ground improvement body.
請求項1に係る地下水の揚水方法によれば、地盤は、地盤改良体によって第一区画領域及び第二区画領域に区画される。また、地盤改良体には、通水部が設けられる。 According to the groundwater pumping method according to the first aspect, the ground is partitioned into the first partitioned region and the second partitioned region by the ground improvement body. The ground improvement body is provided with a water flow portion.
ここで、地盤改良体に通水部がない場合、第一区画領域及び第二区画領域の地下水を汲み上げるためには、第一区画領域及び第二区画領域に揚水井戸をそれぞれ設ける必要がある。 Here, when the ground improvement body does not have a water passage portion, it is necessary to provide a pumping well in each of the first partition area and the second partition area in order to pump up the ground water in the first partition area and the second partition area.
これに対して本発明では、前述したように、地盤改良体に通水部が設けられる。これにより、第一区画領域に設けられた揚水井戸から、通水部を介して第二区画領域の地下水を汲み上げることができる。そのため、第二区画領域の揚水井戸を省略することができる。したがって、揚水井戸の本数を削減することができる。 On the other hand, in this invention, as mentioned above, a ground improvement body is provided with a water flow part. Thereby, the ground water of a 2nd division area can be pumped up from the pumping well provided in the 1st division area through the water flow part. Therefore, the pumping well in the second section area can be omitted. Therefore, the number of pumping wells can be reduced.
請求項2に記載の地下水の揚水方法は、請求項1に記載の地下水の揚水方法において、前記地盤改良体は、平面視にて格子状に形成される。 A groundwater pumping method according to a second aspect is the groundwater pumping method according to the first aspect, wherein the ground improvement body is formed in a lattice shape in a plan view.
請求項2に係る地下水の揚水方法によれば、地盤改良体は、平面視にて格子状に形成される。これにより、揚水井戸の本数を削減しつつ、地盤の液状化を効率的に抑制することができる。 According to the groundwater pumping method according to claim 2, the ground improvement body is formed in a lattice shape in plan view. Thereby, liquefaction of the ground can be efficiently suppressed while reducing the number of pumping wells.
請求項3に記載の地下水の揚水方法は、請求項1又は請求項2に記載の地下水の揚水方法において、前記通水部は、前記地盤改良体に設けられた未改良地盤部とされる。 The groundwater pumping method according to claim 3 is the groundwater pumping method according to claim 1 or 2, wherein the water flow portion is an unimproved ground portion provided in the ground improvement body.
請求項3に係る地下水の揚水方法によれば、通水部は、地盤改良体に設けられた未改良地盤部とされる。したがって、地盤改良体に通水部を容易に設けることができる。 According to the groundwater pumping method of the third aspect, the water flow portion is an unimproved ground portion provided in the ground improvement body. Therefore, a water flow part can be easily provided in the ground improvement body.
以上説明したように、本発明に係る地下水の揚水方法によれば、揚水井戸の本数を削減することができる。 As described above, according to the groundwater pumping method according to the present invention, the number of pumping wells can be reduced.
以下、図面を参照しながら、一実施形態に係る地下水の揚水方法について説明する。 Hereinafter, a groundwater pumping method according to an embodiment will be described with reference to the drawings.
(地盤)
図1には、本実施形態に係る地下水の揚水方法が適用される地盤10が示されている。地盤10は、一例として、非液状化層10Aと、非液状化層10Aの上に堆積された液状化層10Bとを有している。
(ground)
FIG. 1 shows a ground 10 to which the groundwater pumping method according to the present embodiment is applied. As an example, the ground 10 includes a non-liquefied layer 10A and a liquefied layer 10B deposited on the non-liquefied layer 10A.
液状化層10Bは、砂質土を含んで構成されており、所定規模以上の地震が発生したときに、液状化の可能性が高い層とされる。また、液状化層10Bは、非液状化層10Aよりも通水性が高い帯水層とされ、地下水が流動し易くなっている。一方、非液状化層10Aは、液状化層10Bよりも通水性が低い難透水層とされ、液状化する可能性が低い層とされる。 The liquefied layer 10B is configured to include sandy soil, and is a layer having a high possibility of liquefaction when an earthquake of a predetermined scale or larger occurs. Further, the liquefied layer 10B is an aquifer having higher water permeability than the non-liquefied layer 10A, and the groundwater is easy to flow. On the other hand, the non-liquefiable layer 10A is a hardly water-permeable layer having a lower water permeability than the liquefied layer 10B, and is a layer having a low possibility of being liquefied.
なお、本実施形態に係る地下水の揚水方法は、上記の地盤10に限らず、例えば、非液状化層10Aが存在しない種々の地盤にも適用可能である。 In addition, the groundwater pumping method which concerns on this embodiment is applicable not only to said ground 10 but various grounds which 10 A of non-liquefied layers do not exist, for example.
(格子状地盤改良体)
液状化層10Bには、格子状地盤改良体22が設けられている。格子状地盤改良体22は、地震時における液状化層10Bの液状化を抑制するものである。この格子状地盤改良体22は、例えば、セメント系固化材によって液状化層10Bに形成されている。
(Lattice-like ground improvement body)
The liquefied layer 10B is provided with a grid-like ground improvement body 22. The grid-like ground improvement body 22 suppresses liquefaction of the liquefied layer 10B at the time of an earthquake. This grid-like ground improvement body 22 is formed in the liquefied layer 10B with the cement-type solidification material, for example.
なお、本実施形態では、格子状地盤改良体22の下端部が、非液状化層10Aに達しているが、格子状地盤改良体22の下端部は、非液状化層10Aに達していなくても良い。また、格子状地盤改良体22は、地盤改良体の一例である。 In the present embodiment, the lower end portion of the grid-like ground improvement body 22 reaches the non-liquefaction layer 10A, but the lower end portion of the grid-like ground improvement body 22 does not reach the non-liquefaction layer 10A. Also good. The grid-like ground improvement body 22 is an example of a ground improvement body.
図2に示されるように、格子状地盤改良体22は、平面視にて格子状に形成されている。この格子状地盤改良体22によって液状化層10Bにせん断剛性を付与することにより、液状化層10Bの液状化が抑制されている。なお、各図に適宜示される矢印Fは、地下水の流れを示している。 As shown in FIG. 2, the lattice-like ground improvement body 22 is formed in a lattice shape in plan view. By applying shear rigidity to the liquefied layer 10B by the lattice-like ground improvement body 22, liquefaction of the liquefied layer 10B is suppressed. In addition, the arrow F suitably shown in each figure has shown the flow of groundwater.
格子状地盤改良体22は、外周壁部24と、複数の区画壁部26を有している。外周壁部24は、平面視にて矩形の枠状に形成されており、地盤10の液状化層10Bを囲んでいる。なお、図2に示される矢印X方向及び矢印Y方向は、互いに直交する水平二方向を示している。 The lattice-like ground improvement body 22 has an outer peripheral wall portion 24 and a plurality of partition wall portions 26. The outer peripheral wall portion 24 is formed in a rectangular frame shape in plan view and surrounds the liquefied layer 10 </ b> B of the ground 10. Note that the arrow X direction and the arrow Y direction shown in FIG. 2 indicate two horizontal directions orthogonal to each other.
複数の区画壁部26には、矢印Y方向に沿って配置される複数の区画壁部26Aと、矢印X方向に沿って配置される複数の区画壁部26Bとがある。複数の区画壁部26Aは、矢印X方向に間隔を空けて配置されている。また、複数の区画壁部26Bは、矢印Y方向に間隔を空けて配置されている。そして、複数の区画壁部26A及び区画壁部26Bは、平面視にて格子状に接続されている。これらの区画壁部26A,26Bによって、外周壁部24の内側の領域(液状化層10B)が複数の領域(以下、「区画領域」という)Rに区画されている。なお、以下では、区画壁部26A,26Bの総称を区画壁部26とする。 The plurality of partition walls 26 include a plurality of partition walls 26A disposed along the arrow Y direction and a plurality of partition walls 26B disposed along the arrow X direction. The plurality of partition wall portions 26A are arranged at intervals in the arrow X direction. Further, the plurality of partition wall portions 26B are arranged at intervals in the arrow Y direction. The plurality of partition wall portions 26A and the partition wall portions 26B are connected in a lattice shape in plan view. By these partition wall portions 26A and 26B, a region (liquefied layer 10B) inside the outer peripheral wall portion 24 is partitioned into a plurality of regions (hereinafter referred to as “partition regions”) R. Hereinafter, the partition wall portions 26A and 26B are collectively referred to as the partition wall portion 26.
(通水部)
各区画壁部26には、地下水を通す複数の通水部Wが設けられている。図3に示されるように、通水部Wは、区画壁部26に部分的に設けられた未改良地盤部とされている。この通水部Wでは、地盤改良されていない。すなわち、通水部Wでは、地盤10にセメント系固化材等の固化材が注入されていない。これにより、通水部Wでは、地下水が流動可能になっている。この通水部Wは、例えば、次の方法によって施工される。
(Water passage)
Each partition wall portion 26 is provided with a plurality of water passage portions W through which groundwater passes. As shown in FIG. 3, the water flow portion W is an unimproved ground portion partially provided on the partition wall portion 26. In this water passing portion W, the ground is not improved. That is, in the water flow portion W, a solidifying material such as a cement-based solidifying material is not injected into the ground 10. Thereby, in the water flow part W, groundwater can flow. This water flow part W is constructed by the following method, for example.
すなわち、本実施形態の区画壁部26は、壁状に連続する複数の柱状改良体28A,28Bを有している。柱状改良体28Aは、通水部Wを含んでいない。この柱状改良体28Aは、機械攪拌工法によって施工される。具体的には、柱状改良体28Aは、図示しない掘削オーガの先端部からセメント系固化材等の固化材を噴射しながら地盤10を掘削し、掘削土と固化材とを撹拌、混合することにより造成されている。 That is, the partition wall portion 26 of the present embodiment includes a plurality of columnar improvement bodies 28A and 28B that are continuous in a wall shape. The columnar improvement body 28A does not include the water flow portion W. This columnar improvement body 28A is constructed by a mechanical stirring method. Specifically, the columnar improvement body 28A excavates the ground 10 while injecting a solidifying material such as a cement-based solidifying material from the tip of a drilling auger (not shown), and stirs and mixes the excavated soil and the solidified material. It has been created.
一方、柱状改良体28Bは、通水部Wを含んでいる。この柱状改良体28Bは、高圧噴射攪拌工法によって施工される。具体的には、地盤10に打ち込まれた高圧噴射装置30の回転ロッド32の先端部32Tから固化材を高圧噴射し、かつ、回転ロッド32を回転させながら引き上げる。これにより、回転ロッド32の先端部付近の地盤10に固化材が注入され、柱状改良体28Bがその下端から順に造成される。 On the other hand, the columnar improvement body 28B includes a water flow portion W. This columnar improvement body 28B is constructed by a high-pressure jet stirring method. Specifically, the solidified material is injected at a high pressure from the tip 32T of the rotating rod 32 of the high pressure injection device 30 driven into the ground 10, and the rotating rod 32 is pulled up while rotating. Thereby, a solidification material is inject | poured into the ground 10 near the front-end | tip part of the rotating rod 32, and the columnar improvement body 28B is formed in order from the lower end.
ここで、回転ロッド32の先端部32Tが通水部Wを通過する際には、当該先端部32Tからの固化材の高圧噴射が一時的に停止される。これにより、通水部Wでは、地盤10に固化材が注入されず、地盤10の通水性が維持される。 Here, when the tip portion 32T of the rotating rod 32 passes through the water passage portion W, the high-pressure injection of the solidified material from the tip portion 32T is temporarily stopped. Thereby, in the water flow part W, a solidification material is not inject | poured into the ground 10, but the water permeability of the ground 10 is maintained.
このように固化材の高圧噴射を一時的に停止しながら柱状改良体28Bを造成することにより、区画壁部26に複数の通水部Wが設けられる。また、高圧噴射攪拌工法では、機械攪拌工法と比較して、固化材の噴射と停止との切り替え管理が容易であるため、通水部Wの施工性が向上する。 In this way, by forming the columnar improvement body 28 </ b> B while temporarily stopping the high-pressure injection of the solidifying material, a plurality of water flow portions W are provided in the partition wall portion 26. Moreover, in the high-pressure jet stirring method, since the switching management between the injection and stop of the solidified material is easy as compared with the mechanical stirring method, the workability of the water passing portion W is improved.
なお、通水部Wは、機械攪拌工法において、固化材の噴射を一時的に停止しながら造成することも可能である。また、区画壁部26に設けられる通水部Wの数、配置、形状、及び大きさは、適宜変更可能である。また、通水部Wによって区画壁部26の剛性が低下する場合には、区画壁部26の厚みを厚くしたり、隣り合う区画壁部26の間隔を狭くしたりしても良い。 In addition, the water flow part W can also be formed in the mechanical stirring method while temporarily stopping the injection of the solidifying material. Moreover, the number, arrangement | positioning, shape, and magnitude | size of the water flow part W provided in the partition wall part 26 can be changed suitably. Moreover, when the rigidity of the partition wall part 26 falls by the water flow part W, the thickness of the partition wall part 26 may be thickened, or the space | interval of the adjacent partition wall part 26 may be narrowed.
(地下水の揚水方法)
次に、地下水の揚水方法の一例について説明しつつ、本実施形態の効果について説明する。
(Groundwater pumping method)
Next, the effect of this embodiment will be described while explaining an example of a method for pumping groundwater.
図4に示されるように、本実施形態では、格子状地盤改良体22が設けられた地盤10を掘削し、例えば、図示しない地下構造物を施工する。この際、地盤10の地下水を揚水し、掘削前の地下水位L0を目標地下水位L1以下に下げる。 As shown in FIG. 4, in this embodiment, the ground 10 provided with the grid-like ground improvement body 22 is excavated, and, for example, an unillustrated underground structure is constructed. At this time, the groundwater of the ground 10 is pumped up, and the groundwater level L0 before excavation is lowered to the target groundwater level L1 or less.
なお、以下では、説明の便宜上、複数の区画領域Rのうち、格子状地盤改良体22の中央に位置する区画領域Rを第一区画領域R1とし、第一区画領域R1と隣り合う他の区画領域Rを第二区画領域R2とする。さらに、第二区画領域R2と隣り合う第一区画領域R1以外の区画領域Rを第三区画領域R3(図2参照)とする。 In the following, for convenience of explanation, among the plurality of partition regions R, the partition region R located at the center of the grid-like ground improvement body 22 is referred to as a first partition region R1, and other partitions adjacent to the first partition region R1. The region R is defined as a second partition region R2. Further, a partition region R other than the first partition region R1 adjacent to the second partition region R2 is defined as a third partition region R3 (see FIG. 2).
先ず、格子状地盤改良体22の内側の地盤10を掘削し、地下空間40を形成する。次に、格子状地盤改良体22の第一区画領域R1に、揚水井戸16を設ける。揚水井戸16は、例えば、複数の揚水口16Aを有する鋼管等を地盤10に打ち込むことにより形成される。 First, the ground 10 inside the lattice-shaped ground improvement body 22 is excavated to form an underground space 40. Next, the pumping well 16 is provided in the first partition region R1 of the grid-like ground improvement body 22. The pumping well 16 is formed, for example, by driving a steel pipe having a plurality of pumping openings 16A into the ground 10.
次に、揚水井戸16に図示しない揚水管を挿入し、当該揚水管に設けられた揚水ポンプを作動する。この結果、第一区画領域R1内の地下水が、揚水井戸16の揚水口16Aから地上に汲み上げられる。これにより、格子状地盤改良体22内の地下水位L2が、目標地下水位L1以下に下げられる。 Next, a pumping pipe (not shown) is inserted into the pumping well 16, and a pumping pump provided in the pumping pipe is operated. As a result, the groundwater in the first section region R1 is pumped up from the pumping port 16A of the pumping well 16 to the ground. Thereby, the groundwater level L2 in the lattice-like ground improvement body 22 is lowered below the target groundwater level L1.
ここで、比較例として、図5及び図6に示されるように、格子状地盤改良体22に通水部Wがない場合、第一区画領域R1、第二区画領域R2、及び第三区画領域R3の地下水を汲み上げるためには、第一区画領域R1以外に、第二区画領域R2及び第三区画領域R3にも揚水井戸100をそれぞれ設ける必要がある。 Here, as a comparative example, as shown in FIGS. 5 and 6, when there is no water passage W in the grid-like ground improvement body 22, the first partition region R 1, the second partition region R 2, and the third partition region In order to pump up the groundwater of R3, it is necessary to provide the pumping wells 100 in the second partition region R2 and the third partition region R3 in addition to the first partition region R1.
これに対して本実施形態では、図2に示されるように、第一区画領域R1と第二区画領域R2との間にある区画壁部26には、通水部Wが設けられている。これにより、矢印Fで示されるように、第一区画領域R1に設けられた揚水井戸16から、通水部Wを介して第二区画領域R2の地下水を汲み上げることができる。そのため、第二区画領域R2の揚水井戸を省略することができる。したがって、揚水井戸16の本数を削減することができる。 On the other hand, in this embodiment, as shown in FIG. 2, a water passage W is provided in the partition wall portion 26 between the first partition region R1 and the second partition region R2. Thereby, as shown by the arrow F, the groundwater of 2nd division area | region R2 can be pumped up from the pumping well 16 provided in 1st division area | region R1 through the water flow part W. FIG. Therefore, the pumping well in the second partition region R2 can be omitted. Therefore, the number of pumping wells 16 can be reduced.
また、本実施形態では、格子状地盤改良体22の全ての区画壁部26に通水部Wが設けられている。つまり、本実施形態では、第二区画領域R2と第三区画領域R3との間にある区画壁部26にも通水部Wが設けられている。これにより、矢印Fで示されるように、第一区画領域R1に設けられた揚水井戸16から、第二区画領域R2を介して第三区画領域R3の地下水も汲み上げることができる。そのため、第三区画領域R3の揚水井戸100(図5参照)も省略することができる。したがって、揚水井戸16の本数をさらに削減することができる。 Moreover, in this embodiment, the water flow part W is provided in all the partition wall parts 26 of the grid | lattice-like ground improvement body 22. FIG. That is, in this embodiment, the water flow part W is provided also in the partition wall part 26 between 2nd partition area | region R2 and 3rd partition area | region R3. Thereby, as shown by the arrow F, the groundwater of 3rd division area | region R3 can be pumped up from the pumping well 16 provided in 1st division area | region R1 via 2nd division area | region R2. Therefore, the pumping well 100 (refer FIG. 5) of 3rd division area | region R3 can also be abbreviate | omitted. Therefore, the number of pumping wells 16 can be further reduced.
また、通水部Wは、格子状地盤改良体22の区画壁部26に設けられた未改良地盤部とされる。したがって、格子状地盤改良体22に通水部Wを容易に設けることができる。 Further, the water passing portion W is an unimproved ground portion provided on the partition wall portion 26 of the lattice-shaped ground improving body 22. Therefore, the water flow portion W can be easily provided in the grid-like ground improvement body 22.
さらに、本実施形態の格子状地盤改良体22は、平面視にて格子状に形成されている。これにより、揚水井戸16の本数を削減しつつ、地盤10の液状化層10Bの液状化を効率的に抑制することができる。 Furthermore, the grid-like ground improvement body 22 of this embodiment is formed in a grid shape in plan view. Thereby, liquefaction of the liquefied layer 10B of the ground 10 can be efficiently suppressed while reducing the number of the pumping wells 16.
(変形例)
次に、上記実施形態の変形例について説明する。
(Modification)
Next, a modification of the above embodiment will be described.
上記実施形態では、地盤10の掘削に伴って地盤10の地下水を揚水したが、上記実施形態はこれに限らない。例えば、図7に示されるように、地盤10を掘削せずに、地盤10の地下水を汲み上げても良い。この場合、汲み上げた地盤10の地下水は、例えば、工事用水等に用いることができる。 In the said embodiment, although the ground water of the ground 10 was pumped up with the excavation of the ground 10, the said embodiment is not restricted to this. For example, as shown in FIG. 7, the ground water of the ground 10 may be pumped up without excavating the ground 10. In this case, the groundwater pumped up from the ground 10 can be used for construction water, for example.
また、上記実施形態では、格子状地盤改良体22の中央にある区画領域R(第一区画)に揚水井戸16を設けたが、揚水井戸16は、他の区画領域Rに設けても良い。この場合、揚水井戸16が設けられた区画領域Rが第一区画領域となり、当該第一区画領域と隣り合う他の区画領域Rが第二区画領域となる。 Moreover, in the said embodiment, although the pumping well 16 was provided in the division area R (1st division) in the center of the grid | lattice-like ground improvement body 22, you may provide the pumping well 16 in another division area R. In this case, the partition area R provided with the pumping well 16 is the first partition area, and another partition area R adjacent to the first partition area is the second partition area.
また、1つの区画領域Rに対して複数本の揚水井戸16を設けても良いし、複数の区画領域Rに対して揚水井戸16をそれぞれ設けることも可能である。 Further, a plurality of pumping wells 16 may be provided for one partition region R, or pumping wells 16 may be provided for a plurality of partition regions R, respectively.
また、上記実施形態では、格子状地盤改良体22の各区画壁部26に通水部Wを設けたが、上記実施形態ではこれに限らない。通水部Wは、揚水井戸16が設けられた第一区画領域R1と第二区画領域R2との間にある区画壁部26に少なくとも設けることができる。 Moreover, in the said embodiment, although the water flow part W was provided in each division wall part 26 of the lattice-like ground improvement body 22, in the said embodiment, it is not restricted to this. The water flow portion W can be provided at least in the partition wall portion 26 between the first partition region R1 and the second partition region R2 where the pumping well 16 is provided.
また、上記実施形態では、地盤改良体が格子状地盤改良体22とされるが、上記実施形態はこれに限らない。例えば、図8(A)に示されるように、地盤改良体50は、平面視にて、「日」の字状に形成されても良い。 Moreover, in the said embodiment, although a ground improvement body is made into the grid | lattice-like ground improvement body 22, the said embodiment is not restricted to this. For example, as shown in FIG. 8A, the ground improvement body 50 may be formed in a “day” shape in a plan view.
具体的には、地盤改良体50は、外周壁部52と、区画壁部54とを有している。区画壁部54は、外周壁部52の内側の領域(液状化層10B)を第一区画領域R1と第二区画領域R2とに区画している。この場合、揚水井戸16は、第一区画領域R1に設けられ、通水部Wは、区画壁部54に設けられる。これにより、矢印Fで示されるように、第一区画領域R1に設けられた揚水井戸16から、通水部Wを介して第二区画領域R2内の地下水を汲み上げることができる。なお、地盤改良体は、平面視にて「田」の字状に形成されても良い。 Specifically, the ground improvement body 50 includes an outer peripheral wall portion 52 and a partition wall portion 54. The partition wall portion 54 partitions a region (liquefied layer 10B) inside the outer peripheral wall portion 52 into a first partition region R1 and a second partition region R2. In this case, the pumping well 16 is provided in the first partition region R <b> 1, and the water flow portion W is provided in the partition wall portion 54. Thereby, as shown by the arrow F, the groundwater in 2nd division area | region R2 can be pumped up from the pumping well 16 provided in 1st division area | region R1 through the water flow part W. FIG. The ground improvement body may be formed in the shape of a “field” in plan view.
また、上記実施形態では、複数の区画領域R(第一区画領域R1、第二区画領域R2、第三区画領域R3)の広さが略同じとされているが、例えば、図8(B)に示される地盤改良体60のように、区画領域Rの広さは、異なっていても良い。 Moreover, in the said embodiment, although the area of several division area R (1st division area R1, 2nd division area R2, 3rd division area R3) is substantially the same, for example, FIG. 8 (B) Like the ground improvement body 60 shown by (4), the width of the division area | region R may differ.
具体的には、地盤改良体60は、外周壁部62と、複数の区画壁部64とを有している。複数の区画壁部64は、外周壁部62の内側の領域(液状化層10B)を、広さが異なる複数の区画領域Rに区画している。ここで、本変形例では、最も狭い区画領域Rを第一区画領域R1とし、第一区画領域R1と隣り合う他の区画領域Rを、第二区画領域R2とする。 Specifically, the ground improvement body 60 has an outer peripheral wall portion 62 and a plurality of partition wall portions 64. The plurality of partition walls 64 partition a region (liquefied layer 10B) inside the outer peripheral wall 62 into a plurality of partition regions R having different sizes. Here, in this modification, the narrowest partitioned area R is defined as a first partitioned area R1, and another partitioned area R adjacent to the first partitioned area R1 is defined as a second partitioned area R2.
この場合、揚水井戸16は、第一区画領域R1に設けられ、通水部Wは、第一区画領域R1と第二区画領域R2との間にある区画壁部64に設けられる。これにより、矢印Fで示されるように、第一区画領域R1に設けられた揚水井戸16から、通水部Wを介して第二区画領域R2内の地下水を汲み上げることができる。 In this case, the pumping well 16 is provided in the first partition region R1, and the water passing portion W is provided in the partition wall portion 64 between the first partition region R1 and the second partition region R2. Thereby, as shown by the arrow F, the groundwater in 2nd division area | region R2 can be pumped up from the pumping well 16 provided in 1st division area | region R1 through the water flow part W. FIG.
また、上記実施形態では、格子状地盤改良体22の区画壁部26に通水部Wを設けたが、上記実施形態はこれに限らない。通水部は、地盤改良体の形状や構造に応じて、地盤改良体の所定部に設けることができる。 Moreover, in the said embodiment, although the water flow part W was provided in the partition wall part 26 of the lattice-like ground improvement body 22, the said embodiment is not restricted to this. A water flow part can be provided in the predetermined part of a ground improvement body according to the shape and structure of a ground improvement body.
さらに、上記実施形態に係る地下水の揚水方法は、地下水が存在する種々の地盤に適用可能である。 Furthermore, the groundwater pumping method according to the embodiment is applicable to various grounds where groundwater exists.
以上、本発明の一実施形態について説明したが、本発明はこうした実施形態に限定されるものでなく、一実施形態及び各種の変形例を適宜組み合わせて用いても良いし、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。 As mentioned above, although one embodiment of the present invention was described, the present invention is not limited to such an embodiment, and one embodiment and various modifications may be used in combination as appropriate, and the gist of the present invention will be described. Of course, various embodiments can be implemented without departing from the scope.
10 地盤
12 構造物
16 揚水井戸
22 格子状地盤改良体(地盤改良体)
50 地盤改良体
60 地盤改良体
R1 第一区画領域
R2 第二区画領域
W 通水部
10 Ground 12 Structure 16 Pumping well 22 Lattice ground improvement body (Ground improvement body)
50 Ground improvement body 60 Ground improvement body R1 1st division area R2 2nd division area W Water flow part
Claims (3)
前記第一区画領域に設けられた揚水井戸から、前記地盤改良体に設けられた通水部を介して、前記第二区画領域の地下水を汲み上げる、
地下水の揚水方法。 A groundwater pumping method for pumping up groundwater in the first section area and the second section area of the ground sectioned by the ground improvement body,
From the pumping well provided in the first section area, through the water flow section provided in the ground improvement body, pumping up the groundwater of the second section area,
Groundwater pumping method.
請求項1に記載の地下水の揚水方法。 The ground improvement body is formed in a lattice shape in plan view,
The groundwater pumping method according to claim 1.
請求項1又は請求項2に記載の地下水の揚水方法。
The water flow portion is an unimproved ground portion provided in the ground improvement body,
The groundwater pumping method of Claim 1 or Claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016235184A JP2018091040A (en) | 2016-12-02 | 2016-12-02 | Withdrawal method of underground water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016235184A JP2018091040A (en) | 2016-12-02 | 2016-12-02 | Withdrawal method of underground water |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018091040A true JP2018091040A (en) | 2018-06-14 |
Family
ID=62563579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016235184A Pending JP2018091040A (en) | 2016-12-02 | 2016-12-02 | Withdrawal method of underground water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018091040A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014136198A (en) * | 2013-01-17 | 2014-07-28 | Takenaka Komuten Co Ltd | Earthquake-proof type contaminated soil enclosure structure |
JP2015113626A (en) * | 2013-12-11 | 2015-06-22 | 株式会社竹中工務店 | Self-repairing type ground improvement structure |
JP2015227595A (en) * | 2014-06-02 | 2015-12-17 | 清水建設株式会社 | Ground improvement method and improved ground |
-
2016
- 2016-12-02 JP JP2016235184A patent/JP2018091040A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014136198A (en) * | 2013-01-17 | 2014-07-28 | Takenaka Komuten Co Ltd | Earthquake-proof type contaminated soil enclosure structure |
JP2015113626A (en) * | 2013-12-11 | 2015-06-22 | 株式会社竹中工務店 | Self-repairing type ground improvement structure |
JP2015227595A (en) * | 2014-06-02 | 2015-12-17 | 清水建設株式会社 | Ground improvement method and improved ground |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5990214B2 (en) | Reinforcement method of hole wall in construction method of cast-in-place concrete pile. | |
JP4716134B2 (en) | Slope stabilization method | |
KR100927186B1 (en) | Method of constructing cantilevered continuous wallsfor retaining earth and cutting off water | |
KR100559978B1 (en) | A pile for cofferdam and cofferdam method using it | |
JP2009179945A (en) | Well conduit for road and its construction method | |
JP2009102945A (en) | Water conduction structure preventing flow inhibition of groundwater and method and back-filling material preventing flow inhibition of groundwater | |
JP2019015100A (en) | Removing method of earth retaining wall | |
JP2013104215A (en) | Liquefaction prevention method | |
JP2007100416A (en) | Structure and construction method for steel sheet pile and water passing soil retaining wall | |
JP5407642B2 (en) | Composite dike and its construction method | |
JP6316674B2 (en) | Water stop structure and method for underground continuous wall | |
JP4888293B2 (en) | Earth retaining wall made of parent pile sheet pile, water stop structure of earth retaining wall made of parent pile side sheet pile, construction method of earth retaining wall made of parent pile side sheet pile, and retaining wall of earth retaining wall made of parent pile side sheet pile Water method | |
JP2018091040A (en) | Withdrawal method of underground water | |
KR101153313B1 (en) | Subsidiary casing and construction method for underground watertight wall using the same | |
JP5959094B2 (en) | Method for forming ground improvement body | |
KR101153314B1 (en) | Construction method for underground watertight wall | |
JP6340248B2 (en) | Mountain retaining wall, how to construct a mountain retaining wall | |
JP6019690B2 (en) | Tunnel widening method | |
JP6470648B2 (en) | Structure of composite underground continuous wall and construction method of composite underground continuous wall | |
JP2008045367A (en) | Ground consolidation construction method and ground-subsidence correction construction method | |
JP2008063787A (en) | Liquefaction preventing structure | |
JPH0313689A (en) | Construction method for tunnel | |
JP6480745B2 (en) | How to install water injection wells | |
KR102342510B1 (en) | Overlap cylindrical member for construction of continuous and cut off wall | |
JP7359515B2 (en) | Liquefaction countermeasure structure for underground structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200825 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200930 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201201 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210608 |