JP6064224B2 - Seismic isolation material - Google Patents
Seismic isolation material Download PDFInfo
- Publication number
- JP6064224B2 JP6064224B2 JP2013001316A JP2013001316A JP6064224B2 JP 6064224 B2 JP6064224 B2 JP 6064224B2 JP 2013001316 A JP2013001316 A JP 2013001316A JP 2013001316 A JP2013001316 A JP 2013001316A JP 6064224 B2 JP6064224 B2 JP 6064224B2
- Authority
- JP
- Japan
- Prior art keywords
- seismic isolation
- coil spring
- seismic
- cylindrical
- control linkage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002955 isolation Methods 0.000 title claims description 100
- 239000000463 material Substances 0.000 title claims description 15
- 230000002093 peripheral effect Effects 0.000 claims description 12
- 230000007704 transition Effects 0.000 claims description 9
- 238000010276 construction Methods 0.000 claims description 5
- 230000000087 stabilizing effect Effects 0.000 claims description 4
- 230000033001 locomotion Effects 0.000 description 36
- 230000000694 effects Effects 0.000 description 5
- 230000008602 contraction Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 206010044565 Tremor Diseases 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Vibration Prevention Devices (AREA)
Description
本発明は、地震震動発生面側と免震対象部材側との間に介在させることに依って、地震発生時において免震作用が奏されるようにした免震部材に関する。 The present invention relates to a seismic isolation member that is provided between a seismic vibration generating surface side and a seismic isolation target member side so that a seismic isolation effect is exhibited when an earthquake occurs.
従来、例えば地震に対する免震化を図る機構において、地震震動発生面側に位置する平面円形状の皿状基盤の上面に対して、免震対象部材側に位置する球体を、適宜スプリングを介して転動可能に圧接させ、地震発生時には当該球体を転動させることに依って、その震動を免震対象部材側に伝えないようにする,所謂免震作用が奏されるように構成した免震部材がある(例えば、特許文献1参照。)。 Conventionally, for example, in a mechanism for seismic isolation with respect to an earthquake, a sphere located on the seismic isolation target member side is appropriately connected to a top surface of a planar circular plate-like base located on the seismic vibration generating surface side through an appropriate spring. The seismic isolation system is configured so as to have a so-called seismic isolation effect that prevents the vibration from being transmitted to the seismic isolation target side by rolling the ball so that it can roll when the earthquake occurs. There are members (see, for example, Patent Document 1).
上記したような免震部材であると、通常の地震には対応できるが、長周期地震動を伴う地震に対しては対応不能とされた。 The seismic isolation member as described above can cope with ordinary earthquakes, but cannot cope with earthquakes with long-period ground motion.
すなわち、地震には短周期地震動(周期1秒前後)と長周期地震動(周期5秒以上)とがあり、上記のような免震部材であると、縦揺れ的振動である直下型地震と、細かな横揺れである短周期地震動に対する対応は可能である。 然し乍、極めてゆっくりとし、かつ大きな横揺れを伴うな振動である長周期地震動が発生した場合は、その振幅が大きいため、皿状基盤内から球体が飛び出してしまい、当該大きな振幅に対応できず、また、対応できるだけのサイズのものを用いた場合は、球体の原位置復帰運動に齟齬をきたしたり、円滑性を損なったりすることとなった。 That is, there are short-period ground motion (around 1 second) and long-period ground motion (5 seconds or more) in the earthquake. It is possible to cope with short-period ground motions that are fine rolls. However, if a long-period ground motion, which is extremely slow and does not cause a large roll, occurs, the amplitude of the long-period ground motion will cause the sphere to jump out of the dish-shaped base, and the large amplitude cannot be accommodated. In addition, when a size that can be accommodated is used, the sphere returns to its original position, and smoothness is impaired.
そのため従来、免震部材製造業者においては、短周期地震動用と長周期地震動用の両免震部材の開発製造を行わなければならず、必然、開発費・製造費・設置費等に関するコストの高騰性が伴うことを余儀なくされた。 For this reason, conventional seismic isolation material manufacturers have had to develop and manufacture seismic isolation members for both short-period ground motion and long-period ground motion, which inevitably resulted in rising costs related to development, manufacturing, and installation costs. Forced to accompany sex.
本発明はこのような従来の問題点の解消化を企図した、新しい形態の「免震部材」と言う、新規製品の提供を図ったものである。 The present invention is intended to provide a new product called a “seismic isolation member” in a new form, which is intended to eliminate such a conventional problem.
本発明は請求項1に記載のように、筒状空所1aを中央部に形成すると共に当該筒状空所1aを中心としてその四隅部に凹面鏡状を呈する免震制御用上向き凹部7を形成した下位側基体1を地震震動発生面側Aの上面に取付け、筒状空所2aを中央部に形成すると共に当該筒状空所2aを中心としてその四隅部に凹面鏡状を呈する免震制御用下向き凹部8を形成した上位側基体2を、当該両筒状空所1a,2aを同軸的としかつ上下対称的な対向状態で免震対象部材側Bの下面に取付け、当該下位側基体1と上位側基体2とを連結するためのゴム等伸縮自在な材料で製した制御用連桿3の上下両端部分を、上記両筒状空所1a,2a内において弾力的に引き伸ばし自在とするように取付け、更に、回転自在な球体9aを有する下側滑子9と、回転自在な球体10aを有する上側滑子10とを、コイルスプリング11を介して所定間隔を保って連結して成る免震用滑子具12を、前記した上向き凹部7と下向き凹部8の各間に弾力的に圧接した状態で位置させると共に、各免震用滑子具12と、その中心に位置する制御用連桿3とを連係させるため同期用支持枠桿13を、これらの折半部において結束的に取付けて成る免震部材に係る。 According to the present invention, the cylindrical cavity 1a is formed at the center and the upward recesses 7 for seismic isolation control having concave mirror shapes at the four corners with the cylindrical cavity 1a as the center are formed. The lower base 1 is attached to the upper surface of the seismic vibration generating surface side A, and the cylindrical space 2a is formed in the central portion, and at the four corners of the cylindrical space 2a, concave mirrors are formed at the four corners. The upper base body 2 formed with the downward concave portion 8 is attached to the lower surface of the seismic isolation target member side B with both the cylindrical cavities 1a and 2a being coaxial and opposed vertically. The upper and lower ends of the control linkage 3 made of a stretchable material such as rubber for connecting to the upper base 2 are elastically extended in the cylindrical cavities 1a and 2a. Mounting, and further, a lower slider 9 having a rotatable sphere 9a and an upper slider having a rotatable sphere 10a. 10 is positioned in a state in which it is elastically pressed between each of the upward concave portion 7 and the downward concave portion 8. At the same time, in order to link each seismic isolation slider 12 with the control linkage 3 located at the center thereof, a synchronization support frame 13 is attached to the seismic isolation member in a bundled manner in these folding halves. Related.
本発明は請求項2に記載のように、開口部上端寄り部分に顎状周縁1bを具えた筒状空所1aを中央部に形成した下位側基体1を、地震震動発生面側Aの上面に取付け、開口部下端寄り部分に顎状周縁2bを具えた筒状空所2aを中央部に形成した上位側基体2を、当該両筒状空所1a,2aを同軸とするような対向状態で免震対象部材側Bの下面に取付け、上端及び下端にスプリング受け盤3a及び3bを設けかつゴム等伸縮自在な材料で製した制御用連桿3を、上記対向状態にある下位側基体1と上位側基体2の各筒状空所1a,2a内を貫通するように位置させ、上端のスプリング受け盤3aと上位側基体2の顎状周縁2b間に第二コイルスプリング5を介在させると共に、下端のスプリング受け盤3bと下位側基体1の顎状周縁1b間に第三コイルスプリング6を介在させることに依って、弾力的かつ引出し自在に支持し、また、必要に応じて、当該制御用連桿3を全長に亘って覆うようにスプリング受け盤3a及び3b間に第一コイルスプリング4を取付け、第二コイルスプリング5と第三コイルスプリング6の弾力的強さを異ならせると共に、両者の弾力性は第一コイルスプリング4と制御用連桿3自体の弾力的強さを超えないように構成した請求項1に記載の免震部材を実施の態様とする。 According to the present invention, as described in claim 2, the lower base body 1 in which the cylindrical space 1a having the jaw-shaped peripheral edge 1b at the upper end portion of the opening is formed in the central portion is formed on the upper surface of the seismic vibration generating surface side A. The upper base body 2 formed in the center with a cylindrical cavity 2a having a jaw-shaped peripheral edge 2b near the lower end of the opening is opposed to each other so that the cylindrical cavities 1a and 2a are coaxial. The control base 3 is attached to the lower surface of the seismic isolation target member side B, provided with spring receiving discs 3a and 3b at the upper and lower ends, and made of a stretchable material such as rubber. The upper coil 2 is positioned so as to penetrate through the cylindrical cavities 1a and 2a of the upper base 2, and the second coil spring 5 is interposed between the upper end spring receiving plate 3a and the upper peripheral edge 2b of the upper base 2. The third coil spring 6 is interposed between the spring receiving plate 3b at the lower end and the jaw-shaped peripheral edge 1b of the lower base 1 Therefore, the first coil spring 4 is attached between the spring receiving discs 3a and 3b so as to support elastically and withdrawable and cover the control linkage 3 over the entire length, if necessary. The two-coil spring 5 and the third coil spring 6 have different elastic strengths, and the elasticity of the two coil springs 5 and the control linkage 3 itself is configured not to exceed the elastic strength of the first coil spring 4 and the control linkage 3 itself. The seismic isolation member according to Item 1 is an embodiment.
本発明は請求項3に記載のように、上向き凹部7と下向き凹部8の鏡面として、球体との定位置安定用たる中央凹部aを中心部に形成すると共に、これと同心円状に順次連なる複数の球体転移用円弧状溝b…を所要数連設するように構成した請求項1に記載の免震部材を実施の態様とする。 In the present invention, as the mirror surface of the upward concave portion 7 and the downward concave portion 8, a central concave portion a for stabilizing a fixed position with a spherical body is formed in the central portion, and a plurality of concentric circles are successively connected to the central concave portion. The seismic isolation member according to claim 1, wherein the required number of arc-shaped grooves b for spherical transition are provided continuously.
本発明は請求項4に記載のように、地震震動発生面側Aを地盤とし、免震対象部材側Bとして建物等構築部材として成る請求項1乃至請求項3の何れかに記載の免震用部材。 The present invention provides a seismic isolation system according to any one of claims 1 to 3, wherein the seismic vibration generating surface side A is the ground, and the seismic isolation target member side B is a construction member such as a building. Materials.
本発明は請求項1に記載のような構成を採用したから、構成が極めてシンプルな形態にも関わらず、良好なる免震作用を奏させることができる。 そして、下位側基体1と上位側基体2とを連結するためのゴム等伸縮自在な材料で製した制御用連桿3の上下両端部分を、上記両筒状空所1a,2a内において弾力的に引き伸ばし自在とするように取付けることに依り、長周期地震動のような大きく揺れ動く震動に対しても当該制御用連桿3の弾力的引き伸ばし作用に基づき免震対応の可能化が図られると共に、免震作動後の原位置復帰作動も極めて円滑に果たされる。 Since the present invention employs the configuration as set forth in claim 1, it is possible to achieve a good seismic isolation function despite the extremely simple configuration. The upper and lower ends of the control linkage 3 made of a stretchable material such as rubber for connecting the lower base 1 and the upper base 2 are elastic in the cylindrical cavities 1a and 2a. By installing the actuator so that it can be stretched freely, seismic isolation can be made possible even for trembling vibrations such as long-period ground motion based on the elastic stretching action of the control linkage 3. The in-situ return operation after the earthquake is also performed very smoothly.
更に、回転自在な球体9aを有する下側滑子9と、回転自在な球体10aを有する上側滑子10とを、コイルスプリング11を介して所定間隔を保って連結して成る免震用滑子具12を、前記した上向き凹部7と下向き凹部8の各間に弾力的に圧接した状態で位置させると共に、各免震用滑子具12と、その中心に位置する制御用連桿3とを連係させるため同期用支持枠桿13を、これらの折半部において結束的に取付けるように構成したから、各免震用滑子具12の下方部分の働き、次いで上方部分の働きと言う2段階的な働きに基づき、短周期地震動と長周期地震動の両方に対する免震作用に適合することができる。 Furthermore, a seismic isolation slider comprising a lower slider 9 having a rotatable sphere 9a and an upper slider 10 having a rotatable sphere 10a connected via a coil spring 11 at a predetermined interval. The tool 12 is positioned in a state where it is elastically pressed between each of the upward recess 7 and the downward recess 8 described above, and each of the seismic isolation sliders 12 and the control linkage 3 located at the center thereof are provided. Since the synchronization support frame た め 13 is constructed so as to be attached together in these folding halves for linking, the function of the lower part of each seismic isolation sliding tool 12 is followed by the function of the upper part. Based on this function, it can adapt to seismic isolation for both short-period ground motion and long-period ground motion.
そして、本発明は、建物または橋の橋脚等、地表上の各種構築物に対する免震部材としての使用、または、墓石または石灯篭の中間材または土台に対する免震材としての使用、更には、ショーケース、各種棚、フロアー上の美術品或いはコンピュータ等に対する免震用部材としての利用を図ることも可能化される。 And this invention is used as a seismic isolation member for various structures on the surface of the ground such as a pier of a building or a bridge, or as a seismic isolation material for an intermediate material or foundation of a tombstone or a stone lantern, and a showcase In addition, it can be used as a seismic isolation member for various kinds of shelves, artworks on the floor or computers.
本発明は請求項2記載のような構成を採用したから、下位側及び上位側の基体1及び2の連結している制御用連桿3が、地震発生時の揺れ動きに対する伸縮作動が極めてスムーズに行われ、顕著な安定性を保った免震作用を奏することができる。 Since the present invention adopts the configuration as described in claim 2, the control linkage 3 connected to the lower and upper bases 1 and 2 is extremely smooth in the expansion and contraction operation with respect to the shaking motion at the time of the occurrence of the earthquake. The seismic isolation action is performed with remarkable stability.
更に、第二コイルスプリング5と第三コイルスプリング6の弾力的強さを異ならせると共に、両者の弾力性は第1コイルスプリングと制御用連桿3自体の弾力的強さを超えないように構成することに依り、弱い長周期地震動の場合は第二コイルスプリング5と第三コイルスプリング6の何れか一方に依る伸縮に基づく免震作用が奏され、これより強い地震動の場合において他方のコイルスプリングの伸縮が行われ、更に強い地震動の場合は制御用連桿3自体の伸縮性が発揮されると言うように、地震動の強さに連動した段階的免震作用の対応がなされることとなる。 Further, the second coil spring 5 and the third coil spring 6 are made to have different elastic strengths, and the elasticity of both does not exceed the elastic strength of the first coil spring and the control linkage 3 itself. Therefore, in the case of weak long-period ground motion, the seismic isolation action based on expansion / contraction by either one of the second coil spring 5 and the third coil spring 6 is exerted, and in the case of stronger ground motion, the other coil spring In the case of a strong earthquake motion, the control linkage 3 itself exhibits the elasticity, so that a step-by-step seismic isolation action linked to the strength of the earthquake motion is made. .
本発明は請求項3に記載のような構成、すなわち、上向き凹部7と下向き凹部8の鏡面として、球体との定位置安定用たる中央凹部aを中心部に形成すると共に、これと同心円状に順次連なる複数の球体転移用円弧状溝b…を所要数連設するように構成すことに依り、
中央凹部aからその外側にある球体転移用円弧状溝b…への乗り越え移動、更には、次段の滑動子転移用円弧状溝3bへの乗り越え移動に際し、水平方向の移動抵抗と、当該乗り越えるための垂直方向の移動抵抗との、二つの抵抗力が働くこととなる。 そして、このような移動抵抗力は、長周期地震動に対する免震作用のための抵抗力として作用することとなり、良好なる免震効果が奏される。
The present invention has a configuration as described in claim 3, that is, as a mirror surface of the upward concave portion 7 and the downward concave portion 8, a central concave portion a for stabilizing a fixed position with a sphere is formed in the central portion, and concentrically with this. By configuring a plurality of sphere transition arc-shaped grooves b, which are successively connected, to be provided in a required number,
When moving over from the central recess a to the outer circular arc-shaped groove b for sphere transition, and further over to the next stage of the slider-transfer arc-shaped groove 3b, the horizontal movement resistance and the overcoming movement are overcome. Therefore, two resistance forces, ie, a vertical movement resistance, will work. And such a movement resistance force will act as a resistance force for the seismic isolation action with respect to a long period ground motion, and a favorable seismic isolation effect is show | played.
本発明は請求項4に記載のような構成、すなわち、地震震動発生面側Aを地盤とし、免震対象部材側Bとして建物等構築部材とすることに依り、一般の建築用免震部材として広くその実施が図られる。 The present invention is configured as described in claim 4, that is, the seismic vibration generating surface side A is the ground, and the seismic isolation target member side B is a construction member such as a building. It is widely implemented.
図面は本発明に係る免震部材を、地震震動発生面側Aと免震対象部材側Bとの間に取付けた状態を表したものである。 The drawing shows a state in which the seismic isolation member according to the present invention is attached between the seismic vibration generating surface side A and the seismic isolation target member side B.
図1において、1はその中央部に筒状空所1aを形成した下位側基体であって、地震震動発生面側Aに固定してある。 そして、当該筒状空所1aの開口部上端寄り部分には、顎状周縁1bを設けると共にこれに連なるラッパ状開口部1cを形成してある。 In FIG. 1, reference numeral 1 denotes a lower base body having a cylindrical space 1a formed at the center thereof, which is fixed to the seismic vibration generating surface side A. In addition, a jaw-shaped peripheral edge 1b is provided at a portion near the upper end of the opening of the cylindrical space 1a, and a trumpet-shaped opening 1c is formed continuously therewith.
2はその中央部に筒状空所2aを形成した上位側基体であって、免震対象部材側Bに固定してある。 そして、当該筒状空所2aの開口部下端寄り部分には、顎状周縁2bを設けると共にこれに連なるラッパ状開口部2cを形成してある。 なお、このようなラッパ状開口部1c,2cを設けたのは、後述する制御用連桿3の伸長屈曲的変形を阻害しないようにするためのものである。 Reference numeral 2 denotes an upper base having a cylindrical space 2a formed at the center thereof, which is fixed to the seismic isolation target member side B. In addition, a jaw-shaped peripheral edge 2b is provided at a portion near the lower end of the opening of the cylindrical space 2a, and a trumpet-shaped opening 2c is formed continuously therewith. The trumpet-shaped openings 1c and 2c are provided so as not to hinder the expansion / bending deformation of the control linkage 3 described later.
また、上記した下位側基体1と上位側基体2とはその両者の筒状空所1aと2aが同軸的となるように、また後述する免震制御用上向き凹部7と同下向き凹部8を含めて上下対称的にしてかつ所定間隔をたもった対向状態で、夫々地震震動発生面側Aと免震対象部材側Bに対して固定化するように構成してある。 Further, the lower base body 1 and the upper base body 2 include a cylindrical cavity 1a and 2a that are coaxial with each other and include an upward recess 7 for seismic isolation control and a downward recess 8 that will be described later. In this state, they are fixed to the seismic vibration generating surface side A and the seismic isolation target member side B, respectively, in a state of being vertically symmetrical and having a predetermined interval.
更に、上記した両基体1,2の地震震動発生面側Aと免震対象部材側Bに対するそれぞれの固定手段は、主として接着剤に依る固定を図るものである。 然し乍、これに限定されるものではなく、例えば螺子止め、楔止め、その他適宜な固定手段に依存する様に構成しても良い。 Further, the fixing means for the above-mentioned bases 1 and 2 to the seismic vibration generating surface side A and the seismic isolation target member side B are mainly intended to be fixed by an adhesive. However, the present invention is not limited to this, and may be configured to depend on, for example, screwing, wedge fastening, or other appropriate fixing means.
3はゴム材等可撓性材料で製した制御用連桿であって、その上端及び下端にはスプリング受け盤3a及び3bを設けると共に、当該スプリング受け盤3a及び3bの間には、制御用連桿3に対してその全長に亘って覆うように遊嵌させた第一コイルスプリング4を介在させ、その下端及び上端を夫々弾力的に受け止めるように構成してある。 当該第一コイルスプリング4は制御用連桿3の反り的弾力性の補強及びその復元に携わるものであり、両者共同して反り的強度の強化性、並びにその弾力性に基づく復元の迅速性を図るように構成してある。 然し乍、当該第一コイルスプリング4はこれを省略するように構成しても良い。 この場合、制御用連桿3の反り的弾力性の復元は当該制御用連桿3自体の復元力に依存することとなる。 3 is a control linkage made of a flexible material such as a rubber material, and provided with spring receiving discs 3a and 3b at its upper and lower ends, and between the spring receiving discs 3a and 3b for control purposes. The first coil spring 4 loosely fitted so as to cover the continuous rod 3 over its entire length is interposed, and the lower end and the upper end thereof are each elastically received. The first coil spring 4 is involved in the reinforcement of the warp elasticity of the control linkage 3 and its restoration. Together, the first coil spring 4 enhances the warp strength and the speed of restoration based on its elasticity. It is configured as shown. However, the first coil spring 4 may be configured to omit this. In this case, the restoration of the warping elasticity of the control linkage 3 depends on the restoring force of the control linkage 3 itself.
5は制御用連桿の上端寄りに介在させた第二コイルスプリング、6は制御用連桿の下端寄りに介在させた第三コイルスプリングであって、両者は前述したスプリング受け盤3aと顎状周縁2bの間、及び、スプリング受け盤3bと顎状周縁1bの間に、夫々弾力的に介在させるように構成してある。 そして、当該第二及び第三コイルスプリング5及び6は、既述した第一コイルスプリング4の外側に位置するような形態で設けられている。 これに依り、当該制御用連桿5は上下部分において弾力的かつ昇降自在な支持が成されるように構成してある。 Reference numeral 5 denotes a second coil spring interposed near the upper end of the control linkage, and reference numeral 6 denotes a third coil spring interposed near the lower end of the control linkage. It is configured so as to be elastically interposed between the peripheral edge 2b and between the spring receiving disc 3b and the jaw-shaped peripheral edge 1b. The second and third coil springs 5 and 6 are provided in such a form as to be located outside the first coil spring 4 described above. Accordingly, the control linkage 5 is configured to be elastically and vertically movable supported at the upper and lower portions.
ところで、上述した制御用連桿3と、第一乃至第三コイルスプリング3.4.5とは、夫々その弾力的強さを異ならせるように構成してある。 例えば、一つのケースとして示せば、弾力性が弱い順に、第二コイルスプリング5、第三コイルスプリング6、制御用連桿3、第一コイルスプリング4とするように設定する。 さらに具体的に述べれば、第二コイルスプリング5と第三コイルスプリング6の弾力的強さを異ならせると共に、両者の弾力性は第1コイルスプリングと制御用連桿3自体の弾力的強さを超えないように設定する。 これにより、地震発生に伴い弾力性が弱い部分から弾力的変形が発生し、後述するような作用を奏する段階的な免震効果を発揮することとなる。 By the way, the control linkage 3 and the first to third coil springs 3.4.5 described above are configured to have different elastic strengths. For example, if it shows as one case, it sets so that it may be set as the 2nd coil spring 5, the 3rd coil spring 6, the control linkage 3, and the 1st coil spring 4 in order with weak elasticity. More specifically, the elastic strengths of the second coil spring 5 and the third coil spring 6 are made different from each other, and the elasticity of the two coil springs is the same as that of the first coil spring and the control linkage 3 itself. Set not to exceed. Thereby, elastic deformation is generated from a portion having low elasticity due to the occurrence of an earthquake, and a step-by-step seismic isolation effect exhibiting an action as described later is exhibited.
次に、本発明に係る免震部材の骨子的構成は下記のような構成にある。 これは前記した下位側基体1であるが、その筒状空所1aを中心として、換言するとゴム材等可撓性材料製の制御用連桿3を中心として、その四隅部に向かう放散線状にしてかつ等位置である四か所に凹面鏡状を呈する免震制御用上向き凹部7を形成してある。 Next, the essential structure of the seismic isolation member according to the present invention is as follows. This is the above-described lower-side base body 1, but with the cylindrical space 1 a as the center, in other words, with the control connection 3 made of a flexible material such as a rubber material as the center, the radiation lines toward the four corners. In addition, seismic isolation control upward recesses 7 having a concave mirror shape are formed at four equal positions.
一方、前記した上位側基体2であるが、その筒状空所2aを中心として、換言するとゴム材等可撓性材料製の制御用連桿3を中心として、その四隅部に向かう放散線状にしてかつ等位置である四か所に凹面鏡状を呈する免震制御用下向き凹部8を形成してある。 従って、下位側基体1と上位側基体2とは上下対称的に位置するような形態に構成してある。 On the other hand, although it is the above-mentioned upper-side base body 2, it is a dissipative line shape toward the four corners centering on the cylindrical space 2a, in other words, centering on the control rod 3 made of a flexible material such as rubber. In addition, seismic isolation control downward recesses 8 having a concave mirror shape are formed at four equal positions. Accordingly, the lower base 1 and the upper base 2 are configured so as to be positioned symmetrically in the vertical direction.
9は下端に回転自在な球体9aを取付けた下側滑子、10は上端に回転自在な球体10aを取付けた上側滑子であって、両者はコイルスプリング11を介して所定間隔を保って連結することに依って、一つの免震用滑子具12を構成している。 9 is a lower slider with a rotatable sphere 9a attached to the lower end, and 10 is an upper slider with a rotatable sphere 10a attached to the upper end, both of which are connected via a coil spring 11 at a predetermined interval. Therefore, one seismic isolation tool 12 is formed.
そして、その下側滑子9は前記した免震制御用上向き凹部7に対して、またその上側滑子10は下向き凹部8に対して夫々弾力的に圧接させた状態を保って移動可能とするような形態で保持してある。 The lower slider 9 is movable while maintaining the state in which it is elastically pressed against the upward recess 7 for seismic isolation control and the upper slider 10 is pressed against the downward recess 8 respectively. It is held in such a form.
13は同期用支持枠桿であって、図2に示すように、各免震用滑子具12と、その中心に位置する制御用連桿3とに連係させることに依り、これらすべての作動の同期性が保たれるように連係させるためのものである。 なお、図示の実施例にあっては当該同期用支持枠桿13の安定保持は、各免震用滑子具12のコイルスプリング11に密着させて嵌着することに依って行っているが、これ以外の形態であっても可とする。 As shown in FIG. 2, reference numeral 13 designates a support frame for synchronization. All of these operations are performed by linking each of the seismic isolation sliders 12 and the control linkage 3 located at the center thereof. It is for making it link so that the synchronicity may be maintained. In the embodiment shown in the drawings, the stable support frame rod 13 is stably held by being fitted in close contact with the coil spring 11 of each seismic isolation sliding tool 12, Other forms are acceptable.
ところで、図1に示す状態において、通常の地震である直下型地震及び短周期地震動を感知した場合は、同期用支持枠桿13が免震用滑子具12中央部で固定化してあるため、地震の震動は当該免震用滑子具12の下半部だけを揺れ動かすこととなり(図3参照)、これにより免震作用を奏することとなる。 この時、制御用連桿3の下半部が同方向に撓むと共に、その弾力性に基づく復元力で、免震用滑子具12の定位置復帰を促すこととなる。 By the way, in the state shown in FIG. 1, when a direct earthquake and a short period ground motion, which are normal earthquakes, are detected, the synchronization support frame 13 is fixed at the central part of the seismic isolation sliding tool 12, As for the earthquake vibration, only the lower half of the seismic isolation tool 12 is shaken (see FIG. 3), thereby providing the seismic isolation effect. At this time, the lower half of the control linkage 3 is bent in the same direction, and the restoring force based on the elasticity of the control linkage 3 prompts the home position return of the seismic isolation tool 12.
また、直下型地震の場合はコイルスプリング11の縦方向の揺れ動き(伸縮的揺れ動き)に基づきその震動の免震化が図られる。 Further, in the case of a direct type earthquake, the seismic isolation of the coil spring 11 is achieved based on the vertical swing motion (expandable swing motion) of the coil spring 11.
このようにして、通常多く発生する短周期地震動に伴う周期の短い横揺れ、及び直下型地震の場合の縦揺れ、これら両者の震動を伴う地震に対する免震作用が奏されることとなる。 In this way, a short-period roll accompanying a short-period ground motion that usually occurs frequently, and a vertical shake in the case of a direct earthquake, and a seismic isolation action for an earthquake that involves both of them are exhibited.
次に、長周期地震動に基づくゆっくりとした大きな横振れが発生した場合、図3に示すように、その震動幅が大きいため、免震用滑子具12の下半部が上向き凹部の外縁よりに至った時点でこれ以上の揺れ動きが出来ないため、従って、地震の震動力は図4に示すように、当該免震用滑子具12の上半部を下向き凹部8の外周寄りに至らせるような動きを生じさせ、これにより地震の大きな振幅に対応した免震作用が奏されることとなる。 Next, when a slow large lateral vibration based on long-period ground motion occurs, as shown in FIG. 3, the lower half of the seismic isolation tool 12 is more than the outer edge of the upward recess, as shown in FIG. Therefore, the seismic power of the earthquake brings the upper half of the seismic isolation sliding tool 12 downward toward the outer periphery of the recess 8 as shown in FIG. As a result, a seismic isolation action corresponding to the large amplitude of the earthquake is produced.
すなわち、長周期地震動に基づくゆっくりとした大きな横振れが発生した場合、その揺れの大きさに対応して、免震用滑子具12の下半部が上向き凹部の外縁寄りに至った時点でこれ以上の揺れ動きが出来ないため、引き続き、地震の震動力は当該免震用滑子具12の上半部を下向き凹部8の外周寄りに至らせるような動きを生じさせ(図4参照)、これにより地震の大きな振幅に対応した免震作用が奏される事となる。 That is, when a slow large lateral vibration based on long-period ground motion occurs, when the lower half of the seismic isolation sliding tool 12 approaches the outer edge of the upward recess, corresponding to the magnitude of the swing Since no further swinging motion is possible, the seismic power of the earthquake continues to cause a movement that brings the upper half of the seismic isolation slider 12 toward the outer periphery of the downward recess 8 (see FIG. 4), As a result, a seismic isolation action corresponding to the large amplitude of the earthquake is achieved.
この時、制御用連桿3も、これ自身が固有する弾力性と、これに掛け架した各スプリングの伸長力に基づき引き伸ばされる。 これに依り、当該免震用滑子具12に対する定位置復帰を促すような反発力が貯えられることとなる。 これらの作用に基づき長周期地震動における、既述した下向き凹部8による作用を伴う免震作用の実行が許容化される。 At this time, the control linkage 3 is also stretched based on its own elasticity and the extension force of each spring hung on it. Accordingly, a repulsive force that promotes a return to the home position with respect to the seismic isolation sliding tool 12 is stored. Based on these actions, the execution of the seismic isolation action with the action of the downward recess 8 described above in the long-period ground motion is permitted.
ところで、前述した免震制御用上向き凹部7と同下向き凹部8であるが、図面に示す実施例にあっては、中心部には球体9aと球体10aとの定位置安定用たる中央凹部aを中心部に形成すると共に、これと同心円状に順次連なる複数の球体転移用円弧状溝b…を所要数連設して成る凹面鏡状とするように構成してある(図5参照)。 By the way, the above-described upward recess 7 for seismic isolation control and the downward recess 8 are the same, but in the embodiment shown in the drawings, a central recess a for stabilizing the fixed positions of the sphere 9a and the sphere 10a is formed at the center. A concave mirror is formed by forming a required number of a plurality of sphere transition arc-shaped grooves b concentrically and successively formed in the central portion (see FIG. 5).
このような構成を採ることに依り、滑子具12が免震制御用盤体の中心部である中央凹部aからその外側にある球体転移用円弧状溝b…を順次乗り越えて移動することとなる。 By adopting such a configuration, the slider 12 moves from the central recess a which is the central part of the base for seismic isolation control to move over the circular arc transition groove b on the outer side sequentially. Become.
従って、本発明に係る免震部材が奏する作動は、中央凹部aからその外側にある球体転移用円弧状溝b…への乗り越え移動、更には、次段の滑動子転移用円弧状溝3bへの乗り越え移動に際し、水平方向の移動抵抗と、当該乗り越えるための垂直方向の移動抵抗との、二つの抵抗力が働くこととなる。 そして、このような移動抵抗力は、長周期地震動に対する免震作用のための抵抗力として作用することとなる。 従って、免震力の強化性が高められることとなる。 Therefore, the operation performed by the seismic isolation member according to the present invention moves over from the central recess a to the spherical transition arc-shaped groove b on the outer side, and further to the next-stage slider-transfer arc-shaped groove 3b. When moving over, two resistance forces, a horizontal movement resistance and a vertical movement resistance for overcoming, will work. Such movement resistance acts as resistance for seismic isolation against long-period ground motion. Accordingly, the seismic isolation strength can be enhanced.
ところで、本発明は地震震動発生面側Aを地表とし、免震対象部材側Bを建物等構築部材とすることに依り一般的な構築物に対する免震部材としての利用を主たる目的とするものである。 すなわち、本発明を例えばビル等の構築物に対する免震部材として用いる場合は、震震動発生面側A及び免震対象部材側B間に介在させ、このような介在点を所要数にして所要箇所に配置することに依り、当該構築物に対する免震作用が奏される。 By the way, the present invention is mainly intended for use as a seismic isolation member for general structures by using the seismic vibration generating surface side A as the ground surface and the seismic isolation target member side B as a construction member such as a building. . That is, when the present invention is used as a seismic isolation member for a structure such as a building, for example, it is interposed between the seismic vibration generating surface side A and the seismic isolation target member side B, and the number of such interposition points is a required number. Depending on the arrangement, the structure is seismically isolated.
然し乍、地震震動発生面側Aを建物のフロアーとし、免震対象部材側Bを美術品またはコンピュータ等保護対象物とすることに依り、これらに対する免震部材としての利用を図ることもできる。 However, the seismic vibration generating surface side A can be used as a floor of a building, and the seismic isolation target member side B can be a protected object such as art or a computer.
すなわち、本発明は建物等の構築部材に対する免震用としての使用以外、例えばフロアー上に載置する美術品、コンピュータ機具等に対する免震部材として用いることができるわけである。 That is, the present invention can be used as a seismic isolation member for, for example, a work of art or computer equipment placed on the floor, in addition to the use for seismic isolation for a construction member such as a building.
A 地震震動発生面側
B 免震対象部材側
1 下位側基体
1a 筒状空所
1b 顎状周縁
1c ラッパ状開口部
2 上位側基体
2a 筒状空所
2b 顎状周縁
2c ラッパ状開口部
3 制御用連桿
3a スプリング受け盤
3b スプリング受け盤
4 第一コイルスプリング
5 第二コイルスプリング
6 第三コイルスプリング
7 免震制御用上向き凹部
8 免震制御用下向き凹部
9 下側滑子
9a 球体
10 上側滑子
10a 球体
11 コイルスプリング
12 免震用滑子具
13 同期用支持枠桿
a 中央凹部
b 球体転移用円弧状溝
A Earthquake vibration side
B Seismic isolation object side 1 Lower substrate
1a Cylindrical void
1b jaw periphery
1c Trumpet-shaped opening 2 Upper substrate
2a Cylindrical void
2b jaw periphery
2c Trumpet-shaped opening 3 Control linkage
3a Spring receiving plate
3b Spring receiving plate 4 First coil spring 5 Second coil spring 6 Third coil spring
7 Seismic isolation control upward recess 8 Seismic isolation control downward recess 9 Lower slider
9a sphere
10 Upper slider
10a sphere
11 Coil spring
12 Seismic isolation tool
13 Support frame for synchronization
a Center recess
b Arc transition groove for spherical transition
Claims (4)
筒状空所(2a)を中央部に形成すると共に当該筒状空所(2a)を中心としてその四隅部に凹面鏡状を呈する免震制御用下向き凹部(8)を形成した上位側基体(2)を、当該両筒状空所(1a,2a)を同軸的としかつ上下対称的な対向状態で免震対象部材側(B)の下面に取付け、
当該下位側基体(1)と上位側基体(2)とを連結するためのゴム等伸縮自在な材料で製した制御用連桿(3)の上下両端部分を、上記両筒状空所(1a,2a)内において弾力的に引き伸ばし自在とするように取付け、
更に、回転自在な球体(9a)を有する下側滑子(9)と、回転自在な球体(10a)を有する上側滑子(10)とを、コイルスプリング(11)を介して所定間隔を保って連結して成る免震用滑子具(12)を、前記した上向き凹部(7)と下向き凹部(8)の各間に弾力的に圧接した状態で位置させると共に、
各免震用滑子具(12)と、その中心に位置する制御用連桿(3)とを連係させるため同期用支持枠桿(13)を、これらの折半部において結束的に取付けて成る免震部材。 A lower base body (1) in which a cylindrical cavity (1a) is formed in the center and an upward recess (7) for seismic isolation control is formed at the four corners of the cylindrical cavity (1a). ) Is attached to the upper surface of the seismic vibration generating side (A),
An upper base body (2) having a cylindrical cavity (2a) formed in the center and a seismic isolation control downward recess (8) having a concave mirror shape at the four corners around the cylindrical cavity (2a). ) Is attached to the bottom surface of the seismic isolation target member side (B) in a state where both the cylindrical cavities (1a, 2a) are coaxial and symmetrically opposed to each other,
The upper and lower ends of the control linkage (3) made of a stretchable material such as rubber for connecting the lower base (1) and the upper base (2) are connected to the two cylindrical spaces (1a , 2a) to be elastically stretchable within
Further, the lower slider (9) having a rotatable sphere (9a) and the upper slider (10) having a rotatable sphere (10a) are kept at a predetermined interval via a coil spring (11). And a seismic isolation tool (12) formed by connecting the upper and lower recesses (7) and (8) in a state of being elastically pressed against each other,
In order to link each seismic isolation tool (12) and the control linkage (3) located in the center thereof, a synchronizing support frame (13) is attached in a bundled manner in these folding halves. Seismic isolation member.
上端及び下端にスプリング受け盤(3a及び3b)を設けかつゴム等伸縮自在な材料で製した制御用連桿(3)を、上記対向状態にある下位側基体(1)と上位側基体(2)の各筒状空所(1a,2a)内を貫通するように位置させ、上端のスプリング受け盤(3a)と上位側基体(2)の顎状周縁(2b)間に第二コイルスプリング(5)を介在させると共に、下端のスプリング受け盤(3b)と下位側基体(1)の顎状周縁(1b)間に第三コイルスプリング(6)を介在させることに依って、弾力的かつ引出し自在に支持し、
また、必要に応じて、当該制御用連桿(3)を全長に亘って覆うようにスプリング受け盤(3a及び3b)間に第一コイルスプリング(4)を取付け、
第二コイルスプリング(5)と第三コイルスプリング(6)の弾力的強さを異ならせると共に、両者の弾力性は第一コイルスプリング(4)と制御用連桿(3)自体の弾力的強さを超えないように構成した請求項1に記載の免震部材。 A lower base (1) with a cylindrical cavity (1a) with a jaw-shaped peripheral edge (1b) at the top end of the opening is attached to the upper surface of the seismogenic surface (A). The upper base body (2) in which a cylindrical cavity (2a) having a jaw-shaped peripheral edge (2b) is formed at the lower end of the section is formed in the center, and the cylindrical voids (1a, 2a) are coaxial. Installed on the bottom surface of the seismic isolation target member side (B)
The upper and lower bases (1) and (2) are connected to the control base (3) made of a stretchable material such as rubber with spring receiving plates (3a and 3b) at the upper and lower ends. ) To penetrate through each cylindrical space (1a, 2a), and a second coil spring (between the upper end spring receiving plate (3a) and the upper peripheral body (2) jaw periphery (2b). 5) and a third coil spring (6) between the spring receiving plate (3b) at the lower end and the jaw-shaped peripheral edge (1b) of the lower side base (1), so that it is elastically pulled out. Support freely,
If necessary, the first coil spring (4) is attached between the spring receiving plates (3a and 3b) so as to cover the control linkage (3) over the entire length.
The second coil spring (5) and the third coil spring (6) are made to have different elastic strengths, and the elasticity of both is the elastic strength of the first coil spring (4) and the control linkage (3) itself. The seismic isolation member according to claim 1, wherein the seismic isolation member is configured not to exceed the length.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013001316A JP6064224B2 (en) | 2013-01-08 | 2013-01-08 | Seismic isolation material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013001316A JP6064224B2 (en) | 2013-01-08 | 2013-01-08 | Seismic isolation material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014134222A JP2014134222A (en) | 2014-07-24 |
JP6064224B2 true JP6064224B2 (en) | 2017-01-25 |
Family
ID=51412660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013001316A Active JP6064224B2 (en) | 2013-01-08 | 2013-01-08 | Seismic isolation material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6064224B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101938524B1 (en) | 2018-07-12 | 2019-01-15 | 장요셉 | Vibration Absorption Board Assembly for Electronic Drums and Manufacturing Method Thereof |
CN109252601B (en) * | 2018-11-01 | 2020-04-21 | 徐州鼎力模具有限公司 | Multidirectional friction damper applied to complex path and application thereof |
CN109898409B (en) * | 2019-04-12 | 2021-01-08 | 新疆北新路桥集团股份有限公司 | Prefabricated pier structure of antidetonation formula |
KR102158610B1 (en) * | 2019-11-05 | 2020-09-22 | 이동원 | Streetlight for absorbing seimic waves |
CN111230820A (en) * | 2020-01-23 | 2020-06-05 | 宜兴高泰克精密机械有限公司 | Turnover mechanism for processing automobile parts |
CN113530337B (en) * | 2021-08-02 | 2023-02-03 | 重庆大学 | Self-resetting concrete column with bowl-shaped structure and additional replaceable damper |
CN114278812B (en) * | 2021-12-17 | 2022-10-18 | 浙江讯威巨通科技有限公司 | Shock attenuation formula industry thing networking intelligent communication system cabinet |
CN114717933A (en) * | 2022-04-14 | 2022-07-08 | 丁新同 | Shock absorption and isolation support for bridge |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0323006Y2 (en) * | 1986-11-07 | 1991-05-20 | ||
JPH072888Y2 (en) * | 1988-10-06 | 1995-01-30 | 鹿島建設株式会社 | Restoring force adding device on base-isolated floor |
JPH09151622A (en) * | 1995-11-22 | 1997-06-10 | Katsuhiko Someya | Base isolation device for building |
JP3131831B2 (en) * | 1998-06-03 | 2001-02-05 | 有限会社サンコーエンジニアリング | Seismic isolation device |
JP3061331U (en) * | 1999-02-09 | 1999-09-17 | 満房 松本 | Seismic mitigation device |
JP2001200890A (en) * | 2000-01-18 | 2001-07-27 | Bando Chem Ind Ltd | Base isolation bed |
JP3941329B2 (en) * | 2000-04-06 | 2007-07-04 | 株式会社大林組 | Seismic isolation device |
JP2002188319A (en) * | 2000-10-06 | 2002-07-05 | Meisei Kogyo Kk | Base isolation device for dwelling house |
CA2777088A1 (en) * | 2009-07-15 | 2011-01-15 | Haisam Yakoub | Frictional non rocking seismic base isolator for structure seismic protection (fnsi) |
JP2013002206A (en) * | 2011-06-20 | 2013-01-07 | Eisaku Hino | Rolling base isolation support device and base isolation structure system having base isolation support device |
-
2013
- 2013-01-08 JP JP2013001316A patent/JP6064224B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014134222A (en) | 2014-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6064224B2 (en) | Seismic isolation material | |
KR102503408B1 (en) | Upper and lower seismic isolators | |
US20140338271A1 (en) | Frictional non rocking seismic base isolator for structure seismic protection (fnsi) | |
JP5422905B2 (en) | Damping structure | |
JP2014129829A (en) | Vibration isolation member | |
JP5281528B2 (en) | Vertical vibration suppression structure and seismic isolation device | |
CN108200488B (en) | Vibration-proof device for sound equipment and sound equipment rack with vibration-proof device | |
JP6754520B2 (en) | Seismic isolation free access floor | |
JP2014111974A (en) | Base isolation member | |
JP7024311B2 (en) | Structures and vibration control methods for structures | |
JP2008101346A (en) | Aseismic control structure | |
KR102145710B1 (en) | Seismic isolation device | |
JP6682393B2 (en) | Tuned Mass Damper | |
JP2014114916A (en) | Aseismic base isolation member | |
JP3217020U (en) | Seismic isolation swing floor | |
JP2012021638A (en) | Base isolation device | |
JP6875220B2 (en) | Seismic isolation support device | |
JP5907772B2 (en) | Rolling prevention mechanism and vibration isolator with the same mechanism | |
JP2009121096A (en) | Base-isolated building | |
JP2011069149A (en) | Seismic isolation system | |
JP2005321105A (en) | Base isolation device | |
JP3228899B2 (en) | Seismic isolation device | |
KR102720458B1 (en) | The integrated vibration reduction table | |
JP5925344B1 (en) | Energy absorption type bearing | |
JP2014101895A (en) | Base isolation member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160108 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161027 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161101 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161129 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6064224 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |