JP2013002206A - Rolling base isolation support device and base isolation structure system having base isolation support device - Google Patents

Rolling base isolation support device and base isolation structure system having base isolation support device Download PDF

Info

Publication number
JP2013002206A
JP2013002206A JP2011136469A JP2011136469A JP2013002206A JP 2013002206 A JP2013002206 A JP 2013002206A JP 2011136469 A JP2011136469 A JP 2011136469A JP 2011136469 A JP2011136469 A JP 2011136469A JP 2013002206 A JP2013002206 A JP 2013002206A
Authority
JP
Japan
Prior art keywords
load
rolling element
seismic isolation
rod
receiving plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011136469A
Other languages
Japanese (ja)
Inventor
Eisaku Hino
英作 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011136469A priority Critical patent/JP2013002206A/en
Publication of JP2013002206A publication Critical patent/JP2013002206A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To add the lift force action to a rolling base isolation device which uses a rigid oval rolling element having long periodicity, recovery property and attenuation property so as to improve the performance.SOLUTION: A rigid rolling element 7 of which surface curvature gradually changes in the shape of an oval rotor supports the load of an upper structure G between the upper structure G and a lower structure B and is arranged to have a movement range in the horizontal direction in an internal pressure room J, and ordinarily pressurizes the inside of the internal pressure room J maintaining the air tightness while a bar damper 10 which penetrates the central axis of the rolling element 7 and permits the displacement in the vertical direction is inserted into the rolling element 7.

Description

この発明は、建造物・人工地盤等における上部構造と基礎等の下部構造との間に介装され、上部構造の荷重を支持するとともに地震動等の強制振動に対して上部構造の揺れを低減し免震する基礎用装置いわゆる免震支持装置及び該免震支持装置を上部構造と下部構造との間に設置してなる免震構造系に関し、更に詳しくは、上部構造と下部構造との間に転動子を介するいわゆる転がり免震支持装置に関する。   The present invention is interposed between an upper structure in a building, artificial ground, etc. and a lower structure such as a foundation, and supports the load of the upper structure and reduces shaking of the upper structure against forced vibration such as earthquake motion. Seismic isolation device, so-called seismic isolation support device, and seismic isolation structure system in which the seismic isolation support device is installed between the upper structure and the lower structure, and more particularly between the upper structure and the lower structure The present invention relates to a so-called rolling seismic isolation device via a rolling element.

鋼球等の転動子を用いて転がり機能により免震をなすを免震支持装置では、地震動に対する敏感な応答性が得られるが、減衰性については減衰手段を別途配する必要があり、また地震動後の元位置への復帰機能を付加する問題点もある。
本発明者は、この観点から先に特開2005−273353(文献1)、特開2005−282247(文献2)、特開2006−153125(文献3)等により、減衰・復帰機構を備え、かつ転倒を阻止する拘束梁を有する免震基礎構造を提案した。しかしながら、これらの技術では減衰・復帰機構が複雑なものとなっており、また、検知装置等の特殊な装置も必要となる。
そこで、本発明者は、転動子の形状を回転楕円体とすることにより、復帰機能を持たせ、併せて揺動の長周期化を図りうるとの知見に基づき、特開2010−84910(文献4)(以下、先行発明という。)において回転楕円体にダンパー鋼棒を組み込んでなる転がり免震支持装置を提案した。
すなわち、該先行発明の免震支持装置によれば、上部構造(建物)Gと下部構造(基礎)Bとの間に回転楕円体の転動子を介在させてなり、常時には該回転楕円体の採る安定位置状態により上部構造Gは安定的に支持され、地震時には回転楕円体の転がり特性、すなわち該回転楕円体の転がり軌跡に追従して、上部構造Gの長周期化と復帰モーメントによる復帰性とが発揮され、かつ、回転楕円体に組み込まれたダンパー鋼棒により減衰作用を発揮するものである。
In the seismic isolation support device, which uses a rolling element such as a steel ball to perform seismic isolation, it is possible to obtain a sensitive response to seismic motion. There is also a problem of adding a return function to the original position after the earthquake motion.
From this point of view, the inventor previously provided an attenuation / restoration mechanism according to Japanese Patent Laid-Open No. 2005-273353 (Reference 1), Japanese Patent Application Laid-Open No. 2005-282247 (Reference 2), Japanese Patent Application Laid-Open No. 2006-153125 (Reference 3), and the like. A base-isolated base structure with constraining beams to prevent falls was proposed. However, in these techniques, the damping / restoring mechanism is complicated, and a special device such as a detection device is also required.
In view of this, the inventor of the present invention based on the knowledge that by making the rolling element into a spheroid, a return function can be provided and a longer period of oscillation can be achieved. Reference 4) (hereinafter referred to as the prior invention) proposed a rolling seismic isolation support device in which a damper steel bar is incorporated into a spheroid.
That is, according to the seismic isolation support device of the preceding invention, a spheroid rotator is interposed between the upper structure (building) G and the lower structure (foundation) B, and the spheroid is always present. The superstructure G is stably supported by the stable position state taken by the spheroid, and in the event of an earthquake, following the rolling characteristics of the spheroid, that is, following the rolling trajectory of the spheroid, the superstructure G has a longer period and returns by a return moment. In addition, the damper steel bar incorporated in the spheroid exhibits a damping action.

特開2005−273353号公報JP 2005-273353 A 特開2005−282247号公報JP 2005-282247 A 特開2006−153125号公報JP 2006-153125 A 特開2010−84910号公報JP 2010-84910 A

本発明は先行発明を更に発展させたものであり、上部構造の載荷重を低減する機構を当該先行発明に付加することにより更に効果的な免震作用が得られるとの発想に基づくものである。
本発明はこのため、当該機構の転動子回りへの配設を図る新規な構造の転がり免震支持装置を得ることを目的とする。
本発明は更に、基礎を含めた構造物の全体系にこの新規な免震支持装置を組み込んでなる免震構造系を得ることも他の目的とする。
The present invention is a further development of the prior invention, and is based on the idea that a more effective seismic isolation action can be obtained by adding a mechanism for reducing the load on the superstructure to the prior invention. .
Therefore, an object of the present invention is to obtain a rolling seismic isolation support device having a novel structure for arranging the mechanism around a rolling element.
It is another object of the present invention to obtain a seismic isolation structure system in which the novel seismic isolation support device is incorporated into the entire structure including the foundation.

本発明の転がり免震支持装置及び該免震支持装置を有する免震構造系は具体的には以下の構成を採る。
本発明の第1は転がり免震支持装置に係り、請求項1に記載のとおり、互いに水平方向に相対移動可能な上部構造と下部構造との間に介装され、該上部構造の荷重を該下部構造に伝達するとともに、該上部構造と該下部構造との相対移動を許容する免震支持装置であって、
a.前記下部構造の上面に、その上面が平滑な水準面をなす剛性の荷重受板が固設され、
b.前記上部構造の下面に、下方に向って開放される円筒形状の内圧室を有する円筒体よりなる剛性の荷重支持筒体が固設され、
c.該荷重支持筒体の円筒側壁部の下端には前記荷重受板の上面との対面部間を密封する密封部材が固定保持され、
d.前記荷重支持筒体の内圧室内には、剛性体よりなり回転楕円体形状に表面曲率が漸次変化する転動子が、水平方向に移動域を存し、その上下を荷重支持筒体の天井壁部の下面と前記荷重受板の上面とに挟着されるとともに、上部構造の荷重を支持して配され、
e.定位置状態で前記内圧室に充填流体が加圧状態に封入され、
f.前記転動子の中心軸に沿って棒状ダンパー挿通孔が開設されるとともに、前記荷重受板と前記荷重支持筒体の天井壁部とに定位置状態で前記転動子の棒状ダンパー挿通孔と同一直線上をなす棒状ダンパー挿通孔を有する棒状ダンパー挿通管を密封性を保って配し、これらの棒状ダンパー挿通孔に棒状ダンパーが前記転動子の移動状態においても抜け出ることなく移動自在に配されてなる、
ことを特徴とする。
上記第1発明のf項に替えて、転動子の中心軸に沿って棒状ダンパー挿通孔が開設されるとともに、上下部構造にそれぞれ一端を密実性を保って固定され、他端を前記鋼棒ダンパー挿通孔に棒状ダンパーが挿通されてなる転がり免震支持装置は別な発明を構成する。
Specifically, the rolling seismic isolation device of the present invention and the seismic isolation system having the seismic isolation device have the following configurations.
A first aspect of the present invention relates to a rolling seismic isolation support device, and as described in claim 1, is interposed between an upper structure and a lower structure that can move relative to each other in the horizontal direction, and the load of the upper structure is A seismic isolation support device that transmits to the lower structure and allows relative movement between the upper structure and the lower structure,
a. A rigid load receiving plate whose upper surface forms a smooth level surface is fixed to the upper surface of the lower structure,
b. On the lower surface of the upper structure, a rigid load supporting cylinder made of a cylindrical body having a cylindrical internal pressure chamber opened downward is fixed,
c. A sealing member that seals between the facing portions of the load supporting cylinder and the upper surface of the load receiving plate is fixed and held at the lower end of the cylindrical side wall portion,
d. In the internal pressure chamber of the load supporting cylinder, a rolling element made of a rigid body and having a spheroid shape whose surface curvature gradually changes has a moving area in the horizontal direction, and above and below the ceiling wall of the load supporting cylinder. Sandwiched between the lower surface of the portion and the upper surface of the load receiving plate, and arranged to support the load of the upper structure,
e. A filling fluid is sealed in a pressurized state in the internal pressure chamber in a fixed position state,
f. A rod-shaped damper insertion hole is formed along the central axis of the rolling element, and the rod-shaped damper insertion hole of the rolling element is in a fixed position on the load receiving plate and the ceiling wall portion of the load supporting cylinder. The rod-shaped damper insertion pipes having the rod-shaped damper insertion holes on the same straight line are arranged so as to maintain hermeticity. Become,
It is characterized by that.
In place of the f-term of the first invention, a rod-shaped damper insertion hole is opened along the central axis of the rolling element, and one end is fixed to the upper and lower part structures while maintaining the solidity, and the other end is A rolling seismic isolation support device in which a rod-shaped damper is inserted into a steel rod damper insertion hole constitutes another invention.

本発明の第2は免震構造系に係り、請求項3に記載のとおり、互いに水平方向に相対移動可能な上部構造と下部構造との間に介装され、該上部構造の荷重を該下部構造に伝達するとともに、該上部構造と該下部構造との相対移動を許容する複数の免震支持装置を備えてなる免震構造系であって、
前記免震支持装置は、
a.前記下部構造の上面に、その上面が水準面をなす剛性の荷重受板が固設され、
b.前記上部構造の下面に、下方に向って開放される円筒形状の内圧室を有する円筒体よりなる剛性の荷重支持筒体が固設され、
c.該荷重支持筒体の円筒側壁部の下端には前記荷重受板の上面に形成された平滑面との対面部間を密封する密封部材が固定保持され、
d.前記荷重支持筒体の内圧室内には、剛性体よりなり回転楕円体形状に表面曲率が漸次変化する転動子が、水平方向に移動域を存し、その上下を荷重支持筒体の天井壁部の下面と前記荷重受板の上面とに挟着されるとともに、上部構造の荷重を支持して配され、
e.定位置状態で前記内圧室に充填流体が加圧状態に封入され、
f.前記転動子の中心軸に沿って棒状ダンパー挿通孔が開設されるとともに、前記荷重受板と前記荷重支持筒体の天井壁部とに定位置状態で前記転動子の棒状ダンパー挿通孔と同一直線上をなす棒状ダンパー挿通孔を有する棒状ダンパー挿通管を密封性を保って配し、これらの棒状ダンパー挿通孔に棒状ダンパーが前記転動子の移動状態においても抜け出ることなく移動自在に配されてなる、
ことを特徴とする。
上記において、「複数」の免震支持装置とは少なくとも上部構造を自立支持できる数量(例えば3)を言い、その数量に限定されない。
上記第2発明のf項に替えて、転動子の中心軸に沿って棒状ダンパー挿通孔が開設されるとともに、上下部構造にそれぞれ一端を密実性を保って固定され、他端を前記鋼棒ダンパー挿通孔に棒状ダンパーが挿通されてなる免震構造系は別な発明を構成する。
According to a second aspect of the present invention, there is provided a seismic isolation system, wherein the upper structure and the lower structure, which are movable relative to each other in the horizontal direction, are interposed between the upper structure and the lower structure. A seismic isolation structure system comprising a plurality of seismic isolation support devices that transmit to the structure and allow relative movement between the upper structure and the lower structure,
The seismic isolation support device is
a. A rigid load receiving plate whose upper surface forms a level surface is fixed to the upper surface of the lower structure,
b. On the lower surface of the upper structure, a rigid load supporting cylinder made of a cylindrical body having a cylindrical internal pressure chamber opened downward is fixed,
c. A sealing member that seals between a facing portion with a smooth surface formed on the upper surface of the load receiving plate is fixedly held at the lower end of the cylindrical side wall portion of the load supporting cylinder,
d. In the internal pressure chamber of the load supporting cylinder, a rolling element made of a rigid body and having a spheroid shape whose surface curvature gradually changes has a moving area in the horizontal direction, and above and below the ceiling wall of the load supporting cylinder. Sandwiched between the lower surface of the portion and the upper surface of the load receiving plate, and arranged to support the load of the upper structure,
e. A filling fluid is sealed in a pressurized state in the internal pressure chamber in a fixed position state,
f. A rod-shaped damper insertion hole is formed along the central axis of the rolling element, and the rod-shaped damper insertion hole of the rolling element is in a fixed position on the load receiving plate and the ceiling wall portion of the load supporting cylinder. The rod-shaped damper insertion pipes having the rod-shaped damper insertion holes on the same straight line are arranged so as to maintain hermeticity. Become,
It is characterized by that.
In the above description, the “plurality” of seismic isolation support devices refers to a quantity (for example, 3) that can support at least the superstructure independently, and is not limited to that quantity.
In place of the f-term of the second invention, a rod-shaped damper insertion hole is opened along the center axis of the rolling element, and one end is fixed to the upper and lower part structures while maintaining the solidity, and the other end is A seismic isolation structure system in which a rod-shaped damper is inserted into a steel rod damper insertion hole constitutes another invention.

上記第1・第2発明及びそれらの別発明において、「回転楕円体形状」は、回転楕円体(長円体)に限定されず、表面曲率が漸次変化し、転動につれて上下平行面の接点間の高さが漸次増大する球体の全ての形状を含み、具体的には以下の実施の形態で示される。また「定位置状態」は、上部構造の常時の状態、換言すれば安定状態の転動子に載る上部構造の状態すなわち上部構造の静止状態をいう。
なお、上部構造が人工地盤を採るとき、建物本体は該人工地盤上に構築され、該人工地盤は本転動子を介して基礎としての下部構造に支持されるものである。
上記の第1・第2発明及びそれらの別発明において、
1)荷重受板の上面は密封部材との当接面につき平滑にされる外、該荷重受板のその余の上面及び該荷重支持筒体の天井面の下面についても平滑面にされること、
2)f項において、転動子の中心に沿って貫通孔を設け、該貫通孔に棒状ダンパー挿通孔を有する棒状ダンパー挿通管を拘束性に配すること、
3)またf項において、荷重受板と荷重支持筒体の天井壁部とに配される棒状ダンパー挿通管は、荷重受板の下面と荷重支持筒体の天井壁部の上面に取り付けられ、それらの棒状ダンパー挿通孔は荷重受板と荷重支持筒体の天井壁部とに直接形成されること、
4)転動子は、水平方向において、全方向移動に限定されず、一方向変位を採ること、
は適宜採られる実施態様である。
In the first and second inventions and other inventions thereof, the “spheroid shape” is not limited to the spheroid (ellipsoid), but the surface curvature gradually changes, and the contact points on the upper and lower parallel surfaces as the rolling occurs. It includes all the shapes of spheres whose height between them gradually increases, and is specifically shown in the following embodiments. In addition, the “in-situ position state” refers to a normal state of the upper structure, in other words, a state of the upper structure that is mounted on the stable rolling element, that is, a stationary state of the upper structure.
When the upper structure takes the artificial ground, the building body is constructed on the artificial ground, and the artificial ground is supported by the lower structure as a foundation via the present rolling element.
In the first and second inventions and other inventions thereof,
1) The upper surface of the load receiving plate is made smooth on the contact surface with the sealing member, and the remaining upper surface of the load receiving plate and the lower surface of the ceiling surface of the load supporting cylinder are also made smooth. ,
2) In item f, a through-hole is provided along the center of the rolling element, and a rod-shaped damper insertion tube having a rod-shaped damper insertion hole in the through-hole is disposed in a binding manner.
3) In addition, in item f, the rod-shaped damper insertion tube disposed on the load receiving plate and the ceiling wall portion of the load supporting cylinder is attached to the lower surface of the load receiving plate and the upper surface of the ceiling wall portion of the load supporting cylinder. Those rod-shaped damper insertion holes are formed directly in the load receiving plate and the ceiling wall of the load supporting cylinder,
4) The rolling element is not limited to omnidirectional movement in the horizontal direction, and adopts a unidirectional displacement.
Is an embodiment appropriately taken.

(作用)
本発明の転がり免震支持装置及び該免震支持装置を有する免震構造系は上記の構成を採ることにより、以下の作用を発揮する。
本免震支持装置は建造物(あるいは人工地盤)すなわち上部構造Gとコンクリート基礎すなわち下部構造Bとの間に介装され、その転動子の支持作用(常時・地震時)並びに荷重支持筒体内の内圧室からの上揚力(常時)を受けて上部構造Gの荷重を下部構造Bに伝達し、転動子の転がり作用により地震動に対する免震作用を発揮する。
(A) 常時
常時において、本免震支持装置Sは定位置状態を採る。
内圧室には本免震支持装置Sに連通する配管系を介して充填流体が所定の圧力で充填され、内圧室内の充填流体は密封部材及びその他の密実作用により外部に漏れ出ることはなく、所定の加圧状態に保たれる。これにより上部構造Gに上揚力が作用する。
転動子は、定位置状態で最も大きな曲率面を上下にした中立状態(換言すれば安定状態)をもって設置され、上部構造Gの荷重は転動子を介して下部構造Bに伝達され支持される。このとき、上部構造Gの荷重は上揚力を受けて低減されたものとなっており、転動子の負担する耐荷力(応力)は小さく、長期の持続性を持つ。上揚力を受けて低減された上部構造Gの荷重(有効荷重)は風荷重等の小さな強制力に影響を受けない範囲内に設定される。また、鋼棒ダンパーは定位置状態では無負荷であるが、風荷重等の小さな強制力については抵抗を示す設置状態を採るようにすれば、更に上揚力を増大することができる。
本免震構造系における免震支持装置による上下の支持面は全ての転動子が安定状態を採るとともに水準状態を保持し、風荷重等に対しても上部構造Gは安定状態を保つ。
(Function)
The rolling seismic isolation device of the present invention and the seismic isolation system having the seismic isolation device exhibit the following effects by adopting the above configuration.
The seismic isolation support device is interposed between a building (or artificial ground), that is, an upper structure G, and a concrete foundation, that is, a lower structure B. The load of the upper structure G is transmitted to the lower structure B in response to the lifting force (always) from the inner pressure chamber, and the seismic isolation action against the earthquake motion is exhibited by the rolling action of the rolling elements.
(A) Always At all times, the seismic isolation support device S is in a fixed position.
The internal pressure chamber is filled with a filling fluid at a predetermined pressure via a piping system communicating with the seismic isolation support device S, and the filling fluid in the internal pressure chamber does not leak to the outside due to the sealing member and other real actions. The pressure is maintained at a predetermined level. As a result, an uplift force acts on the upper structure G.
The rolling element is installed in a neutral state (in other words, a stable state) with the largest curvature surface up and down in a fixed position, and the load of the upper structure G is transmitted to and supported by the lower structure B via the rolling element. The At this time, the load of the superstructure G is reduced by receiving the lifting force, the load bearing force (stress) borne by the rolling element is small, and has long-term durability. The load (effective load) of the superstructure G reduced by receiving the lifting force is set within a range not affected by a small forcing force such as a wind load. In addition, the steel rod damper is unloaded in the fixed position state, but it is possible to further increase the lifting force by adopting an installation state showing resistance for a small forcing force such as a wind load.
The upper and lower support surfaces by the seismic isolation support device in this seismic isolation system maintain a stable state while maintaining all the rolling elements in a stable state, and the upper structure G maintains a stable state against wind loads and the like.

(B) 地震時
地震時(及び構造物に揺れを生じさせる力が作用する全ての場合を含む。)において、地盤は大きく揺れ、地震動の強制変位により下部構造としての基礎Bは地盤と一体に振動するが、上部構造Gは転動子の転がり作用を介して上下動の伴う揺動が生じ、上部構造Gと下部構造Bとの間に相対変位が生じる。この地震の初動において、常時に作用していた上揚力が転動子の転がりのきっかけとなり、上部構造Gは円滑に変位する。上部構造Gの上動によりこの上揚力は喪失する。
上部構造Gに接する転動子は、上部構造Gの移動とともに該転動子も転動し、該転動子に支持された上部構造Gは該転動子の転がり軌跡に追従する。上部構造Gが逆方向に移動すると、上記の動作の逆となる。
地震動に伴い、転動子の転がり軌跡に追従して上部構造Gは上下動の伴う揺動運動をなし、これにより転動子の転がり作用をもって構造物Gは周期の大きな揺動作用を受け、地震動による共振作用等の悪影響を避けることができる。
また、転動子の転がりとともに棒状ダンパーが変形し、変形エネルギーの消費に伴う減衰力を発現し、更に、当該転動子の転がり移動による作用点の移動に伴う復帰力(復帰モーメント)も作用する。
(B-1) 初動作用
一定以上の大きな地震動の初動があると、上部構造Gは常時における上揚力の作用によりみかけ上小さな鉛直荷重となっているので、上部構造G下の転動子の転がり作用は直ちに発揮される。換言すれば、この上揚力は転動子の転がり移動のトリガー作用を果し、地震初動への遅れがなく、その後この上揚力の効果は失われるが、以下に続く転動子による上部構造Gの揺動変位に円滑に移行する。
(B-2) 減衰作用
この上部構造G・転動子の一体の構造系の揺動変位において、転動子の左右への転動変位につれ、棒状ダンパーは荷重受板の棒状ダンパー挿通管及び荷重支持筒体の棒状ダンパー挿通管から引き出され、また引き入れられて強制的に折曲げ変形を受ける。この折り曲げ作用によるエネルギー散逸効果により減衰力が発揮され、上部構造Gの振動を減衰させる。棒状ダンパーの別の態様(請求項2、4)においても、上下の棒状ダンパーはそれぞれ転動子の棒状ダンパー挿通孔から引き出され、また引き入れられて強制的に折曲げ変形を受け、ダンパー作用を発揮する。
(B-3) 復帰作用
転動子の転動変位に伴い、転動子の転がり軌跡における上接点は構造物Gが当初の定位置から遠ざかるとき次第に上方へ移動(上昇)し、該転動子に支持される上部構造Gに持上げ力を付与する。また、最上点から初期位置(中立位置)への戻り変位においては下降状態となり、最下点を過ぎると再び上昇する。
この間、下接点と上接点との間に水平方向の偏心距離を生じ、上接点に作用する上部構造Gの荷重により下接点を支持点として偏心モーメントが生じ、復元モーメント(平行する逆方向の2力よりすれば戻り偶力)すなわち復帰力として機能する。これにより上部構造Gは常時の状態すなわち初期の定位置状態に復帰する特性を発揮し、当該免震構造系は強制水平力すなわち地震力の終息とともに安定状態に復する。
(B-4)
以上により、本免震構造系は地震時において、構造系の長周期化を実現して地震動との共振を避け、かつ本免震支持装置Sの具備する減衰機能を受けて構造物に作用する地震動は速やかに減衰され、また復元モーメント(換言すれば復帰偶力)を受けて当該構造物は速やかに当初位置に復帰する。
加えて、その上揚力作用により免震の初動動作が円滑になされ、上部構造Gへの衝撃作用がない。
(B) At the time of an earthquake During the earthquake (and in all cases where a force that causes shaking is applied to the structure), the ground shakes greatly, and the foundation B as the substructure is integrated with the ground due to the forced displacement of the earthquake motion. Although the upper structure G vibrates, the upper structure G swings with the vertical movement through the rolling action of the rolling elements, and a relative displacement occurs between the upper structure G and the lower structure B. In the initial motion of this earthquake, the uplift force that has been acting at all times triggers the rolling element to roll, and the superstructure G is smoothly displaced. This upward lifting force is lost by the upward movement of the superstructure G.
The rolling element in contact with the upper structure G also rolls with the movement of the upper structure G, and the upper structure G supported by the rolling element follows the rolling locus of the rolling element. When the superstructure G moves in the reverse direction, the above operation is reversed.
With the earthquake motion, the superstructure G follows the rolling trajectory of the rolling element, and the swinging motion accompanied by the vertical movement is performed. As a result, the structure G receives a rocking action with a large period due to the rolling action of the rolling element. Adverse effects such as resonance due to earthquake motion can be avoided.
In addition, the rod-shaped damper is deformed along with the rolling of the rolling element, and a damping force is generated as the deformation energy is consumed. Further, a restoring force (restoring moment) is also generated due to the movement of the point of action due to the rolling movement of the rolling element. To do.
(B-1) For initial motion When there is an initial motion of large earthquake motion above a certain level, the superstructure G is apparently a small vertical load due to the action of the uplift force at all times, so the rolling elements under the superstructure G roll. The effect is immediate. In other words, this uplifting force triggers the rolling movement of the rolling elements, there is no delay to the initial motion of the earthquake, and then the effect of this uplifting force is lost, but the superstructure G by the following rolling elements is lost. Smoothly shifts to the rocking displacement.
(B-2) Damping action In this swinging displacement of the superstructure G and the integrated structure of the rolling element, the rod-shaped damper is inserted into the rod-shaped damper insertion tube of the load receiving plate and the rolling displacement of the rolling element to the left and right. It is pulled out from the rod-shaped damper insertion tube of the load supporting cylinder, and is pulled in and forcibly undergoes bending deformation. A damping force is exhibited by the energy dissipation effect by the bending action, and the vibration of the superstructure G is damped. In another aspect of the rod-shaped damper (claims 2 and 4), the upper and lower rod-shaped dampers are respectively pulled out from the rod-shaped damper insertion holes of the rolling elements, and are pulled in and forcibly subjected to bending deformation, and the damper action is performed. Demonstrate.
(B-3) Returning action With the rolling displacement of the rolling element, the upper contact on the rolling locus of the rolling element gradually moves upward (rises) when the structure G moves away from the original fixed position. A lifting force is applied to the upper structure G supported by the child. Moreover, in the return displacement from the uppermost point to the initial position (neutral position), it is in a descending state and rises again after passing the lowermost point.
During this time, an eccentric distance in the horizontal direction is generated between the lower contact and the upper contact, and an eccentric moment is generated with the lower contact as a supporting point due to the load of the upper structure G acting on the upper contact, and a restoring moment (2 in the opposite parallel direction) is generated. It functions as a return couple), that is, a return force. As a result, the upper structure G exhibits the characteristic of returning to the normal state, that is, the initial fixed position state, and the seismic isolation structure system returns to the stable state with the end of the forced horizontal force, that is, the seismic force.
(B-4)
As described above, the seismic isolation structure system acts on the structure at the time of an earthquake by realizing a long period of the structural system to avoid resonance with ground motion and receiving the damping function of the seismic isolation support device S. The ground motion is quickly attenuated, and the structure quickly returns to the initial position in response to a restoring moment (in other words, a return couple).
In addition, the initial motion of the seismic isolation is smoothed by the lifting force, and there is no impact on the superstructure G.

本発明の免震支持装置によれば、常時の上揚力機能を有するとともに、転動子による常時及び地震時の荷重支持作用を発揮し、地震時における上部構造と下部構造間の相対的移動に伴う転動子の転動変位の長周期化による免震作用を発揮するとともに、該転動子の転動変位に対応して棒状ダンパーの折曲げ変形をなして減衰力を発揮し、また転動子の偏心による偶力作用による復帰力を発揮する多機能性を有し、かつ上揚力機能の組み込まれた効率的な免震支持装置を実現したものである。
その常時における上揚力作用により、転動子は荷重負担が低減され、長期の持続性を持ち、また地震時には免震の初動動作が円滑になされ、上部構造Gへの衝撃作用がない。
そして、本免震支持装置において転動子に所定の移動空間を保持させることにより水平面の全方向に対処できる。
しかして、本免震支持装置を複数備えて自立保持されてなる免震構造系においては、転動子上の構造物は常時において安定して支持され、地震時における構造系の固有周期の長周期化が図られ、かつ転動子に具備されたダンパー機能及び該転動子の特有形状の偶力作用による復元力が発揮され、優れた免震効果が得られ、構造系の迅速な振動減衰が実現する。加えて、常時における上揚力作用により上部構造Gの荷重が低減され、本免震構造系の当該装置の長期の持続性が確保され、また地震時の初動動作が円滑になされ、上部構造Gへの衝撃作用がなく、上部構造Gへの悪影響もなくなる。
According to the seismic isolation support device of the present invention, it always has a lifting force function, exerts a load support action at all times and during an earthquake by a rolling element, and is used for relative movement between the upper structure and the lower structure during an earthquake. In addition to exerting seismic isolation action due to the longer period of the rolling displacement of the rolling element, the rod-shaped damper is bent and deformed in response to the rolling displacement of the rolling element, and exhibits damping force. This is an efficient seismic isolation support device that has multi-functionality that exerts restoring force due to couple action due to eccentricity of the mover and that incorporates a lifting force function.
Due to the uplifting action at all times, the load of the rolling element is reduced, the rolling element has a long-term sustainability, and the initial motion of the seismic isolation is smoothly performed during an earthquake, and there is no impact action on the superstructure G.
And in this seismic isolation support apparatus, it can cope with all the directions of a horizontal surface by making a rolling element hold | maintain a predetermined movement space.
Therefore, in a seismic isolation system that is provided with a plurality of the seismic isolation support devices and is held independently, the structure on the rolling element is supported stably at all times, and the natural period of the structural system during an earthquake is long. The damper function provided in the rolling element and the restoring force due to the couple action of the unique shape of the rolling element are exhibited, and an excellent seismic isolation effect is obtained, and the structural system is rapidly vibrated. Attenuation is realized. In addition, the load of the superstructure G is reduced by the uplifting action at all times, the long-term sustainability of the device of this seismic isolation system is ensured, and the initial action at the time of the earthquake is made smooth. There is no adverse effect on the superstructure G.

本発明の一実施形態の転がり免震支持装置を組み込んでなる免震構造系の概略構成を示す側断面図。BRIEF DESCRIPTION OF THE DRAWINGS Side sectional drawing which shows schematic structure of the seismic isolation structure system incorporating the rolling seismic isolation support apparatus of one Embodiment of this invention. 本免震支持装置の全体構成を示す鉛直断面図(図1の部分拡大図、図3の2−2線断面図)。The vertical sectional view which shows the whole structure of this seismic isolation support apparatus (the partial expanded view of FIG. 1, the 2-2 sectional view taken on the line of FIG. 3). 本免震支持装置の全体構成を示す平面構成図(図2の3−3線断面図)。The plane block diagram which shows the whole structure of this seismic isolation support apparatus (3-3 line sectional drawing of FIG. 2). 本免震支持装置の部分(密封部材の取付け)詳細図。Detailed view of the seismic isolation support device (attachment of sealing member). 本免震支持装置の充填流体の配管系を示す図。The figure which shows the piping system of the filling fluid of this seismic isolation support apparatus. 転動子の一態様(楕円回転体)の模式構成図。The schematic block diagram of the one aspect | mode (elliptical rotary body) of a rolling element. 転動子の別態様の模式構成図。The schematic block diagram of another aspect of a rolling element. 本免震支持装置の部分(鋼棒ダンパーの取付け)詳細図。Detailed view of the seismic isolation support device (installation of steel bar damper). 本免震支持装置の建物への配置例を示し、(a) 図はその側面図、(b) 図はその平面図。The example of arrangement | positioning to this building of this seismic isolation support apparatus is shown, (a) A figure is the side view, (b) A figure is the top view. 本免震支持装置の人工地盤への配置例を示し、(a) 図はその側面図、(b) 図はその平面図。The example of arrangement | positioning to the artificial ground of this seismic isolation support apparatus is shown, (a) The figure is the side view, (b) The figure is the top view. 本免震支持装置の動作を示す図。The figure which shows operation | movement of this seismic isolation support apparatus. 本免震支持装置の動作を示す図。The figure which shows operation | movement of this seismic isolation support apparatus. 本発明の他の棒状ダンパーの取付け態様を示す図。The figure which shows the attachment aspect of the other rod-shaped damper of this invention.

本発明の転がり免震支持装置及び該免震支持装置を有する免震構造系の実施の形態を図面に基づいて説明する。
図1〜図8は本免震構造系を構成する転がり免震支持装置(以下「免震支持装置」という。)Sの一実施形態を示す。すなわち、図1は本免震支持装置Sの複数が組み込まれた免震構造系の概略構成を示し、図2は本免震支持装置Sの単独の縦断面構成、図3はその平面構成を示し、図4〜図8は本装置の部分構成及びその特徴部の詳細構成を示す。また、図9、図10は本装置の配置態様を示し、図11、図12は本装置の動作を示す。
本装置の図示につき、Xは長手方向、Yは幅方向、Zは高さ方向を示す。
しかして、本転がり免震支持装置Sは上部構造Gと下部構造Bとに介装設置され、上部構造Gの荷重を低減支持し、下部構造Bに伝達するとともに地震等の強制振動力より生起される上部構造Gの揺れに対して免震作用をなす。
図示されるように本実施形態の免震支持装置Sは、
a.下部構造Bの上面に固設され、その上面が水準面をなす剛性の荷重受板1、
b.上部構造Gの下面に固設され、下方に向って開放される円筒形状の内圧室Jを有する円筒体よりなる剛性の荷重支持筒体2、
c.該荷重支持筒体2の円筒側壁部の下端に固定保持され、前記荷重受板1の上面に形成された平滑面との対面部間を密封する密封部材3、
d.該荷重支持筒体2の壁部に貫通して配され、該内圧室Jへ充填流体Kを供給及び排出する供給管4、排出管5、
e.剛性を有する回転楕円体からなるとともに、その上下を該荷重受板1と荷重支持筒体2とに挟着されて上部構造Gの荷重を支持し、該荷重支持筒体2の内圧室J内に水平方向に移動域を存して配される転動子7、
f.上記転動子7、荷重受板1、荷重支持筒体2のおのおのに各独立して貫通して配され、その内部に鋼棒ダンパー挿通孔8を形成する鋼棒ダンパー挿通管9、
g.前記鋼棒ダンパー挿通管8内に挿通される単一の棒状ダンパーとしての鋼棒ダンパー10、
の各構成体からなる。
なお、上記において、鋼棒ダンパー挿通管9及び鋼棒ダンパー10により「ダンパー機構」が構成される。
DESCRIPTION OF EMBODIMENTS Embodiments of a rolling seismic isolation device and a seismic isolation system having the seismic isolation device of the present invention will be described with reference to the drawings.
FIGS. 1-8 shows one Embodiment of the rolling seismic isolation support apparatus (henceforth "seismic isolation support apparatus") S which comprises this seismic isolation system. That is, FIG. 1 shows a schematic configuration of a seismic isolation system in which a plurality of the seismic isolation support devices S are incorporated, FIG. 2 shows a single longitudinal sectional configuration of the seismic isolation support device S, and FIG. 3 shows a plan configuration thereof. 4 to 8 show a partial configuration of the apparatus and a detailed configuration of the characteristic portion thereof. 9 and 10 show the arrangement of the apparatus, and FIGS. 11 and 12 show the operation of the apparatus.
In the illustration of this apparatus, X indicates a longitudinal direction, Y indicates a width direction, and Z indicates a height direction.
Therefore, the rolling seismic isolation support device S is installed in the upper structure G and the lower structure B, reduces and supports the load of the upper structure G, transmits it to the lower structure B, and is generated by a forced vibration force such as an earthquake. Seismically isolated against the shaking of the superstructure G.
As shown in the drawing, the seismic isolation support device S of the present embodiment is
a. A rigid load receiving plate 1 fixed on the upper surface of the lower structure B, the upper surface forming a level surface;
b. A rigid load-supporting cylindrical body 2 comprising a cylindrical body having a cylindrical internal pressure chamber J fixed to the lower surface of the upper structure G and opened downward;
c. A sealing member 3 which is fixedly held at the lower end of the cylindrical side wall portion of the load supporting cylinder 2 and seals between a facing portion with a smooth surface formed on the upper surface of the load receiving plate 1;
d. A supply pipe 4, a discharge pipe 5, which is arranged to penetrate through the wall portion of the load support cylinder 2 and supply and discharge the filling fluid K to and from the internal pressure chamber J;
e. It is composed of a rigid ellipsoid and is sandwiched between the load receiving plate 1 and the load support cylinder 2 to support the load of the upper structure G, and the inside of the internal pressure chamber J of the load support cylinder 2 A rolling element 7 arranged with a moving area in the horizontal direction,
f. A steel rod damper insertion tube 9 which is arranged through each of the rolling element 7, the load receiving plate 1, and the load supporting cylinder 2 independently and forms a steel rod damper insertion hole 8 therein;
g. A steel rod damper 10 as a single rod-shaped damper inserted into the steel rod damper insertion tube 8;
It consists of each structure.
In the above, the steel rod damper insertion tube 9 and the steel rod damper 10 constitute a “damper mechanism”.

以下、各部の細部構造に付いて説明する。
荷重受板1(図1、図2参照)
荷重受板1は、硬質素材(通常には鋼製)をもって所定の厚みを有し剛性状の平板体よりなり、下部構造Bの上面に水準を保って固定される。該荷重受板1の上面1aは平滑面をなし、かつ、後記する諸機能を保持するために剛性の他に密実性(気密性、水密性を含む)を要するものである。
Hereinafter, the detailed structure of each part will be described.
Load receiving plate 1 (See Figs. 1 and 2)
The load receiving plate 1 is formed of a rigid flat plate having a predetermined thickness with a hard material (usually made of steel), and is fixed to the upper surface of the lower structure B while maintaining a level. The upper surface 1a of the load receiving plate 1 is a smooth surface and requires solidity (including airtightness and watertightness) in addition to rigidity in order to maintain various functions described later.

荷重支持筒体2(図1〜図4参照)
荷重支持筒体2は、所定の厚みをもって円筒側壁部12と天井壁部13とからなる下方に向って開放される円筒形状の剛性の構造体からなり、上部構造Gと一体化され下部構造Bへ荷重を伝達する。そして、該荷重支持筒体1の内部には加圧される真円形の内圧室Jが形成される。このため、該荷重支持筒体1は剛性に加え、密実性(気密、水密)の素材が採用される。
詳しくは、円筒側壁部12は、下部に拡径壁部12aを有し、その下端面は平滑にされるとともに該下端面に臨んで環状の凹溝14が凹設され、また、該凹溝14に連通して拡径壁部12aの上面から取付け孔15が円周上に複数箇所(本実施形態では6)に開設されている。天井壁部13の天井面13aは平滑又は通常の水準面をなす。該天井壁部13には後述するように所定の部材のための貫通孔が開設されるが、その本体部自体は密実を保つ。
Load support cylinder 2 (see FIGS. 1 to 4)
The load supporting cylindrical body 2 is formed of a cylindrical rigid structure that is opened downward with a predetermined thickness and includes a cylindrical side wall portion 12 and a ceiling wall portion 13, and is integrated with the upper structure G to be integrated with the lower structure B. Transmit load to A true circular internal pressure chamber J to be pressurized is formed inside the load supporting cylinder 1. For this reason, in addition to the rigidity, the load supporting cylinder 1 is made of a material having solidity (airtightness, watertightness).
Specifically, the cylindrical side wall portion 12 has an enlarged-diameter wall portion 12a at the lower portion thereof, the lower end surface thereof is smoothed, and an annular groove 14 is provided facing the lower end surface. 14, the attachment holes 15 are formed at a plurality of locations (6 in the present embodiment) on the circumference from the upper surface of the enlarged wall portion 12 a. The ceiling surface 13a of the ceiling wall part 13 forms a smooth or normal level surface. As will be described later, a through hole for a predetermined member is opened in the ceiling wall portion 13, but the main body portion itself is kept solid.

密封部材3(図2、図3、図4参照)
密封部材3は、本体部3aの断面が円形のゴム製の環状体よりなり、該環状体の上面の複数部位に前記した取付け孔15に対応して取付け用突起部3bが突設され、該取付け用突起部3bを取付け孔15に圧着状に差し込んで当該密封部材3の本体部3aを前記した荷重支持筒体2の円筒側壁部12の凹溝14内に収容する。該取付け用突起部3bが取付け孔15に圧着状に差し込まれ、該密封部材3の本体部3aの凹溝14内からの脱落を阻止する。
該密封部材2の本体部2aはいわゆるOリング機能を有し、荷重受板1の上面1aとの当接により所定の圧縮率をもって内圧室Jの加圧に対して密封作用を発揮する。
なお、荷重受板1はこの密封部材3に当接する部位において少なくとも平滑面であればよく、その余の部位は格別平滑面でなくてもよい。荷重支持筒体2の天井壁部13の下面もこれに準じ、格別平滑面でなくてもよい。
更に、本実施形態では1重の密封態様を採るものであるが、荷重支持筒体2の円筒側壁部12の下面に凹溝14を同心状に2重に設け、各凹溝14に密封部材3を装着し、密封作用を増大する措置を採ることを除外するものではない。
Sealing member 3 (see FIGS. 2, 3 and 4)
The sealing member 3 is made of a rubber annular body having a circular cross section of the main body portion 3a, and mounting projections 3b project from the mounting holes 15 at a plurality of portions on the upper surface of the annular body. The mounting projection 3b is inserted into the mounting hole 15 in a crimping manner, and the main body 3a of the sealing member 3 is accommodated in the concave groove 14 of the cylindrical side wall 12 of the load supporting cylinder 2. The mounting projection 3b is inserted into the mounting hole 15 in a pressure-bonding manner, and prevents the main body 3a of the sealing member 3 from falling out of the concave groove 14.
The main body 2a of the sealing member 2 has a so-called O-ring function, and exerts a sealing action against pressurization of the internal pressure chamber J with a predetermined compression rate by contact with the upper surface 1a of the load receiving plate 1.
In addition, the load receiving plate 1 should just be a smooth surface at least in the site | part which contact | abuts this sealing member 3, and the other site | part does not need to be a special smooth surface. Similarly, the lower surface of the ceiling wall portion 13 of the load supporting cylinder 2 may not be a particularly smooth surface.
Further, in the present embodiment, a single sealing mode is adopted, but the concave grooves 14 are provided concentrically on the lower surface of the cylindrical side wall portion 12 of the load supporting cylindrical body 2, and a sealing member is provided in each concave groove 14. 3 is not excluded to take measures to increase the sealing action.

供給管4、排出管5(図1、図2、図5参照)
供給管4、排出管5は、荷重支持筒体2の天井壁部13の可及的隅部に密実性(気密、水密)を保って外部と内圧室Jとを連通して配される。すなわち、外部より充填流体Kが供給管4を介して内圧室Jに送り込まれ、内圧室Jの充填流体Kは排出管5を介して外部に放出される。なお、供給管4、排出管5は、荷重支持筒体2の円筒側壁部12の適宜場所であってもよい。
図5は供給管4、排出管5に接続される配管系を示し、供給系の配管4aは外部に引き出され、逆止め弁17を介して圧送ポンプ18に接続される。排出系の配管5aについても外部に引き出され、開閉弁19(常時閉)に接続される。
本配管系は充填流体Kの様態(気体、液体)により更に適宜の配管要素が付加される。例えば、充填流体Kが液体系であるときは、圧送ポンプ18の先に液体タンクが接続されることは言うまでもない。
(充填流体K)
充填流体Kは、気体、液体の両態様から適宜なもの(非圧縮性、小圧縮性)が選ばれるが、環境への悪影響を避ける観点から空気、水が好適なものとして採用される。
Supply pipe 4 and discharge pipe 5 (see FIGS. 1, 2 and 5)
The supply pipe 4 and the discharge pipe 5 are arranged in such a way that the outside and the internal pressure chamber J are communicated with each other at the possible corners of the ceiling wall portion 13 of the load supporting cylinder 2 while maintaining solidity (airtightness, watertightness). . That is, the filling fluid K is sent from the outside to the internal pressure chamber J through the supply pipe 4, and the filling fluid K in the internal pressure chamber J is discharged to the outside through the discharge pipe 5. In addition, the supply pipe 4 and the discharge pipe 5 may be an appropriate place on the cylindrical side wall portion 12 of the load supporting cylinder 2.
FIG. 5 shows a piping system connected to the supply pipe 4 and the discharge pipe 5, and the supply system piping 4 a is drawn to the outside and connected to the pressure pump 18 via the check valve 17. The discharge piping 5a is also drawn outside and connected to the on-off valve 19 (normally closed).
In this piping system, appropriate piping elements are further added depending on the state of the filling fluid K (gas, liquid). For example, when the filling fluid K is a liquid system, it goes without saying that a liquid tank is connected to the tip of the pumping pump 18.
(Filling fluid K)
The filling fluid K is appropriately selected from both gas and liquid modes (incompressible and small compressibility), but air and water are preferably used from the viewpoint of avoiding adverse effects on the environment.

(内圧室Jの圧力保持)
上記した本荷重受板1の密封部材3との当接による荷重支持筒体2の内圧室Jの密封化により、荷重支持筒体2の内圧室Jは密閉空間を構成し、所期の圧力保持作用をなす。すなわち、内圧室Jに送り込まれる充填流体Kにより該内圧室J内は所定の圧力を受け、この結果上部構造Gに対して上揚力として作用し、上部構造Gの荷重の相当割合を負担する。本実施形態では、本構造系に設置される複数の本免震装置Sの全ての内圧室J により、上部構造Gの全荷重の8割程度の荷重低減を見込むものである。
(Pressure holding in internal pressure chamber J)
By sealing the internal pressure chamber J of the load supporting cylindrical body 2 by the contact of the load receiving plate 1 with the sealing member 3, the internal pressure chamber J of the load supporting cylindrical body 2 constitutes a sealed space, and the desired pressure is achieved. Holds. That is, the inside of the internal pressure chamber J receives a predetermined pressure by the filling fluid K fed into the internal pressure chamber J, and as a result, acts as an uplift force on the upper structure G and bears a considerable proportion of the load of the upper structure G. In the present embodiment, a load reduction of about 80% of the total load of the upper structure G is expected by all the internal pressure chambers J of the plurality of seismic isolation devices S installed in the present structural system.

転動子7(図1〜図3、図6、図7参照)
転動子7は、剛性の回転楕円体からなるとともに、その上下を荷重支持筒体2(その天井壁部13)と荷重受板1とに挟着され、荷重支持筒体2の内圧室J内に水平方向に移動域を存して配される。回転楕円体は、中心点Oを含む楕円平面を短軸を回転軸として回転させた立体形であり、本回転楕円体では、図6に示されるように、a(X方向)、b(Y方向)が長軸をなし、c(Z方向)が短軸をなし、a=b>cを採る。
すなわち、円球体であれば転動するとき上部・下部構造G,B間の上下面との接点N,M間の鉛直距離すなわち高さは一定値を採るが、本発明で採用される球体は表面曲率が漸次変化し、転動につれて上下面の接点間の高さが漸次増大する立体形状を採る。したがって、元位置方向へ転動するとき上下面の接点間の高さが漸次減少するものでもある。このような球体として、回転楕円体以外にも、回転放物線体、更にはカテナリー線、クロソイド線の立体形が採用される。
図6において、回転楕円体をなす本転動子7は、定位置状態で下面(すなわち荷重受板1の上面)1aとはM点で、上面(すなわち天井壁部13の下面)13aとはN点で当接するものであり、その高さはh(=2c)の最小値を採る。この回転楕円体の転動子7が転動し傾斜すると、上面13aが持上げられ上下面との接点N,M間の距離は漸次増大する。同時に上下面から反力を受けて,それらは大きさ等しく平行で方向が互いに逆な偶力として作用し、当該転動子7に復帰力を与える。なお、本図において、7aは回転楕円体7の側面を切断したカット平面であって、下側表面及び上側表面の近傍部分のみの使用も可能である。
図7は更に別な球体7Aを示す。本態様では上面及び下面の曲率半径Rがその中心Oからの距離rよりも十分に大きい一定長さを採り、部分球体をなす。本態様は表面曲率は一定値を採るが、回転楕円体の転動子7と同じ動的特性を示し、かつ、そのRの値を大きく採ることにより当該球体7A上に載置される構造物の長周期化を図ることができる。
本転動子7の剛性素材は、所定の強度(圧縮強度)を保持するものとして、鉄製(鋼、鋳鉄)、高強度コンクリートあるいは硬質合成樹脂の適宜の素材が採用可能であるが、本実施形態では高強度コンクリートが重量性・費用性から好適なものとして採用される。高強度コンクリートではその圧縮強度が60N(ニュートン)/平方mmを採り、十分な剛性が得られる。
Roller 7 (See FIGS. 1-3, 6 and 7)
The rolling element 7 is made of a rigid spheroid, and the upper and lower sides thereof are sandwiched between the load supporting cylinder 2 (its ceiling wall portion 13) and the load receiving plate 1, and the internal pressure chamber J of the load supporting cylinder 2 is fixed. There is a moving area in the horizontal direction inside. The spheroid is a three-dimensional shape obtained by rotating an elliptical plane including the center point O about the minor axis as a rotation axis. In this spheroid, as shown in FIG. 6, a (X direction), b (Y Direction) is the major axis, c (Z direction) is the minor axis, and a = b> c.
That is, in the case of a round sphere, the vertical distance between the upper and lower surfaces G and B between the upper and lower structures G and B, that is, the vertical distance between the contacts N and M, that is, the height takes a constant value. The surface curvature gradually changes, and a three-dimensional shape in which the height between the contact points on the upper and lower surfaces gradually increases as it rolls. Therefore, the height between the contact points on the upper and lower surfaces gradually decreases when rolling in the original position direction. As such a sphere, besides a spheroid, a paraboloid, a three-dimensional shape of catenary lines and clothoid lines is adopted.
In FIG. 6, the rolling element 7 forming a spheroid is in a fixed position at a point M from the lower surface (that is, the upper surface of the load receiving plate 1) 1 a and from the upper surface (that is, the lower surface of the ceiling wall portion 13) 13 a. The contact is made at the point N, and the height thereof takes the minimum value of h (= 2c). When the spheroid roller 7 rolls and tilts, the upper surface 13a is lifted, and the distance between the contact points N and M with the upper and lower surfaces gradually increases. At the same time, the reaction force is received from the upper and lower surfaces, and they act as couples having the same size and the opposite directions, and give the rolling element 7 a restoring force. In this figure, 7a is a cut plane obtained by cutting the side surface of the spheroid 7, and only the lower surface and the vicinity of the upper surface can be used.
FIG. 7 shows yet another sphere 7A. In this aspect, the upper surface and the lower surface have a radius of curvature R that is sufficiently larger than the distance r from the center O to form a partial sphere. In this embodiment, the surface curvature has a constant value, but exhibits the same dynamic characteristics as the spheroid rolling element 7, and the structure placed on the sphere 7A by taking a large R value. Can be prolonged.
As the rigid material of the present rolling element 7, an appropriate material such as iron (steel, cast iron), high-strength concrete, or hard synthetic resin can be adopted as a material that maintains a predetermined strength (compressive strength). In terms of form, high-strength concrete is preferably used because of its weight and cost. In high-strength concrete, the compressive strength is 60 N (Newton) / square mm, and sufficient rigidity is obtained.

(本転動子7の配置)
本転動子7(外径d=2a,2b)は、その中心軸を荷重支持筒体1の内圧室J(内径D)の中心に合致して、該内圧室J内に全水平方向に移動可能な空間(D−d)すなわち移動域を存して配される。また、このとき転動子7は定位置状態を採り、安定状態を保つ。
(Arrangement of the rolling element 7)
The present rolling element 7 (outer diameter d = 2a, 2b) has its central axis aligned with the center of the inner pressure chamber J (inner diameter D) of the load supporting cylinder 1, and in the inner pressure chamber J in all horizontal directions. A movable space (Dd), that is, a moving area is provided. At this time, the rolling element 7 takes a fixed position and maintains a stable state.

ダンパー機構(図1〜図3、図8参照)
鋼棒ダンパー挿通管9及び鋼棒ダンパー10により「ダンパー機構」が構成される。鋼棒ダンパー挿通管9内には鋼棒ダンパー挿通孔8が形成され、鋼棒ダンパー10は該鋼棒ダンパー挿通孔8に案内されて移動する。
Damper mechanism (see Figs. 1-3, 8)
The steel rod damper insertion tube 9 and the steel rod damper 10 constitute a “damper mechanism”. A steel rod damper insertion hole 8 is formed in the steel rod damper insertion tube 9, and the steel rod damper 10 moves while being guided by the steel rod damper insertion hole 8.

鋼棒ダンパー挿通管9(図1〜図3、図8参照)
鋼棒ダンパー挿通管9は、内部に鋼棒ダンパー挿通孔8を有し、所定の厚さの剛性素材(一般には鉄製)の円管状体よりなり、転動子7、荷重受板1、荷重支持筒体2の天井壁部13に各独立して貫通状に配される。
すなわち、該鋼棒ダンパー挿通管9は、転動子7内に配される鋼棒ダンパー挿通管9a、荷重受板1に配される鋼棒ダンパー挿通管9b及び荷重支持筒体2に配される鋼棒ダンパー挿通管9cからなり、更に鋼棒ダンパー挿通管9cの上端部の蓋体9dを含む。8a,8b,8cはそれぞれ鋼棒ダンパー挿通管9a,9b,9cの鋼棒ダンパー挿通孔8である。そして、これらの鋼棒ダンパー挿通管9a,9b,9cは転動子7の定位置状態では一体性をなし、その対接面で荷重の伝達をなす。
更に詳しくは、転動子7内に配される鋼棒ダンパー挿通管9aは、転動子7の中心軸に沿って開設された孔内に拘束状態を保って配され、その上下端面を平坦に、かつ該転動子7の上下端面に面一とされる。
荷重受板1に配される有底の鋼棒ダンパー挿通管9bは、上端を荷重受板1の上面に面一とされ、すなわち平坦面となる。該鋼棒ダンパー挿通管9bは荷重受板2の下面より下方へ長く延設され、該鋼棒ダンパー挿通管9bの外側面には鍔体22が突設され、該鍔体22及び固定具(溶接も含む)を介して荷重受板1に強固に固設される。
荷重支持筒体2に配される鋼棒ダンパー挿通管9cは、下端を荷重支持筒体1の天井壁部13の下面に面一とされ、すなわち平坦面となり、該天井壁部13の上面より上方へ長く延設されてなる。該鋼棒ダンパー挿通管9bについてもその外側面には鍔体23が突設され、該鍔体23を介して固定具により荷重支持筒体1の天井壁部13に強固に固設される。該鋼棒ダンパー挿通管9cの上端部は開放され、蓋体9dをもって閉塞され、鋼棒ダンパー10の挿入操作に供される。
そして、転動子7の定位置状態で、これらの鋼棒ダンパー挿通管9a,9b,9cの端面相互が当接状態を採ることは好適な荷重伝達に寄与するものである。
なお、転動子7への鋼棒ダンパー挿通管9aを廃し、転動子7の開設孔を鋼棒ダンパー挿通孔8aとし、転動子7の上下端面を鋼棒ダンパー挿通管9b,9cに当接して上下構造G,Bの荷重伝達をなす態様を採ることを除外するものではない。
Steel rod damper insertion tube 9 (see FIGS. 1 to 3 and FIG. 8)
The steel rod damper insertion tube 9 has a steel rod damper insertion hole 8 therein, and is formed of a circular tubular body of a rigid material (generally made of iron) having a predetermined thickness. The rolling element 7, the load receiving plate 1, the load Each of them is arranged in a penetrating manner on the ceiling wall portion 13 of the support cylinder 2.
That is, the steel rod damper insertion tube 9 is disposed in the steel rod damper insertion tube 9 a disposed in the rotator 7, the steel rod damper insertion tube 9 b disposed in the load receiving plate 1, and the load support cylinder 2. The steel rod damper insertion tube 9c further includes a lid 9d at the upper end of the steel rod damper insertion tube 9c. 8a, 8b and 8c are steel rod damper insertion holes 8 of the steel rod damper insertion tubes 9a, 9b and 9c, respectively. These steel rod damper insertion tubes 9a, 9b, 9c are integrated when the rolling element 7 is in a fixed position, and transmit loads on the contact surfaces thereof.
More specifically, the steel rod damper insertion tube 9a disposed in the rolling element 7 is disposed in a constrained state in a hole formed along the central axis of the rolling element 7, and the upper and lower end surfaces thereof are flat. In addition, the upper and lower end surfaces of the rolling element 7 are flush with each other.
The bottomed steel rod damper insertion tube 9b disposed on the load receiving plate 1 has an upper end flush with the upper surface of the load receiving plate 1, that is, a flat surface. The steel rod damper insertion tube 9b extends downward from the lower surface of the load receiving plate 2, and a housing 22 projects from the outer surface of the steel rod damper insertion tube 9b. The load receiving plate 1 is firmly fixed to the load receiving plate 1 through welding).
The steel rod damper insertion tube 9c disposed in the load supporting cylinder 2 has a lower end flush with the lower surface of the ceiling wall portion 13 of the load supporting cylindrical body 1, that is, a flat surface, from the upper surface of the ceiling wall portion 13. It extends long upwards. The steel rod damper insertion tube 9b also has a housing 23 projecting from the outer surface thereof, and is firmly fixed to the ceiling wall portion 13 of the load supporting cylinder 1 through the housing 23 by a fixture. The upper end of the steel rod damper insertion tube 9c is opened, closed with a lid 9d, and used for the operation of inserting the steel rod damper 10.
Then, when the end faces of these steel rod damper insertion tubes 9a, 9b, 9c are brought into contact with each other in a fixed position state of the rolling element 7, it contributes to a suitable load transmission.
In addition, the steel rod damper insertion pipe 9a to the rotator 7 is abolished, the opening hole of the rotator 7 is used as a steel rod damper insertion hole 8a, and the upper and lower end surfaces of the rotator 7 are connected to the steel rod damper insertion pipes 9b, 9c It is not excluded to adopt a mode in which the upper and lower structures G and B are in contact with each other and transmit the load.

鋼棒ダンパー10(図1〜図3、図8参照)
鋼棒ダンパー10は、所定の弾塑性特性を有する鋼棒を主体とし、転動子7、荷重支持筒体1、荷重受板5に配された鋼棒ダンパー挿通管9の鋼棒ダンパー挿通孔8内に挿通される。
しかして、鋼棒ダンパー10は転動子7の転動につれ、鋼棒ダンパー挿通管9の鋼棒ダンパー挿通孔8に案内されて移動とともに変形する。
なお、鋼棒ダンパー10は本実施形態では単一の棒状体を採用したが、複数の細径の鋼線の使用も含むものである。
Steel bar damper 10 (See FIGS. 1 to 3 and FIG. 8)
The steel rod damper 10 is mainly composed of a steel rod having a predetermined elastic-plastic characteristic, and a steel rod damper insertion hole of a steel rod damper insertion tube 9 disposed on the rolling element 7, the load support cylinder 1, and the load receiving plate 5. 8 is inserted.
Thus, as the rolling element 7 rolls, the steel rod damper 10 is guided by the steel rod damper insertion hole 8 of the steel rod damper insertion tube 9 and deforms as it moves.
In addition, although the steel rod damper 10 employ | adopted the single rod-shaped body in this embodiment, use of the several small diameter steel wire is also included.

(本免震支持装置Sの配置・設置施工)
本免震支持装置Sは、木造、鉄骨造、鉄筋コンクリート造等の軽量ないし重量構造物の建物Gを対象とし、上部構造としての該建物Gに対して次のように配置される。
図9にその取付け・配置の一態様を示す。
図において、Bは地盤Eに打設された基礎杭Pに連結して構築された下部構造としての基礎であって、該基礎Bの上面は同一水準面に施工される。この基礎B上に複数の本免震支持装置Sが対称を保って配置され(図例では8箇所)、この免震支持装置S上に建物本体Gが構築される。木造の軽量建物においては基礎杭Pの施工は格別必要なものではない。
これにより、基礎B・免震支持装置S・建物本体Gによる構築物における免震構造系が構成される。
(Arrangement and installation of this seismic isolation device S)
The seismic isolation support device S is intended for a light or heavy structure building G such as a wooden structure, a steel structure, a reinforced concrete structure, etc., and is arranged as follows with respect to the building G as an upper structure.
FIG. 9 shows one aspect of the attachment / arrangement.
In the figure, B is a foundation as a substructure constructed by connecting to a foundation pile P placed on the ground E, and the upper surface of the foundation B is constructed at the same level surface. A plurality of the seismic isolation support devices S are arranged symmetrically on the foundation B (eight locations in the example), and the building body G is constructed on the base isolation support devices S. In a wooden lightweight building, the construction of the foundation pile P is not particularly necessary.
Thereby, the base isolation structure system in the structure by foundation B, base isolation support apparatus S, and building main body G is comprised.

本免震支持装置Sの設置の施工については、基礎Bの現場打ちコンクリート構築に際し、該基礎Bの上面Ba(図1)に鋼棒ダンパー挿通管9bを取り付けた複数の荷重受板1がそれらの上面1aを同一水準をもって埋設設置される。該基礎Bの上面Baは荷重受板1の上面1aと同一水準以下とされる。
この基礎B上の各荷重受板1上に、密封部材3及び転動子7更には供給管4・排出管5を組み込んだ荷重支持筒体2が各設置される。このとき、密封部材3は荷重受板1の上面1aに密封作用を保って当接し、また、転動子7の鋼棒ダンパー挿通管9a及び荷重支持筒体2の鋼棒ダンパー挿通管9cは既に設置されている荷重受板1の鋼棒ダンパー挿通管9bに同一鉛直線上に配される。そして、鋼棒ダンパー挿通管9a、9b、9cより構成される鋼棒ダンパー挿通管9内に鋼棒ダンパー10が挿入され、蓋体9dにより閉塞される。また、供給管4、排出管5に配管系(供給系4a、排出系5a)の配管系が接続される。
各荷重支持筒体2が設置された後、建物Gの床版コンクリート(建物Gの一部)が各荷重支持筒体2の天井壁部13の上面より十分な厚さを保って打設される。これにより、建物Gの荷重は荷重支持筒体2の天井壁部13に載荷されることになる。
建物Gの底面すなわち床版コンクリートの底面Ga(図1)は基礎Bの上面Baよりすき間を存し、転動子7の荷重支持を保持することを条件として、荷重受板1の上面1a以上の高さに設定されるものである。すなわち、基礎Bの上面Baが荷重受板1の上面1aより低い場合には建物Gの底面Gaは荷重受板1の上面1aと一致してもよく、また、基礎Bの上面Baが荷重受板1の上面1aと同一水準の場合には建物Gの底面Gaは荷重受板1の上面1aより高くされる。
図例(図1、図2)では建物Gの底面Gaは基礎Bの上面Baと若干のすき間を採るが、荷重支持筒体2の拡径壁部12aの上面位置あるいは荷重支持筒体2の天井壁部13の上面位置等の適宜の位置に設定されてもよい。
なお、図例では各免震支持装置Sは同一水準に配される態様を採るが、この態様に限らず、各免震支持装置Sに高低差があっても、それらの荷重受板1の上面1aと荷重支持筒体2の円筒側壁部12の下端面及び天井壁部13の天井面13aとが水平かつ平行を保持していればよい。
Regarding the construction of the seismic isolation support device S, when constructing the cast-in-place concrete of the foundation B, there are a plurality of load receiving plates 1 in which steel rod damper insertion pipes 9b are attached to the upper surface Ba (FIG. 1) of the foundation B. The upper surface 1a is embedded and installed at the same level. The upper surface Ba of the foundation B is set to be equal to or lower than the upper surface 1a of the load receiving plate 1.
On each load receiving plate 1 on the foundation B, the load supporting cylinder 2 incorporating the sealing member 3, the rolling element 7, and the supply pipe 4 and the discharge pipe 5 is installed. At this time, the sealing member 3 abuts against the upper surface 1a of the load receiving plate 1 while maintaining a sealing action, and the steel rod damper insertion tube 9a of the rolling element 7 and the steel rod damper insertion tube 9c of the load supporting cylinder 2 are The steel rod damper insertion tube 9b of the load receiving plate 1 already installed is arranged on the same vertical line. Then, the steel rod damper 10 is inserted into the steel rod damper insertion tube 9 composed of the steel rod damper insertion tubes 9a, 9b, 9c, and is closed by the lid body 9d. In addition, a piping system (a supply system 4 a and a discharge system 5 a) is connected to the supply pipe 4 and the discharge pipe 5.
After each load supporting cylinder 2 is installed, the floor slab concrete of building G (a part of building G) is placed with a sufficient thickness from the upper surface of ceiling wall portion 13 of each load supporting cylinder 2. The Thereby, the load of the building G is loaded on the ceiling wall portion 13 of the load supporting cylinder 2.
The bottom surface Ga of the building G, that is, the bottom surface Ga of the floor slab concrete (see FIG. 1) is more than the upper surface 1a of the load receiving plate 1 on the condition that there is a gap from the upper surface Ba of the foundation B and the load support of the rolling element 7 is maintained. It is set to the height of. That is, when the upper surface Ba of the foundation B is lower than the upper surface 1a of the load receiving plate 1, the bottom surface Ga of the building G may coincide with the upper surface 1a of the load receiving plate 1, and the upper surface Ba of the foundation B is In the case of the same level as the upper surface 1 a of the plate 1, the bottom surface Ga of the building G is made higher than the upper surface 1 a of the load receiving plate 1.
In the illustrated example (FIGS. 1 and 2), the bottom surface Ga of the building G takes a slight gap from the top surface Ba of the foundation B, but the top surface position of the enlarged-diameter wall portion 12a of the load support cylinder 2 or the load support cylinder 2 It may be set to an appropriate position such as an upper surface position of the ceiling wall portion 13.
In the illustrated example, the seismic isolation support devices S are arranged at the same level. However, the present invention is not limited to this mode. The upper surface 1a and the lower end surface of the cylindrical side wall portion 12 of the load supporting cylindrical body 2 and the ceiling surface 13a of the ceiling wall portion 13 may be kept horizontal and parallel.

以上に基礎B並びに上部構造Gの場所打ちコンクリート施工を主体として述べたが、プレキャスト版による構築も可能である。
すなわち、上部構造Gの床版部をプレキャスト化し、複数(単一でも可)のプレキャスト床版を予め形成された孔をもって荷重支持筒体2の円筒側壁部12へ嵌め込んで固定する態様、あるいは該プレキャスト床版を荷重支持筒体2の天井壁部13上に載置固定する態様、更には該プレキャスト床版を荷重支持筒体2の拡径壁部12aの上面上に載置固定する態様、等を採り、各態様においてそれらのプレキャスト床版相互を接続することにより一体化された上部構造Gの床版部を構築することができる。
このプレキャスト化によれば、基礎Bの上面Baから上部構造Gの下面Gaまでの距離を自由に設定でき、また荷重支持筒体2の下面への打設コンクリートの流込みもなく、施工の自由度が増大する。
As mentioned above, the cast-in-place concrete construction of the foundation B and the superstructure G has been mainly described, but it is also possible to construct a precast version.
That is, a mode in which the floor slab portion of the superstructure G is precast and a plurality of (single or possible) precast floor slabs are fitted into the cylindrical side wall portion 12 of the load supporting cylindrical body 2 with holes formed in advance, or A mode in which the precast floor slab is placed and fixed on the ceiling wall portion 13 of the load supporting cylindrical body 2, and a mode in which the precast floor slab is placed and fixed on the upper surface of the enlarged diameter wall portion 12a of the load supporting cylindrical body 2. , Etc., and the floor slab part of the integrated superstructure G can be constructed by connecting the precast floor slabs to each other in each aspect.
According to this precasting, the distance from the upper surface Ba of the foundation B to the lower surface Ga of the upper structure G can be set freely, and there is no pouring of cast concrete into the lower surface of the load supporting cylindrical body 2, so that the construction is free. The degree increases.

本免震支持装置S、及び該本免震支持装置Sを組み込んだ本免震構造系の機能を十全に果すため、本免震支持装置Sの供給管4、排出管5から導出された配管系(供給系4a、排出系5b)に所定の作動機器(逆止め弁17、圧送ポンプ18、開閉弁19)が接続される。   In order to fully perform the functions of the base isolation support device S and the base isolation structure system incorporating the base isolation support device S, it was derived from the supply pipe 4 and the discharge pipe 5 of the base isolation support device S. Predetermined operating devices (a check valve 17, a pressure pump 18, and an on-off valve 19) are connected to the piping system (supply system 4a, discharge system 5b).

また、図10は人工地盤における本免震支持装置Sの配置の一態様を示す。本態様においては一戸建住宅に適用される人工地盤G1、すなわち小規模の人工地盤を示す。
本態様の人工地盤G1においては、地盤E上に基礎Bが水平を保って直接的に構築され、該基礎Bに鋼棒ダンパー挿通管9b付き荷重受板1を配し、更に転動子7及び荷重支持筒体2の本免震支持装置Sの上位部を介して人工地盤G1が現場コンクリート打ち又はプレキャスト版をもって構築される。本免震支持装置Sの上位部に、密封部材3、鋼棒ダンパー挿通管9a、9c、蓋体9d、鋼棒ダンパー10、供給管4、排出管5及びそれらの配管系が各配備されることは勿論である。このとき、基礎B上に薄厚の介装マットが敷設され、コンクリート打ちの型枠材として機能し、該免震装置Sの上位部は埋殺しとなる。人工地盤G1の構築の後、該人孔地盤G1上に住宅建築G2が直接的に構築される。
これにより、基礎B・免震支持装置S・人工地盤G1・建物本体G2による構築物における免震構造系が構成される。なお、この態様においては、人工地盤G1が本来の上部構造Gを構成する。
FIG. 10 shows an aspect of the arrangement of the seismic isolation support device S on the artificial ground. In this aspect, an artificial ground G1 applied to a detached house, that is, a small-scale artificial ground is shown.
In the artificial ground G1 of this aspect, the foundation B is constructed directly on the ground E while keeping the horizontal, the load receiving plate 1 with the steel rod damper insertion tube 9b is arranged on the foundation B, and the rolling element 7 In addition, the artificial ground G1 is constructed with on-site concrete casting or a precast plate through the upper part of the seismic isolation support device S of the load support cylinder 2. In the upper part of the seismic isolation support device S, a sealing member 3, steel rod damper insertion tubes 9a and 9c, a lid 9d, a steel rod damper 10, a supply tube 4, a discharge tube 5 and their piping systems are provided. Of course. At this time, a thin interposed mat is laid on the foundation B and functions as a formwork material for concrete casting, and the upper part of the seismic isolation device S is buried. After the construction of the artificial ground G1, the residential building G2 is constructed directly on the manhole ground G1.
Thereby, the base isolation structure system in the structure by foundation B, base isolation support apparatus S, artificial ground G1, and building main body G2 is comprised. In this aspect, the artificial ground G1 constitutes the original superstructure G.

(本免震支持装置Sの作用)
本免震支持装置Sは建物(あるいは人工地盤)すなわち上部構造Gとコンクリート基礎すなわち下部構造Bとの間に介在し、その転動子7の支持作用(常時・地震時)並びに荷重支持筒体2内の内圧室Jからの上揚力(常時)を受けて上部構造Gの荷重を支持し、下部構造Bひいては地盤Eに該荷重を伝達するとともに、地震動に対する免震作用を発揮する。
(Operation of the seismic isolation support device S)
The seismic isolation support device S is interposed between a building (or artificial ground), that is, an upper structure G, and a concrete foundation, that is, a lower structure B. 2 receives the lifting force (always) from the internal pressure chamber J in 2 and supports the load of the upper structure G, transmits the load to the lower structure B and thus the ground E, and exhibits seismic isolation against earthquake motion.

(A) 常時
常時において、本免震支持装置Sから導出された配管系に所定の作動機器、すなわち、供給系の配管4aについては逆止め弁17、圧送ポンプ18が接続され、排出系の配管5bについては開閉弁19が接続される。圧送ポンプ18から圧送される充填流体Kは内圧室Jに導かれ、内圧室Jを所定の圧力に満たされたとき、開閉弁19が閉じられる。内圧室J内の充填流体Kは密封部材3により外部に漏れ出ることはない。なお、本実施形態において、充填流体Kは空気が採用される。
しかして、上部構造Gの荷重は、本免震支持装置Sにおいて、荷重支持筒体2、転動子7及び荷重受板1を介して下部構造Bに伝達され支持される。すなわち、転動子7は定位置状態を保ち、この定位置状態で鋼棒ダンパー挿通管9a、9b、9cの相互は面状に当接状態をなして荷重の伝達を担い、上部構造Gの荷重は下部構造Bに円滑に伝達される。一方、内圧室J内の充填流体Kの圧力により上部構造Gに上向きの力(すなわち上揚力)が作用し、これにより上部構造Gの荷重は低減されたものとなる。
この結果、転動子7(及びその鋼棒ダンパー挿通管9a)の分担する支持荷重は大幅に低減される。本実施形態において、80%の低減を見込むものであり、この荷重状態にあって本建物Gは風荷重等の横荷重の影響は何ら受けないものである。したがって、本実施形態における設置圧力は0.2×(上部構造Gの荷重)(単位面積当り)と極めて小さなものとなる。
更にまた、上記状態において、定位置状態の転動子7は、その上下の支持面が面13a、5aに対して平面状に均等に当接し、応力集中がなく、長期荷重に対処できるものであり、結果として安定状態を採り、その妄動はない。また内圧室Jの上揚力がなく、転動子7の単独であっても、転動子7の剛性によりその載荷能力は十分である。
なお、転動子7の中心、ひいては本免震支持装置Sの中心に配される鋼棒ダンパー10は無負荷状態となっており、静止状態の構造物に格別の作用を及ぼさない。
(A) Always A predetermined operating device, that is, a check valve 17 and a pressure pump 18 are connected to a piping system derived from the seismic isolation support device S, that is, a supply system piping 4a, and a discharge piping. An open / close valve 19 is connected to 5b. The filling fluid K pumped from the pump 18 is guided to the internal pressure chamber J, and when the internal pressure chamber J is filled with a predetermined pressure, the on-off valve 19 is closed. The filling fluid K in the internal pressure chamber J does not leak to the outside by the sealing member 3. In the present embodiment, air is used as the filling fluid K.
Thus, the load of the upper structure G is transmitted and supported by the lower structure B through the load support cylinder 2, the rolling element 7, and the load receiving plate 1 in the seismic isolation support device S. That is, the rolling element 7 maintains a fixed position state, and in this fixed position state, the steel rod damper insertion pipes 9a, 9b, 9c are in contact with each other in a planar shape to transfer the load, The load is smoothly transmitted to the lower structure B. On the other hand, an upward force (that is, an uplift force) acts on the upper structure G due to the pressure of the filling fluid K in the internal pressure chamber J, whereby the load on the upper structure G is reduced.
As a result, the support load shared by the rolling element 7 (and its steel rod damper insertion tube 9a) is greatly reduced. In this embodiment, a reduction of 80% is expected, and in this load state, the building G is not affected by a lateral load such as a wind load. Therefore, the installation pressure in this embodiment is as extremely small as 0.2 × (load of the upper structure G) (per unit area).
Furthermore, in the above-described state, the upper and lower support surfaces of the rolling element 7 in the fixed position are in contact with the surfaces 13a and 5a evenly in a flat shape, there is no stress concentration, and the long-term load can be dealt with. Yes, as a result, it takes a stable state and there is no paralysis. Further, even if there is no uplift force of the internal pressure chamber J and only the rolling element 7 is used, its loading capacity is sufficient due to the rigidity of the rolling element 7.
Note that the steel rod damper 10 disposed at the center of the rolling element 7 and thus at the center of the seismic isolation support device S is in an unloaded state, and does not particularly affect the stationary structure.

(B) 地震時(図11、図12参照)
地震時(及び過大な風荷重等の構造物に揺れを生じさせる力が作用する全ての場合を含む。)において、地盤Eは大きく揺れ、この地震動の強制変位を受けて下部構造としての基礎Bは地盤Eと一体に振動するが、上部構造Gは本免震支持装置Sの主体をなす転動子7の転がり作用を介して揺動が生じ、上部構造Gと下部構造Bとの間に相対変位が生じる。
上部構造Gに接する転動子7は、上部構造Gの移動とともに該転動子7も転動し、該転動子7に支持された上部構造Gは該転動子7の転がり軌跡に追従する。上部構造Gが逆方向に移動すると、上記の動作の逆となる。
地震動に伴い、転動子7の転がり軌跡に追従して上部構造Gは上下動の伴う揺動運動をなし、これにより転動子7の転がり作用をもって構造物Gは周期の大きな揺動作用を受け、短周期成分の卓越する地震動による共振作用等の悪影響を避けることができる。
(B) During an earthquake (see Figs. 11 and 12)
During an earthquake (and including all cases where a force that causes shaking such as excessive wind load acts on the structure), the ground E shakes greatly, and the foundation B as the substructure is subjected to the forced displacement of this earthquake motion. Vibrates integrally with the ground E, but the upper structure G is oscillated through the rolling action of the rolling element 7 which forms the main body of the seismic isolation support device S, and the upper structure G and the lower structure B are Relative displacement occurs.
The rolling element 7 in contact with the upper structure G rolls along with the movement of the upper structure G, and the upper structure G supported by the rolling element 7 follows the rolling locus of the rolling element 7. To do. When the superstructure G moves in the reverse direction, the above operation is reversed.
Accompanying the earthquake motion, the superstructure G follows the rolling trajectory of the rolling element 7 and swings along with the vertical movement, so that the structure G has a swinging action with a large period due to the rolling action of the rolling element 7. Therefore, it is possible to avoid adverse effects such as resonance effect due to the strong ground motion of short period components.

(B-1)
一定以上の大きな地震動の初動があると、本建物すなわち上部構造Gは常時における上揚力の作用により、みかけの上で小さな鉛直荷重となっているので、前記した上部構造Gの転動子7の転がり作用は直ちに発揮される。換言すれば、この上揚力は転動子7の転がり移動のトリガー作用を果し、以下の(B-2) 以降への状態に円滑に移行する。なお、この転動子7の転がりに伴う上方移動が密封部材3の密封作用を破るようになると、この上揚力の効果は失われる。
(B-1)
If there is an initial motion of a large earthquake motion above a certain level, this building, that is, the upper structure G, has a small vertical load on the surface due to the effect of the lifting force at all times. The rolling action is immediately demonstrated. In other words, the lifting force triggers the rolling movement of the rolling element 7 and smoothly shifts to the following (B-2) and subsequent states. If the upward movement accompanying the rolling of the rolling element 7 breaks the sealing action of the sealing member 3, the effect of this lifting force is lost.

(B-2)
引き続き、今、上部構造Gが図11の右方向(イ方向)に移動するとき、転動子7はその上面の接点(支持点)Nから横方向強制力(いわゆる地震慣性力)を受けて回転力が生じ、下面の接点(支持点)Mを中心として右方向すなわち時計方向の回転を始める。このとき、ダンパー鋼棒10と転動子7の上部との係合作用も回転の契機となる。
転動子7の回転すなわち傾斜移動により、下接点Mはすべりを生じることなく右方向にずれ、同時に上接点Nはすべりを生じることなく左方向にずれる。上接点における下面からの鉛直距離すなわち高さが増大し、上部構造Gは上方向へ持ち上がる。この持ち上げに伴い内圧室J内の充填流体Kは散逸し、内圧室Jによる上揚力作用は失われ、建物の全荷重Wを転動子7が荷なうことになるが、転動子7は十分な支持耐力を有する。なお、建物荷重Wの支持点Nへの作用力と支持点Mからの反力とによる偶力は転動子7の回転方向と逆向きに作用し、転動子7の回転とともに増大する反時計方向の復元力として作用することになるが、回転初期においては影響は小さい。
同時に、鋼棒ダンパー10は荷重受板1の鋼棒ダンパー挿通管9b及び荷重支持筒体2の鋼棒ダンパー挿通管9cから引き出されるとともに折り曲げられてゆき、ダンパー作用を発揮する。
この転動子7の転動移動が進行して右端に来るとき、上接点Nは最高位置となる。図11はこの状態を示す。
(B-2)
Subsequently, when the upper structure G moves rightward (b) in FIG. 11, the rolling element 7 receives a lateral forcing force (so-called seismic inertial force) from the contact (support point) N on the upper surface. A rotational force is generated, and rotation in the right direction, that is, in the clockwise direction, starts from the contact (support point) M on the lower surface. At this time, the engagement action between the damper steel bar 10 and the upper part of the rolling element 7 also serves as a trigger for rotation.
Due to the rotation, that is, the tilting movement of the rolling element 7, the lower contact M shifts to the right without causing a slip, and at the same time, the upper contact N shifts to the left without causing a slip. The vertical distance from the lower surface, that is, the height of the upper contact increases, and the upper structure G is lifted upward. With this lifting, the filling fluid K in the internal pressure chamber J is dissipated, the uplifting action by the internal pressure chamber J is lost, and the rolling element 7 loads the entire load W of the building. Has a sufficient bearing strength. It should be noted that the couple due to the acting force of the building load W on the support point N and the reaction force from the support point M acts in the direction opposite to the rotation direction of the rolling element 7 and increases with the rotation of the rolling element 7. Although it acts as a restoring force in the clockwise direction, the influence is small at the initial stage of rotation.
At the same time, the steel rod damper 10 is pulled out from the steel rod damper insertion tube 9b of the load receiving plate 1 and the steel rod damper insertion tube 9c of the load supporting cylinder 2 and is bent to exert a damper action.
When the rolling movement of the rolling element 7 proceeds and comes to the right end, the upper contact N is at the highest position. FIG. 11 shows this state.

(B-3)
上部構造Gが逆方向の地震慣性力を受けて左方向(図12のロ方向)に移動するとき、上記した状態とは逆となる。
先ず、転動子7はその右端位置から左方向すなわち反時計方向に回転を始めるが、転動子7に作用する建物荷重による偶力作用(あるいは回転モーメント)がこの回転に寄与し、復帰力として作用する。そして、該転動子7の回転動に伴い下接点Mは左方向へずれ、上接点Nも右方向へずれ、建物Gの下動とともに両接点M,Nは当初位置へ近づく。鋼棒ダンパー10は荷重支持筒体2の鋼棒ダンパー挿通管9c及び荷重受板1の鋼棒ダンパー挿通管9bに引き入れられるとともに直線状に変形し、ダンパー作用を発揮する。
下接点Mと上接点Nとが同時的に当初位置となり、転動子7は最低位置(中立位置)を通過する。
更に、上部構造Gが地震慣性力を受けて左方向へ移動し、下接点M・上接点Nはそれぞれ左方向へ、右方向へずれ、その鉛直距離(高さ)を増大する。すなわち、前記した(B-2) の状態に準じる。鋼棒ダンパー10も再び折り曲げられ、ダンパー作用を発揮する。建物荷重による偶力作用も次第に増大し、復帰力を生じ、この左変位に対抗する。
転動子7の転動移動が進行して左端に来るとき、上接点Nは最高位置となる。図12はこの状態を示す。
(B-3)
When the superstructure G receives a seismic inertia force in the reverse direction and moves to the left (in the direction B in FIG. 12), the above state is reversed.
First, the rolling element 7 starts to rotate in the left direction, that is, counterclockwise from the right end position, but the couple action (or rotational moment) due to the building load acting on the rolling element 7 contributes to this rotation, and the restoring force. Acts as As the rolling element 7 rotates, the lower contact M shifts to the left and the upper contact N also shifts to the right. As the building G moves downward, the two contacts M and N approach the initial position. The steel rod damper 10 is drawn into the steel rod damper insertion tube 9c of the load supporting cylinder 2 and the steel rod damper insertion tube 9b of the load receiving plate 1 and is deformed linearly to exhibit a damper action.
The lower contact M and the upper contact N simultaneously become the initial position, and the rolling element 7 passes through the lowest position (neutral position).
Further, the superstructure G moves to the left in response to the seismic inertia force, and the lower contact M and the upper contact N are shifted to the left and to the right, respectively, and the vertical distance (height) is increased. That is, it conforms to the state (B-2) described above. The steel bar damper 10 is also bent again and exhibits a damper action. The couple effect due to the building load gradually increases, generating a restoring force and counteracts this left displacement.
When the rolling movement of the rolling element 7 proceeds and reaches the left end, the upper contact N is at the highest position. FIG. 12 shows this state.

(B-4)
地震動に伴い、上部構造Gは揺動運動をなし、この揺動に応じて転動子7は上述した(B-2)
(B-3) の動作を繰り返す。
これにより、転動子7の転がり作用をもって構造物の長周期化が図られ、有害な共振現象が回避され、所期の免震作用を得る。この動作において、転動子7はその上下支点に作用する偶力作用により復帰力が生じ、安定状態に復帰する特性を発揮する。
一方、本免震装置内の鋼棒ダンパー10も絶えず変形を受け、その変形エネルギーによる減衰効果を発揮し、構造物Gの振動を速やかに低減する。
(B-4)
Along with the earthquake motion, the superstructure G oscillates, and the rotator 7 responds to this oscillation (B-2)
Repeat (B-3).
As a result, the structure has a long period with the rolling action of the rolling elements 7, the harmful resonance phenomenon is avoided, and the desired seismic isolation action is obtained. In this operation, the rolling element 7 exhibits a characteristic that a restoring force is generated by a couple action acting on the upper and lower fulcrums, and a stable state is restored.
On the other hand, the steel rod damper 10 in the seismic isolation device is also constantly deformed, exhibits a damping effect due to the deformation energy, and quickly reduces the vibration of the structure G.

(B-5)
地震動が終息し、かつ本上部構造Gが元位置に復帰したとき、再び内圧室Jへの充填流体Kの充填がなされる。これにより、本免震系は定位置状態での機能に復帰し、次の地震動に備える。
(B-5)
When the earthquake motion ends and the upper structure G returns to the original position, the inner pressure chamber J is filled with the filling fluid K again. As a result, the seismic isolation system returns to its function in the fixed position and prepares for the next earthquake motion.

(C)
上記の振動時の揺動作用、及び復帰作用は地震動に限られるものではなく、本免震支持装置Sが介装設置される構造物間の全ての振動について適用される。
(C)
The swinging action and the returning action at the time of the vibration are not limited to the seismic motion, and are applied to all the vibrations between the structures in which the seismic isolation support device S is installed.

(本免震支持装置Sの効果)
本実施形態の免震支持装置Sによれば、内圧室Jへの加圧による常時の上揚力機能を有するとともに、転動子7による常時及び地震時の荷重支持作用を発揮しつつ、地震時における上部構造Gと下部構造B間の相対的移動に伴う転動子7の長周期転動移動(振動)がなされ、免震作用を発揮するとともに、かつこの転動子7の転動変位に対応して棒状ダンパー10の折曲げ変形をなして減衰力を発揮し、また転動子7の上接点Nと下接点Mとの偏心による偶力作用による復帰力を発揮し、多機能性を有しかつ上揚力機能の組み込まれた効率的な免震支持装置を実現したものである。
その常時における上揚力作用により、転動子7は荷重負担が低減され、長期の持続性を持ち、また地震時には免震の初動動作が円滑になされ、上部構造Gへの衝撃作用がない。 加えて、鋼棒ダンパー挿通管9a,9b,9cは転動子7の定位置状態で一体性をなし、それらの対接面で荷重の伝達がなされ、その剛性をもって大きな耐荷重性を発揮する。
そして、本免震支持装置Sにおいて転動子7に所定の移動空間を保持させることにより水平面の全方向に対処できる。
しかして、本免震支持装置Sを備えてなる免震構造系においては、転動子7上の構造物Gは常時において安定して支持され、地震時における構造系の固有周期の長周期化が図られ、かつ転動子7に具備されたダンパー機能及び該転動子7の特有形状の偶力作用による復元力が発揮され、優れた免震効果が得られ、構造系の迅速な振動減衰が実現する。加えて、常時における上揚力作用により上部構造Gの荷重が低減され、本免震構造系の当該装置Sの長期の持続性が確保され、また地震時の初動動作が円滑になされ、上部構造Gへの衝撃作用がなく、上部構造Gへの悪影響もなくなる。
(Effect of the seismic isolation support device S)
According to the seismic isolation support device S of the present embodiment, while having an uplift function at all times by pressurization to the internal pressure chamber J, while exhibiting the load support action at all times and during an earthquake by the rolling elements 7, The long-term rolling movement (vibration) of the rolling element 7 accompanying the relative movement between the upper structure G and the lower structure B in FIG. Correspondingly, the rod-shaped damper 10 is bent and deformed to exert a damping force, and the return force is exerted by the couple action due to the eccentricity of the upper contact N and the lower contact M of the rolling element 7, thereby providing multi-functionality. It has an efficient seismic isolation support device with built-in uplift function.
Due to the uplifting action at all times, the load of the rolling element 7 is reduced, the rolling element 7 has long-term sustainability, and the initial motion of the base isolation is smoothly performed during an earthquake, and there is no impact action on the superstructure G. In addition, the steel rod damper insertion tubes 9a, 9b, and 9c are integrated when the rolling elements 7 are in a fixed position, and the load is transmitted at their contact surfaces, and the rigidity is high and the load resistance is high. .
And in this seismic isolation support apparatus S, it can cope with all the directions of a horizontal surface by making the rolling element 7 hold | maintain a predetermined movement space.
Thus, in the seismic isolation structure system including the seismic isolation support device S, the structure G on the rolling element 7 is stably supported at all times, and the natural period of the structural system during the earthquake is increased. The damper function provided in the rolling element 7 and the restoring force due to the couple action of the specific shape of the rolling element 7 are exhibited, and an excellent seismic isolation effect can be obtained, and the structure system can be vibrated quickly. Attenuation is realized. In addition, the load of the superstructure G is reduced by the uplift action at all times, the long-term sustainability of the device S of this seismic isolation system is ensured, and the initial motion during the earthquake is made smooth, so that the superstructure G There is no impact on the upper structure G, and there is no adverse effect on the superstructure G.

本発明は上記した実施の形態に限定されるものではなく、本発明の基本的技術思想の範囲内で種々設計変更が可能である。すなわち、以下の態様は本発明の技術的範囲内に含まれる。
1)本実施形態のダンパー機構では、単一の棒状ダンパー(鋼棒ダンパー)と該棒状ダンパーが挿通される上下の棒状ダンパー挿通管よりなる態様を示したが、上下部構造にそれぞれ一端が固定される2本の棒状ダンパーよりなる態様を採ることができる。
図13はその一態様のダンパー機構を示し、図において先の実施形態と同等の部材については同一の符号が付されている。本ダンパー機構は上下に各独立した2本の棒状ダンパーとしての鋼棒ダンパー30,31からなり、下部ダンパー棒30は一端にねじ部30aを有し、他端は荷重受板1の下方より該荷重受板1の鋼棒ダンパー挿通孔8bを介して転動子7の鋼棒ダンパー挿通孔8a内に差し込まれ、一端側において該荷重受板1の下端にパッキング32を抱持して固定(図例では溶接を採る。)された定着体33のねじ孔に螺合して定着される。上部ダンパー棒30についても、一端にねじ部31aを有し、他端は荷重支持筒体2の天井壁部13の上方より該荷重支持筒体2の鋼棒ダンパー挿通孔8cを介して転動子7の鋼棒ダンパー挿通孔8a内に差し込まれ、一端側において該荷重支持筒体2の上端にパッキング34を抱持して固定された定着体35のねじ孔に螺合して定着される。
本態様では転動子7の転動につれ、各鋼棒ダンパー30,31が折り曲げ変形され、地震動のエネルギー吸収をなすものである。
2)本実施形態では全方向への免震態様を示したが、一方向(例えばX方向)への免震態様を除外するものではない。この場合、X−Z面で楕円形を採り、Y方向へは同一の楕円断面形状を採る。更には、Y方向端部に拘束手段を備えることにより、X、Z方向のみの変位を許容する。
The present invention is not limited to the above-described embodiment, and various design changes can be made within the scope of the basic technical idea of the present invention. That is, the following aspects are included in the technical scope of the present invention.
1) In the damper mechanism of the present embodiment, a mode in which a single rod-shaped damper (steel rod damper) and upper and lower rod-shaped damper insertion pipes through which the rod-shaped damper is inserted is shown, one end is fixed to each of the upper and lower structure. The aspect which consists of two rod-shaped dampers can be taken.
FIG. 13 shows a damper mechanism of one aspect thereof, and the same reference numerals are given to members equivalent to those of the previous embodiment. The damper mechanism is composed of two steel bar dampers 30 and 31 as upper and lower independent bar dampers. The lower damper bar 30 has a threaded portion 30a at one end and the other end from below the load receiving plate 1. It is inserted into the steel rod damper insertion hole 8a of the rolling element 7 through the steel rod damper insertion hole 8b of the load receiving plate 1, and the packing 32 is held and fixed to the lower end of the load receiving plate 1 at one end side ( In the illustrated example, welding is employed.) The fixing body 33 is screwed into the screw hole and fixed. The upper damper rod 30 also has a threaded portion 31 a at one end, and the other end rolls from above the ceiling wall portion 13 of the load supporting cylindrical body 2 through the steel rod damper insertion hole 8 c of the load supporting cylindrical body 2. It is inserted into the steel rod damper insertion hole 8a of the child 7 and is fixed by screwing into a screw hole of a fixing body 35 which is fixed by holding the packing 34 at the upper end of the load supporting cylinder 2 at one end side. .
In this embodiment, as the rolling element 7 rolls, the steel rod dampers 30 and 31 are bent and deformed to absorb the energy of the earthquake motion.
2) Although the seismic isolation mode in all directions is shown in the present embodiment, the seismic isolation mode in one direction (for example, the X direction) is not excluded. In this case, an ellipse is taken in the XZ plane, and the same elliptical cross-sectional shape is taken in the Y direction. Furthermore, by providing a restraining means at the end in the Y direction, displacement only in the X and Z directions is allowed.

S…転がり免震支持装置、G…上部構造、B…下部構造、1…荷重受板、1a…上面、2…荷重支持筒体、3…密封部材、4…供給管、5…排出管、7…転動子、8…棒状ダンパー挿通孔、9…棒状ダンパー挿通管、10…棒状ダンパー、12…荷重支持筒体2の円筒側壁部、13…荷重支持筒体2の天井壁部、13a…下面、J…内圧室、K…充填流体、M…下接点、N…上接点   DESCRIPTION OF SYMBOLS S ... Rolling seismic isolation support device G ... Upper structure, B ... Lower structure, 1 ... Load receiving plate, 1a ... Upper surface, 2 ... Load support cylinder, 3 ... Sealing member, 4 ... Supply pipe, 5 ... Discharge pipe, DESCRIPTION OF SYMBOLS 7 ... Roller, 8 ... Rod-shaped damper insertion hole, 9 ... Rod-shaped damper insertion tube, 10 ... Rod-shaped damper, 12 ... Cylindrical side wall part of the load support cylinder 2, 13 ... Ceiling wall part of the load support cylinder 2, 13a ... Lower surface, J ... Internal pressure chamber, K ... Filling fluid, M ... Lower contact, N ... Upper contact

Claims (4)

互いに水平方向に相対移動可能な上部構造と下部構造との間に介装され、該上部構造の荷重を該下部構造に伝達するとともに、該上部構造と該下部構造との相対移動を許容する免震支持装置であって、
a.前記下部構造の上面に、その上面が水準面をなす剛性の荷重受板が固設され、
b.前記上部構造の下面に、下方に向って開放される円筒形状の内圧室を有する円筒体よりなる剛性の荷重支持筒体が固設され、
c.該荷重支持筒体の円筒側壁部の下端には前記荷重受板の上面に形成された平滑面との対面部間を密封する密封部材が固定保持され、
d.前記荷重支持筒体の内圧室内には、剛性体よりなり回転楕円体形状に表面曲率が漸次変化する転動子が、水平方向に移動域を存し、その上下を荷重支持筒体の天井壁部の下面と前記荷重受板の上面とに挟着されるとともに、上部構造の荷重を支持して配され、
e.定位置状態で前記内圧室に充填流体が加圧状態に封入され、
f.前記転動子の中心軸に沿って棒状ダンパー挿通孔が開設されるとともに、前記荷重受板と前記荷重支持筒体の天井壁部とに定位置状態で前記転動子の棒状ダンパー挿通孔と同一直線上をなす棒状ダンパー挿通孔を有する棒状ダンパー挿通管を密封性を保って配し、これらの棒状ダンパー挿通孔に棒状ダンパーが前記転動子の移動状態においても抜け出ることなく移動自在に配されてなる、
ことを特徴とする免震支持装置。
It is interposed between an upper structure and a lower structure that can move relative to each other in the horizontal direction, transmits the load of the upper structure to the lower structure, and allows the relative movement between the upper structure and the lower structure. A seismic support device,
a. A rigid load receiving plate whose upper surface forms a level surface is fixed to the upper surface of the lower structure,
b. On the lower surface of the upper structure, a rigid load supporting cylinder made of a cylindrical body having a cylindrical internal pressure chamber opened downward is fixed,
c. A sealing member that seals between a facing portion with a smooth surface formed on the upper surface of the load receiving plate is fixedly held at the lower end of the cylindrical side wall portion of the load supporting cylinder,
d. In the internal pressure chamber of the load supporting cylinder, a rolling element made of a rigid body and having a spheroid shape whose surface curvature gradually changes has a moving area in the horizontal direction, and above and below the ceiling wall of the load supporting cylinder. Sandwiched between the lower surface of the portion and the upper surface of the load receiving plate, and arranged to support the load of the upper structure,
e. A filling fluid is sealed in a pressurized state in the internal pressure chamber in a fixed position state,
f. A rod-shaped damper insertion hole is formed along the central axis of the rolling element, and the rod-shaped damper insertion hole of the rolling element is in a fixed position on the load receiving plate and the ceiling wall portion of the load supporting cylinder. The rod-shaped damper insertion pipes having the rod-shaped damper insertion holes on the same straight line are arranged so as to maintain hermeticity. Become,
A seismic isolation support device.
請求項1のf項に替えて、転動子の中心軸に沿って棒状ダンパー挿通孔が開設されるとともに、上下部構造にそれぞれ一端を密実性を保って固定され、他端を前記棒状ダンパー挿通孔に棒状ダンパーが挿通されてなる、
ことを特徴とする免震支持装置。
In place of the f-term of claim 1, a rod-shaped damper insertion hole is opened along the center axis of the rolling element, and one end is fixed to the upper and lower part structure while maintaining the solidity, and the other end is the rod-like shape. A rod-shaped damper is inserted into the damper insertion hole.
A seismic isolation support device.
互いに水平方向に相対移動可能な上部構造と下部構造との間に介装され、該上部構造の荷重を該下部構造に伝達するとともに、該上部構造と該下部構造との相対移動を許容する複数の免震支持装置を備えてなる免震構造系であって、
前記免震支持装置は、
a.前記下部構造の上面に、その上面が水準面をなす剛性の荷重受板が固設され、
b.前記上部構造の下面に、下方に向って開放される円筒形状の内圧室を有する円筒体よりなる剛性の荷重支持筒体が固設され、
c.該荷重支持筒体の円筒側壁部の下端には前記荷重受板の上面に形成された平滑面との対面部間を密封する密封部材が固定保持され、
d.前記荷重支持筒体の内圧室内には、剛性体よりなり回転楕円体形状に表面曲率が漸次変化する転動子が、水平方向に移動域を存し、その上下を荷重支持筒体の天井壁部の下面と前記荷重受板の上面とに挟着されるとともに、上部構造の荷重を支持して配され、
e.定位置状態で前記内圧室に充填流体が加圧状態に封入され、
f.前記転動子の中心軸に沿って棒状ダンパー挿通孔が開設されるとともに、前記荷重受板と前記荷重支持筒体の天井壁部とに定位置状態で前記転動子の棒状ダンパー挿通孔と同一直線上をなす棒状ダンパー挿通孔を有する棒状ダンパー挿通管を密封性を保って配し、これらの棒状ダンパー挿通孔に棒状ダンパーが前記転動子の移動状態においても抜け出ることなく移動自在に配されてなる、
ことを特徴とする免震構造系。
A plurality of components that are interposed between an upper structure and a lower structure that can move relative to each other in a horizontal direction, transmit a load of the upper structure to the lower structure, and allow a relative movement between the upper structure and the lower structure. A seismic isolation system comprising a seismic isolation support device of
The seismic isolation support device is
a. A rigid load receiving plate whose upper surface forms a level surface is fixed to the upper surface of the lower structure,
b. On the lower surface of the upper structure, a rigid load supporting cylinder made of a cylindrical body having a cylindrical internal pressure chamber opened downward is fixed,
c. A sealing member that seals between a facing portion with a smooth surface formed on the upper surface of the load receiving plate is fixedly held at the lower end of the cylindrical side wall portion of the load supporting cylinder,
d. In the internal pressure chamber of the load supporting cylinder, a rolling element made of a rigid body and having a spheroid shape whose surface curvature gradually changes has a moving area in the horizontal direction, and above and below the ceiling wall of the load supporting cylinder. Sandwiched between the lower surface of the portion and the upper surface of the load receiving plate, and arranged to support the load of the upper structure,
e. A filling fluid is sealed in a pressurized state in the internal pressure chamber in a fixed position state,
f. A rod-shaped damper insertion hole is formed along the central axis of the rolling element, and the rod-shaped damper insertion hole of the rolling element is in a fixed position on the load receiving plate and the ceiling wall portion of the load supporting cylinder. The rod-shaped damper insertion pipes having the rod-shaped damper insertion holes on the same straight line are arranged so as to maintain hermeticity. Become,
This is a seismic isolation system.
請求項3のf項に替えて、転動子の中心軸に沿って棒状ダンパー挿通孔が開設されるとともに、上下部構造にそれぞれ一端を密実性を保って固定され、他端を前記棒状ダンパー挿通孔に棒状ダンパーが挿通されてなる、
ことを特徴とする免震構造系。
It replaces with the f term of Claim 3, and while a rod-shaped damper penetration hole is opened along the center axis | shaft of a rolling element, one end is fixed to a top-and-bottom part structure, respectively, and the other end is said rod-shaped A rod-shaped damper is inserted into the damper insertion hole.
This is a seismic isolation system.
JP2011136469A 2011-06-20 2011-06-20 Rolling base isolation support device and base isolation structure system having base isolation support device Withdrawn JP2013002206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011136469A JP2013002206A (en) 2011-06-20 2011-06-20 Rolling base isolation support device and base isolation structure system having base isolation support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011136469A JP2013002206A (en) 2011-06-20 2011-06-20 Rolling base isolation support device and base isolation structure system having base isolation support device

Publications (1)

Publication Number Publication Date
JP2013002206A true JP2013002206A (en) 2013-01-07

Family

ID=47671066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011136469A Withdrawn JP2013002206A (en) 2011-06-20 2011-06-20 Rolling base isolation support device and base isolation structure system having base isolation support device

Country Status (1)

Country Link
JP (1) JP2013002206A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134222A (en) * 2013-01-08 2014-07-24 Hayashi Bussan Co Ltd Base isolation member
JP5697004B1 (en) * 2014-05-02 2015-04-08 愼一 石井 Isolation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134222A (en) * 2013-01-08 2014-07-24 Hayashi Bussan Co Ltd Base isolation member
JP5697004B1 (en) * 2014-05-02 2015-04-08 愼一 石井 Isolation device

Similar Documents

Publication Publication Date Title
JP7065465B2 (en) Maritime platform structural system with self-returning pipe jacket based on built-in swing post
CA2777088A1 (en) Frictional non rocking seismic base isolator for structure seismic protection (fnsi)
Colombo et al. Experimental investigation on the seismic isolation for a legged wine storage tank
JP2018020622A (en) Oscillation reduction device for floating body structure and floating body structure
JP2013002206A (en) Rolling base isolation support device and base isolation structure system having base isolation support device
WO2008049836A2 (en) Damping device for anti-seismic structures
JP2008249122A (en) Vibration damping device
JP6075953B2 (en) Seismic isolation structure
JP6085164B2 (en) Seismic isolation structure having rolling seismic isolation support device and rolling seismic isolation support device
JP4432208B2 (en) Damper and building using it
JP3772499B2 (en) Lock mechanism for seismic isolation bearing and seismic isolation support device using the same
JP2013032810A (en) Base isolation structure having rolling base isolation support device
JP5143692B2 (en) Rolling base isolation device and base isolation structure system having the base isolation device
JP2007247167A (en) Base isolation supporting device
WO2014097431A1 (en) Base isolation structure having rolling base isolation support device and rolling base isolation support device
JP2006299563A (en) Base-isolating equipment
JP2011256568A (en) Base isolation structure on column head
JP2010189997A (en) Base-isolated structure and building having the same
JP6297921B2 (en) Seismic isolation system
JP4963392B2 (en) Rigidity imparting device and seismic isolation structure
US10323378B2 (en) Earthquake dynamic arches with stacked wedge foundation
JP4066490B2 (en) Hydraulic support device
JP2003155838A (en) Vibration-isolated structure of building
JP2012077876A (en) Base isolation structure
JP2009281073A (en) Aseismatic foundation structure of building

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902