JP2003080366A - Fabricating method of heat exchanger - Google Patents

Fabricating method of heat exchanger

Info

Publication number
JP2003080366A
JP2003080366A JP2002197734A JP2002197734A JP2003080366A JP 2003080366 A JP2003080366 A JP 2003080366A JP 2002197734 A JP2002197734 A JP 2002197734A JP 2002197734 A JP2002197734 A JP 2002197734A JP 2003080366 A JP2003080366 A JP 2003080366A
Authority
JP
Japan
Prior art keywords
heat exchanger
manufacturing
tube
heat capacity
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002197734A
Other languages
Japanese (ja)
Inventor
Shiyouji Iriyama
庄二 杁山
Koji Hirao
幸司 平尾
Hiroshi Ogawa
洋 小川
Takanori Takeda
敬典 竹田
Hiroyuki Nishikawa
宏之 西川
Satoshi Nohira
智 野平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002197734A priority Critical patent/JP2003080366A/en
Publication of JP2003080366A publication Critical patent/JP2003080366A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fabricating method of heat exchanger which is excellent in durable strength and is excellent in production efficiency. SOLUTION: In this method, a heat exchanger 1 composed of a core part 11 having a tube 13 through which a heating medium flows and a radiating fin 14 which is connected to the surface of the tube 13 and a tank part 12 communicating with the tube 13 is fabricated. By performing successively a preheating process, a brazing process, an annealing process and a cooling process, the brazing between the tank part 12 and the tube 13, and between the tube 13 and the radiating fin 14 is performed. In the preheating process, the tank part 12 which has a larger heat capacity in the heat exchanger 1 is elevated in temperature earlier than the core part 11 which has a smaller heat capacity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は,例えば,熱媒が流通するチュー
ブと該チューブの表面に接合された放熱フィンとを有す
るコア部と,上記チューブに連通するタンク部とからな
り,部分的に熱容量が異なる熱交換器を製造する方法に
関する。
TECHNICAL FIELD The present invention comprises, for example, a core part having a tube through which a heat medium flows and a heat radiation fin joined to the surface of the tube, and a tank part communicating with the tube, and the heat capacity is partially It relates to a method of manufacturing different heat exchangers.

【0002】[0002]

【従来技術】従来より,熱媒が流通するチューブと該チ
ューブの表面に接合された放熱フィンとを有するコア部
と,上記チューブに連通するタンク部とからなる熱交換
器がある(図1参照)。該熱交換器を製造するに当って
は,上記タンク部とチューブ,及び該チューブと放熱フ
ィンとをろう付けすることにより接合する。即ち,予熱
工程,ろう付け工程,徐冷工程,冷却工程を順次行なう
ことにより,上記各部材を互いにろう付け接合する。
2. Description of the Related Art Conventionally, there is a heat exchanger including a core part having a tube through which a heat medium flows and a heat radiation fin joined to the surface of the tube, and a tank part communicating with the tube (see FIG. 1). ). In manufacturing the heat exchanger, the tank portion and the tube, and the tube and the radiation fin are joined by brazing. That is, the above-mentioned members are brazed to each other by sequentially performing the preheating process, the brazing process, the slow cooling process, and the cooling process.

【0003】具体的には,各部材の接合部分に,フラッ
クスを含んだろう材を配置して,上記各部材を組付け
る。この熱交換器の組付け体を,上記予熱工程におい
て,フラックスが熔融するまで加熱する。続けて,ろう
付け工程において,ろう材が熔融するまで加熱する。次
いで,徐冷工程において,上記ろう材が凝固するまで冷
却する。続けて,冷却工程において,熱交換器が常温と
なるまで冷却する。
Specifically, a brazing material containing flux is arranged at the joint of each member and the above members are assembled. The assembly of this heat exchanger is heated in the above preheating step until the flux is melted. Subsequently, in the brazing process, heating is performed until the brazing material melts. Next, in the slow cooling step, the brazing material is cooled until it solidifies. Subsequently, in the cooling process, the heat exchanger is cooled to normal temperature.

【0004】[0004]

【解決しようとする課題】しかしながら,上記従来の熱
交換器の製造方法には,以下の問題がある。即ち,上記
熱交換器は,例えばコア部のように比較的板厚が小さい
部材からなり熱容量の小さい小熱容量部と,タンク部の
ように比較的板厚が大きい部材からなり熱容量の大きい
大熱容量部とを有する。そのため,上記予熱工程におい
て,上記組付け体を加熱する際,該組付け体の全体を均
一に昇温させることが困難である。それ故,予熱工程に
おいて,小熱容量部がろう付け温度に達した後にも,大
熱容量部がろう付け温度に達するまで加熱を続ける必要
がある。これにより,予熱工程における加熱時間が長く
なり,熱交換器の生産効率を向上させることが困難とな
る。
However, the above conventional method of manufacturing a heat exchanger has the following problems. That is, the heat exchanger includes a small heat capacity part having a relatively small plate thickness such as a core part and a small heat capacity, and a large heat capacity having a large heat capacity composed of a member having a relatively large plate thickness such as a tank part. And a department. Therefore, it is difficult to uniformly raise the temperature of the entire assembly when heating the assembly in the preheating step. Therefore, in the preheating process, it is necessary to continue heating until the large heat capacity part reaches the brazing temperature even after the small heat capacity part reaches the brazing temperature. This prolongs the heating time in the preheating process, making it difficult to improve the production efficiency of the heat exchanger.

【0005】また,加熱時間が長くなると,上記放熱フ
ィンなどの板厚の薄い部材へろう材(特にSi)が拡散
し,部材にエロージョンが発生するおそれがある。場合
によっては,上記放熱フィン等に熔けが生じたり,板厚
減少により製品の耐久強度が確保できなくなるおそれが
ある。
Further, if the heating time becomes long, the brazing material (especially Si) may diffuse into the thin member such as the heat radiation fin, and erosion may occur in the member. In some cases, the heat radiation fins may be melted or the product may not have sufficient durability due to the reduction in plate thickness.

【0006】また,熱交換器の製造に当っては,耐食性
を確保するためカソード防食法によって,板厚方向への
腐食の進行を抑制する手段が採用されている。しかし,
各部材が薄肉化されると,かかる手段によっても,耐食
性を充分に確保することが困難である。
Further, in manufacturing the heat exchanger, a means for suppressing the progress of corrosion in the plate thickness direction is adopted by a cathodic protection method in order to ensure corrosion resistance. However,
If each member is made thin, it is difficult to ensure sufficient corrosion resistance even by such means.

【0007】本発明は,かかる従来の問題点に鑑みてな
されたもので,耐久強度に優れ,生産効率に優れた熱交
換器の製造方法を提供しようとするものである。
The present invention has been made in view of the above conventional problems, and an object of the present invention is to provide a method for manufacturing a heat exchanger having excellent durability and production efficiency.

【0008】[0008]

【課題の解決手段】本発明は,熱媒が流通するチューブ
と該チューブの表面に接合された放熱フィンとを有する
コア部と,上記チューブに連通するタンク部とからなる
熱交換器を製造する方法において,予熱工程,ろう付け
工程,徐冷工程,冷却工程を順次行なうことにより,上
記タンク部と上記チューブ,及び該チューブと上記放熱
フィンとをろう付けするに当り,上記予熱工程において
は,上記熱交換器のうち熱容量の大きい大熱容量部を,
該大熱容量部に比して熱容量の小さい小熱容量部よりも
先に昇温させることを特徴とする熱交換器の製造方法に
ある(請求項1)。
According to the present invention, there is manufactured a heat exchanger comprising a core portion having a tube through which a heat medium flows and a heat radiation fin joined to the surface of the tube, and a tank portion communicating with the tube. In the method, when the tank portion and the tube, and the tube and the radiation fin are brazed by sequentially performing a preheating step, a brazing step, a slow cooling step, and a cooling step, in the preheating step, Of the above heat exchanger, the large heat capacity part with large heat capacity is
A heat exchanger manufacturing method is characterized in that the temperature is raised before the small heat capacity portion having a smaller heat capacity than the large heat capacity portion (claim 1).

【0009】上記のごとく,予熱工程においては,上記
大熱容量部を,小熱容量部よりも先に昇温させる。即
ち,昇温し難い大熱容量部を先に昇温させる。これによ
って,輻射,熱風循環,或いは伝熱により,小熱容量部
も大熱容量部に追従して昇温し,熱交換器全体が均熱さ
れる。上記小熱容量部は昇温しやすいため,上記大熱容
量部の温度への追従性が得られる。その結果,上記熱交
換器全体の昇温時間が短縮され,生産効率を向上させる
ことができる。また,これにより,加熱時間が短くなる
ため,小熱容量部へのろう材の拡散やエロージョン等の
不具合の発生を防止することができる。その結果,耐久
強度に優れた熱交換器を得ることができる。更に,これ
により,上記熱交換器を構成する部材の板厚の薄肉化に
も充分に対応することができる。
As described above, in the preheating step, the large heat capacity part is heated before the small heat capacity part. That is, the large heat capacity part, which is difficult to heat up, is heated first. As a result, due to the radiation, hot air circulation, or heat transfer, the small heat capacity part also follows the large heat capacity part to rise in temperature, so that the entire heat exchanger is soaked. Since the small heat capacity part easily heats up, it is possible to follow the temperature of the large heat capacity part. As a result, the temperature rising time of the entire heat exchanger is shortened, and the production efficiency can be improved. Further, this shortens the heating time, so that it is possible to prevent the occurrence of problems such as diffusion of the brazing material into the small heat capacity portion and erosion. As a result, a heat exchanger having excellent durability can be obtained. Further, this makes it possible to sufficiently cope with the reduction in the plate thickness of the members constituting the heat exchanger.

【0010】以上のごとく,本発明によれば,耐久強度
に優れ,生産効率に優れた熱交換器の製造方法を提供す
ることができる。
As described above, according to the present invention, it is possible to provide a method of manufacturing a heat exchanger having excellent durability and production efficiency.

【0011】[0011]

【発明の実施の形態】本発明(請求項1)において,上
記予熱工程とは,例えば,チューブや放熱フィン等の各
部材の接合部分に配置された,ろう材に含まれたフラッ
クスが熔融するまで加熱する工程をいう。上記ろう付け
工程とは,例えば,上記予熱工程終了後,ろう材が熔融
するまで加熱する工程をいう。上記徐冷工程とは,例え
ば,上記ろう付け工程終了後,上記ろう材が凝固するま
で冷却する工程をいう。上記冷却工程とは,例えば,上
記徐冷工程終了後,熱交換器が常温となるまで冷却する
工程をいう。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention (Claim 1), the preheating step means, for example, that the flux contained in the brazing filler metal, which is arranged at the joint portion of each member such as a tube or a radiation fin, is melted. The process of heating to. The brazing process is, for example, a process of heating until the brazing material melts after the preheating process is completed. The gradual cooling step means, for example, a step of cooling until the brazing material is solidified after the brazing step is completed. The cooling step means, for example, a step of cooling the heat exchanger until it reaches room temperature after the slow cooling step.

【0012】また,上記熱交換器は,例えば,各種ヒー
タ,車両用ラジエータ,車両用エアコンを構成するコン
デンサ(凝縮器),エバポレータ(蒸発器),コンプレ
ッサ(圧縮器)等に使用することができる。
Further, the heat exchanger can be used, for example, in various heaters, vehicle radiators, condensers (condensers) constituting vehicle air conditioners, evaporators (evaporators), compressors (compressors) and the like. .

【0013】また,上記大熱容量部は上記タンク部であ
り,上記小熱容量部は上記コア部であることが好ましい
(請求項2)。この場合には,熱容量の大きいタンク部
と,熱容量の小さいコア部とを有する熱交換器を製造す
るに当り,耐久強度に優れ,生産効率に優れた熱交換器
の製造方法を提供することができる。
It is preferable that the large heat capacity part is the tank part and the small heat capacity part is the core part. In this case, in manufacturing a heat exchanger having a tank part having a large heat capacity and a core part having a small heat capacity, it is possible to provide a manufacturing method of a heat exchanger having excellent durability strength and production efficiency. it can.

【0014】また,上記予熱工程においては,上記大熱
容量部に高温ガスを吹き付けることが好ましい(請求項
3)。この場合には,容易かつ確実に,上記大熱容量部
を先に昇温させることができる。
Further, in the preheating step, it is preferable to blow a high temperature gas onto the large heat capacity portion (claim 3). In this case, the large heat capacity portion can be heated first easily and reliably.

【0015】また,上記高温ガスは,大気中において燃
焼ガスを燃焼させたものであってもよい(請求項4)。
この場合には,容易かつ確実に,上記大熱容量部を昇温
させることができる。
The high-temperature gas may be a gas obtained by burning a combustion gas in the atmosphere (claim 4).
In this case, the large heat capacity part can be heated easily and reliably.

【0016】また,上記高温ガスは,窒素ガスであって
もよい(請求項5)。この場合にも,容易かつ確実に,
上記大熱容量部を昇温させることができる。また,熱交
換器の酸化を確実に防ぐことができる。
The high temperature gas may be nitrogen gas (claim 5). Even in this case, easily and surely
The large heat capacity part can be heated. In addition, it is possible to reliably prevent oxidation of the heat exchanger.

【0017】また,上記高温ガスは,温度450℃以上
であることが好ましい(請求項6)。この場合には,上
記大熱容量部の昇温時間を充分短縮することができる。
Further, it is preferable that the high temperature gas has a temperature of 450 ° C. or higher. In this case, the heating time of the large heat capacity part can be shortened sufficiently.

【0018】また,上記高温ガスは,風速5m/秒以上
であることが好ましい(請求項7)。この場合には,上
記大熱容量部の昇温時間を充分短縮することができる。
The high temperature gas preferably has a wind velocity of 5 m / sec or more (claim 7). In this case, the heating time of the large heat capacity part can be shortened sufficiently.

【0019】また,上記高温ガスは,温度450〜65
0℃であることが更に好ましい(請求項8)。この場合
には,上記大熱容量部の昇温時間を充分短縮することが
できるとともに,熱交換器の耐久強度を低下させること
なく,確実にろう付けを行なうことができる。
The high temperature gas has a temperature of 450 to 65.
More preferably, it is 0 ° C. (claim 8). In this case, the heating time of the large heat capacity part can be sufficiently shortened, and brazing can be reliably performed without lowering the durability strength of the heat exchanger.

【0020】上記高温ガスの温度が450℃未満の場合
には,上記熱交換器の昇温時間を充分に短縮できないお
それがある。また,ろう付けを確実に行うことが困難と
なるおそれがある。一方,上記温度が650℃を超える
場合には,ろう材の拡散やエロージョン等を招き,熱交
換器の耐久強度を低下させるおそれがある。
If the temperature of the high temperature gas is less than 450 ° C., the temperature rise time of the heat exchanger may not be sufficiently shortened. In addition, it may be difficult to reliably perform brazing. On the other hand, if the temperature is higher than 650 ° C., the brazing material may be diffused or eroded, which may lower the durability of the heat exchanger.

【0021】また,上記高温ガスは,風速5〜15m/
秒であることが更に好ましい(請求項9)。この場合に
は,上記大熱容量部の昇温時間を充分短縮することがで
きるとともに,熱交換器の耐久強度を低下させることな
く,確実にろう付けを行なうことができる。
The high temperature gas has a wind velocity of 5 to 15 m /
More preferably, it is second (claim 9). In this case, the heating time of the large heat capacity part can be sufficiently shortened, and brazing can be reliably performed without lowering the durability strength of the heat exchanger.

【0022】また,風速が5m/秒未満の場合には,上
記大熱容量部を小熱容量部よりも先に昇温させることが
困難となるおそれがある。一方,風速が15m/秒を超
える場合には,上記大熱容量部に,局部的にろう材の拡
散やエロージョン等を生じさせ,熱交換器の耐久強度を
低下させるおそれがある。
Further, when the wind speed is less than 5 m / sec, it may be difficult to raise the temperature of the large heat capacity part before the small heat capacity part. On the other hand, if the wind speed exceeds 15 m / sec, the large heat capacity part may locally cause diffusion or erosion of the brazing material, which may reduce the durability of the heat exchanger.

【0023】[0023]

【実施例】(実施例1)本発明の実施例に係る熱交換器
の製造方法につき,図1〜図5を用いて説明する。本例
の熱交換器の製造方法は,図1に示すごとく,コア部1
1と一対のタンク部12とからなる熱交換器1を製造す
る方法である。上記コア部11は,熱媒が流通するチュ
ーブ13と該チューブ13の表面に接合された放熱フィ
ン14とを有する(図1,図4)。上記タンク部12
は,上記チューブ13に連通している(図5)。
EXAMPLES Example 1 A method for manufacturing a heat exchanger according to an example of the present invention will be described with reference to FIGS. As shown in FIG. 1, the method of manufacturing the heat exchanger of the present example is as follows.
1 and a pair of tank parts 12 is a method for manufacturing a heat exchanger 1. The core portion 11 has a tube 13 through which a heat medium flows and a radiation fin 14 joined to the surface of the tube 13 (FIGS. 1 and 4). The tank part 12
Communicate with the tube 13 (FIG. 5).

【0024】予熱工程,ろう付け工程,徐冷工程,冷却
工程を順次行なうことにより,上記タンク部12と上記
チューブ13,及び該チューブ13と上記放熱フィン1
4とをろう付けする。上記予熱工程においては,図3に
示すごとく,上記熱交換器1のうち熱容量の大きい大熱
容量部であるタンク部12を,該タンク部12に比して
熱容量の小さい小熱容量部であるコア部11よりも先に
昇温させる。図3において,実線(符号E)がタンク部
12の温度変化を表し,破線(符号F)がコア部11の
温度変化を表す。
By performing the preheating step, the brazing step, the slow cooling step and the cooling step in this order, the tank portion 12 and the tube 13, and the tube 13 and the radiation fin 1
Braze 4 and. In the preheating step, as shown in FIG. 3, the tank portion 12 which is a large heat capacity portion of the heat exchanger 1 has a large heat capacity, and the core portion which is a small heat capacity portion of which has a heat capacity smaller than that of the tank portion 12. The temperature is raised before 11. In FIG. 3, the solid line (symbol E) represents the temperature change of the tank portion 12, and the broken line (symbol F) represents the temperature change of the core portion 11.

【0025】上記タンク部12を先に昇温させる手段と
しては,上記予熱工程において,図1,図2に示すごと
く,上記大熱容量部であるタンク部12に高温ガス2を
吹き付ける。具体的には,図1に示すごとく上下にタン
ク部12を有する上記熱交換器1を,図2に示すごとく
熱処理炉3内に配置する。該熱処理炉3の上面31及び
下面32には,高温ガス2を噴出する噴出口33が配設
されている。該噴出口31から上記熱交換器1のタンク
部12に向かって高温ガス2が吹き付けられる。なお,
上記噴出口33の配設位置は,高温ガス2をタンク部1
2に優先的に吹き付けることができる位置であればよ
く,上記熱処理炉3の上面31及び下面32に限られる
ものではない。
As a means for raising the temperature of the tank portion 12 first, in the preheating step, as shown in FIGS. 1 and 2, the high temperature gas 2 is blown to the tank portion 12 which is the large heat capacity portion. Specifically, the heat exchanger 1 having the upper and lower tank portions 12 as shown in FIG. 1 is arranged in the heat treatment furnace 3 as shown in FIG. On the upper surface 31 and the lower surface 32 of the heat treatment furnace 3, jet ports 33 for jetting the high temperature gas 2 are provided. The hot gas 2 is blown from the jet port 31 toward the tank portion 12 of the heat exchanger 1. In addition,
The hot gas 2 is supplied to the tank portion 1 at the position where the jet port 33 is arranged.
It suffices that it is a position that can be preferentially sprayed onto the upper surface 2 and is not limited to the upper surface 31 and the lower surface 32 of the heat treatment furnace 3.

【0026】上記高温ガス2は,大気中において燃焼ガ
スを燃焼させたものである。また,上記高温ガス2は窒
素ガスであってもよい。この場合には,熱交換器1の酸
化を確実に防ぐことができる。また,上記高温ガス2
は,温度450〜650℃,風速5〜15m/秒であ
る。
The high temperature gas 2 is obtained by burning a combustion gas in the atmosphere. The high temperature gas 2 may be nitrogen gas. In this case, oxidation of the heat exchanger 1 can be reliably prevented. In addition, the high temperature gas 2
Is a temperature of 450 to 650 ° C. and a wind speed of 5 to 15 m / sec.

【0027】また,上記タンク部12を構成する金属板
は,例えば板厚が約0.6〜1.0mmと大きい。その
ため,上記タンク部12は熱容量が大きく,昇温し難
い。一方,上記コア部11を構成する金属板は,例えば
板厚が約0.05〜0.15mmと小さい。そのため,
上記コア部11は熱容量が小さく,昇温し易い。
The metal plate forming the tank portion 12 has a large plate thickness of, for example, about 0.6 to 1.0 mm. Therefore, the tank portion 12 has a large heat capacity and it is difficult to raise the temperature. On the other hand, the metal plate forming the core portion 11 has a small plate thickness of, for example, about 0.05 to 0.15 mm. for that reason,
The core portion 11 has a small heat capacity and easily heats up.

【0028】なお,上記予熱工程(図3の符号A)と
は,後述するフラックスが熔融する温度以下まで高温ガ
ス2により加熱する工程をいう。上記ろう付け工程(符
号B)とは,上記予熱工程終了後,ろう材4が熔融する
まで加熱する工程をいう。上記徐冷工程(符号C)と
は,上記ろう付け工程終了後,上記ろう材4が凝固する
まで冷却する工程をいう。上記冷却工程(符号D)と
は,上記徐冷工程終了後,熱交換器1が常温となるまで
冷却する工程をいう。
The preheating step (reference numeral A in FIG. 3) is a step of heating the high temperature gas 2 to a temperature below the temperature at which the flux described later melts. The brazing step (reference B) is a step of heating until the brazing material 4 is melted after the preheating step is completed. The slow cooling step (reference C) is a step of cooling until the brazing material 4 is solidified after the brazing step is completed. The cooling step (reference D) is a step of cooling the heat exchanger 1 to room temperature after the slow cooling step.

【0029】即ち,上記熱交換器1のろう付けを行なう
に当っては,上記タンク部12と上記チューブ13,及
び該チューブ13と上記放熱フィン14の接合部分(図
4,図5)に,フラックスを含んだろう材4を配置し
て,各部材を組付ける。この熱交換器1の組付け体を,
上記予熱工程において,フラックスが熔融する温度以下
まで高温ガス2により加熱する。続けて,ろう付け工程
において,ろう材4が熔融するまで加熱する。次いで,
徐冷工程において,上記ろう材4が凝固するまで冷却す
る。続けて,冷却工程において,熱交換器1が常温とな
るまで冷却する。これにより,各部材がろう付け接合さ
れた熱交換器1を製造することができる。
That is, when brazing the heat exchanger 1, the tank portion 12 and the tube 13 and the joint portion of the tube 13 and the radiation fin 14 (FIGS. 4 and 5) are The brazing material 4 containing the flux is arranged and each member is assembled. The assembly of this heat exchanger 1
In the preheating step, the high temperature gas 2 heats the flux to a temperature below the melting temperature. Subsequently, in the brazing process, heating is performed until the brazing material 4 melts. Then,
In the slow cooling step, the brazing material 4 is cooled until it solidifies. Subsequently, in the cooling step, the heat exchanger 1 is cooled to normal temperature. Thereby, the heat exchanger 1 in which the respective members are brazed and joined can be manufactured.

【0030】次に,本例の作用効果につき説明する。上
記のごとく,予熱工程においては,大熱容量部であるタ
ンク部12を,小熱容量部であるコア部11よりも先に
昇温させる(図3)。即ち,昇温し難いタンク部12を
先に昇温させる。これによって,輻射,熱風循環,或い
は伝熱(図2の符号21)により,コア部11もタンク
部12に追従して昇温し,熱交換器1全体が均熱される
(図3)。小熱容量部である上記コア部11は昇温しや
すいため,上記タンク部12の温度への早い追従性が得
られる。
Next, the function and effect of this example will be described. As described above, in the preheating step, the temperature of the tank portion 12 which is the large heat capacity portion is raised before the temperature of the core portion 11 which is the small heat capacity portion (FIG. 3). That is, the temperature of the tank portion 12 that is hard to heat up is first raised. As a result, the core part 11 also rises in temperature by following the tank part 12 by radiation, hot air circulation, or heat transfer (reference numeral 21 in FIG. 2), and the entire heat exchanger 1 is soaked (FIG. 3). Since the temperature of the core portion 11 which is a small heat capacity portion easily rises, quick followability to the temperature of the tank portion 12 can be obtained.

【0031】その結果,上記熱交換器1全体の昇温時間
が短縮され,生産効率を向上させることができる。ま
た,これにより,加熱時間が短くなるため,コア部11
へのろう材4の拡散やエロージョン等の不具合の発生を
防止することができる。その結果,耐久強度に優れた熱
交換器1を得ることができる。更に,これにより,上記
熱交換器1を構成する部材の板厚保の薄肉化にも充分に
対応することができる。
As a result, the temperature rising time of the heat exchanger 1 as a whole is shortened, and the production efficiency can be improved. Further, this shortens the heating time, so that the core portion 11
It is possible to prevent the occurrence of defects such as diffusion of the brazing material 4 and erosion. As a result, the heat exchanger 1 having excellent durability strength can be obtained. Further, this makes it possible to sufficiently cope with the reduction of the plate thickness of the members constituting the heat exchanger 1.

【0032】また,上記予熱工程においては,上記タン
ク部12に高温ガス2を吹き付けるため,容易かつ確実
に,上記タンク部12を先に昇温させることができる。
また,上記高温ガス2は,温度450〜650℃,風速
5〜15m/秒であるため,上記タンク部12の昇温時
間を充分短縮することができるとともに,熱交換器1の
耐久強度を低下させることなく,確実にろう付けを行な
うことができる。
Further, in the preheating step, since the high temperature gas 2 is blown to the tank portion 12, it is possible to easily and reliably raise the temperature of the tank portion 12 first.
Further, since the temperature of the high temperature gas 2 is 450 to 650 ° C. and the wind speed is 5 to 15 m / sec, the temperature rising time of the tank portion 12 can be sufficiently shortened and the durability strength of the heat exchanger 1 is reduced. Brazing can be reliably performed without causing any problems.

【0033】以上のごとく,本例によれば,耐久強度に
優れ,生産効率に優れた熱交換器の製造方法を提供する
ことができる。
As described above, according to this example, it is possible to provide a method for manufacturing a heat exchanger having excellent durability and production efficiency.

【0034】(実施例2)本例は,図6に示すごとく,
コア部11の左右両端にタンク部12を有する熱交換器
1を製造する方法の例である。この場合には,高温ガス
2の噴出口33を,上記熱交換器1の左右に配置し,上
記タンク部12に高温ガス2を吹き付ける。その他は,
実施例1と同様である。この場合にも,実施例1と同様
の作用効果を得ることができる。
(Embodiment 2) In this embodiment, as shown in FIG.
It is an example of a method for manufacturing the heat exchanger 1 having the tank portions 12 on both left and right ends of the core portion 11. In this case, the jet ports 33 for the high temperature gas 2 are arranged on the left and right of the heat exchanger 1, and the high temperature gas 2 is blown onto the tank portion 12. Others,
This is the same as in the first embodiment. Also in this case, the same effect as that of the first embodiment can be obtained.

【0035】(実施例3)本例は,図7,図8に示すご
とく,実施例1において示した本発明の熱交換器の製造
方法を評価した例である。本例において評価した熱交換
器の構成は,実施例1に示したとおりである。そして,
コア部とタンク部は,A3003からなる金属板によっ
て構成され,ろう材は,A4045からなるものを用い
た。
(Embodiment 3) This embodiment is an example in which the method for manufacturing the heat exchanger of the present invention shown in Embodiment 1 was evaluated as shown in FIGS. The configuration of the heat exchanger evaluated in this example is as shown in Example 1. And
The core part and the tank part were composed of a metal plate made of A3003, and the brazing material was made of A4045.

【0036】まず,図7に示すごとく,本発明の製造方
法における予熱工程から冷却工程までの,上記熱交換器
のタンク部の温度変化と,コア部の温度変化を測定し
た。ここで,高温ガスの風速は12m/秒,温度は60
0℃に設定した。図7において,実線(符号E)がタン
ク部の温度変化を表し,破線(符号F)がコア部の温度
変化を表す。
First, as shown in FIG. 7, the temperature change of the tank part and the temperature change of the core part of the heat exchanger from the preheating step to the cooling step in the manufacturing method of the present invention were measured. Here, the wind velocity of the hot gas is 12 m / sec and the temperature is 60
It was set to 0 ° C. In FIG. 7, the solid line (symbol E) represents the temperature change of the tank portion, and the broken line (symbol F) represents the temperature change of the core portion.

【0037】次に,図8に示すごとく,熱交換器を45
0℃以上に保持した時間Tと,Zn拡散の深さとの関係
を測定した。上記コア部及びタンク部の450℃以上の
保持時間に注目して測定したのは,上記熱交換器のコア
部やタンク部に,ろう付けによるZn拡散が約450℃
以上の領域で非常に活性なためである。
Next, as shown in FIG.
The relationship between the time T held at 0 ° C. or higher and the Zn diffusion depth was measured. The measurement was performed by paying attention to the holding time of 450 ° C or higher in the core part and the tank part. Zn diffusion due to brazing was about 450 ° C in the core part and the tank part of the heat exchanger.
This is because it is very active in the above areas.

【0038】Zn拡散の測定は,総板厚の厚みが0.2
mmの金属板からなるチューブのコア中央近傍の部分に
ついて行なった。また,この部分の金属板は,A300
3からなる芯材0.15mmと,Al−10Si−2.
7Znからなる犠材0.03mmと,A4045からな
るろう材0.02mmとにより構成されるクラッド材で
ある。上記犠材とは,上記芯材よりも電位の卑な金属か
らなり,芯材よりも優先的に腐食し,腐食の進行方向を
金属板の板厚方向に対して垂直方向とすることにより,
金属板の貫通を抑制するための層である。
The Zn diffusion was measured by measuring the total plate thickness of 0.2.
The measurement was performed on a portion near the center of the core of a tube made of a metal plate of mm. Also, the metal plate of this part is A300
0.15 mm of a core material made of 3 and Al-10Si-2.
It is a clad material composed of 0.03 mm of a sacrificial material made of 7Zn and 0.02 mm of a brazing material made of A4045. The sacrificial material is made of a metal having a lower electric potential than the core material, corrodes preferentially over the core material, and the progress direction of the corrosion is perpendicular to the thickness direction of the metal plate.
This is a layer for suppressing penetration of the metal plate.

【0039】次に,表1に示すごとく,熱交換器の腐食
試験,及びろう付け時におけるエロージョンの発生,放
熱フィンの熔けの発生の有無について,評価した。
Next, as shown in Table 1, the corrosion test of the heat exchanger and the presence or absence of erosion during brazing and melting of the radiation fins were evaluated.

【0040】[0040]

【表1】 [Table 1]

【0041】即ち,硫酸イオン添加塩水複合サイクル試
験を500時間行ったときの,上記金属板の腐食深さを
測定した。また,ろう付け時におけるエロージョンの発
生,放熱フィンの熔けの発生の有無を確認した。評価
は,本発明の製造方法において450℃以上の保持時間
を8分としたものと,12分としたもの,更には,従来
の製造方法によるものについて行なった。
That is, the corrosion depth of the above metal plate was measured when the sulfate ion added salt water combined cycle test was conducted for 500 hours. In addition, it was confirmed whether or not erosion was generated during brazing and that the heat radiation fins were melted. The evaluation was carried out in the manufacturing method of the present invention in which the holding time at 450 ° C. or higher was 8 minutes, 12 minutes, and the conventional manufacturing method.

【0042】図7より分かるように,予熱工程において
は,上記タンク部が先に昇温し,コア部の温度は上記タ
ンク部の温度に追従して昇温する。ろう付け工程におい
て,両者の温度はろう付け温度に達する。ろう付け工程
終了までの時間は,約7分であった。これは,従来の製
造方法によるろう付け工程終了までの時間(約20分)
の約3分の1である。
As can be seen from FIG. 7, in the preheating step, the temperature of the tank portion is raised first, and the temperature of the core portion is raised following the temperature of the tank portion. In the brazing process, both temperatures reach the brazing temperature. The time required to complete the brazing process was about 7 minutes. This is the time until the end of the brazing process by the conventional manufacturing method (about 20 minutes)
About one-third of that.

【0043】上記従来の製造方法とは,上記タンク部を
先に昇温させる本発明の製造方法とは異なり,コア部の
昇温が早く,タンク部の温度がコア部の温度に追いつ
き,又は縮まるまで,段階的に加熱していく方法であ
る。
The above conventional manufacturing method is different from the manufacturing method of the present invention in which the temperature of the tank portion is raised first, and the temperature of the core portion rises quickly, and the temperature of the tank portion catches up with the temperature of the core portion, or It is a method of heating gradually until it shrinks.

【0044】また,本発明の製造方法によると,図7に
示すごとく,450℃以上の保持時間Tが約8分と短
く,コア部やタンク部を構成する金属板に対するZn拡
散の影響を殆ど与えることがない。
Further, according to the manufacturing method of the present invention, as shown in FIG. 7, the holding time T of 450 ° C. or higher is as short as about 8 minutes, and the influence of Zn diffusion on the metal plate forming the core portion and the tank portion is almost eliminated. Never give.

【0045】即ち,上記保持時間Tが約8分の場合に
は,図8から分かるように,Zn拡散の深さが上記金属
板の芯材の厚みよりも小さい(図8の符号G)。そし
て,この場合には,表1に示されるように,得られる熱
交換器に,腐食による貫通,エロージョンの発生,放熱
フィンの熔けなどの不具合が発生しない。また,上記保
持時間を約12分とした場合にも,Zn拡散の深さが上
記金属板の芯材の厚みよりも小さく(図8の符号H),
得られる熱交換器の腐食による貫通,エロージョン,放
熱フィンの熔けなどの不具合が発生しない(表1)。
That is, when the holding time T is about 8 minutes, the depth of Zn diffusion is smaller than the thickness of the core material of the metal plate as shown in FIG. 8 (reference numeral G in FIG. 8). In this case, as shown in Table 1, the resulting heat exchanger does not have defects such as penetration due to corrosion, generation of erosion, and melting of heat radiation fins. Further, even when the holding time is set to about 12 minutes, the depth of Zn diffusion is smaller than the thickness of the core material of the metal plate (reference numeral H in FIG. 8),
Problems such as penetration, erosion, and melting of heat radiation fins due to corrosion of the obtained heat exchanger do not occur (Table 1).

【0046】これに対し,従来の製造方法によれば,上
記保持時間Tが約19分となるため,図8より,Zn拡
散の深さが芯材厚みに達することが分かる(図8の符号
I)。そして,この場合には,表1に示すごとく,得ら
れる熱交換器の腐食による貫通,エロージョン,放熱フ
ィンの熔けなどの不具合が発生した。即ち,本発明によ
れば,熱交換器を構成する部材が薄肉化しても,耐久強
度を確保することができることが分かる。以上のごと
く,本例の評価結果から,本発明の熱交換器の製造方法
によれば,耐久強度に優れた熱交換器を,生産効率よく
得ることができることが分かる。
On the other hand, according to the conventional manufacturing method, since the holding time T is about 19 minutes, it can be seen from FIG. 8 that the Zn diffusion depth reaches the core material thickness (reference numeral in FIG. 8). I). Then, in this case, as shown in Table 1, problems such as penetration due to corrosion of the obtained heat exchanger, erosion, and melting of the radiation fin occurred. That is, according to the present invention, it can be seen that the durability strength can be secured even if the members constituting the heat exchanger are made thin. As described above, the evaluation results of this example show that the heat exchanger manufacturing method of the present invention makes it possible to obtain a heat exchanger having excellent durability strength with high production efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1における,熱交換器及び高温ガスの流
れを表す斜視説明図。
FIG. 1 is a perspective explanatory view showing a flow of a heat exchanger and a high temperature gas according to a first embodiment.

【図2】実施例1における,熱交換器及び高温ガスの流
れを表す断面説明図。
FIG. 2 is a cross-sectional explanatory view showing the flow of a heat exchanger and a high temperature gas in the first embodiment.

【図3】実施例1における,コア部とタンク部の温度変
化の概略を表す線図。
FIG. 3 is a diagram showing an outline of temperature changes of a core portion and a tank portion in the first embodiment.

【図4】実施例1における,チューブと放熱フィンとの
接合状態の斜視図。
FIG. 4 is a perspective view of a joined state of the tube and the radiation fin in the first embodiment.

【図5】実施例1における,タンク部とチューブと放熱
フィンとの接合状態の断面図。
FIG. 5 is a cross-sectional view of a joined state of the tank portion, the tube, and the radiation fin in the first embodiment.

【図6】実施例2における,熱交換器及び高温ガスの流
れを表す斜視説明図。
FIG. 6 is a perspective explanatory view showing the flow of a heat exchanger and a high temperature gas in the second embodiment.

【図7】実施例3における,コア部とタンク部の温度変
化を表す線図。
FIG. 7 is a diagram showing temperature changes of a core portion and a tank portion in Example 3.

【図8】実施例3における,熱交換器が450℃以上に
保たれる保持時間と,Zn拡散深さとの関係を表す線
図。
FIG. 8 is a graph showing the relationship between the Zn diffusion depth and the holding time in which the heat exchanger is kept at 450 ° C. or higher in Example 3.

【符号の説明】[Explanation of symbols]

1...熱交換器, 11...コア部, 12...タンク部, 13...チューブ, 14...放熱フィン, 2...高温ガス, 3...熱処理炉, 33...噴出口, 4...ろう材, 1. . . Heat exchanger, 11. . . Core part, 12. . . Tank part, 13. . . tube, 14. . . Radiating fins, 2. . . Hot gas, 3. . . Heat treatment furnace, 33. . . Spout, 4. . . Brazing material,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 洋 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 竹田 敬典 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 西川 宏之 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 野平 智 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 3L065 CA17    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroshi Ogawa             1-1, Showa-cho, Kariya city, Aichi stock market             Inside the company DENSO (72) Inventor Takanori Takeda             1-1, Showa-cho, Kariya city, Aichi stock market             Inside the company DENSO (72) Inventor Hiroyuki Nishikawa             1-1, Showa-cho, Kariya city, Aichi stock market             Inside the company DENSO (72) Inventor Satoshi Nohira             1-1, Showa-cho, Kariya city, Aichi stock market             Inside the company DENSO F-term (reference) 3L065 CA17

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 熱媒が流通するチューブと該チューブの
表面に接合された放熱フィンとを有するコア部と,上記
チューブに連通するタンク部とからなる熱交換器を製造
する方法において,予熱工程,ろう付け工程,徐冷工
程,冷却工程を順次行なうことにより,上記タンク部と
上記チューブ,及び該チューブと上記放熱フィンとをろ
う付けするに当り,上記予熱工程においては,上記熱交
換器のうち熱容量の大きい大熱容量部を,該大熱容量部
に比して熱容量の小さい小熱容量部よりも先に昇温させ
ることを特徴とする熱交換器の製造方法。
1. A method for manufacturing a heat exchanger comprising a core part having a tube through which a heat medium flows, a heat radiation fin joined to the surface of the tube, and a tank part communicating with the tube, in a preheating step. The brazing process, the slow cooling process, and the cooling process are sequentially performed to braze the tank portion and the tube, and the tube and the heat radiation fin. In the preheating process, the heat exchanger A method for manufacturing a heat exchanger, characterized in that the large heat capacity part having a large heat capacity is heated before the small heat capacity part having a small heat capacity as compared with the large heat capacity part.
【請求項2】 請求項1において,上記大熱容量部は上
記タンク部であり,上記小熱容量部は上記コア部である
ことを特徴とする熱交換器の製造方法。
2. The method of manufacturing a heat exchanger according to claim 1, wherein the large heat capacity part is the tank part and the small heat capacity part is the core part.
【請求項3】 請求項1又は2において,上記予熱工程
においては,上記大熱容量部に高温ガスを吹き付けるこ
とを特徴とする熱交換器の製造方法。
3. The method of manufacturing a heat exchanger according to claim 1, wherein in the preheating step, a high temperature gas is blown to the large heat capacity portion.
【請求項4】 請求項3において,上記高温ガスは,大
気中において燃焼ガスを燃焼させたものであることを特
徴とする熱交換器の製造方法。
4. The method for manufacturing a heat exchanger according to claim 3, wherein the high temperature gas is a combustion gas burned in the atmosphere.
【請求項5】 請求項3において,上記高温ガスは,窒
素ガスであることを特徴とする熱交換器の製造方法。
5. The method of manufacturing a heat exchanger according to claim 3, wherein the high temperature gas is nitrogen gas.
【請求項6】 請求項3〜5のいずれか1項において,
上記高温ガスは,温度450℃以上であることを特徴と
する熱交換器の製造方法。
6. The method according to any one of claims 3 to 5,
The method for manufacturing a heat exchanger, wherein the high temperature gas has a temperature of 450 ° C. or higher.
【請求項7】 請求項3〜6のいずれか1項において,
上記高温ガスは,風速5m/秒以上であることを特徴と
する熱交換器の製造方法。
7. The method according to any one of claims 3 to 6,
The method for manufacturing a heat exchanger, wherein the high temperature gas has a wind velocity of 5 m / sec or more.
【請求項8】 請求項6において,上記高温ガスは,温
度450〜650℃であることを特徴とする熱交換器の
製造方法。
8. The method for manufacturing a heat exchanger according to claim 6, wherein the high temperature gas has a temperature of 450 to 650 ° C.
【請求項9】 請求項7において,上記高温ガスは,風
速5〜15m/秒であることを特徴とする熱交換器の製
造方法。
9. The method for manufacturing a heat exchanger according to claim 7, wherein the high temperature gas has a wind velocity of 5 to 15 m / sec.
JP2002197734A 2001-07-05 2002-07-05 Fabricating method of heat exchanger Pending JP2003080366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002197734A JP2003080366A (en) 2001-07-05 2002-07-05 Fabricating method of heat exchanger

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001205261 2001-07-05
JP2001-205261 2001-07-05
JP2002197734A JP2003080366A (en) 2001-07-05 2002-07-05 Fabricating method of heat exchanger

Publications (1)

Publication Number Publication Date
JP2003080366A true JP2003080366A (en) 2003-03-18

Family

ID=26618236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002197734A Pending JP2003080366A (en) 2001-07-05 2002-07-05 Fabricating method of heat exchanger

Country Status (1)

Country Link
JP (1) JP2003080366A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010082658A (en) * 2008-09-30 2010-04-15 Calsonic Kansei Corp Method for brazing heat exchanger made of aluminum
JP2010196931A (en) * 2009-02-24 2010-09-09 Showa Denko Kk Method of manufacturing heat exchanger
JP2012502797A (en) * 2008-09-17 2012-02-02 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method for soldering metal honeycomb bodies for exhaust gas treatment
WO2014156846A1 (en) * 2013-03-26 2014-10-02 サンデン株式会社 Brazing apparatus, brazing method, and heat exchanger
JP2014188535A (en) * 2013-03-26 2014-10-06 Sanden Corp Brazing device, brazing method, and heat exchanger
CN107855361A (en) * 2017-11-10 2018-03-30 安徽华中天力铝业有限公司 A kind of radiator Composite aluminum alloy foil and its production technology
US11586956B2 (en) 2013-05-28 2023-02-21 Keysight Technologies, Inc. Searching apparatus utilizing sub-word finite state machines

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502797A (en) * 2008-09-17 2012-02-02 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method for soldering metal honeycomb bodies for exhaust gas treatment
JP2010082658A (en) * 2008-09-30 2010-04-15 Calsonic Kansei Corp Method for brazing heat exchanger made of aluminum
JP2010196931A (en) * 2009-02-24 2010-09-09 Showa Denko Kk Method of manufacturing heat exchanger
WO2014156846A1 (en) * 2013-03-26 2014-10-02 サンデン株式会社 Brazing apparatus, brazing method, and heat exchanger
JP2014188534A (en) * 2013-03-26 2014-10-06 Sanden Corp Brazing device, brazing method, and heat exchanger
JP2014188535A (en) * 2013-03-26 2014-10-06 Sanden Corp Brazing device, brazing method, and heat exchanger
US11586956B2 (en) 2013-05-28 2023-02-21 Keysight Technologies, Inc. Searching apparatus utilizing sub-word finite state machines
CN107855361A (en) * 2017-11-10 2018-03-30 安徽华中天力铝业有限公司 A kind of radiator Composite aluminum alloy foil and its production technology

Similar Documents

Publication Publication Date Title
CN101097124B (en) Brazing fin material for heat exchangers, heat exchanger, and method of manufacturing same
US5423112A (en) Method of marking tube to header joint in a vehicle radiator
JPS642459B2 (en)
CN105745343A (en) Aluminium-alloy clad material and production method therefor, and heat exchanger using said aluminium-alloy clad material and production method therefor
CN104919070A (en) Aluminum alloy brazing sheet for fin, heat exchanger, and method for producing heat exchanger
TW200821503A (en) Boiler water wall panel
JPS61186164A (en) Production of aluminum heat exchanger
JP2003080366A (en) Fabricating method of heat exchanger
JP2002137054A (en) Heat exchanger and its production method
EP1273377B1 (en) Manufacturing method of heat exchanger
JP6841624B2 (en) Manufacturing method of exhaust system heat exchanger for automobiles
JP4745710B2 (en) Brazing method of heat exchanger
JP2005028412A (en) Brazing method
JP5702927B2 (en) Aluminum alloy brazing fin material for heat exchanger and heat exchanger using the fin material
JP2009275246A (en) Brazing sheet for heat exchanger made of aluminum alloy, heat exchanger made of aluminum alloy, and method for producing heat exchanger made of aluminum alloy
JP2003294389A (en) Heat exchanger and its manufacturing method
JP4843150B2 (en) Heat exchanger
JP5107667B2 (en) Brazing metal material, brazing method, and heat exchanger
JP2007275968A (en) Brazing method and heat exchange coil of air conditioner
JP2000107857A (en) Manufacture of heat exchanger and manufacturing device therefor
JPH0910925A (en) Manufacture of heat exchanging steel
JP2005254320A (en) Manufacturing method of heat exchanger
JPH0947893A (en) Manufacturing method of al alloy brazing filler metal for heat exchanger and al alloy heat exchanger used this
JPH0152114B2 (en)
JPH05172486A (en) Mounting method for header of plate fin heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041020

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20061013

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20061017

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20061213

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116