JP6065207B2 - Aerial solar power generation system - Google Patents

Aerial solar power generation system Download PDF

Info

Publication number
JP6065207B2
JP6065207B2 JP2012274934A JP2012274934A JP6065207B2 JP 6065207 B2 JP6065207 B2 JP 6065207B2 JP 2012274934 A JP2012274934 A JP 2012274934A JP 2012274934 A JP2012274934 A JP 2012274934A JP 6065207 B2 JP6065207 B2 JP 6065207B2
Authority
JP
Japan
Prior art keywords
upper chord
power generation
chord material
solar panel
lower chord
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012274934A
Other languages
Japanese (ja)
Other versions
JP2014118749A (en
Inventor
輿石 正己
正己 輿石
浩幸 室屋
浩幸 室屋
洋一 福元
洋一 福元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2012274934A priority Critical patent/JP6065207B2/en
Publication of JP2014118749A publication Critical patent/JP2014118749A/en
Application granted granted Critical
Publication of JP6065207B2 publication Critical patent/JP6065207B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、地表面や水表面から一定の間隔をあけて上方の空中に太陽光パネルを配置し、この太陽光パネルで太陽光を受光して発電するようにした空中太陽光発電システムに関するものである。   TECHNICAL FIELD The present invention relates to an aerial photovoltaic power generation system in which a solar panel is arranged in the air above a certain distance from the ground surface or the water surface, and the solar panel receives sunlight to generate power. It is.

近年、太陽光発電事業においては、電力の買取制度が法制化されたことに伴い、2020年度までに全国約30地点で約14万kWの太陽光発電設備を設置する「メガソーラー発電」計画が電気事業者から公表されている。一般家庭の屋根や屋上などに取り付けられる従来型の太陽光発電設備は、概ね2〜4kW程度の発電能力であるが、このメガソーラー発電計画ではこれを大規模にして、1ヵ所あたり1千〜2万kWという発電能力を持つ発電施設にすることを想定している。   In recent years, in the photovoltaic power generation business, the “Mega Solar Power Generation” plan to install about 140,000 kW of solar power generation facilities at about 30 locations nationwide by fiscal year 2020 with the legalization of the power purchase system. Published by the electric utility. Conventional solar power generation equipment installed on the roofs and rooftops of ordinary households has a power generation capacity of about 2 to 4 kW. However, in this mega solar power generation plan, this is scaled up to 1,000 to 1 per place. It is assumed to be a power generation facility with a power generation capacity of 20,000 kW.

このようなメガソーラー発電施設の建設方式としては、平坦な土地のグランドレベルに太陽光パネルを直接設置していく地上設置方式が一般的である。しかしながら最近では、平坦で支持力がある事業用地の確保が困難な状態になるとともに、用地の賃料が急激に高騰しており、今後、メガソーラー発電計画を進めるにあたり、事業規模に必要なだけの条件の良い用地を確保することは困難になると予想される。   As a construction method of such a mega solar power generation facility, a ground installation method in which a solar panel is directly installed on the ground level of a flat land is generally used. Recently, however, it has become difficult to secure a flat and supportive business site, and the rent on the site has soared rapidly. It is expected that it will be difficult to secure land with good conditions.

なお、メガソーラー発電施設などで用いる太陽光パネルの設置方法に関連して、太陽光パネルの取り付け作業を容易にしたもの(例えば、特許文献1を参照)や、太陽光パネルにおける受光面の向きを太陽の動きに追従可能にして発電効率を高めたもの(例えば、特許文献2、3を参照)などがこれまでに提案されている。   In addition, in connection with the installation method of a solar panel used in a mega solar power generation facility or the like, the solar panel installation work (for example, see Patent Document 1) or the direction of the light receiving surface in the solar panel is simplified. Have been proposed so far, which can follow the movement of the sun to improve the power generation efficiency (see, for example, Patent Documents 2 and 3).

特開2011−185030号公報JP 2011-185030 A 特開2012−174944号公報JP 2012-174944 A 特許第3906191号公報Japanese Patent No. 3906191

ところで、メガソーラー発電計画における太陽光発電施設に必要な用地が不足してきた場合には、傾斜地、地盤条件の悪い土地(田園跡地、沼地等)、津波や高波などの影響を受けやすい土地などを活用することが予想される。そのような条件下では、当該土地のグランドレベルに太陽光パネルを直接設置する地上設置方式の適用は困難である。このため、太陽光パネルを地表面や水表面から一定の間隔をあけて上方の空中に設置する方式の開発が望まれていた。   By the way, when there is a shortage of land required for solar power generation facilities in the mega solar power generation plan, slopes, land with poor ground conditions (rural sites, swamps, etc.), land that is susceptible to tsunamis and high waves, etc. It is expected to utilize. Under such conditions, it is difficult to apply a ground installation method in which solar panels are directly installed at the ground level of the land. For this reason, development of the system which installs a solar panel in the upper air in the predetermined space from the ground surface and the water surface was desired.

本発明は、上記に鑑みてなされたものであって、太陽光パネルを地表面や水表面から一定の間隔をあけて上方の空中に設置してなる空中太陽光発電システムを提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide an aerial photovoltaic power generation system in which a solar panel is installed in the air above the ground surface and the water surface at a certain interval. And

上記した課題を解決し、目的を達成するために、本発明に係る空中太陽光発電システムは、上に凸状に湾曲して圧縮力が作用するようにしたアーチ型の上弦材と、前記上弦材と端部同士で接合し、下に凸状に湾曲して引張力が作用するようにしたサスペンション型の下弦材と、前記上弦材と前記下弦材とを連結するラチス材と、前記上弦材と前記下弦材とを接合する接合端部を支持する支柱とからなり、前記接合端部で前記上弦材の圧縮力と前記下弦材の引張力を相殺するサスペンアーチ構造と、前記上弦材に設けた太陽光パネルとを備えることを特徴とする。   In order to solve the above-described problems and achieve the object, an aerial photovoltaic power generation system according to the present invention includes an arch-type upper chord material that is convexly curved upward and a compressive force acts thereon, and the upper chord Suspension-type lower chord material, which is joined at the end portions to each other and curved downward so that a tensile force acts, a lattice material for connecting the upper chord material and the lower chord material, and the upper chord material A suspension arch structure for supporting a compression end of the upper chord material and a tensile force of the lower chord material at the connection end, A solar panel.

また、本発明に係る他の空中太陽光発電システムは、上述した発明において、前記太陽光パネルを前記上弦材に設けた架台に取り付け、前記架台の傾斜角度を変更することで前記太陽光パネルの受光面の向きを変更自在に構成したことを特徴とする。   Another aerial photovoltaic power generation system according to the present invention is the above-described invention, wherein the solar panel is attached to a gantry provided on the upper chord material, and the inclination angle of the gantry is changed to change the inclination angle of the solar panel. It is characterized in that the direction of the light receiving surface can be changed freely.

本発明に係る空中太陽光発電システムによれば、上に凸状に湾曲して圧縮力が作用するようにしたアーチ型の上弦材と、前記上弦材と端部同士で接合し、下に凸状に湾曲して引張力が作用するようにしたサスペンション型の下弦材と、前記上弦材と前記下弦材とを連結するラチス材と、前記上弦材と前記下弦材とを接合する接合端部を支持する支柱とからなり、前記接合端部で前記上弦材の圧縮力と前記下弦材の引張力を相殺するサスペンアーチ構造と、前記上弦材に設けた太陽光パネルとを備えるので、サスペンアーチ構造の上弦材に太陽光パネルを設けることにより、太陽光パネルを地表面や水表面から一定の間隔をあけて上方の空中に設置してなる空中太陽光発電システムを提供することができるという効果を奏する。   According to the aerial photovoltaic power generation system according to the present invention, an arch-type upper chord material that is curved upwardly so that a compressive force is applied, and the upper chord material and the ends are joined to each other and protruded downward. A suspension-type lower chord material that is bent in a shape and acting on a tensile force, a lattice material that connects the upper chord material and the lower chord material, and a joining end portion that joins the upper chord material and the lower chord material A suspension arch structure comprising a supporting column and a suspension arch structure that cancels out the compressive force of the upper chord member and the tensile force of the lower chord member at the joint end, and a solar panel provided on the upper chord member. By providing a solar panel on the upper chord material, it is possible to provide an aerial photovoltaic power generation system in which the solar panel is installed in the air above the ground surface or water surface at a certain interval. Play.

また、立地地点の地盤の傾斜や支持力不足などといった、地上設置方式では不利な地盤条件として適用困難と判断される場合であっても、本発明では太陽光パネルを空中に設置するので立地地点の地盤条件の影響を受けることなく容易に適用可能である。さらに、海岸部における津波、高潮に対する安全性が高いという効果も見込める。   In addition, even if it is judged that it is difficult to apply as an unfavorable ground condition in the ground installation method, such as the inclination of the ground at the location point or lack of support capacity, the solar cell panel is installed in the air in the present invention, so the location point It can be easily applied without being affected by the ground conditions. In addition, it can be expected to be highly safe against tsunamis and storm surges on the coast.

図1は、本発明に係る空中太陽光発電システムの実施例を示す側面図である。FIG. 1 is a side view showing an embodiment of an air solar power generation system according to the present invention. 図2は、本発明に係る空中太陽光発電システムの実施例を示す図であり、図1のA−A平面図である。FIG. 2 is a diagram showing an embodiment of the aerial solar power generation system according to the present invention, and is a plan view taken along line AA of FIG. 図3は、本発明に係る空中太陽光発電システムの実施例を示す図であり、図1のB−B平面図である。FIG. 3 is a diagram showing an embodiment of the aerial solar power generation system according to the present invention, and is a BB plan view of FIG. 1. 図4は、図1のa部詳細図である。FIG. 4 is a detailed view of part a in FIG. 図5は、本発明に係る空中太陽光発電システムの実施例を示す図であり、図1のC−C断面図である。FIG. 5 is a diagram showing an embodiment of the aerial solar power generation system according to the present invention, and is a cross-sectional view taken along the line CC in FIG. 図6は、本発明に係る空中太陽光発電システムの実施例を示す図であり、図1のD−D断面図である。6 is a diagram showing an embodiment of the aerial solar power generation system according to the present invention, and is a cross-sectional view taken along the line DD in FIG. 図7は、図6のb部詳細図(正面図)である。FIG. 7 is a detailed view (front view) of part b of FIG. 図8は、図6のb部詳細図(側面図)である。FIG. 8 is a detailed view (side view) of part b of FIG. 図9は、図6のb部詳細図(平面図)である。FIG. 9 is a detailed view (plan view) of part b of FIG.

以下に、本発明に係る空中太陽光発電システムの実施の形態を図面に基づいて詳細に説明する。なお、この実施例では空中太陽光発電システムを地表面の上方の空中に設置する場合を例にとり説明するが、この実施例によりこの発明が限定されるものではなく、例えば、支柱の基礎を海や湖の水底に支持させることにより、太陽光パネルを水表面の上方の空中に設置するようにしてもよい。   Hereinafter, embodiments of an aerial photovoltaic power generation system according to the present invention will be described in detail with reference to the drawings. In this embodiment, the case where the aerial photovoltaic power generation system is installed in the air above the ground surface will be described as an example. However, the present invention is not limited to this embodiment. Alternatively, the solar panel may be installed in the air above the water surface by supporting it on the bottom of the lake.

図1、図2および図3に示すように、本発明に係る空中太陽光発電システム10は、アーチ型の上弦材12と、サスペンション型の下弦材14と、ラチス材16と、地表面GLに立設された支柱18とからなり、上弦材12と下弦材14の接合端部20で上弦材12の圧縮力と下弦材14の引張力で水平反力を相殺する、いわゆるサスペンアーチ構造を備えている。この空中太陽光発電システム10は、上弦材12に設けた太陽光パネル22をさらに備えている。   As shown in FIG. 1, FIG. 2 and FIG. 3, the aerial photovoltaic power generation system 10 according to the present invention includes an arch type upper chord member 12, a suspension type lower chord member 14, a lattice member 16, and a ground surface GL. It has a so-called suspension arch structure that is composed of upright support columns 18 and cancels the horizontal reaction force by the compressive force of the upper chord member 12 and the tensile force of the lower chord member 14 at the joint end 20 of the upper chord member 12 and the lower chord member 14. ing. The aerial solar power generation system 10 further includes a solar panel 22 provided on the upper chord material 12.

上弦材12は、上に凸状に湾曲して圧縮力が作用するようにしたアーチ型の部材であり、図2に示すように、橋軸方向に平行に2本配置してある。上弦材12は例えば矩形断面の集成材で構成することができる。   The upper chord member 12 is an arch-shaped member that is convexly curved upward so that a compressive force acts on it. As shown in FIG. 2, two upper chord members 12 are arranged in parallel to the bridge axis direction. The upper chord member 12 can be made of a laminated material having a rectangular cross section, for example.

下弦材14は、上弦材12と端部同士で接合し、下に凸状に湾曲して引張力が作用するようにしたサスペンション型の部材である。下弦材14には大きな引張力が作用するため、例えば引張強度の高い鋼製のフラットバーで構成することが望ましい。図3に示すように、下弦材14は支柱18側に配置される第一下弦材14aと、中央側に配置される第二下弦材14b、第三下弦材14cとで構成されている。   The lower chord material 14 is a suspension-type member that is joined to the upper chord material 12 at the ends and curved downward so that a tensile force acts. Since a large tensile force acts on the lower chord member 14, it is desirable that the lower chord member 14 is made of, for example, a steel flat bar having a high tensile strength. As shown in FIG. 3, the lower chord material 14 is composed of a first lower chord material 14a disposed on the support 18 side, a second lower chord material 14b, and a third lower chord material 14c disposed on the center side.

第一下弦材14aは橋軸方向に間隔をあけて径間を略三等分する位置に設けた2個のヒンジ24から左右の支柱18に向けて平面視でV字状に配置してある。第二下弦材14b、第三下弦材14cは、橋軸方向に間隔をあけて径間を略三等分する位置に設けた2個のヒンジ24間に架設してあり、第二下弦材14bは第三下弦材14cの外側を挟み込む態様でその両側に配置してある。ヒンジ24近傍における第一下弦材14a、第二下弦材14b、第三下弦材14cの詳細な位置関係については図6〜図9を用いて後述する。   The first lower chord member 14a is arranged in a V shape in plan view from two hinges 24 provided at positions that divide the span into approximately three equal parts with a gap in the bridge axis direction. is there. The 2nd lower chord material 14b and the 3rd lower chord material 14c are constructed between the two hinges 24 provided in the position which divides a space | interval in the bridge shaft direction at intervals, and the 2nd lower chord material 14b. Are arranged on both sides in such a manner as to sandwich the outside of the third lower chord material 14c. Detailed positional relationships of the first lower chord material 14a, the second lower chord material 14b, and the third lower chord material 14c in the vicinity of the hinge 24 will be described later with reference to FIGS.

ラチス材16は、上弦材12と下弦材14とを連結する部材である。図3に示すように、ラチス材16は、2個のヒンジ24に4本のラチス材16の下端を接合し、上端を上弦材12に接合する態様にて、図1の側面視でV字状に、図3の平面視でX字状に配置してある。ラチス材16の材料としては発生する軸力(圧縮力)、曲げモーメントに抵抗可能な鋼管を使用することができる。   The lattice material 16 is a member that connects the upper chord material 12 and the lower chord material 14. As shown in FIG. 3, the lattice material 16 is a V-shape in a side view of FIG. 1 in a mode in which the lower ends of the four lattice materials 16 are joined to the two hinges 24 and the upper ends are joined to the upper chord material 12. Are arranged in an X shape in a plan view of FIG. As the material of the lattice material 16, a steel pipe that can resist the generated axial force (compression force) and bending moment can be used.

支柱18は、上弦材12と下弦材14とを接合する接合端部20を支持する部材である。本発明ではサスペンアーチ構造を採用したことにより、支柱18には常時の水平反力は発生しない。しかし、地震力および風荷重に対して安全性を確保することが必要であることから、支柱18の構造としては例えば角型鋼管などの鋼構造を採用することが望ましい。図3に示すように、支柱18は上弦材12と下弦材14の接合端部20の数に対応して左右2本ずつの合計4本設けてあり、その下端は地中に埋設したコンクリート基礎26に固定してある。隣り合う支柱18の上端部同士は水平材28で連結してあり、各支柱18の下端部は鋼製の補強プレート30で補強してある。   The strut 18 is a member that supports the joining end 20 that joins the upper chord member 12 and the lower chord member 14. In the present invention, since the suspension arch structure is adopted, the horizontal reaction force is not always generated in the column 18. However, since it is necessary to ensure safety against seismic force and wind load, it is desirable to adopt a steel structure such as a square steel pipe as the structure of the support 18. As shown in FIG. 3, there are four support columns 18 in total, two on each side corresponding to the number of joint ends 20 of the upper chord member 12 and the lower chord member 14, and the lower ends thereof are concrete foundations embedded in the ground. 26 is fixed. The upper ends of adjacent struts 18 are connected by a horizontal member 28, and the lower ends of the struts 18 are reinforced by a steel reinforcing plate 30.

また、図2に示すように、2本の上弦材12の間には、端横桁32が外側に、複数の中間横桁34がその内側に所定の間隔で掛け渡してある。さらに、複数の小梁36が2本の上弦材12の間に平行に設けてある。この小梁36と中間横桁34とで形成される格子構造の中央領域にパンチングメタル38が施してあり、これを囲む周囲領域にグレーチング40が施してある。このグレーチング40の床は点検用歩廊として利用される。また、小梁36および上弦材12上にはパネルサポート54が立設され、このパネルサポート54が保持する格子枠状の架台に複数枚の太陽光パネル22が取り付けてある。   As shown in FIG. 2, between the two upper chord members 12, an end cross beam 32 is extended to the outside, and a plurality of intermediate cross beams 34 are extended to the inside at a predetermined interval. Further, a plurality of small beams 36 are provided in parallel between the two upper chord members 12. A punching metal 38 is provided in the central region of the lattice structure formed by the small beams 36 and the intermediate cross beams 34, and a grating 40 is provided in a surrounding region surrounding the punching metal 38. The floor of the grating 40 is used as an inspection walkway. Further, a panel support 54 is erected on the beam 36 and the upper chord member 12, and a plurality of solar panels 22 are attached to a lattice frame-like pedestal held by the panel support 54.

ここで、本実施例のサスペンアーチ構造では、支柱18間の径間長25m程度、奥行き幅5m程度、支柱18の高さ3m程度の規模を想定している。この場合、上弦材12に設置される太陽光パネル22の1枚あたりの最大出力が233W程度、その配置枚数が幅方向4枚×橋軸方向14枚=56枚、システム最大出力233×56=13kW程度規模のものを想定することができる。   Here, in the suspension arch structure of the present embodiment, it is assumed that the span between the columns 18 is about 25 m in length, the depth is about 5 m, and the column 18 is about 3 m in height. In this case, the maximum output per solar panel 22 installed on the upper chord member 12 is about 233 W, the number of arrangement is 4 in the width direction × 14 in the bridge axis direction = 56, and the maximum output of the system 233 × 56 = A scale of about 13 kW can be assumed.

このように、本発明によれば、太陽光パネル22を地表面GLから一定の間隔をあけて上方の空中に設置できる形式の空中太陽光発電システムを提供することができるという効果を奏する。また、立地地点の地盤の傾斜や支持力不足などといった、従来の地上設置方式では不利な地盤条件として適用困難と判断される場合であっても、本発明では地表面や水表面から離れた空中に太陽光パネル22を設置するので立地地点の地盤条件の影響を受けることなく容易に適用可能である。さらに、本発明により太陽光パネルを海岸部などの水辺の上方の空中に設置した場合、太陽光パネルは波浪の影響を受けるおそれがないので、津波、高潮に対する安全性が高いという効果も見込める。   Thus, according to the present invention, there is an effect that it is possible to provide an aerial solar power generation system of a type in which the solar panel 22 can be installed in the air above the ground surface GL at a certain interval. In addition, even in the case where it is judged that it is difficult to apply as a disadvantageous ground condition in the conventional ground installation method, such as the inclination of the ground at the location point or lack of supporting force, in the present invention, it is in the air away from the ground surface or the water surface. Since the solar panel 22 is installed in the base station, the solar panel 22 can be easily applied without being affected by the ground conditions at the location. Furthermore, when the solar panel is installed in the air above a waterside such as a coastal area according to the present invention, the solar panel is not likely to be affected by waves, so the effect of high safety against tsunami and storm surge can be expected.

図4は接合端部20の詳細断面図である。この図4に示す実施例では、接合端部20は、RC構造(鉄筋コンクリート構造)で構成されている。この接合端部20は、下面側に配置されたゴム支承42を介して支柱18により支持されている。上弦材12の端部はスタッドボルト44を介して接合端部20に埋設固定されている。また、下弦材14(14a)の端部にはフランジプレート46が溶接してあり、貫通鉄筋で補強された孔あき鋼板ジベル48を介して接合端部20に埋設固定されている。なお、この接合端部20は、圧縮力と引張力の伝達を図る部位であることから、RC構造で構成する代わりに鋼構造で構成してももちろん構わない。   FIG. 4 is a detailed sectional view of the joint end portion 20. In the embodiment shown in FIG. 4, the joint end portion 20 is configured with an RC structure (a reinforced concrete structure). The joint end portion 20 is supported by the support column 18 via a rubber support 42 disposed on the lower surface side. An end portion of the upper chord member 12 is embedded and fixed to the joint end portion 20 via a stud bolt 44. Further, a flange plate 46 is welded to the end portion of the lower chord member 14 (14a), and is embedded and fixed to the joint end portion 20 via a perforated steel plate gibber 48 reinforced with a penetrating rebar. In addition, since this joining edge part 20 is a site | part which aims at transmission of compressive force and tensile force, it does not matter even if it comprises with a steel structure instead of comprising with RC structure.

図5および図6に示すように、最外側の小梁36の上側には手摺50が設けてあり、最外側の小梁36と支柱18との間には傾斜した歩廊支柱52が設けてある。また、複数本のパネルサポート54が小梁36および上弦材12上に立設してある。このパネルサポート54上には平面視で格子枠状の架台56が設けてあり、架台56には複数枚の矩形平面状の太陽光パネル22が並設して取り付けてある。ここで、上弦材12が上に凸状に湾曲した形態であることから、複数枚で構成される太陽光パネル22も上弦材12の形態に沿って側面視で近似的に上に凸状に湾曲するように配置してもよいし、受光効率を高めるために、太陽光パネル22の各受光面22aが同一方向を向くように平面的に配置してもよい。   As shown in FIGS. 5 and 6, a handrail 50 is provided on the upper side of the outermost beam 36, and an inclined corridor column 52 is provided between the outermost beam 36 and the column 18. . A plurality of panel supports 54 are erected on the small beam 36 and the upper chord material 12. On the panel support 54, a grid frame-like gantry 56 is provided in plan view, and a plurality of rectangular planar solar panels 22 are mounted side by side on the gantry 56. Here, since the upper chord material 12 is in a form that is convexly convex upward, the solar panel 22 constituted by a plurality of sheets is also approximately convex upward in a side view along the form of the upper chord material 12. You may arrange | position so that it may curve, and in order to improve light reception efficiency, you may arrange | position planarly so that each light-receiving surface 22a of the solar panel 22 may face the same direction.

なお、本実施の形態の格子枠状の架台56では、図示しないアクチュエータで所定のパネルサポート54を伸縮あるいは回転等させることで架台56の傾斜角度θを変更し、太陽光パネル22の受光面22aの向きを変更自在に構成してある。ここで、太陽光パネル22の受光面22aを太陽の高度に追従するようにしておくことが発電効率上望ましいことから、予め計算等によって当該地点における時節ごとの太陽の高度を割り出しておき、太陽光パネル22の受光面22aの向きをこの太陽の高度に追従可能に構成するようにしてもよい。   In the grid frame-like gantry 56 of the present embodiment, the inclination angle θ of the gantry 56 is changed by extending or contracting or rotating a predetermined panel support 54 with an actuator (not shown), and the light receiving surface 22a of the solar panel 22 is changed. The direction of the can be freely changed. Here, since it is desirable in terms of power generation efficiency to make the light receiving surface 22a of the solar panel 22 follow the solar altitude, the solar altitude at each time point at the relevant point is calculated in advance by calculation or the like. You may make it comprise so that the direction of the light-receiving surface 22a of the optical panel 22 can track this solar altitude.

図7、図8および図9はヒンジ24の部分詳細図である。これらの図に示すように、ヒンジ24には、下弦材14を構成する2本の第一下弦材14aと、2本の第二下弦材14bと、1本の第三下弦材14cの各端部がそれぞれ回転自在に固定されている。また、各ラチス材16は、その下端部に設けた連結プレート58を介してヒンジ24に接合されている。   7, 8 and 9 are partial detailed views of the hinge 24. FIG. As shown in these drawings, the hinge 24 has two first lower chord members 14a, two second lower chord members 14b, and one third lower chord member 14c constituting the lower chord member 14. Each end is fixed rotatably. Each lattice material 16 is joined to the hinge 24 via a connecting plate 58 provided at the lower end thereof.

上記の実施の形態において、上弦材12はアーチ材として機能するため、材質としては、例えば環境への配慮より間伐材から製作される集成材を使用することが可能である。このように構成すれば、サスペンアーチ構造による環境に配慮した合理的かつ安定した空中太陽光発電システムを提供することができる。集成材としては、例えばエコアコールウッド(登録商標)などの高耐久性木材を用いるようにしてもよい。また、集成材に取り付けられる接合金物には耐久性を確保するために防錆処理を行うことが好ましい。なお、上弦材12はアーチ材であることから、集成材を用いる代わりに、例えば圧縮力に優れた軽量鉄骨構造なども採用可能であることはいうまでもない。   In the above embodiment, since the upper chord material 12 functions as an arch material, it is possible to use, for example, a laminated material manufactured from a thinned material for consideration of the environment. If comprised in this way, the rational and stable air solar power generation system which considered the environment by a suspension arch structure can be provided. As the laminated material, for example, highly durable wood such as Ecocore Wood (registered trademark) may be used. Moreover, it is preferable to perform a rust-proofing process in order to ensure durability to the joint metal fitting attached to a laminated material. In addition, since the upper chord material 12 is an arch material, it cannot be overemphasized that the lightweight steel frame structure etc. which were excellent in the compressive force etc. are employable instead of using a laminated material.

以上説明したように、本発明に係る空中太陽光発電システムによれば、上に凸状に湾曲して圧縮力が作用するようにしたアーチ型の上弦材と、前記上弦材と端部同士で接合し、下に凸状に湾曲して引張力が作用するようにしたサスペンション型の下弦材と、前記上弦材と前記下弦材とを連結するラチス材と、前記上弦材と前記下弦材とを接合する接合端部を支持する支柱とからなり、前記接合端部で前記上弦材の圧縮力と前記下弦材の引張力を相殺するサスペンアーチ構造と、前記上弦材に設けた太陽光パネルとを備えるので、サスペンアーチ構造の上弦材に太陽光パネルを設けることにより、太陽光パネルを地表面や水表面から一定の間隔をあけて上方の空中に設置してなる空中太陽光発電システムを提供することができるという効果を奏する。また、立地地点の地盤の傾斜や支持力不足などといった、地上設置方式では不利な地盤条件として適用困難と判断される場合であっても、本発明では太陽光パネルを空中に設置するので立地地点の地盤条件の影響を受けることなく容易に適用可能である。さらに、海岸部における津波、高潮に対する安全性が高いという効果も見込める。   As described above, according to the aerial photovoltaic power generation system according to the present invention, the arch-type upper chord material that is convexly curved and compressive force is applied, and the upper chord material and the end portions A suspension-type lower chord material joined and curved downward so that a tensile force acts, a lattice material connecting the upper chord material and the lower chord material, and the upper chord material and the lower chord material A suspension arch structure that includes a support column that supports a joining end portion to be joined, cancels the compressive force of the upper chord member and the tensile force of the lower chord member at the joining end portion, and a solar panel provided on the upper chord member. By providing a solar panel on the upper chord material of the suspension arch structure, an aerial photovoltaic power generation system is provided in which the solar panel is installed in the air above the ground surface and the water surface at a certain interval. The effect that you can That. In addition, even if it is judged that it is difficult to apply as an unfavorable ground condition in the ground installation method, such as the inclination of the ground at the location point or lack of support capacity, the solar cell panel is installed in the air in the present invention, so the location point It can be easily applied without being affected by the ground conditions. In addition, it can be expected to be highly safe against tsunamis and storm surges on the coast.

以上のように、本発明に係る空中太陽光発電システムは、地表面や水表面から一定の間隔をあけて上方の空中に太陽光パネルを配置し、この太陽光パネルで太陽光を受光して発電するようにした空中太陽光発電に有用であり、特に、発電立地地点の地盤の傾斜や支持力不足などといった、地上設置方式では不利な地盤条件と判断される地点に適している。   As described above, the aerial photovoltaic power generation system according to the present invention arranges a solar panel in the air above the ground surface or water surface at a certain interval, and receives sunlight with this solar panel. It is useful for aerial solar power generation that generates power, and is particularly suitable for sites that are judged to be unfavorable ground conditions in the ground installation method, such as the slope of the ground at the power generation site and lack of support.

10 空中太陽光発電システム
12 上弦材
14 下弦材
14a 第一下弦材
14b 第二下弦材
14c 第三下弦材
16 ラチス材
18 支柱
20 接合端部
22 太陽光パネル
22a 受光面
24 ヒンジ
26 コンクリート基礎
28 水平材
30 補強プレート
32 端横桁
34 中間横桁
36 小梁
38 パンチングメタル
40 グレーチング
42 ゴム支承
44 スタッドボルト
46 フランジプレート
48 孔あき鋼板ジベル
50 手摺
52 歩廊支柱
54 パネルサポート
56 架台
58 連結プレート
GL 地表面
θ 傾斜角度
DESCRIPTION OF SYMBOLS 10 Aerial solar power generation system 12 Upper chord material 14 Lower chord material 14a 1st lower chord material 14b 2nd lower chord material 14c 3rd lower chord material 16 Lattice material 18 Support | pillar 20 Joining end part 22 Solar panel 22a Light receiving surface 24 Hinge 26 Concrete foundation 28 Horizontal material 30 Reinforcement plate 32 End cross beam 34 Intermediate cross beam 36 Cross beam 38 Punching metal 40 Grating 42 Rubber bearing 44 Stud bolt 46 Flange plate 48 Perforated steel plate gibber 50 Handrail 52 Walkway post 54 Panel support 56 Base 58 Connection plate GL Ground Surface θ Inclination angle

Claims (1)

上に凸状に湾曲して圧縮力が作用するようにしたアーチ型の上弦材と、
前記上弦材と端部同士で接合し、下に凸状に湾曲して引張力が作用するようにしたサスペンション型の下弦材と、
前記上弦材と前記下弦材とを連結するラチス材と、
前記上弦材と前記下弦材とを接合する接合端部を支持する支柱とからなり、
前記接合端部で前記上弦材の圧縮力と前記下弦材の引張力を相殺するサスペンアーチ構造と、
前記上弦材に設けた太陽光パネルとを備え
前記太陽光パネルを前記上弦材に設けた架台に取り付け、前記架台の傾斜角度を変更することで前記太陽光パネルの受光面の向きを変更自在に構成したことを特徴とする空中太陽光発電システム。
An arch-shaped upper chord material that is convexly curved upward and has a compressive force acting on it,
Suspension-type lower chord material joined at the upper chord material and the ends, curved downwardly so that a tensile force acts,
A lattice material connecting the upper chord material and the lower chord material;
It consists of struts that support the joint end that joins the upper chord material and the lower chord material,
A suspension arch structure that offsets the compressive force of the upper chord member and the tensile force of the lower chord member at the joint end;
A solar panel provided on the upper chord material ,
An aerial photovoltaic power generation system , wherein the solar panel is attached to a gantry provided on the upper chord member, and the direction of the light receiving surface of the solar panel is changeable by changing an inclination angle of the gantry. .
JP2012274934A 2012-12-17 2012-12-17 Aerial solar power generation system Expired - Fee Related JP6065207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012274934A JP6065207B2 (en) 2012-12-17 2012-12-17 Aerial solar power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012274934A JP6065207B2 (en) 2012-12-17 2012-12-17 Aerial solar power generation system

Publications (2)

Publication Number Publication Date
JP2014118749A JP2014118749A (en) 2014-06-30
JP6065207B2 true JP6065207B2 (en) 2017-01-25

Family

ID=51173827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012274934A Expired - Fee Related JP6065207B2 (en) 2012-12-17 2012-12-17 Aerial solar power generation system

Country Status (1)

Country Link
JP (1) JP6065207B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6339903B2 (en) * 2014-09-09 2018-06-06 明友機工株式会社 Solar power generation equipment
JP6451383B2 (en) * 2015-02-16 2019-01-16 株式会社大林組 Horizontal structure
KR102162861B1 (en) * 2018-08-31 2020-10-07 (주)세명이앤씨 Air Catchment Area Solar Cell Ggenerating Structure With Deflection Prevention Structure
KR102312987B1 (en) * 2021-03-31 2021-10-15 주식회사 리쏠 Arch type solar device using assembled frame

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2882541B2 (en) * 1990-08-01 1999-04-12 東急建設株式会社 A method of mounting a lifting device and a method of joining frame members in a frame material lift-up method
JP5120074B2 (en) * 2008-05-30 2013-01-16 株式会社大林組 Structure composed of variable truss structure and method for moving panel member following movement of variable truss structure

Also Published As

Publication number Publication date
JP2014118749A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
CN205647362U (en) Large -span prestressing force cable photovoltaic support
JP6065207B2 (en) Aerial solar power generation system
GB2526269A (en) Solar-collector roofing assembly
JP5912098B2 (en) Solar power panel
JP5079919B2 (en) Planar body support frame and solar power generation device
US10615738B2 (en) Photovoltaic solar array support structure
JP3180791U (en) Installation stand for photovoltaic panels
KR100905069B1 (en) Solar beam module support fundamental file
KR20140147701A (en) Solar photovoltaic panel install mount and power sale distribution apparatus
EP2702217B1 (en) A wind turbine tower made of wood and a method of erection thereof
JP5638221B2 (en) Solar power plant
JP2014005657A (en) Aerial photovoltaic power generator
KR20130039826A (en) Supporting structure and contruction method of the same for marine wind turbine
JP2015086654A (en) Truss beam frame for solar panel and assembling method using the same
CN212336314U (en) Large-span cable net structure supported by self-balancing arch truss
KR102524688B1 (en) Multipurpose solar energy system and construction method thereof
JP2014148820A (en) Installation device of solar battery array
JP3178805U (en) Solar power panel layout
JP6017261B2 (en) Stand
KR101423450B1 (en) Panel support mounting
JP6021588B2 (en) Stand
JP2008266897A (en) Pedestal cover structure of base-isolated building
KR102466805B1 (en) Solar cell generating system using foundation reinforcement device with duplex type and method for installing thereof
KR102162861B1 (en) Air Catchment Area Solar Cell Ggenerating Structure With Deflection Prevention Structure
CN220754734U (en) Photovoltaic fixed bolster that reverse quadrangular pyramid supported

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161207

R150 Certificate of patent or registration of utility model

Ref document number: 6065207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees