JP6063316B2 - Brazing equipment - Google Patents

Brazing equipment Download PDF

Info

Publication number
JP6063316B2
JP6063316B2 JP2013064426A JP2013064426A JP6063316B2 JP 6063316 B2 JP6063316 B2 JP 6063316B2 JP 2013064426 A JP2013064426 A JP 2013064426A JP 2013064426 A JP2013064426 A JP 2013064426A JP 6063316 B2 JP6063316 B2 JP 6063316B2
Authority
JP
Japan
Prior art keywords
temperature
brazing
chamber
workpiece
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013064426A
Other languages
Japanese (ja)
Other versions
JP2014188534A (en
Inventor
浩隆 門
浩隆 門
石井 裕
裕 石井
祐介 飯野
祐介 飯野
剛士 大澤
剛士 大澤
直孝 岩澤
直孝 岩澤
正一 江島
正一 江島
隆 登山
隆 登山
孝之 森野
孝之 森野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Holdings Corp filed Critical Sanden Holdings Corp
Priority to JP2013064426A priority Critical patent/JP6063316B2/en
Priority to PCT/JP2014/057363 priority patent/WO2014156846A1/en
Publication of JP2014188534A publication Critical patent/JP2014188534A/en
Application granted granted Critical
Publication of JP6063316B2 publication Critical patent/JP6063316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/005Soldering by means of radiant energy
    • B23K1/0053Soldering by means of radiant energy soldering by means of I.R.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/04Heating appliances
    • B23K3/047Heating appliances electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/08Auxiliary devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Tunnel Furnaces (AREA)

Description

本発明は、ワークを構成するアルミニウム部材をろう付けするろう付け装置に関するものである。 The present invention relates to a brazing apparatus for brazing an aluminum member constituting a workpiece.

従来より例えば車両や冷却装置等にて使用される熱交換器は、アルミニウム製のヘッダー部とチューブ部とにより構成されているが、近年の省エネと高効率化の要望からこの種熱交換器においても軽量化と薄肉化の傾向が顕著なものとなっている。また、係る熱交換器(ワーク)をろう付けする場合には、高温とされた不活性ガスをろう付け室内に強制対流させることで、高速ろう付けする方法が開発されている(例えば、特許文献1参照)。   Conventionally, heat exchangers used in, for example, vehicles and cooling devices are composed of aluminum header parts and tube parts, but in this type of heat exchangers in recent years due to demands for energy saving and higher efficiency. However, the trend of weight reduction and thinning is remarkable. In addition, when brazing such a heat exchanger (work), a high-speed brazing method has been developed by forcibly convection of a high-temperature inert gas into a brazing chamber (for example, Patent Documents). 1).

図23は係る従来のろう付け炉のろう付け室100の構成を示し、図25は従来のろう付け炉でろう付けされた一般的なこの種熱交換器(ワーク)Wの正面図を示している。ろう付けするワークとしての熱交換器Wは、両端のアルミニウム製ヘッダー部1、1と、それらの間に構成されたチューブ部2とから成る。チューブ部2はヘッダー部1、1間に渡って並列にろう付けされた複数本のアルミニウム製マイクロチューブ3と、これらマイクロチューブ3の間にろう付けされたアルミニウム製のフィン4とから構成されている。   FIG. 23 shows a structure of a brazing chamber 100 of such a conventional brazing furnace, and FIG. 25 shows a front view of a general heat exchanger (work) W brazed by the conventional brazing furnace. Yes. The heat exchanger W as a work to be brazed is composed of aluminum header parts 1 and 1 at both ends and a tube part 2 formed between them. The tube portion 2 is composed of a plurality of aluminum microtubes 3 brazed in parallel between the header portions 1 and 1, and aluminum fins 4 brazed between the microtubes 3. Yes.

図25において、ワークとしての熱交換器Wは全体としては従来製品よりも薄肉化と軽量化が図られたものであるが、ヘッダー部1はチューブ部2を構成するマイクロチューブ3やフィン4よりも厚み寸法が大きく、熱容量は大きい。従って、同様に加熱した場合、ヘッダー部1の温度は上がり難く、昇温速度は遅くなり、チューブ部2の温度は上がり易く、昇温速度は速くなる。   In FIG. 25, the heat exchanger W as a work is generally thinner and lighter than the conventional product, but the header portion 1 is more than the microtube 3 and the fins 4 constituting the tube portion 2. Has a large thickness and a large heat capacity. Therefore, when similarly heated, the temperature of the header part 1 is difficult to rise, the rate of temperature rise is slow, the temperature of the tube part 2 is likely to rise, and the rate of temperature rise is fast.

次に、図23のろう付け室100内には、電気ヒータ101と炉内ファン102が設けられており、この電気ヒータ101により高温に加熱された窒素ガス(不活性ガス)が炉内ファン102によってろう付け室100内に強制対流される構成とされている。このとき、炉内ファン102の下側にはフード103が設けられ、このフード103の下端は搬送手段104(ローラやメッシュベルト)の上方にて開口しており、上端が炉内ファン102の直下にて開口する構造とされている。   Next, an electric heater 101 and an in-furnace fan 102 are provided in the brazing chamber 100 of FIG. 23, and nitrogen gas (inert gas) heated to a high temperature by the electric heater 101 is in-furnace fan 102. Therefore, forced convection is performed in the brazing chamber 100. At this time, a hood 103 is provided below the in-furnace fan 102, the lower end of the hood 103 is opened above the conveying means 104 (roller or mesh belt), and the upper end is directly below the in-furnace fan 102. It is set as the structure opened by.

これにより、高温の窒素ガスは炉内ファン102により一旦上に吹き上げられ、ろう付け室100の上面に当たって外方に向かい、フード103の外側を降下し、底面に当たって再び内方に向かった後、上昇して搬送手段104及び熱交換器Wが載置されたトレー106を通過し、熱交換器Wに下から吹き付けられる。そして、熱交換器Wを通過した後、フード103の内側を更に上昇して再び炉内ファン102に吸い込まれる構成とされていた(図23に矢印で示す強制対流)。   As a result, the high-temperature nitrogen gas is once blown up by the in-furnace fan 102, hits the upper surface of the brazing chamber 100, goes outward, descends the outside of the hood 103, hits the bottom and goes inward again, and then rises Then, it passes through the tray 106 on which the conveying means 104 and the heat exchanger W are placed, and is blown onto the heat exchanger W from below. Then, after passing through the heat exchanger W, the inside of the hood 103 was further raised and sucked into the furnace fan 102 again (forced convection indicated by arrows in FIG. 23).

図24は係る従来のろう付け室100でろう付けされる熱交換器W各部の温度推移を示している。図中破線は理想の温度推移、一点鎖線は昇温速度が速い部位(前記チューブ部2)の温度推移、また、実線は昇温速度が遅い部位(前記ヘッダー部1)の温度推移を示している。尚、前室とはろう付け室100の前段で大気を窒素ガスに置換する室であり、冷却室・後室とはろう付け室100において加熱された後の熱交換器Wを徐冷する室である。   FIG. 24 shows the temperature transition of each part of the heat exchanger W that is brazed in the conventional brazing chamber 100. In the figure, the broken line indicates the ideal temperature transition, the alternate long and short dash line indicates the temperature transition of the part where the heating rate is fast (the tube part 2), and the solid line shows the temperature transition of the part where the heating rate is slow (the header part 1). Yes. The front chamber is a chamber that replaces the atmosphere with nitrogen gas at the front stage of the brazing chamber 100, and the cooling chamber and the rear chamber are chambers that gradually cool the heat exchanger W after being heated in the brazing chamber 100. It is.

前述した如く熱交換器Wをろう付けする場合、熱容量の大きいヘッダー部1は温度が上がり難く、熱容量の小さいチューブ部2は温度が上がり易い。そのため、ろう付け室100にて係る熱交換器(ワーク)Wを加熱した場合には、図24に示すようにヘッダー部1の昇温速度は遅く(実線)、理想の温度推移(破線)より温度が低くなり、チューブ部2の昇温速度は速く(一点鎖線)、理想の温度推移(破線)より高くなる。   As described above, when the heat exchanger W is brazed, the temperature of the header portion 1 having a large heat capacity is difficult to increase, and the temperature of the tube portion 2 having a small heat capacity is likely to increase. Therefore, when the heat exchanger (work) W in the brazing chamber 100 is heated, the rate of temperature rise of the header section 1 is slow (solid line) as shown in FIG. The temperature is lowered, the temperature raising rate of the tube portion 2 is fast (dashed line), and is higher than the ideal temperature transition (dashed line).

このように、ヘッダー部1とチューブ部2の昇温速度は異なるため、従来のろう付け炉のようにろう付け室100内で高温の窒素ガスを強制対流させて加熱する方式では、熱容量の小さいチューブ部2が先に昇温していき、熱容量の大きいヘッダー部1の昇温は遅れる。そのため、ヘッダー部1とチューブ部2を均一に昇温させることができず、過剰に加熱される箇所P1(図25に示すチューブ部2)には変形や過剰な腐り代の生成が発生し、逆に加熱が不足する箇所P2(図25に示すヘッダー部1)にはろう付け不良や腐り代生成不足が発生してしまう。   As described above, since the heating rate of the header portion 1 and the tube portion 2 is different, the heat capacity is small in the method in which high-temperature nitrogen gas is forced to convection in the brazing chamber 100 as in a conventional brazing furnace. The tube portion 2 is heated first, and the temperature rise of the header portion 1 having a large heat capacity is delayed. Therefore, the header part 1 and the tube part 2 cannot be heated uniformly, and deformation or generation of excessive corrosion allowance occurs in the excessively heated place P1 (tube part 2 shown in FIG. 25). On the contrary, in the place P2 where the heating is insufficient (header portion 1 shown in FIG. 25), defective brazing or insufficient generation of corrosion allowance occurs.

特に、薄肉化された熱交換器Wの場合、チューブ部2の昇温速度が速くなると過剰な腐り代が生成されてしまう。また、それを防止するために加熱温度や時間を制限すると、ヘッダー部1において十分な腐り代の生成が行われなくなり、耐食性が悪化してしまう。そのため、この種熱交換器Wのろう付けには、従来よりも高速な加熱と均一な昇温が要求されることになる。   In particular, in the case of the heat exchanger W having a reduced thickness, an excessive amount of decay is generated when the temperature increase rate of the tube portion 2 is increased. Further, if the heating temperature and time are limited in order to prevent this, a sufficient amount of corrosion is not generated in the header portion 1 and the corrosion resistance is deteriorated. For this reason, brazing of this kind of heat exchanger W requires higher speed heating and uniform temperature rise than before.

そこで、チューブ部2の温度が所定値に上昇した時点でそこに覆いを載置して熱容量を大きくし、チューブ部2の昇温を抑制してヘッダー部1の昇温速度に合わせる方法が開発されている(例えば、特許文献2参照)。尚、ろう付けには係る高温ガスの強制対流の他に、近赤外線をワーク全体に照射するものもある(例えば、特許文献3、特許文献4参照)。   Therefore, when the temperature of the tube part 2 rises to a predetermined value, a method of placing a cover thereon to increase the heat capacity and suppressing the temperature rise of the tube part 2 to match the temperature rise rate of the header part 1 has been developed. (For example, refer to Patent Document 2). In addition to the forced convection of high-temperature gas, brazing involves irradiating the entire workpiece with near infrared rays (see, for example, Patent Document 3 and Patent Document 4).

特許第4592645号公報Japanese Patent No. 4592645 特開2010−196931号公報JP 2010-196931 A 特開2004−358484号公報JP 2004-358484 A 特開2004−358483号公報JP 2004-35883 A

しかしながら、前記特許文献2のように熱容量の大きい覆いを昇温速度が速いチューブ部2に当接させてその昇温を遅らせ、昇温速度が遅いヘッダー部1に温度上昇を合わせる方法は、高速ろう付けに反することになる。また、前記特許文献3、4のように近赤外線で熱交換器(ワーク)W全体を加熱すれば極めて高速なろう付けが可能となるが、赤外線照射領域は非常に狭いため、ヘッダー部1とチューブ部2の均一な昇温を実現するためには、多数の近赤外線照射装置を高密度で配置しなければならなくなり、コスト的に実現性が乏しくなる。   However, as described in Patent Document 2, a method in which a cover having a large heat capacity is brought into contact with the tube portion 2 having a high temperature increase rate to delay the temperature increase and the temperature increase is matched with the header portion 1 having a low temperature increase rate is a high speed. It would be against brazing. Further, as in Patent Documents 3 and 4, if the entire heat exchanger (workpiece) W is heated with near infrared rays, brazing at an extremely high speed is possible. However, since the infrared irradiation area is very narrow, In order to achieve a uniform temperature increase of the tube portion 2, a large number of near infrared irradiation devices must be arranged at a high density, resulting in poor cost feasibility.

本発明は、係る従来の技術的課題を解決するために成されたものであり、簡単な構成でワーク各部の昇温の均一化を図り、且つ、高速ろう付けを実現することができるろう付け装置を提供するものである。 The present invention has been made in order to solve the conventional technical problem, and can braze at a high temperature by using a simple configuration to achieve uniform temperature rise in each part of the workpiece and realize high-speed brazing. A device is provided.

請求項1の発明のろう付け装置は、ろう付け室内に高温不活性ガスを対流させることにより、このろう付け室内においてワークを構成するアルミニウム部材を加熱してろう付けするものであって、ろう付け室内において対流する高温不活性ガスの流通を制御することにより、この高温不活性ガスをワークの昇温速度が遅い部位に優先的に吹き付ける配風手段を備え、この配風手段は、複数の通気部が形成された風向板から成り、この風向板は通気部に隣接するルーバーを有し、ルーバーの角度、及び/又は、形状により高温不活性ガスの流通を制御することを特徴とする。 The brazing apparatus according to the first aspect of the present invention heats and brazes an aluminum member constituting a workpiece in the brazing chamber by causing convection of a high-temperature inert gas into the brazing chamber. by controlling the flow of hot inert gas convection in the chamber, provided with air distribution means for blowing preferentially the hot inert gas into the site heating rate is slow work, the air distribution means, a plurality of vent The wind direction plate has a louver adjacent to the ventilation portion, and the flow of the high temperature inert gas is controlled by the angle and / or shape of the louver .

請求項2の発明のろう付け装置は、上記発明において配風手段は、ろう付け室で加熱されるワークの温度が少なくとも+450℃以上+500℃未満の範囲では、昇温速度が遅い部位と昇温速度が速い部位の温度差を20deg以内とし、ワークの温度が+500℃以上の範囲では、昇温速度が遅い部位と昇温速度が速い部位の温度差を10deg以内とすることを特徴とする。   In the brazing device according to the second aspect of the present invention, in the above invention, the air distribution means is configured such that the temperature of the workpiece heated in the brazing chamber is at least + 450 ° C. and less than + 500 ° C. The temperature difference of a part with a high speed is within 20 deg, and the temperature difference between a part with a slow temperature rise rate and a part with a fast temperature rise rate is within 10 deg when the temperature of the workpiece is + 500 ° C. or more.

請求項3の発明のろう付け装置は、上記発明においてワークは、ヘッダー部とチューブ部とより成る熱交換器であり、配風手段はヘッダー部に優先的に高温不活性ガスを吹き付けることを特徴とする。   The brazing device according to a third aspect of the present invention is characterized in that, in the above invention, the work is a heat exchanger comprising a header portion and a tube portion, and the air distribution means preferentially blows a high-temperature inert gas onto the header portion. And

請求項4の発明のろう付け装置は、上記各発明において、ろう付け室内においてワークを搬送する通気性の搬送手段と、ワークを保持して搬送手段に載置されるトレーとを備え、高温不活性ガスを下方からワークに吹き付けると共に、トレーにより風向板を構成したことを特徴とする。 According to a fourth aspect of the present invention, there is provided a brazing apparatus according to each of the above-mentioned inventions , comprising air-permeable conveying means for conveying a work in the brazing chamber, and a tray that holds the work and is placed on the conveying means. While the active gas is sprayed onto the work from below, a wind direction plate is constituted by the tray.

請求項5の発明のろう付け装置は、請求項1乃至請求項3の発明において、ろう付け室内においてワークを搬送する通気性の搬送手段を備え、高温不活性ガスを下方からワークに吹き付けると共に、搬送手段の下側に風向板を配置したことを特徴とする。 A brazing device according to a fifth aspect of the present invention is the brazing apparatus according to any of the first to third aspects, further comprising air-permeable conveying means for conveying the work in the brazing chamber, and spraying high-temperature inert gas onto the work from below. A wind direction plate is disposed below the conveying means.

請求項6の発明のろう付け装置は、上記各発明においてワークの昇温速度が遅い部位を加熱する補助加熱手段を備えたことを特徴とする。 A brazing device according to a sixth aspect of the present invention is characterized in that in each of the above-mentioned inventions , there is provided an auxiliary heating means for heating a portion where the rate of temperature rise of the workpiece is slow.

請求項7の発明のろう付け装置は、上記発明において補助加熱手段は、近赤外線を照射することによりワークの昇温速度が遅い部位を加熱することを特徴とする。 According to a seventh aspect of the present invention, there is provided a brazing apparatus according to the above invention, wherein the auxiliary heating means heats a portion where the temperature rise rate of the workpiece is low by irradiating near infrared rays.

請求項8の発明のろう付け装置は、請求項6又は請求項7の発明において加熱炉の前段に位置して大気を不活性ガスと置換する前室を備え、補助加熱手段を前室に設けたことを特徴とする The brazing apparatus according to an eighth aspect of the present invention includes the front chamber located in the front stage of the heating furnace in the sixth or seventh aspect of the present invention to replace the atmosphere with an inert gas, and provided with auxiliary heating means in the front chamber. It is characterized by that .

本発明によれば、ろう付け室内に高温不活性ガスを対流させることにより、このろう付け室内においてワークを構成するアルミニウム部材を加熱してろう付けするに当たり、ろう付け室内において対流する高温不活性ガスの流通を配風手段により制御し、高温不活性ガスをワークの昇温速度が遅い部位に優先的に吹き付けるようにしたので、ろう付け室内における加熱中に、ワークの昇温速度が速い部位の昇温に、昇温速度が遅い部位の昇温を合わせ、ろう付け中にワーク全体を均一に昇温させることができるようになり、請求項3の発明の如くヘッダー部とチューブ部とより成る熱交換器をろう付けする際の過剰な腐り代の発生や耐食性の低下を未然に回避することが可能となる。 According to the present invention, a high-temperature inert gas that convects in the brazing chamber when the aluminum member constituting the workpiece is heated and brazed by convection of the high-temperature inert gas in the brazing chamber. Since the high-temperature inert gas is preferentially blown to the part where the workpiece heating rate is slow, the flow of the workpiece is controlled by the air distribution means. By combining the temperature increase with the temperature increase at the part where the temperature increase rate is slow, it becomes possible to uniformly increase the temperature of the entire workpiece during brazing, and comprises a header portion and a tube portion as in the invention of claim 3. It is possible to avoid the occurrence of excessive corrosion allowance and a decrease in corrosion resistance when brazing the heat exchanger.

特に、従来の如く昇温速度が遅い部位の昇温に昇温速度が速い部位を合わせるものでは無く、昇温速度が遅い部位に高温不活性ガスを優先的に吹き付けて当該部位の昇温を促進するので、高速化の要望も満たすことができる。また、配風手段の追加という比較的簡単な構成にて実現することができる点も本発明の利点である。   In particular, it does not match the part where the temperature rise rate is fast with the temperature rise of the part where the temperature rise rate is slow as in the conventional case, and the temperature rise of the part is preferentially blown to the part where the temperature rise rate is slow. Because it promotes, it can meet the demand for higher speed. Another advantage of the present invention is that it can be realized with a relatively simple configuration of adding air distribution means.

また、配風手段を、複数の通気部が形成された風向板から構成し、この風向板の通気部に隣接するルーバーを設け、このルーバーの角度、及び/又は、形状により高温不活性ガスの流通を制御するようにしたので、更なる構造の簡素化を図ることができると共に、ろう付け室内における高温不活性ガスの流通をより的確に制御することが可能となる。Further, the air distribution means is composed of a wind direction plate in which a plurality of ventilation portions are formed, and a louver adjacent to the ventilation portion of the wind direction plate is provided. Depending on the angle and / or shape of the louver, the high temperature inert gas Since the flow is controlled, the structure can be further simplified, and the flow of the high-temperature inert gas in the brazing chamber can be more accurately controlled.

特に、請求項2の発明の如く配風手段により、ろう付け室で加熱されるワークの温度が少なくとも+450℃以上+500℃未満の範囲では、昇温速度が遅い部位と昇温速度が速い部位の温度差を20deg以内とし、ワークの温度が+500℃以上の範囲では、昇温速度が遅い部位と昇温速度が速い部位の温度差を10deg以内とすることで、ワーク全体を一層均一に昇温させ、良好なろう付けを実現することが可能となる。 In particular, when the temperature of the workpiece heated in the brazing chamber is at least + 450 ° C. or more and less than + 500 ° C. by the air distribution means as in the invention of claim 2, the temperature rising rate is low and the temperature rising rate is high. When the temperature difference is within 20 deg and the workpiece temperature is in the range of + 500 ° C. or more, the temperature difference between the part where the heating rate is slow and the part where the heating rate is fast is within 10 deg. And good brazing can be realized.

更にまた、請求項4の発明の如くろう付け室内においてワークを搬送する通気性の搬送手段と、ワークを保持して搬送手段に載置されるトレーとを備え、高温不活性ガスを下方からワークに吹き付ける場合に、トレーにより風向板を構成すれば、部品点数の更なる削減を図ることが可能となると共に、搬送手段で搬送されるワークのそれぞれに対応して高温不活性ガスの流通を制御することができるようになり、ワークの昇温をより的確に均一化することができるようになる。 Furthermore, as in the invention of claim 4 , there is provided a breathable transfer means for transferring the work in the brazing chamber, and a tray for holding the work and being placed on the transfer means, and supplying the hot inert gas from below to the work. If the wind direction plate is configured with a tray, the number of parts can be further reduced, and the flow of high-temperature inert gas can be controlled in accordance with each workpiece transferred by the transfer means. As a result, the temperature rise of the workpiece can be made more accurate and uniform.

この場合、請求項5の発明の如くろう付け室内においてワークを搬送する通気性の搬送手段を備え、高温不活性ガスを下方からワークに吹き付ける場合に、搬送手段の下側に風向板を配置してもよい。 In this case, as in the fifth aspect of the invention, there is provided air-permeable conveying means for conveying the work in the brazing chamber, and when high-temperature inert gas is blown onto the work from below, a wind direction plate is disposed below the conveying means. May be.

更に、請求項6の発明の如くワークの昇温速度が遅い部位を加熱する補助加熱手段を設ければ、配風手段により高温不活性ガスの流通制御に加えて、補助加熱手段で昇温速度が遅い部位の昇温をより一層促進させることが可能となる。 Furthermore, if an auxiliary heating means for heating a part where the temperature rise rate of the workpiece is slow as in the invention of claim 6 is provided, in addition to the flow control of the high temperature inert gas by the air distribution means, the temperature rise rate by the auxiliary heating means. Therefore, it is possible to further promote the temperature rise in the part where S is slow.

この場合、請求項7や請求項8の発明の如く補助加熱手段により近赤外線を照射することでワークの昇温速度が遅い部位を加熱し、更に、加熱炉の前段に位置して大気を不活性ガスと置換する前室において、ろう付け室での加熱の前に、補助加熱手段によりワークの昇温速度が遅い部位に近赤外線を照射し、加熱するようにすれば、昇温速度が遅い部位の昇温をより的確に促進できると共に、前室における前工程にて昇温速度が遅い部位の温度を先に上げておくことができるので、より一層の高速化を果たすことが可能となる。この場合、前室内での補助加熱手段による温度上昇は依然低いので、大気を不活性ガスに置換する前室であっても、酸素による悪影響は無視することができるものである。 In this case, as in the inventions of claim 7 and claim 8 , the near-infrared rays are irradiated by the auxiliary heating means to heat the portion where the workpiece heating rate is low, and further, the atmosphere is not located in the front stage of the heating furnace. In the front chamber that replaces the active gas, before heating in the brazing chamber, if the near-infrared ray is irradiated and heated by the auxiliary heating means to the part where the workpiece heating rate is slow, the heating rate is slow. The temperature of the part can be more accurately promoted, and the temperature of the part where the rate of temperature rise is low in the previous step in the front chamber can be increased in advance, so that it is possible to further increase the speed. . In this case, since the temperature rise by the auxiliary heating means in the front chamber is still low, the adverse effect of oxygen can be ignored even in the front chamber in which the atmosphere is replaced with an inert gas.

本発明を適用した一実施例のろう付け装置の全体構成を示す図である。It is a figure which shows the whole structure of the brazing apparatus of one Example to which this invention is applied. 図1のろう付け装置でろう付けするワークとしての熱交換器の正面図である。It is a front view of the heat exchanger as a workpiece | work brazed with the brazing apparatus of FIG. 図1のろう付け装置のトレー上に保持されたワークの斜視図である(実施例1)。(Example 1) which is the perspective view of the workpiece | work hold | maintained on the tray of the brazing apparatus of FIG. 図3の平面図である。FIG. 4 is a plan view of FIG. 3. 図4のC−C線断面図である。It is CC sectional view taken on the line of FIG. 図1のろう付け装置のろう付け室の構成を示す図である。It is a figure which shows the structure of the brazing chamber of the brazing apparatus of FIG. 図1のろう付け装置で熱交換器をろう付けしたときの各部の温度推移を示す図である。It is a figure which shows the temperature transition of each part when a heat exchanger is brazed with the brazing apparatus of FIG. 図7の詳細図である。FIG. 8 is a detailed view of FIG. 7. 図7のもう一つの詳細図である。FIG. 8 is another detailed view of FIG. 7. 図1のろう付け装置でろう付けされた熱交換器の正面図である。It is a front view of the heat exchanger brazed with the brazing apparatus of FIG. 図1のろう付け装置の他の実施例のトレー上に保持されたワークの斜視図である(実施例2)。It is a perspective view of the workpiece | work hold | maintained on the tray of the other Example of the brazing apparatus of FIG. 1 (Example 2). 図11の平面図である。It is a top view of FIG. 図12のD−D線断面図である。It is the DD sectional view taken on the line of FIG. 図1のろう付け装置のもう一つの他の実施例のトレー上に保持されたワークの斜視図である(実施例3)。It is a perspective view of the workpiece | work hold | maintained on the tray of another another Example of the brazing apparatus of FIG. 1 (Example 3). 図14の平面図である。FIG. 15 is a plan view of FIG. 14. 図15のE−E線断面図である。It is the EE sectional view taken on the line of FIG. 図16の要部拡大図である。It is a principal part enlarged view of FIG. 図1のろう付け装置の更にもう一つの他の実施例のトレー上に保持されたワークの斜視図である(実施例4)。FIG. 10 is a perspective view of a workpiece held on a tray of still another embodiment of the brazing apparatus of FIG. 1 (embodiment 4). 図18の平面図である。It is a top view of FIG. 図19のF−F線断面図である。It is the FF sectional view taken on the line of FIG. 本発明を適用した他の実施例のろう付け装置の全体構成を示す図である(実施例5)。It is a figure which shows the whole structure of the brazing apparatus of the other Example to which this invention is applied (Example 5). 本発明を適用したもう一つの他の実施例のろう付け装置の全体構成を示す図である(実施例6)。It is a figure which shows the whole structure of the brazing apparatus of another another Example to which this invention is applied (Example 6). 従来のろう付け炉のろう付け室の構成を示す図である。It is a figure which shows the structure of the brazing chamber of the conventional brazing furnace. 図23のろう付け室で熱交換器をろう付けしたときの各部の温度推移を示す図である。It is a figure which shows the temperature transition of each part when a heat exchanger is brazed in the brazing chamber of FIG. 図23のろう付け室でろう付けされた熱交換器の正面図である。It is a front view of the heat exchanger brazed in the brazing chamber of FIG.

以下、本発明の実施の形態について、図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明を適用した一実施例としてのろう付け装置SBの全体構成を示し、図2はろう付け対象のワークの実施例としての熱交換器Wの正面図を示している。ろう付けするワークとしての熱交換器Wは、車両や冷却装置等でラジエターやエバポレータとして使用されるものであり、その構造は図25の場合と同様である。即ち、熱交換器Wは、両端のアルミニウム製ヘッダー部1、1と、それらの間に構成されたチューブ部2とから構成されており、チューブ部2はヘッダー部1、1間に渡って並列にろう付けされた複数本のアルミニウム製マイクロチューブ3と、これらマイクロチューブ3の間にろう付けされたアルミニウム製のフィン4とから構成されている。   FIG. 1 shows an overall configuration of a brazing apparatus SB as an embodiment to which the present invention is applied, and FIG. 2 shows a front view of a heat exchanger W as an embodiment of a workpiece to be brazed. The heat exchanger W as a work to be brazed is used as a radiator or an evaporator in a vehicle, a cooling device or the like, and its structure is the same as that in the case of FIG. That is, the heat exchanger W is composed of aluminum header parts 1 and 1 at both ends and a tube part 2 formed between them, and the tube part 2 is parallel between the header parts 1 and 1. A plurality of aluminum microtubes 3 brazed to each other, and aluminum fins 4 brazed between the microtubes 3.

図2において、実施例のワークとしての熱交換器Wは前述同様に全体としては従来製品よりも薄肉化と軽量化が図られたものであり、ヘッダー部1には実際には冷媒等が流入、流出する図示しない入口管及び出口管が接続されることになる。また、ヘッダー部1はチューブ部2を構成するマイクロチューブ3やフィン4よりも厚み寸法が大きく、熱容量は大きい。従って、同様に加熱した場合、ヘッダー部1の温度は上がり難く、昇温速度は遅くなり、チューブ部2の温度は上がり易く、昇温速度は速くなることとなる。   In FIG. 2, the heat exchanger W as a work of the embodiment is generally thinner and lighter than the conventional product as described above, and the header portion 1 actually flows into the header portion 1. The inlet pipe and the outlet pipe (not shown) that flow out are connected. Further, the header portion 1 has a thickness dimension larger than that of the microtube 3 and the fin 4 constituting the tube portion 2, and has a large heat capacity. Therefore, when similarly heated, the temperature of the header part 1 is difficult to rise, the rate of temperature rise is slow, the temperature of the tube part 2 is likely to rise, and the rate of temperature rise is fast.

次に、本発明のろう付け装置の実施例としての図1のろう付け装置SBは、所謂高速ろう付け炉であり、内部に乾燥室11が構成された乾燥炉12と、前室13と、内部にろう付け室14が構成された加熱炉17と、内部に冷却室19が構成された冷却炉21と、後室22とから構成され、それらが順次連続して配置されており、通気性のトレー23上に載置され、保持された熱交換器Wを通気性の搬送手段(ローラやメッシュベルト)24により、乾燥室11、前室13、ろう付け室14、冷却室19、後室22の順で搬送する構成とされている。   Next, the brazing apparatus SB of FIG. 1 as an embodiment of the brazing apparatus of the present invention is a so-called high-speed brazing furnace, and includes a drying furnace 12 in which a drying chamber 11 is configured, a front chamber 13, It is composed of a heating furnace 17 in which a brazing chamber 14 is configured, a cooling furnace 21 in which a cooling chamber 19 is configured, and a rear chamber 22, which are sequentially arranged and are air permeable. The heat exchanger W placed and held on the tray 23 is dried by an air-permeable conveying means (roller or mesh belt) 24 by a drying chamber 11, a front chamber 13, a brazing chamber 14, a cooling chamber 19, and a rear chamber. It is set as the structure conveyed in order of 22.

前記乾燥室11では熱交換器Wに塗布されたイソプロピレンアルコール(IPA)等の加工油を蒸発させる。この乾燥室11と前室13の間にはメタルカーテン26が設けられている。この前室13、ろう付け室14及び冷却室19には窒素ガス導入パイプ27により、不活性ガスとしての窒素ガスが導入される。   In the drying chamber 11, processing oil such as isopropylene alcohol (IPA) applied to the heat exchanger W is evaporated. A metal curtain 26 is provided between the drying chamber 11 and the front chamber 13. Nitrogen gas as an inert gas is introduced into the front chamber 13, the brazing chamber 14 and the cooling chamber 19 through a nitrogen gas introduction pipe 27.

前室13内では大気が窒素ガスと置換されるが、メタルカーテン26は前室13内と乾燥室11とを仕切り、前室13内における大気を窒素ガスとの置換を助ける役割を果たす。加熱炉17のろう付け室14内には、図6に示す如く主加熱手段としての電気ヒータ28と強制対流手段としての炉内ファン29が設けられており、この電気ヒータ28により高温に加熱された窒素ガスが炉内ファン29によってろう付け室14内に強制対流される構成とされている。このとき、炉内ファン29の下側にはフード32が設けられ、このフード32の下端は搬送手段24の上方にて開口しており、加熱炉17の内壁面との間に間隔を存して立ち上がり、徐々に上に行くに従って窄まった後、上端が炉内ファン29の直下にて開口する構造とされている。   The atmosphere is replaced with nitrogen gas in the front chamber 13, but the metal curtain 26 separates the interior of the front chamber 13 from the drying chamber 11, and plays a role in helping to replace the atmosphere in the front chamber 13 with nitrogen gas. In the brazing chamber 14 of the heating furnace 17, an electric heater 28 as a main heating means and an in-furnace fan 29 as a forced convection means are provided as shown in FIG. The nitrogen gas is forcedly convected into the brazing chamber 14 by the furnace fan 29. At this time, a hood 32 is provided below the furnace fan 29, and the lower end of the hood 32 is opened above the conveying means 24, and there is an interval between the inner wall surface of the heating furnace 17. Then, the upper end gradually closes as it goes upward, and then the upper end opens directly below the in-furnace fan 29.

これにより、高温の窒素ガスは炉内ファン29により一旦上に吹き上げられ、加熱炉17の上壁に当たって外方に向かい、フード32の外側(加熱炉17の側壁内側)を降下し、底壁に当たって再び内方に向かった後、上昇して搬送手段24及びトレー23を通過し、熱交換器Wに下から吹き付けられる。そして、熱交換器Wを通過した後、フード32の内側を更に上昇して再び炉内ファン29に吸い込まれることになる(図6に細矢印で示す強制対流)。   As a result, the high-temperature nitrogen gas is once blown up by the furnace fan 29, hits the upper wall of the heating furnace 17, travels outward, falls outside the hood 32 (inside the side wall of the heating furnace 17), and hits the bottom wall. After going inward again, it rises, passes through the conveying means 24 and the tray 23, and is blown onto the heat exchanger W from below. Then, after passing through the heat exchanger W, the inside of the hood 32 is further raised and sucked into the furnace fan 29 again (forced convection indicated by thin arrows in FIG. 6).

次に、図3〜図5を参照して本発明のろう付け装置SBで使用されるトレー23の一実施例の構成及び熱交換器(ワーク)Wの保持について説明する。実施例のトレー23は矩形状の金属板から成り、その上面23Aには全面に渡って通気部としての複数の透孔33が穿設されている。このトレー23上に受け材34を介して熱交換器(ワーク)Wを載置し、保持させる(図3)。   Next, the configuration of one embodiment of the tray 23 used in the brazing apparatus SB of the present invention and the holding of the heat exchanger (work) W will be described with reference to FIGS. The tray 23 of the embodiment is made of a rectangular metal plate, and a plurality of through holes 33 are formed as vents on the entire upper surface 23A. A heat exchanger (work) W is placed on the tray 23 via a receiving member 34 and held (FIG. 3).

この場合、熱交換器(ワーク)Wは所定の治具にセットし、ヘッダー部1、1とチューブ部2が図2の状態に配置された状態としておく。また、受け材34は両端のヘッダー部1、1とトレー23間に介設され、熱交換器(ワーク)Wがトレー23に固着してしまう不都合を防止する(図5)。   In this case, the heat exchanger (work) W is set in a predetermined jig, and the header portions 1 and 1 and the tube portion 2 are arranged in the state shown in FIG. Further, the receiving member 34 is interposed between the header portions 1 and 1 at both ends and the tray 23 to prevent the inconvenience that the heat exchanger (workpiece) W is fixed to the tray 23 (FIG. 5).

また、トレー23の上面23Aには、熱交換器(ワーク)Wの昇温速度が速い部位であるチューブ部2の中心部の下方に対応して遮蔽板36が取り付けられる(図4、図5。図4では熱交換器Wを透視して示す)。これにより、チューブ部2の下方に位置する透孔33は遮蔽板36の存する範囲で閉塞されたかたちとなり、これにより、熱交換器(ワーク)Wへ吹き付けられる高温窒素ガスの流通が制御されるので、トレー23が本発明の配風手段を構成し、トレー23(上面23A)と遮蔽板36が風向板を構成することになる。   Further, a shielding plate 36 is attached to the upper surface 23A of the tray 23 so as to correspond to the lower part of the center portion of the tube portion 2 that is a portion where the temperature rise rate of the heat exchanger (workpiece) W is fast (FIGS. 4 and 5). In FIG. 4, the heat exchanger W is seen through). As a result, the through-hole 33 positioned below the tube portion 2 is closed in the range where the shielding plate 36 exists, and thereby the flow of the high-temperature nitrogen gas blown to the heat exchanger (workpiece) W is controlled. Therefore, the tray 23 constitutes the air distribution means of the present invention, and the tray 23 (the upper surface 23A) and the shielding plate 36 constitute the wind direction plate.

以上の構成で、次に実施例のろう付け装置SBによる熱交換器Wのろう付け作業について説明する。先ず、上述したように熱交換器(ワーク)Wを所定の治具にセットし、ヘッダー部1、1とチューブ部2が図2の如き状態に配置された状態とする。その状態の熱交換器(ワーク)Wを、受け材34を介してトレー23上に載置し、トレー23ごと搬送手段24上に載せる。   Next, the brazing operation of the heat exchanger W by the brazing apparatus SB of the embodiment having the above configuration will be described. First, as described above, the heat exchanger (work) W is set on a predetermined jig, and the header portions 1 and 1 and the tube portion 2 are arranged in a state as shown in FIG. The heat exchanger (work) W in this state is placed on the tray 23 via the receiving member 34, and the entire tray 23 is placed on the transport unit 24.

この場合、トレー23を熱交換器(ワーク)Wのヘッダー部1、1が搬送手段24の進行方向に対して両側(図1では奥側と手前側)となるように搬送手段24上に搭載する。そして、トレー23及びその上に保持された熱交換器(ワーク)Wは、図1の左から右に移動するかたちで搬送手段24により所定の速度で搬送され、乾燥室11で表面のIPAや加工油が蒸発処理される(蒸発工程)。その後、メタルカーテン26を介して前室13に移送され、そこを通過する過程で熱交換器Wの周囲は窒素ガス雰囲気とされる(前工程)。   In this case, the tray 23 is mounted on the transport unit 24 so that the header portions 1 and 1 of the heat exchanger (work) W are on both sides (the rear side and the front side in FIG. 1) with respect to the traveling direction of the transport unit 24. To do. The tray 23 and the heat exchanger (workpiece) W held on the tray 23 are transported at a predetermined speed by the transport means 24 while moving from the left to the right in FIG. The processing oil is evaporated (evaporation process). Thereafter, the heat exchanger W is transferred to the front chamber 13 through the metal curtain 26, and the atmosphere around the heat exchanger W is changed to a nitrogen gas atmosphere in the process of passing therethrough (pre-process).

この前室13から熱交換器(ワーク)Wは、加熱炉17のろう付け室14に順次移送され、前述の如き炉内ファン29による高温窒素ガスの強制対流と電気ヒータ28からの直接の輻射熱によって予熱と加熱の各工程が行われる。その際、高温の窒素ガスは搬送手段24の下方から上昇し、トレー23の透孔33を通過して熱交換器(ワーク)Wに下方から吹き付けられることになるが、このとき、チューブ部2の下方に対応するトレー23の透孔33は、遮蔽板36により塞がれているので、チューブ部2に向かった高温窒素ガスはこの部分の透孔33を通過することができず、その両側外方のヘッダー部1、1方向に向かう(図6に矢印で示す)。   The heat exchanger (workpiece) W is sequentially transferred from the front chamber 13 to the brazing chamber 14 of the heating furnace 17, and forced convection of high-temperature nitrogen gas by the in-furnace fan 29 as described above and direct radiant heat from the electric heater 28. Thus, preheating and heating steps are performed. At that time, the high-temperature nitrogen gas rises from below the conveying means 24, passes through the through holes 33 of the tray 23, and is blown to the heat exchanger (workpiece) W from below. At this time, the tube portion 2 Since the through-hole 33 of the tray 23 corresponding to the lower side is closed by the shielding plate 36, the high-temperature nitrogen gas toward the tube portion 2 cannot pass through the through-hole 33 of this portion, and both sides thereof. The outer header portion 1 is directed in one direction (indicated by an arrow in FIG. 6).

これにより、このヘッダー部1、1(昇温速度が遅い部位)に多量の高温窒素ガスが優先的に吹き付けられることになる。尚、チューブ部2にも遮蔽板36を回り込んだ高温窒素ガスが吹き付けられる。係るろう付け室14における予熱から加熱までの加熱工程でヘッダー部1とチューブ部2(マイクロチューブ3とフィン4)とがろう付けされた後、熱交換器Wは冷却室19に移送され、この冷却室19内で窒素ガス雰囲気中における徐冷が行われた後(冷却工程)、最終的に後室22に至り、ろう付けが終了する。   As a result, a large amount of high-temperature nitrogen gas is preferentially blown to the header portions 1 and 1 (parts where the temperature increase rate is slow). The tube portion 2 is also sprayed with high-temperature nitrogen gas that has passed through the shielding plate 36. After the header part 1 and the tube part 2 (microtube 3 and fin 4) are brazed in the heating process from preheating to heating in the brazing chamber 14, the heat exchanger W is transferred to the cooling chamber 19, and this After slow cooling in a nitrogen gas atmosphere is performed in the cooling chamber 19 (cooling step), the final chamber 22 is reached and brazing is completed.

上記ろう付け装置SBの制御、即ち、搬送手段24による熱交換器(ワーク)Wの搬送速度、ろう付け室14内の電気ヒータ28の発熱量及び炉内ファン29の運転等は、ろう付け室14内の窒素ガス温度、及び/又は、熱交換器(ワーク)W各部の温度を検出する温度検出装置(熱電対等)K1の出力に基づき、コントローラCにより実行される。このコントローラCはマイクロコンピュータにより構成され、下記に説明する熱交換器(ワーク)Wの各部の温度推移を実現するための制御プログラムが予め組み込まれている。   The control of the brazing device SB, that is, the conveying speed of the heat exchanger (work) W by the conveying means 24, the amount of heat generated by the electric heater 28 in the brazing chamber 14, the operation of the in-furnace fan 29, etc. 14 is executed by the controller C based on the output of the temperature of the nitrogen gas in the temperature detector 14 and / or the temperature of the heat exchanger (work) W and the temperature detection device (thermocouple or the like) K1. The controller C is constituted by a microcomputer, and a control program for realizing temperature transition of each part of the heat exchanger (work) W described below is incorporated in advance.

次に、図7〜図9に示す温度グラフを参照しながら、ろう付け装置SBでろう付けされる熱交換器(ワーク)W各部の温度推移を説明する。図7は前室13から後室22までの温度推移を示し、図8は図7の円A、円B部分の拡大図、図9はろう付け室14における温度推移をそれぞれ示している。各図に示すグラフの破線は熱交換器Wにおいて昇温速度が速い部位であるチューブ部2の温度を、実線は昇温速度が遅い部位であるヘッダー部1の温度推移を、一点鎖線は理想の温度推移をそれぞれ示している。   Next, the temperature transition of each part of the heat exchanger (work) W brazed by the brazing apparatus SB will be described with reference to the temperature graphs shown in FIGS. 7 shows the temperature transition from the front chamber 13 to the rear chamber 22, FIG. 8 shows an enlarged view of circle A and circle B in FIG. 7, and FIG. 9 shows the temperature transition in the brazing chamber 14, respectively. The broken lines in the graphs shown in each figure indicate the temperature of the tube part 2 that is a part where the temperature rise rate is fast in the heat exchanger W, the solid line indicates the temperature transition of the header part 1 that is the part where the temperature rise rate is slow, and the one-dot chain line is ideal. The temperature transition of each is shown.

前述したように本実施例では熱交換器(ワーク)Wのチューブ部2下方に対応するトレー23の透孔33が遮蔽板36により塞がれ、ヘッダー部1、1に高温窒素ガスが優先的に配風されるので、ろう付け室14での加熱工程においては、予熱段階から加熱段階に至るまで、昇温速度が遅いヘッダー部1の昇温が促進され、ヘッダー部1の温度(実線)と昇温速度が速いチューブ部2の温度(破線)が略同様に上昇していき、それらは近似した温度で推移する(図7)。   As described above, in this embodiment, the through hole 33 of the tray 23 corresponding to the lower part of the tube portion 2 of the heat exchanger (work) W is closed by the shielding plate 36, and high-temperature nitrogen gas is preferentially used for the header portions 1 and 1. Therefore, in the heating process in the brazing chamber 14, the temperature rise of the header part 1 having a slow temperature rise rate is promoted from the preheating stage to the heating stage, and the temperature of the header part 1 (solid line). And the temperature (broken line) of the tube part 2 with a high temperature rising rate rises in substantially the same way, and they change at the approximate temperature (FIG. 7).

ろう付け室14における所定時間の加熱工程(予熱と加熱)により、熱交換器(ワーク)Wを最終的に+570℃以上+600℃以下まで加熱するが、係るろう付け室14における加熱工程中(冷却工程に入るまでの間)、熱交換器(ワーク)Wの温度が少なくとも+450℃以上(実施例では+440℃以上)+500℃未満の範囲では、ヘッダー部1とチューブ部2の温度差(バラつき)を実施例では5deg以内に保つ。また、+500℃以上の範囲では、ヘッダー部1とチューブ部2の温度差(バラつき)を実施例では2.5deg以内に保つものとする(図8、図9)。尚、実施例では熱交換器(ワーク)Wの温度が+440℃以上+500℃未満の範囲でヘッダー部1とチューブ部2の温度差を5deg以内に保ち、+500℃以上の範囲では該温度差を2.5deg以内に保つようにしたが、少なくとも熱交換器(ワーク)Wの温度が+440℃以上+500℃未満の範囲でヘッダー部1とチューブ部2の温度差を20deg以内に保ち、+500℃以上の範囲では該温度差を10deg以内に保てば、亜鉛の拡散量と歪みの発生を許容範囲内とすることができると考えられる。このようなコントローラCによる加熱制御中も、トレー23を通過する高温窒素ガスはヘッダー部1に優先的に吹き付けられるので、熱容量の大きいヘッダー部1と熱容量の小さいチューブ部2の昇温を的確に合わせることが可能となる。これにより、ヘッダー部1とチューブ部2(マイクロチューブ3とフィン4)とをろう付けする。   The heat exchanger (work) W is finally heated to + 570 ° C. or higher and + 600 ° C. or lower by a heating process (preheating and heating) for a predetermined time in the brazing chamber 14, but during the heating process in the brazing chamber 14 (cooling) In the range where the temperature of the heat exchanger (workpiece) W is at least + 450 ° C. or higher (in the embodiment, + 440 ° C. or higher) + 500 ° C. or lower, the temperature difference between the header portion 1 and the tube portion 2 (varies). Is kept within 5 degrees in the embodiment. In the range of + 500 ° C. or higher, the temperature difference (variation) between the header portion 1 and the tube portion 2 is kept within 2.5 deg in the embodiment (FIGS. 8 and 9). In the embodiment, the temperature difference between the header portion 1 and the tube portion 2 is kept within 5 deg when the temperature of the heat exchanger (workpiece) W is + 440 ° C. or more and less than + 500 ° C., and when the temperature is + 500 ° C. or more, the temperature difference is kept. Although kept within 2.5 deg, the temperature difference between the header part 1 and the tube part 2 is kept within 20 deg at least when the temperature of the heat exchanger (workpiece) W is + 440 ° C. or higher and less than + 500 ° C., and + 500 ° C. or higher. In this range, if the temperature difference is kept within 10 deg, it is considered that the amount of zinc diffusion and distortion can be within the allowable range. Even during the heating control by the controller C, the high-temperature nitrogen gas passing through the tray 23 is preferentially blown to the header portion 1, so that the temperature of the header portion 1 having a large heat capacity and the tube portion 2 having a small heat capacity are accurately increased. It becomes possible to match. Thereby, the header part 1 and the tube part 2 (the microtube 3 and the fin 4) are brazed.

このように、本発明ではろう付け室14内に高温窒素ガス(不活性ガス)を対流させることにより、このろう付け室14内において熱交換器(ワーク)Wを構成するアルミニウム部材であるヘッダー部1、1とチューブ部2を加熱してろう付けするに当たり、ろう付け室14内において対流する高温窒素ガスの流通をトレー23(配風手段)により制御し、高温窒素ガスを熱交換器(ワーク)Wの昇温速度が遅いヘッダー部1に優先的に吹き付けるようにしたので、ろう付け室14内における加熱中に、熱交換器(ワーク)Wの昇温速度が速いチューブ部2の昇温に、昇温速度が遅いヘッダー部1の昇温を合わせ、ろう付け中に図10に破線Xで示す熱交換器(ワーク)Wのろう付けが必要な全領域(ヘッダー部1とチューブ部2との接合部からチューブ部2全域に渡る範囲)を均一に昇温させることができるようになる。従って、ヘッダー部1とチューブ部2とより成る熱交換器Wをろう付けする際の過剰な腐り代の発生や耐食性の低下を未然に回避することが可能となる。   As described above, in the present invention, a high-temperature nitrogen gas (inert gas) is convected in the brazing chamber 14 so that the header portion which is an aluminum member constituting the heat exchanger (work) W in the brazing chamber 14. In heating and brazing the tubes 1 and 1 and the tube portion 2, the circulation of the hot nitrogen gas convection in the brazing chamber 14 is controlled by the tray 23 (air distribution means), and the hot nitrogen gas is transferred to the heat exchanger (workpiece). ) Since the header portion 1 with a slow W temperature rise rate is preferentially blown to the header portion 1, the temperature of the tube portion 2 with a fast heat exchanger (workpiece) W rise rate is increased during heating in the brazing chamber 14. In addition, the temperature of the header portion 1 with a slow temperature rise rate is matched, and the entire region (header portion 1 and tube portion 2) in which brazing of the heat exchanger (workpiece) W indicated by the broken line X in FIG. Joint with Range) over Luo tube portion 2 whole it is possible to uniformly heated. Therefore, it is possible to avoid the occurrence of excessive corrosion allowance and a decrease in corrosion resistance when the heat exchanger W composed of the header portion 1 and the tube portion 2 is brazed.

特に、従来の如く昇温速度が遅いヘッダー部1の昇温に昇温速度が速いチューブ部2を合わせるものでは無く、昇温速度が遅いヘッダー部1に高温窒素ガスを優先的に吹き付けて当該ヘッダー部1の昇温を促進するので、高速化の要望も満たすことができる。また、トレー23に遮蔽板36を取り付けるだけの簡単な構成で配風手段を構成しているので、部品点数の削減を図ることが可能となると共に、搬送手段24で搬送される熱交換器(ワーク)Wのそれぞれに対応して高温窒素ガスの流通を制御することができるようになり、熱交換器(ワーク)Wの昇温をより的確に均一化することができるようになる。   In particular, the tube portion 2 having a high temperature rise rate is not matched with the temperature rise of the header portion 1 having a slow temperature rise rate as in the prior art, and high temperature nitrogen gas is preferentially blown to the header portion 1 having a slow temperature rise rate. Since the temperature rise of the header part 1 is promoted, the demand for high speed can be satisfied. Further, since the air distribution means is configured with a simple configuration in which the shielding plate 36 is simply attached to the tray 23, the number of parts can be reduced, and the heat exchanger ( The flow of the high-temperature nitrogen gas can be controlled corresponding to each of the workpieces W, and the temperature rise of the heat exchanger (work) W can be made more uniform.

特に、トレー23による配風により、ろう付け室14での加熱工程で加熱されるワークの温度が少なくとも+450℃以上+500℃未満の範囲では、昇温速度が遅いヘッダー部1と昇温速度が速いチューブ部2の温度差を20deg以内、望ましくは5deg以内とし、熱交換器(ワーク)Wの温度が+500℃以上の範囲では、昇温速度が遅いヘッダー部1と昇温速度が速いチューブ部2の温度差を10deg以内、望ましくは2.5deg以内とすることで、熱交換器(ワーク)W全体を一層均一に昇温させ、良好なろう付けを実現することが可能となる。   Particularly, when the temperature of the workpiece heated in the heating process in the brazing chamber 14 is at least + 450 ° C. or more and less than + 500 ° C. due to the air distribution by the tray 23, the header portion 1 and the temperature rising rate are slow. When the temperature difference of the tube portion 2 is within 20 deg, preferably within 5 deg, and the temperature of the heat exchanger (workpiece) W is + 500 ° C. or more, the header portion 1 with a slow temperature rise rate and the tube portion 2 with a fast temperature rise rate By making the temperature difference within 10 deg, preferably within 2.5 deg, it becomes possible to raise the temperature of the entire heat exchanger (workpiece) W more uniformly and to achieve good brazing.

次に、図11〜図13は本発明を適用した他の実施例を示している。尚、各図において図3〜図5中と同一符号で示すものは同一若しくは同様の機能を奏するものとする。上述の実施例1ではトレー23に取り付けられた遮蔽板36により熱交換器(ワーク)Wのチューブ部2の下方に対応する透孔33を完全に塞いたが、ヘッダー部1とチューブ部2の熱容量の差、即ち、昇温速度の差が実施例1の場合よりも小さい場合には前記実施例1よりもチューブ部2に高温窒素ガスをより多く配風した方がヘッダー部1の昇温とチューブ部2の昇温が合うかたちとなる。   Next, FIGS. 11 to 13 show another embodiment to which the present invention is applied. In addition, in each figure, what is shown with the same code | symbol as FIGS. 3-5 shall show | play the same or the same function. In the first embodiment, the shielding plate 36 attached to the tray 23 completely blocks the through hole 33 corresponding to the lower part of the tube portion 2 of the heat exchanger (work) W. When the difference in heat capacity, that is, the difference in the heating rate is smaller than that in the first embodiment, the higher the temperature of the header portion 1 is, the more the high-temperature nitrogen gas is distributed in the tube portion 2 than in the first embodiment. And the temperature rise of the tube part 2 are matched.

そこで、この実施例2では遮蔽板36に透孔33よりも小さい寸法(小径)の透孔(通気部)37を複数穿設している。これにより、高温窒素ガスはトレー23の透孔33及び遮蔽板36の透孔37を通過して直接チューブ部1の中心部に吹き付けられるかたちとなるので、前記実施例1の場合よりも多い量の高温窒素ガスがチューブ部2に吹き付けられることになり、それにより、この場合の熱交換器(ワーク)Wのヘッダー部1の昇温とチューブ部2の昇温を合わせることができるようになる。   Therefore, in the second embodiment, a plurality of through holes (ventilating portions) 37 having a smaller size (smaller diameter) than the through holes 33 are formed in the shielding plate 36. As a result, the high-temperature nitrogen gas passes through the through-holes 33 of the tray 23 and the through-holes 37 of the shielding plate 36 and is directly blown to the central part of the tube part 1, so that the amount is higher than in the first embodiment. The high-temperature nitrogen gas is blown to the tube portion 2, whereby the temperature rise of the header portion 1 of the heat exchanger (work) W and the temperature rise of the tube portion 2 in this case can be matched. .

尚、係るトレー23による高温窒素ガスの流通制御によるヘッダー部1とチューブ部2への配風量の調整は、このような透孔(通気部)の寸法変更に限らず、その形状や位置、それらの組み合わせで行っても良い。   In addition, adjustment of the air distribution amount to the header part 1 and the tube part 2 by the flow control of the high-temperature nitrogen gas by the tray 23 is not limited to the dimension change of such a through hole (ventilation part), its shape and position, those It may be done in combination.

次に、図14〜図17は本発明を適用したもう一つの他の実施例を示している。尚、各図において図3〜図5中と同一符号で示すものは同一若しくは同様の機能を奏するものとする。上述の実施例1や実施例2ではトレー23に透孔33を穿設し、遮蔽板36によりチューブ部2の下方の透孔33を塞ぎ、或いは、透孔37で実質的に通気部の寸法を縮小したが、この実施例3では熱交換器(ワーク)Wのヘッダー部1、1の下方付近に対応するトレー23に通気部としての複数状のスリット38を形成している。   14 to 17 show another embodiment to which the present invention is applied. In addition, in each figure, what is shown with the same code | symbol as FIGS. 3-5 shall show | play the same or the same function. In the first and second embodiments described above, the through hole 33 is formed in the tray 23, and the through hole 33 below the tube portion 2 is closed by the shielding plate 36, or the size of the vent portion is substantially reduced by the through hole 37. However, in the third embodiment, a plurality of slits 38 are formed as ventilation portions in the tray 23 corresponding to the vicinity of the lower portion of the header portions 1 and 1 of the heat exchanger (work) W.

この場合、チューブ部2の中心部下方に対応する位置にはスリットは形成しない。また、各スリット38の内側(トレー23の中心方向側)の縁にはスリット38に隣接してヘッダー部1方向に指向したルーバー39がそれぞれ切り起こしで形成されている(図17)。そして、この場合の受け材34はルーバー39を避けるために略門型に形成されている。これにより、下方から上昇してくる高温窒素ガスをより効果的にヘッダー部1方向に指向させ、優先的に吹き付けることができるようになる。   In this case, no slit is formed at a position corresponding to the lower portion of the center portion of the tube portion 2. In addition, louvers 39 directed in the direction of the header portion 1 are formed by cutting and raising on the inner edges of the slits 38 (in the central direction of the tray 23), adjacent to the slits 38 (FIG. 17). In this case, the receiving member 34 is formed in a substantially gate shape in order to avoid the louver 39. Thereby, the high-temperature nitrogen gas rising from below can be more effectively directed toward the header portion 1 and can be preferentially blown.

尚、この場合もヘッダー部1とチューブ部2の熱容量の差、即ち、昇温速度の差に応じてルーバー39の角度や形状を決定し、配風の割合を調整するとよい。   In this case as well, the angle and shape of the louver 39 may be determined in accordance with the difference in heat capacity between the header portion 1 and the tube portion 2, that is, the difference in temperature increase rate, and the proportion of air distribution may be adjusted.

更に、それに加えて図18〜図20に示すように各ヘッダー部1、1の下方付近に対応したスリット38の群の間に透孔41を複数形成してもよい。これにより、高温窒素ガスはトレー23の透孔41を通過して直接チューブ部2の中心部にも吹き付けられるかたちとなるので、上記実施例3の場合よりも多い量の高温窒素ガスがチューブ部2に吹き付けられることになり、それにより、ヘッダー部1とチューブ部2の熱容量の差がより小さい熱交換器(ワーク)Wのヘッダー部1の昇温とチューブ部2の昇温を合わせることができるようになる。   Furthermore, in addition to that, as shown in FIGS. 18 to 20, a plurality of through holes 41 may be formed between the groups of slits 38 corresponding to the vicinity of the lower portion of each header portion 1, 1. As a result, the high-temperature nitrogen gas passes through the through hole 41 of the tray 23 and is directly blown to the central portion of the tube portion 2. 2, so that the temperature rise of the header portion 1 and the temperature rise of the tube portion 2 of the heat exchanger (work) W having a smaller difference in heat capacity between the header portion 1 and the tube portion 2 can be combined. become able to.

このように、配風手段の風向板を構成するトレー23の透孔33、37(通気部)の寸法(前述ように形状、寸法、及び、位置のうちの何れか、若しくは、それらの組み合わせ)により高温窒素ガスの流通を制御するようにすることで、更なる構造の簡素化を図ることが可能となる。更に、スリット38を形成してそれに隣接するルーバー39を設け、このルーバー39の角度、及び/又は、形状により高温窒素ガスの流通を制御するようにすることで、ろう付け室14内における高温窒素ガスの流通をより的確に制御することが可能となる。   Thus, the dimension of the through holes 33 and 37 (ventilation part) of the tray 23 constituting the wind direction plate of the air distribution means (any of the shape, dimension, and position as described above, or a combination thereof) By controlling the flow of the high-temperature nitrogen gas, it is possible to further simplify the structure. Further, a slit 38 is formed and a louver 39 adjacent to the slit 38 is provided, and the flow of the high-temperature nitrogen gas is controlled by the angle and / or shape of the louver 39, so that the high-temperature nitrogen in the brazing chamber 14 can be controlled. It becomes possible to control the distribution of gas more accurately.

ここで、上記各実施例ではトレー23により配風手段の風向板を構成したが、それに限らず、トレー23としてはその上面23Aの全面に渡って多数の透孔33が穿設されたものを使用し、更に、図21に示すように搬送手段24の下側(トレー23が載置される搬送手段24の往路の下側)に風向板42を別途設けても良い。   Here, in each of the above-described embodiments, the wind direction plate of the air distribution means is configured by the tray 23. However, the tray 23 is not limited thereto, and the tray 23 has a large number of through holes 33 formed on the entire upper surface 23A. Further, as shown in FIG. 21, a wind direction plate 42 may be separately provided on the lower side of the conveying means 24 (the lower side of the forward path of the conveying means 24 on which the tray 23 is placed).

この場合の風向板42も、図4や図12、図15、図19に示すトレー23の透孔33や、遮蔽板36(透孔37)、スリット38、ルーバー39、透孔41が設けられ、或いは、形成されている。そして、図4、図12、図15、図19の如き構造において、各図の左右両端が図21の奥側と手前側(搬送手段24の進行方向に対して両側となる位置)となるように風向板42を配置し、ろう付け室14の略全域に渡って並設するものとする。   The wind direction plate 42 in this case is also provided with a through hole 33 of the tray 23 shown in FIGS. 4, 12, 15, and 19, a shielding plate 36 (through hole 37), a slit 38, a louver 39, and a through hole 41. Or, it is formed. 4, 12, 15, and 19, the left and right ends of each figure are the back side and the near side (positions on both sides with respect to the traveling direction of the conveying means 24) in FIG. 21. An airflow direction plate 42 is disposed in the brazing chamber 14 and arranged in parallel over substantially the entire area.

係る構成によっても、トレー23上で図1の奥側と手前側に位置する熱交換器(ワーク)Wのヘッダー部1、1に優先的に高温窒素ガスを吹き付けることができるようになる。   Even with such a configuration, the high-temperature nitrogen gas can be preferentially sprayed onto the header portions 1 and 1 of the heat exchanger (work) W located on the back side and the near side in FIG.

また、前述した前室13内に図22に示すように補助加熱手段としての近赤外線照射装置44を配設してもよい。この近赤外線照射装置44は、近赤外線を発生する近赤外線ランプとこの近赤外線ランプが発生する近赤外線を照射対象に向けて集光する反射鏡等から構成され、熱交換器(ワーク)Wの熱容量が大きく、昇温速度が遅くなる両端のヘッダー部1、1に近赤外線を照射するように設ける。   Further, a near-infrared irradiation device 44 as auxiliary heating means may be disposed in the anterior chamber 13 described above as shown in FIG. The near-infrared irradiation device 44 includes a near-infrared lamp that generates near-infrared light and a reflecting mirror that collects the near-infrared light generated by the near-infrared lamp toward an irradiation target. It is provided to irradiate near-infrared rays to the header portions 1 and 1 at both ends where the heat capacity is large and the temperature rising rate is slow.

尚、この場合もトレー23は実施例1〜実施例4の如き構成とする。また、この場合は前室13内の雰囲気温度、及び/又は、熱交換器(ワーク)Wの各部の温度を検出する温度検出装置(熱電対等)K2を設け、この温度検出装置」K2の出力に基づき、コントローラCにより近赤外線照射装置44を制御する。また、この近赤外線照射装置44の位置、及び/又は、近赤外線の照射方向は、ワーク(熱交換器)の寸法や形状、昇温速度が遅くなる部位の位置に応じて変更可能とする。   In this case as well, the tray 23 is configured as in the first to fourth embodiments. In this case, a temperature detection device (thermocouple or the like) K2 for detecting the ambient temperature in the front chamber 13 and / or the temperature of each part of the heat exchanger (work) W is provided, and the output of this temperature detection device “K2”. The near infrared irradiation device 44 is controlled by the controller C based on the above. In addition, the position of the near infrared irradiation device 44 and / or the irradiation direction of the near infrared radiation can be changed according to the size and shape of the workpiece (heat exchanger) and the position of the part where the heating rate is slow.

そして、係る近赤外線の照射により、前室13内における前工程が終了する時点で、熱交換器(ワーク)Wのヘッダー部1の温度を+420℃又は略+420℃、チューブ部2の温度を+400℃又は略+400℃まで上昇させる。このようにヘッダー部1の温度が+420℃付近、チューブ部2の温度が+400℃付近となった時点で、熱交換器(ワーク)Wをろう付け室14に移送し、加熱工程に入るようにする。   When the pre-process in the front chamber 13 is completed by the irradiation of the near infrared rays, the temperature of the header portion 1 of the heat exchanger (work) W is + 420 ° C. or approximately + 420 ° C., and the temperature of the tube portion 2 is + 400 ° C. C. or rise to about + 400.degree. As described above, when the temperature of the header portion 1 is around + 420 ° C. and the temperature of the tube portion 2 is around + 400 ° C., the heat exchanger (workpiece) W is transferred to the brazing chamber 14 and enters the heating process. To do.

このように前室13に近赤外線照射装置44を設け、前室13での前工程において熱交換器(ワーク)Wの昇温速度が遅い部位であるヘッダー部1を近赤外線照射装置44により加熱するようにすれば、ろう付け室14、16で熱交換器(ワーク)Wを加熱する以前に、前室13における前工程で予め昇温速度が遅いヘッダー部1の温度を上げておくことができるようになる。   In this way, the near-infrared irradiation device 44 is provided in the front chamber 13, and the header portion 1, which is a portion where the temperature rise rate of the heat exchanger (work) W is slow in the previous process in the front chamber 13, is heated by the near-infrared irradiation device 44. By doing so, before heating the heat exchanger (workpiece) W in the brazing chambers 14, 16, the temperature of the header portion 1 having a slow heating rate may be raised in the previous step in the front chamber 13 in advance. become able to.

これにより、前述した高温窒素ガスの配風と合わせて、ろう付け室14内における加熱中に、熱交換器(ワーク)Wの昇温速度が速いチューブ部2の昇温に、昇温速度が遅いヘッダー部1の昇温をより効果的に合わせることができるようになる。特に、前室13における前工程にて昇温速度が遅いヘッダー部1の温度(実線)を先に上げておくものであり、従来の如く昇温速度が遅い部位の昇温に昇温速度が速い部位を合わせるものでは無いので、より高速化を果たす結果となる。   Thus, in combination with the above-described high-temperature nitrogen gas distribution, during the heating in the brazing chamber 14, the temperature rise rate of the heat exchanger (workpiece) W is increased in the temperature of the tube portion 2, which is high. It becomes possible to adjust the temperature increase of the slow header portion 1 more effectively. In particular, the temperature (solid line) of the header portion 1 having a slow temperature rise rate is raised first in the previous step in the front chamber 13, and the temperature rise rate is increased in the temperature rise of the portion where the temperature rise rate is slow as in the prior art. Since it does not match the fast parts, it results in higher speed.

この場合、前室13内での近赤外線照射装置44による温度上昇は依然低い(+400℃〜+420℃)ので、大気を窒素ガスに置換する前工程であっても、酸素による悪影響は無視することができる。また、前室13に近赤外線照射装置44を設けるという比較的簡単な構成で実現することができると共に、前室13における加熱であるため、補助加熱手段として耐熱温度が比較的低い加熱手段(実施例の近赤外線照射装置44等)を採用することも可能となる。   In this case, since the temperature rise by the near-infrared irradiation device 44 in the front chamber 13 is still low (+ 400 ° C. to + 420 ° C.), the adverse effect of oxygen should be ignored even in the previous step of replacing the atmosphere with nitrogen gas. Can do. Moreover, since it can implement | achieve by the comparatively simple structure of providing the near-infrared irradiation apparatus 44 in the front chamber 13, since it is the heating in the front chamber 13, a heating means (implementation) whose heat-resistant temperature is comparatively low as auxiliary heating means It is also possible to employ the example of the near infrared irradiation device 44).

即ち、この実施例のように前工程で近赤外線照射装置44により、近赤外線を照射して熱交換器(ワーク)Wの昇温速度が遅いヘッダー部1を加熱することで、昇温速度が遅いヘッダー部1の温度を昇温速度が速いチューブ部2の温度よりも的確に上げておくことが可能となる。   That is, as in this embodiment, the near-infrared irradiation device 44 irradiates near-infrared rays in the previous process and heats the header portion 1 with a slow temperature increase rate of the heat exchanger (workpiece) W. It becomes possible to raise the temperature of the slow header part 1 more accurately than the temperature of the tube part 2 having a fast temperature rising rate.

そして、前工程において熱交換器(ワーク)Wの昇温速度が遅いヘッダー部1の温度が+420℃又は略+420℃、昇温速度が速いチューブ部2の温度が+400℃又は略+400℃となった時点で熱交換器(ワーク)Wをろう付け室14に移送し、加熱工程に移行するようにすれば、前室13での前工程における酸素の影響も問題無く、また、その後のろう付け室14、16における加熱工程では、熱交換器(ワーク)W全体の温度を+570℃〜600℃まで迅速且つ均一に昇温させることが可能となる。   In the previous step, the temperature of the header portion 1 with a slow temperature rise rate of the heat exchanger (work) W is + 420 ° C. or about + 420 ° C., and the temperature of the tube portion 2 with a high temperature rise rate is + 400 ° C. or about + 400 ° C. If the heat exchanger (workpiece) W is transferred to the brazing chamber 14 at this point and the process proceeds to the heating step, the influence of oxygen in the previous step in the front chamber 13 is not a problem, and the subsequent brazing In the heating process in the chambers 14 and 16, the temperature of the entire heat exchanger (workpiece) W can be quickly and uniformly increased from + 570 ° C. to 600 ° C.

尚、各実施例では熱交換器をワークとして説明したが、それに限らず、請求項3の発明以外は、ろう付けにて製造されるアルミニウム部材全般に有効である。   In each of the embodiments, the heat exchanger has been described as a workpiece. However, the invention is not limited thereto, and the invention is effective for all aluminum members manufactured by brazing except for the invention of claim 3.

SB ろう付け装置
W 熱交換器(ワーク)
1 ヘッダー部(昇温速度が遅い部位)
2 チューブ部(昇温速度が速い部位)
3 マイクロチューブ
4 フィン
13 前室
14 ろう付け室
17 加熱炉
23 トレー(配風手段、風向板)
24 搬送手段
28 電気ヒータ
29 炉内ファン
33、37、41 透孔(通気部)
36 遮蔽板
38 スリット(通気部)
39 ルーバー
42 風向板(配風手段)
44 近赤外線照射装置(補助加熱手段)
SB Brazing device W Heat exchanger (workpiece)
1 Header (part where temperature rise rate is slow)
2 Tube part (part with high heating rate)
3 Microtube 4 Fin 13 Front chamber 14 Brazing chamber 17 Heating furnace 23 Tray (air distribution means, wind direction plate)
24 Conveying means 28 Electric heater 29 In-furnace fan 33, 37, 41 Through hole (vent)
36 Shielding plate 38 Slit (vent)
39 Louver 42 Wind direction plate (air distribution means)
44 Near-infrared irradiation device (auxiliary heating means)

Claims (8)

ろう付け室内に高温不活性ガスを対流させることにより、該ろう付け室内においてワークを構成するアルミニウム部材を加熱してろう付けするろう付け装置において、
前記ろう付け室内において対流する前記高温不活性ガスの流通を制御することにより、該高温不活性ガスを前記ワークの昇温速度が遅い部位に優先的に吹き付ける配風手段を備え
該配風手段は、複数の通気部が形成された風向板から成り、
該風向板は前記通気部に隣接するルーバーを有し、該ルーバーの角度、及び/又は、形状により前記高温不活性ガスの流通を制御することを特徴とするろう付け装置。
In a brazing apparatus that heats and brazes an aluminum member constituting a workpiece in the brazing chamber by convection of a high-temperature inert gas into the brazing chamber,
By controlling the flow of the high-temperature inert gas that convects in the brazing chamber, air distribution means that preferentially blows the high-temperature inert gas to a portion where the temperature rise rate of the workpiece is slow ,
The air distribution means comprises a wind direction plate in which a plurality of ventilation portions are formed,
The wind direction plate has a louver adjacent to the ventilation portion, and controls the flow of the hot inert gas according to the angle and / or shape of the louver .
前記配風手段は、前記ろう付け室で加熱される前記ワークの温度が少なくとも+450℃以上+500℃未満の範囲では、前記昇温速度が遅い部位と昇温速度が速い部位の温度差を20deg以内とし、前記ワークの温度が+500℃以上の範囲では、前記昇温速度が遅い部位と前記昇温速度が速い部位の温度差を10deg以内とすることを特徴とする請求項1に記載のろう付け装置。   When the temperature of the workpiece heated in the brazing chamber is at least + 450 ° C. or more and less than + 500 ° C., the air distribution means has a temperature difference of 20 deg or less between the portion where the heating rate is slow and the portion where the heating rate is fast. 2. The brazing according to claim 1, wherein a temperature difference between the portion where the heating rate is slow and the portion where the heating rate is fast is within 10 deg within a range where the temperature of the workpiece is + 500 ° C. or more. apparatus. 前記ワークは、ヘッダー部とチューブ部とより成る熱交換器であり、前記配風手段は前記ヘッダー部に優先的に前記高温不活性ガスを吹き付けることを特徴とする請求項1又は請求項2に記載のろう付け装置。   The said work is a heat exchanger which consists of a header part and a tube part, The said air distribution means sprays the said high temperature inert gas preferentially to the said header part, The Claim 1 or Claim 2 characterized by the above-mentioned. The brazing device described. 前記ろう付け室内において前記ワークを搬送する通気性の搬送手段と、前記ワークを保持して前記搬送手段に載置されるトレイとを備え、前記高温不活性ガスを下方から前記ワークに吹き付けると共に、前記トレイにより前記風向板を構成したことを特徴とする請求項1乃至請求項3のうちの何れかに記載のろう付け装置。 A breathable transfer means for transferring the work in the brazing chamber; and a tray that holds the work and is placed on the transfer means, and blows the high-temperature inert gas from below onto the work. The brazing device according to any one of claims 1 to 3, wherein the wind direction plate is configured by the tray . 前記ろう付け室内において前記ワークを搬送する通気性の搬送手段を備え、前記高温不活性ガスを下方から前記ワークに吹き付けると共に、前記搬送手段の下側に前記風向板を配置したことを特徴とする請求項1乃至請求項3のうちの何れかに記載のろう付け装置。 The apparatus further comprises an air permeable conveying means for conveying the work in the brazing chamber, the high temperature inert gas is sprayed onto the work from below, and the wind direction plate is disposed below the conveying means. The brazing apparatus according to any one of claims 1 to 3 . 前記ワークの昇温速度が遅い部位を加熱する補助加熱手段を備えたことを特徴とする請求項1乃至請求項5のうちの何れかに記載のろう付け装置。 The brazing apparatus according to any one of claims 1 to 5, further comprising auxiliary heating means for heating a part of the workpiece that has a slow temperature increase rate . 前記補助加熱手段は、近赤外線を照射することにより前記ワークの昇温速度が遅い部位を加熱することを特徴とする請求項6に記載のろう付け装置。 The brazing apparatus according to claim 6 , wherein the auxiliary heating unit heats a portion of the workpiece having a low temperature rising rate by irradiating near infrared rays . 前記加熱炉の前段に位置して大気を不活性ガスと置換する前室を備え、前記補助加熱手段を前記前室に設けたことを特徴とする請求項6又は請求項7に記載のろう付け装置。
The brazing according to claim 6 or 7, further comprising a front chamber that is positioned in front of the heating furnace to replace the atmosphere with an inert gas, and wherein the auxiliary heating means is provided in the front chamber. apparatus.
JP2013064426A 2013-03-26 2013-03-26 Brazing equipment Active JP6063316B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013064426A JP6063316B2 (en) 2013-03-26 2013-03-26 Brazing equipment
PCT/JP2014/057363 WO2014156846A1 (en) 2013-03-26 2014-03-18 Brazing apparatus, brazing method, and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013064426A JP6063316B2 (en) 2013-03-26 2013-03-26 Brazing equipment

Publications (2)

Publication Number Publication Date
JP2014188534A JP2014188534A (en) 2014-10-06
JP6063316B2 true JP6063316B2 (en) 2017-01-18

Family

ID=51623826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013064426A Active JP6063316B2 (en) 2013-03-26 2013-03-26 Brazing equipment

Country Status (2)

Country Link
JP (1) JP6063316B2 (en)
WO (1) WO2014156846A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104400172B (en) * 2014-12-04 2016-04-27 山西利普利拓煤机部件制造有限公司 The non-oxidation brazing and heat treatment device of carbide alloy pick
SE544654C2 (en) * 2020-07-13 2022-10-04 Swep Int Ab A method and a system for brazing a plate heat exchanger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080366A (en) * 2001-07-05 2003-03-18 Denso Corp Fabricating method of heat exchanger
US6768083B2 (en) * 2002-09-19 2004-07-27 Speedline Technologies, Inc. Reflow soldering apparatus and method for selective infrared heating
JP5343988B2 (en) * 2011-01-31 2013-11-13 株式会社デンソー Brazing equipment

Also Published As

Publication number Publication date
JP2014188534A (en) 2014-10-06
WO2014156846A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP4480231B2 (en) Convection brazing method and apparatus for metal workpiece
JP5343988B2 (en) Brazing equipment
JP5795560B2 (en) Furnace for thermal processing of workpieces
JPH1154903A (en) Reflow soldering method and reflow furnace
JP6063316B2 (en) Brazing equipment
RU73665U1 (en) DEVICE FOR HEATING GLASS PANELS
JP6073724B2 (en) Brazing apparatus and brazing method
JPWO2014129072A1 (en) Nozzle heater and drying furnace
JP5103064B2 (en) Reflow device
JP5129249B2 (en) Hybrid heat treatment machine and method thereof
JP4602536B2 (en) Reflow soldering equipment
JP3683166B2 (en) Substrate heat treatment method and continuous heat treatment furnace used therefor
US5660543A (en) Method and apparatus for enhanced convection brazing of aluminum assemblies
CN108668462B (en) Reflow soldering device
JP4043694B2 (en) Reflow device
JP2008190783A (en) Heating furnace
JP2009099762A (en) Reflow device, flux recovery device, and flux recovery method
KR20140043863A (en) Method for suppressing frame generation and apparatus for suppressing frame generation
JP2020094766A (en) Heat processing device
JP2006000905A (en) Reflow device
JP2018073902A (en) Reflow device
JP5842220B2 (en) Resin film heating method
JP4272306B2 (en) Reflow device
JP7156169B2 (en) Hot air heating device
JP6252785B2 (en) Work cooling method and work cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161216

R150 Certificate of patent or registration of utility model

Ref document number: 6063316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350