JP6061483B2 - Cooling seat and neck cooler - Google Patents

Cooling seat and neck cooler Download PDF

Info

Publication number
JP6061483B2
JP6061483B2 JP2012068325A JP2012068325A JP6061483B2 JP 6061483 B2 JP6061483 B2 JP 6061483B2 JP 2012068325 A JP2012068325 A JP 2012068325A JP 2012068325 A JP2012068325 A JP 2012068325A JP 6061483 B2 JP6061483 B2 JP 6061483B2
Authority
JP
Japan
Prior art keywords
water
cooling
film
cooling sheet
sheet according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012068325A
Other languages
Japanese (ja)
Other versions
JP2012210407A (en
Inventor
清水 研一
研一 清水
泰樹 飛澤
泰樹 飛澤
壽男 本田
壽男 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Original Assignee
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Industrial Technology Research Instititute (TIRI) filed Critical Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority to JP2012068325A priority Critical patent/JP6061483B2/en
Publication of JP2012210407A publication Critical patent/JP2012210407A/en
Application granted granted Critical
Publication of JP6061483B2 publication Critical patent/JP6061483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)

Description

本発明は冷却シート及びネッククーラーに関するもので、更に詳しくは、物体を省エネルギー的に冷却する冷却基材、冷却シート及びネッククーラーに係るものである。   The present invention relates to a cooling sheet and a neck cooler, and more particularly to a cooling base material, a cooling sheet, and a neck cooler for cooling an object in an energy-saving manner.

従来、物体の冷却には主に気体の断熱圧縮膨張による冷却法が採用されているが、これには電力その他の多大のエネルギーを必要とし装置も複雑化している。   Conventionally, a cooling method mainly using adiabatic compression / expansion of gas has been adopted for cooling an object, but this requires a lot of electric power and other energy, and the apparatus is complicated.

近年、温室効果ガスによる地球温暖化現象が顕著になり、特に夏期には猛暑日が連続し、冷却機器の使用なしでは生活出来ない状態になっている。そして現在採用されている冷却機器は、ある種の気体の断熱圧縮膨張による吸熱作用を利用した種類の機器が主流になっている。しかしこれらの機器は圧縮に電力が必要であり、装置が複雑化し高価であり、装置全体の重量が大きく手軽で省エネルギーであるとは言い難い。社会全体としては電力の多量消費は温室効果ガスの多量排出にもつながり悪循環に陥る。   In recent years, global warming due to greenhouse gases has become prominent, especially in summer, when hot days continue, and it is impossible to live without the use of cooling equipment. And as for the cooling apparatus currently employ | adopted, the kind of apparatus using the endothermic effect by adiabatic compression expansion of a certain kind of gas has become mainstream. However, these devices require electric power for compression, the device is complicated and expensive, the weight of the entire device is large, and it is difficult to say that it is easy and energy saving. For society as a whole, large consumption of electricity leads to a large amount of greenhouse gas emissions and falls into a vicious circle.

従って、もう少し手軽で省エネルギー的な冷却方法が社会的に求められている。本発明はこの課題の解決を目的とするものである。 Accordingly, there is a social need for a slightly more convenient and energy-saving cooling method. The present invention aims to solve this problem.

従来より、微細な空隙を有する素焼きの瓶等で中の水がしみ出て来た時の蒸発潜熱を利用し、中の水を冷却する考えはあったが、これらの材料は極めて硬く、かつ柔軟性に欠けるので広い面積を冷却する冷却シートには向かない。   Conventionally, there has been an idea to cool the water inside by using the latent heat of evaporation when the water inside exudes in an unglazed bottle or the like having fine voids, but these materials are extremely hard and Since it lacks flexibility, it is not suitable for a cooling sheet that cools a large area.

また、先行技術として特許文献1がある。この先行技術の発明は省エネルギー的な冷却方法として、表面側が通気性素材からなるシート、裏面側が合成樹脂製シートで構成された包装材内に、吸水性ポリマーを充填してクーラーマットとしたものである。
用いられる水の吸収剤としてはポリアクリル酸ソーダ等の合成高分子吸収剤が知られているが、これらの材料を使用すると水膨張現象が著しく、包装材としての膜の物性が低下してしまうという大きな欠点がある。また水の拡散能力も期待した程ではない事が分かっている。
Moreover, there exists patent document 1 as a prior art. This prior art invention is an energy saving cooling method in which a water-absorbing polymer is filled into a packaging material composed of a sheet made of a breathable material on the front side and a synthetic resin sheet on the back side to form a cooler mat. is there.
Synthetic polymer absorbents such as sodium polyacrylate are known as water absorbents to be used. However, when these materials are used, the water expansion phenomenon is remarkable and the physical properties of the film as a packaging material are deteriorated. There is a major drawback. It is also known that the ability to diffuse water is not as much as expected.

特開平11−028034号公報Japanese Patent Laid-Open No. 11-028034

本発明は、手軽で省エネルギー的な冷却方法を提供するものであり、効率的に優れたものであることは勿論、柔軟性に富み、広い面積の冷却にも充分対応できる冷却技術を提供することを目的とするものである。 The present invention provides an easy and energy-saving cooling method, and provides a cooling technique that is not only excellent in efficiency but also flexible and capable of sufficiently responding to cooling of a large area. It is intended.

本発明の第1の要旨は、水拡散用冷却基材に係るものであり、高分子ポリマーに比表面積150〜380m /gの微粉末シリカ及び液状軟化を配合したことを特徴とする基材である。そして、これらの配合割合は、重量部数で高分子ポリマー100部に対して、微粉末シリカを30部から150部、液状軟化を50部から200部使用するものである。 The first gist of the present invention relates to a cooling substrate for water diffusion, and is a group characterized in that fine polymer silica having a specific surface area of 150 to 380 m 2 / g and a liquid softening agent are blended in a polymer. It is a material. And these compounding ratios use 30 to 150 parts of fine powder silica and 50 to 200 parts of liquid softener for 100 parts by weight of the polymer.

具体的には、高分子ポリマーが非極性ゴムであり、微粉末シリカの量は好ましくは70部から120部、液状軟化材の量は好ましくは70部から170部用いた基材である。 Specifically, the polymer is a nonpolar rubber, and the amount of fine powder silica is preferably 70 to 120 parts, and the amount of the liquid softening material is preferably 70 to 170 parts.

本基材は、例えば、水に浸漬させて本基材の表面に水を付着させ、この状態で冷却シートとして用いることも可能である。そして、長時間の冷却を目的とする場合は、本発明の第2が好ましい。
本発明の第2の要旨は、水が充填される水室の周囲の全部分又は一部分を、上記本発明の第1の水拡散用冷却基材よりなる水拡散膜で構成したことを特徴とする冷却シートである。
The substrate can be used as a cooling sheet in this state, for example, by immersing the substrate in water to attach water to the surface of the substrate. And when it aims at cooling for a long time, the 2nd of this invention is preferable.
The second gist of the present invention is characterized in that all or a part of the periphery of the water chamber filled with water is constituted by the water diffusion film comprising the first water diffusion cooling base material of the present invention. It is a cooling sheet.

具体的には、水拡散膜が、布類で裏打ちされた冷却シートであり、水拡散膜の水室内の水と接触する面が、300℃以下の温度で溶融するポリマーの多孔性シートで裏打ちされたものである。尚、水室がその周囲の一部をポリエチレンフィルムやポリ塩化ビニルフィルムなどの非透水性膜で覆ってもよく、表面に送風する装置を付帯しても良い。   Specifically, the water diffusion film is a cooling sheet lined with cloth, and the surface of the water diffusion film that contacts the water in the water chamber is lined with a porous polymer sheet that melts at a temperature of 300 ° C. or lower. It has been done. In addition, the water chamber may cover a part of the periphery thereof with a water-impermeable film such as a polyethylene film or a polyvinyl chloride film, or may be attached with a device for blowing air on the surface.

本発明の第1である水拡散用冷却基材(水拡散膜)は、柔軟な均一透明な膜であるので広い面積の物体の冷却に適している。更に基材(膜)中には微細な空隙は存在せず通気性がないので、外傷が発生しない限り水漏れの心配は全くない。
そして、水の拡散力は非常に大きく、従って、これを用いた第2発明の冷却シートにあっては、蒸発に必要な量の水だけが自動的に供給されるので水の無駄な使用が避けられる。更に、駆動力には拡散力と云う自然力だけを使用しているので、断熱圧縮膨張冷却法で使用している電力は全く必要としない。従って本発明の冷却法は省資源省エネルギー的冷却法であると云うことができる。
The water diffusion cooling base material (water diffusion film) according to the first aspect of the present invention is a flexible, uniform and transparent film and is therefore suitable for cooling an object having a large area. Furthermore, since there are no fine voids in the substrate (film) and there is no air permeability, there is no concern about water leakage unless trauma occurs.
The water diffusing power is very large. Therefore, in the cooling sheet according to the second aspect of the invention, only the amount of water necessary for evaporation is automatically supplied, so that wasteful use of water is avoided. can avoid. Furthermore, since only a natural force called a diffusing force is used as the driving force, no electric power used in the adiabatic compression / expansion cooling method is required. Therefore, it can be said that the cooling method of the present invention is a resource-saving energy-saving cooling method.

図1は本発明の第2の冷却シートの一形態の断面図である。FIG. 1 is a cross-sectional view of one embodiment of the second cooling sheet of the present invention. 図2は本発明の第2の冷却シートを適用した着脱型のネッククーラーである。FIG. 2 shows a detachable neck cooler to which the second cooling sheet of the present invention is applied. 図3は本発明の第2の冷却シートを適用した内蔵型のネッククーラーである。FIG. 3 shows a built-in neck cooler to which the second cooling sheet of the present invention is applied. 図4は実施例7の評価結果を示す。FIG. 4 shows the evaluation results of Example 7. 図5は実施例8における冷却性能の評価結果を示す。FIG. 5 shows the evaluation results of the cooling performance in Example 8. 図6は実施例9における実験方法の模式図である。FIG. 6 is a schematic diagram of an experimental method in Example 9. 図7は実施例9における透湿量の評価結果を示す。FIG. 7 shows the evaluation results of the moisture permeation amount in Example 9. 図8は実施例10において作製したチューブ状水拡散用冷却基材である。FIG. 8 shows the tubular water diffusion cooling base material produced in Example 10.

以下、本発明の第1を中心に述べるが、水拡散膜を通過した水が蒸発する時に周囲の熱を奪う現象を利用した冷却法を完成したもので、水は蒸発する時に蒸発潜熱あるいは気化熱と呼ばれる一定量の熱量を必要とすることは良く知られている。しかるに、前記したような素焼きの瓶等で代表される基材は、硬く柔軟性に欠けるので広い面積を冷却する冷却シートには向かなかった。これに対し本発明の第1である水拡散用冷却基材(水拡散膜)は、柔軟な均一透明な膜であるので広い面積の物体の冷却に適している。更に基材(膜)中には微細な空隙は存在せず通気性がないので、外傷が発生しない限り水漏れの心配は全くない。 In the following, the first aspect of the present invention will be mainly described, but a cooling method using a phenomenon that takes away the surrounding heat when the water passing through the water diffusion film evaporates has been completed. When water evaporates, latent heat of vaporization or vaporization is obtained. It is well known that a certain amount of heat called heat is required. However, the base material represented by the unglazed bottle as described above is not suitable for a cooling sheet for cooling a large area because it is hard and lacks flexibility. On the other hand, the water diffusion cooling base material (water diffusion film) according to the first aspect of the present invention is a flexible, uniform and transparent film, and is therefore suitable for cooling an object having a large area. Furthermore, since there are no fine voids in the substrate (film) and there is no air permeability, there is no concern about water leakage unless trauma occurs.

ここでは基材(拡散膜)を水が拡散する時の推進力を拡散力と称すが、第1発明の基材における拡散力は非常に大きく、場合によっては、千気圧以上に達することも希ではない。しかるに、この拡散力は内側の膜部分の水の濃度と蒸発面である外側の膜部分の水の濃度の差によって決まり、濃度差が大きい程大きくなる。従って環境の温度が上昇し蒸発が活発になる程拡散量は増し、温度が低下したり湿度が上昇すると蒸発が停滞して外側の膜部分の水濃度が高くなり水の拡散量は減少する。つまり本発明の第1の水拡散用冷却基材(水拡散膜)にあっては、蒸発に必要な量の水だけが自動的に供給されるので水の無駄な使用が避けられる。そして、駆動力には拡散力と云う自然力だけを使用しているので、断熱圧縮膨張冷却法で使用している電力は全く必要としないという大きな特徴がある。従って本発明冷却法は省資源・省エネルギー的冷却法であるということができる。 Here, the driving force when water diffuses through the base material (diffusion membrane) is referred to as diffusive force. However, the diffusive force in the base material of the first invention is very large, and in some cases, it rarely reaches 1000 atm or higher. is not. However, this diffusion force is determined by the difference between the water concentration in the inner film portion and the water concentration in the outer film portion, which is the evaporation surface, and increases as the concentration difference increases. Therefore, the amount of diffusion increases as the temperature of the environment rises and the evaporation becomes active. When the temperature decreases or the humidity rises, evaporation stagnates and the water concentration in the outer membrane portion increases and the amount of water diffusion decreases. In other words, in the first water diffusion cooling base material (water diffusion membrane) of the present invention, only the amount of water necessary for evaporation is automatically supplied, so that useless use of water can be avoided. And since only the natural force called a diffusive force is used for a driving force, there exists the big characteristic that the electric power currently used by the adiabatic compression expansion cooling method is not required at all. Therefore, it can be said that the cooling method of the present invention is a resource-saving / energy-saving cooling method.

第2発明は、この蒸発潜熱を効率的に利用して冷却シートとしたものであり、その冷却の原理は一定量の水を保有する水室を水の分子拡散量が極めて大きい水拡散膜に接触させ、水室中の水が拡散膜を拡散透過し外気に接触している膜の表面近傍で蒸発する時の蒸発熱を冷却に利用するものである。この原理を基に構造をシート状にして多面積の冷却を行うことができるようにしたものである。 The second invention efficiently uses this latent heat of vaporization to form a cooling sheet, and the principle of cooling is that the water chamber holding a certain amount of water is turned into a water diffusion film with a very large molecular diffusion amount of water. The heat of evaporation when the water in the water chamber evaporates near the surface of the membrane that diffuses and permeates through the diffusion membrane and contacts the outside air is used for cooling. On the basis of this principle, the structure is made into a sheet shape so that multi-area cooling can be performed.

以下、本発明を更に詳細に説明すると、水拡散用冷却基材(水拡散膜)は、比表面積150〜380m /gの微粉末シリカ、高分子ポリマー、液状軟化剤の三種の原料からなる。微粉末シリカ(酸化珪素の粉末)は、比重1.95、粒子径15〜35mμ、吸油量160〜300ml/100gの規格のものが好適に使用される。かかるシリカは本発明の基材の拡散膜にあって、水を吸収し移動させる媒体として重要な働きをなす。水の吸収剤としてポリアクリル酸ソーダ等の合成高分子吸収剤が知られているが、これは好ましくないことは既に述べたが、無機系水吸収剤としてベントナイト、モンモリロナイト、セピオライト、ゼオライト等が存在するが、水は吸収されるものの、水を移動させる能力においては本発明の微粉末シリカに比べ格段に劣る。この理由は今のところ明らかではないが、シリカの水を拡散する能力は際立っている。 Hereinafter, the present invention will be described in more detail. The water diffusion cooling base material (water diffusion film) is composed of three kinds of raw materials: fine powder silica having a specific surface area of 150 to 380 m 2 / g, a polymer, and a liquid softening agent. . Finely divided silica (powder of silicon oxide) has a specific gravity of 1.95, the particle diameter 15~35Emumyu, is suitably used in the specification of the intake oil amount 160~300ml / 100g. Such silica is present in the diffusion film of the base material of the present invention and plays an important role as a medium for absorbing and transferring water. Synthetic polymer absorbents such as poly (sodium acrylate) are known as water absorbents, but it has already been mentioned that this is not preferable, but bentonite, montmorillonite, sepiolite, zeolite, etc. exist as inorganic water absorbents However, although water is absorbed, the ability to move water is much inferior to the fine powder silica of the present invention. The reason for this is not clear so far, but the ability of silica to diffuse water is outstanding.

微粉末シリカの量は重量部数で高分子ポリマー100部に対し30部から150部の割合で使用できる。シリカの部数が少ないと水の拡散量が低下し、多すぎると基材(膜)が堅くなり粘着力が低下して好ましくない。好ましいのは70部から120部の間である。   The amount of finely divided silica can be used in a ratio of 30 to 150 parts by weight per 100 parts of the polymer. If the number of parts of silica is small, the amount of water diffusion decreases, and if it is too large, the substrate (film) becomes stiff and the adhesive strength decreases, which is not preferable. Preferred is between 70 and 120 parts.

高分子ポリマーは基材(膜)の形成能力を高める重要な素材であり、内部に架橋構造、凝集構造(ハードセグメント)や結晶構造を有せず高分子量分子鎖に活発な自由分子運動が期待されるポリマーが好ましい。架橋構造、凝集構造、結晶構造が存在すると水の吸収量が減少し且つ水の移動が抑制される。このような高分子ポリマーとして、ゴムや合成樹脂がある。ゴムとしては天然ゴムと合成ゴムがあり、合成ゴムとしてはポリスチレンブタジエンゴム、ポリブタジエンゴム、ポリアクリロニトリルブタジエンゴム、ポリクロロプレンゴム、ポリエチレンプロピレンジエンマーゴム、ポリエチレンプロピレンゴム、ポリイソブチレンイソプレンゴム、フッ素ゴム、等の各種の合成ゴムが用いられる。特に耐候性、耐老化性が優れていることからポリエチレンプロピレンジエンマーゴム、ポリエチレンプロピレンゴム、ポリイソブチレンイソプレンゴム等の一般に無極性ゴムと呼ばれている合成ゴムが好ましい。 High molecular weight polymer is an important material that enhances the ability to form a base material (film), and it has no cross-linked structure, aggregated structure (hard segment) or crystal structure inside, and active free molecular motion is expected in high molecular weight molecular chains. Preferred is a polymer. If a cross-linked structure, an aggregated structure, or a crystal structure exists, the amount of water absorbed is reduced and the movement of water is suppressed. Examples of such a high molecular polymer include rubber and synthetic resin. The rubber includes natural rubber and synthetic rubber, and the synthetic rubber includes polystyrene butadiene rubber, polybutadiene rubber, polyacrylonitrile butadiene rubber, polychloroprene rubber, polyethylene propylene dienemer rubber, polyethylene propylene rubber, polyisobutylene isoprene rubber, fluorine rubber, etc. Various synthetic rubbers are used. In particular, synthetic rubbers generally called nonpolar rubbers such as polyethylene propylene dienemer rubber, polyethylene propylene rubber, polyisobutylene isoprene rubber and the like are preferable because of excellent weather resistance and aging resistance.

次に液状軟化剤について述べるが、具体的には油や可塑剤をいう。油は一般にゴムの配合に用いられ、ポリアクリロニトリルブタジエンゴムには可塑剤と呼ばれている液状物が配合される。何れもポリマーを軟化しそれらの加工作業性を改善する目的で使用されている。本発明で液状軟化剤の使用が重要である理由は、ポリマー自身の弾性率を低減し吸水量を増して水の拡散移動を容易にする働きがあるからである。ただし、あまり多量に加えると基材(膜)の物性が損なわれ好ましくない。ゴム用の軟化剤には主にアロマティツク系、ナフテン系、パラフィン系の油が使用される。無極性ゴムの軟化には比重0.86〜0.90、流動点−15〜−18℃のパラフィン系の使用が好ましい。可塑剤には一般市場で入手可能な多種品種の可塑剤が使用できる。例えばジブチルフタレート、ジオクチルフタレート、ジ2エチルヘキシルフタレート、ジオクチルフタレート、ジブチルグリコールアジペート、ジオクチルセバケート、ジブチルカルビトールアジペート、ジオクチルセバケート、ジブチルセバケート、トリクレジルフォスフェート、クレジルフェニルフォスフェート、アジピン酸系ポリエステル等の可塑剤である。 Next, the liquid softener will be described. Specifically, it refers to oil and plasticizer. Oil is generally used for blending rubber, and a liquid material called a plasticizer is blended with polyacrylonitrile butadiene rubber. Both are used for the purpose of softening polymers and improving their workability. The reason why the use of the liquid softening agent is important in the present invention is that it has a function of reducing the elastic modulus of the polymer itself and increasing the amount of water absorption to facilitate the diffusion movement of water. However, adding too much is not preferable because the physical properties of the substrate (film) are impaired. Aromatic, naphthenic and paraffinic oils are mainly used as rubber softeners. For softening the nonpolar rubber, it is preferable to use a paraffin having a specific gravity of 0.86 to 0.90 and a pour point of -15 to -18 ° C. Various types of plasticizers available on the general market can be used as the plasticizer. For example, dibutyl phthalate, dioctyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, dibutyl glycol adipate, dioctyl sebacate, dibutyl carbitol adipate, dioctyl sebacate, dibutyl sebacate, tricresyl phosphate, cresyl phenyl phosphate, adipic acid Plasticizer such as polyester.

液状軟化剤の量は同じく高分子ポリマー100部に対し50部から200部の間で使用する。少なすぎると膜製造時の加工性が悪くなり多すぎると前述したように基材(膜)の物性が低下する。好ましいのは70部から170部の間である。 The amount of the liquid softening agent is also used between 50 parts and 200 parts with respect to 100 parts of the polymer. If the amount is too small, the processability at the time of film production is deteriorated. If the amount is too large, the physical properties of the substrate (film) are lowered as described above. Preferred is between 70 and 170 parts.

以上の微粉末シリカ、高分子ポリマー、液状軟化剤の三要素の他に目的に応じ性能を損なわない範囲で他種類の材料あるいは薬剤が使用できる。これらには例えば紫外線吸収剤、老化防止剤、粘着付与剤、防徴剤、防菌剤、着色顔料、酸化チタン等の光線遮蔽剤、カーボンブラック、炭酸カルシウム、炭酸マグネシウム等の充填剤等がある。 In addition to the above three elements of finely divided silica, polymer, and liquid softener, other types of materials or chemicals can be used as long as the performance is not impaired depending on the purpose. These include, for example, ultraviolet absorbers, anti-aging agents, tackifiers, anticorrosive agents, antibacterial agents, color pigments, light shielding agents such as titanium oxide, fillers such as carbon black, calcium carbonate, and magnesium carbonate. .

水拡散用冷却基材(水拡散膜)には、防菌防カビ剤を添加することができる。
防菌防カビ剤としては、公知のものが適用され、例えば、アミン系、アルコール系、アルデヒド系、アミノ酸系、イソチアゾリン系、イソチオシアネート系、イミダゾール系、ウレア系、エーテル系、エステル系、塩素系、オキサゾリジン系、過酸化物系、カルボン酸系、カーバニリド系、カーバメート系、キノリン系、酸化物系、サルファイド系、サルファミド系、第四アンモニウム塩系、チアゾール系、チオカーバメート系、トリアジン系、ニトリル系、ビグアナイド系、ヒダントイン系、ピリジン系、フェノール系、フタルイミド系、モルフォリン系、ヨウ素系、両性界面活性剤系等が挙げられる。
また、防菌防カビ剤の中で、水溶性防カビ剤の例としては、2−メルカプトピリジンN−オキシドナトリウムが挙げられ、非水溶性防カビ剤の例としては、2−(4−チアゾリル)ベンゾイミダゾールが挙げられる。
なお、上記防菌防カビ剤に代えて、抗菌作用を有するヒバ油等を用いてもよい。
これらの中でも、2−メルカプトピリジンN−オキシドナトリウム、2−(4−チアゾリル)ベンゾイミダゾール及びヒバ油がよく、2−メルカプトピリジンN−オキシドナトリウムを用いるのがより好ましい。
防カビ剤の含有量は、水拡散膜の全質量に対して0.01質量%以上5質量%以下が好ましく、1質量%がより好ましい。
An antibacterial and antifungal agent can be added to the water diffusion cooling base material (water diffusion film).
As the antibacterial and antifungal agent, known ones are applied, for example, amine, alcohol, aldehyde, amino acid, isothiazoline, isothiocyanate, imidazole, urea, ether, ester, chlorine. Oxazolidine, peroxide, carboxylic acid, carbanilide, carbamate, quinoline, oxide, sulfide, sulfamide, quaternary ammonium salt, thiazole, thiocarbamate, triazine, nitrile , Biguanides, hydantoins, pyridines, phenols, phthalimides, morpholines, iodines, amphoteric surfactants, and the like.
Among the antibacterial and antifungal agents, examples of water-soluble antifungal agents include 2-mercaptopyridine N-oxide sodium, and examples of water-insoluble antifungal agents include 2- (4-thiazolyl). ) Benzimidazole.
In place of the antibacterial and antifungal agent, hiba oil or the like having an antibacterial action may be used.
Among these, 2-mercaptopyridine N-oxide sodium, 2- (4-thiazolyl) benzimidazole and hiba oil are preferable, and 2-mercaptopyridine N-oxide sodium is more preferably used.
The content of the fungicide is preferably 0.01% by mass or more and 5% by mass or less, and more preferably 1% by mass with respect to the total mass of the water diffusion membrane.

また、水拡散用冷却基材(水拡散膜)は、例えば、水に浸漬させて本基材の表面に水を付着させて、冷却シートとして用いてもよい。加えて、水拡散用冷却基材(水拡散膜)の表面を布類や吸水性構造体で覆うことで、基材の水の保持力を高めて、冷却シートとして利用してもよい。
吸水性構造体の例としては、吸水性ポリマーを含む/からなるシート(フィルム)、吸水性繊維を含む/からなるシート(フィルム)、吸水性鉱物を含む/からなるシート(フィルム)、パルプ(紙)を含む/からなるシート(フィルム)、上記シート(フィルム)を複数枚積層させたもの、保水力を有する発泡体等が挙げられる。
また、吸水性ポリマーとしては、例えば、ポリアクリル酸、ポリアクリル酸塩(ポリアクリル酸ナトリウムなど)、ポリアクリル酸ナトリウム架橋体、ポリビニルアルコール、アクリル酸−ビニルアルコール共重合体、デンプン、デンプン−アクリル酸共重合体、カルボキシルメチルセルロース、変性ポリアルキレンオキサイド等が挙げられる。
Further, the water diffusion cooling base material (water diffusion film) may be used as a cooling sheet by, for example, immersing in water and attaching water to the surface of the base material. In addition, by covering the surface of the water diffusion cooling base material (water diffusion film) with a cloth or a water-absorbing structure, the water holding power of the base material may be increased and used as a cooling sheet.
Examples of the water-absorbing structure include a sheet (film) comprising / consisting of a water-absorbing polymer, a sheet (film) comprising / comprising a water-absorbing fiber, a sheet (film) comprising / consisting of a water-absorbing mineral, A sheet (film) containing / consisting of paper), a laminate of a plurality of the above sheets (films), a foam having water retention, and the like.
Examples of the water-absorbing polymer include polyacrylic acid, polyacrylate (such as sodium polyacrylate), sodium polyacrylate cross-linked body, polyvinyl alcohol, acrylic acid-vinyl alcohol copolymer, starch, starch-acrylic. Examples include acid copolymers, carboxymethyl cellulose, and modified polyalkylene oxides.

また、水拡散用冷却基材(水拡散膜)は、チューブ状としてもよい。チューブ状の水拡散用冷却基材(水拡散膜)は、配管等の冷却カバーとして利用できる。   Moreover, the cooling substrate for water diffusion (water diffusion film) may be formed in a tube shape. The tube-shaped cooling base for water diffusion (water diffusion membrane) can be used as a cooling cover for piping and the like.

次に本発明の第2における冷却シートの構成要素の一つである水室について述べる。水室は冷却シートにおいて蒸発冷却用の水を貯蔵し供給する重要な機能を担うものであり、水は外部から水室へ適宜あるいは常時注入される。そして、水室の周囲を第1発明の基材(拡散膜)で囲むか、あるいは周囲の一部をこの基材(拡散膜)で構成し、他の部分を非透水性の膜で囲んで水室を設ける。つまり、第1発明における二枚の基材(拡散膜)の間に空間を設けその空間を水室とする場合と、一枚の基材(拡散膜)ともう一枚の非透水性膜の間に空間を設けその空間を水室とする場合がある。勿論、何れの場合も水と基材(拡散膜)が接触していることが必須の要件になる。   Next, the water chamber which is one of the components of the cooling sheet in the second aspect of the present invention will be described. The water chamber has an important function of storing and supplying water for evaporative cooling in the cooling sheet, and water is appropriately or constantly injected from the outside into the water chamber. And the periphery of the water chamber is surrounded by the base material (diffusion film) of the first invention, or a part of the periphery is constituted by this base material (diffusion film), and the other part is surrounded by the non-permeable film. Establish a water chamber. That is, when a space is provided between two base materials (diffusion membranes) in the first invention and the space is used as a water chamber, one base material (diffusion membrane) and another non-water-permeable membrane There is a case where a space is provided between them to be a water chamber. Of course, in any case, it is an essential requirement that water and the base material (diffusion film) are in contact with each other.

非透水性膜にはポリエチレンフィルムシートやポリ塩化ビニルフィルムシートを使用するのが好ましい。水室の周縁部分においては基材(拡散膜)同士あるいは基材(拡散膜)と非透水性膜を熱融着や両面接着テープその他の方法で接着して冷却シートを製造する。 It is preferable to use a polyethylene film sheet or a polyvinyl chloride film sheet for the water-impermeable film. In the peripheral part of the water chamber, the base sheet (diffusion film) or the base material (diffusion film) and the water-impermeable film are bonded by heat fusion, double-sided adhesive tape, or other methods to produce a cooling sheet.

水室一個の大きさをあまり大きくすると水を注入した場合水室が過度に膨れて思わしくないので、シート全体の広さを勘案して適当な大きさにすれば良い。また複数の水室を水路でつないで水室群を作ることも可能である。この水室群一つに対して少なくとも一個の活栓付き注入口を設ける必要がある。シートの使用開始時にこの注入口から水を給水し、使用後にここから残った水を排出することになる。   If the size of one water chamber is made too large, the water chamber will not swell excessively when water is injected, so the size of the water chamber may be set to an appropriate size in consideration of the width of the entire sheet. It is also possible to create a water chamber group by connecting a plurality of water chambers with water channels. It is necessary to provide at least one inlet with a stopcock for each water chamber group. Water is supplied from this inlet at the start of use of the sheet, and the remaining water is discharged after use.

第1発明の水拡散用冷却基材、即ち第2発明における水拡散膜にあって、実際に使用される膜は使用条件に対応した強度を保つ必要がある。このため、水拡散膜の蒸発面あるいは内面に各種の布つまり織布や不織布を張り合わせ積層補強して使用するのが良い。織布や不織布は各用途の使用条件に耐える強度のものが相応しい。これには綿、麻、羊毛、絹等の天然繊維の織布やナイロン、ポリエステル、ポリアクリル、芳香族ポリアミド等の合成繊維の織布あるいは不織布が使用できる。織布や不織布を積層することで拡散能力の低下が心配されたが、実際にはそのようなことはなく、あったとしても許容出来る程度の低下であった。むしろ、逆に拡散量が増加する場合が多い。それは実質的な蒸発面の増加と繊維による吸水に因るものではないかと考えられる。   In the cooling base for water diffusion according to the first invention, that is, the water diffusion film according to the second invention, the actually used film needs to maintain strength corresponding to the use conditions. For this reason, it is preferable to use various fabrics, that is, woven fabrics and nonwoven fabrics, laminated and reinforced on the evaporation surface or the inner surface of the water diffusion film. Woven fabrics and nonwoven fabrics should be strong enough to withstand the usage conditions for each application. For this, woven fabrics of natural fibers such as cotton, hemp, wool and silk, and woven fabrics or non-woven fabrics of synthetic fibers such as nylon, polyester, polyacryl and aromatic polyamide can be used. Although we were anxious about the decline in diffusion capacity by laminating woven fabrics and nonwoven fabrics, this was not the case and it was an acceptable reduction. Rather, the amount of diffusion often increases. This may be due to a substantial increase in the evaporation surface and water absorption by the fibers.

水室は二枚の拡散膜に囲まれて構成され、その端部は膜同志を熱融着して水洩れを防ぐことが多い。その場合、拡散膜には高分子ポリマーを使用しているけれどもそれは非結晶性のポリマーであるし且つ架橋していないので強度は低い。このため、特に膜の接合部に応力が集中すると亀裂が発生し破損する可能性がある。このため、それを防ぐには拡散膜の外面に織布又は不織布と貼り合わせ、内面には300℃以下の温度で熱溶融するポリマーの多孔性シートと貼り合わせるのが良い。ここで多孔性と云う意味は水の移動が自由で水の拡散を妨害しない程度の孔を多数有すると云う意味であり、熱溶融性ポリマーの織布や不織布あるいは網状物等を指す。こうする事で接合部では熱溶融性ポリマー同志が熱溶融接着し強固な接合部が形成されるし、水室の内面も多孔性ポリマーで保護されているので丈夫な膜になる。   In many cases, the water chamber is surrounded by two diffusion films, and the ends of the water chambers are heat-sealed together to prevent water leakage. In that case, although a high molecular weight polymer is used for the diffusion film, the strength is low because it is an amorphous polymer and is not crosslinked. For this reason, cracks may occur and breakage, particularly when stress concentrates on the joint of the film. Therefore, in order to prevent this, it is preferable that the outer surface of the diffusion film is bonded to a woven or non-woven fabric, and the inner surface is bonded to a polymer porous sheet that is thermally melted at a temperature of 300 ° C. or lower. Here, the term “porous” means that there are a large number of pores that are free to move water and do not hinder the diffusion of water, and refers to a woven fabric, a nonwoven fabric, a network, or the like of a hot-melt polymer. By doing so, the heat-meltable polymers are heat-melted and bonded to each other at the joint to form a strong joint, and the inner surface of the water chamber is protected by the porous polymer, so that a strong film is obtained.

適切に製造した第2発明の冷却シートを猛暑日を想定した35℃の環境で測定したところ、シートの裏側の表面温度は29℃まで低下していた。また環境温度が上昇する程水の蒸発量も増大するので温度差も大きくなることが確認された。しかも水の消費量は非常に少なく且つ水漏れがないので、一回の給水で長時間の冷却が可能であり、給水の頻度はおよそ一日一回の割合で十分であることが分かった。   When the appropriately manufactured cooling sheet of the second invention was measured in an environment of 35 ° C. assuming a hot day, the surface temperature of the back side of the sheet was reduced to 29 ° C. Further, it was confirmed that the temperature difference increases because the amount of water evaporation increases as the environmental temperature rises. Moreover, since the consumption of water is very small and there is no water leakage, it has been found that it is possible to cool for a long time with one water supply, and the frequency of water supply is sufficient at a rate of about once a day.

なお、大面積の冷却シートに用いる大面積の水拡散用冷却基材(水拡散膜)を作製する場合、例えば、カレンダーロール成形機を利用することができる。成形温度は、使用材料等に応じて適宜検討するが、例えば、90℃が挙げられる。   In the case of producing a large area water diffusion cooling base material (water diffusion film) used for a large area cooling sheet, for example, a calendar roll forming machine can be used. The molding temperature is appropriately determined according to the material used, and for example, 90 ° C. can be mentioned.

図1は第2発明の冷却シートの具体的構造を示したものであり、1は2枚の水拡散膜(第1発明の基材)、2は膜1の外面に当接・積層された帆布である。3は水室を形成するため、水拡散膜2、2の端面を一体化するための両面接着剤である。4は外径3mmのポリエチレン細管であり、水の供給口である。5は栓であり、6は水室を示す。 FIG. 1 shows a specific structure of the cooling sheet of the second invention, wherein 1 is two water diffusion films (base material of the first invention), and 2 is abutted and laminated on the outer surface of the film 1. It is canvas. 3 is a double-sided adhesive for integrating the end surfaces of the water diffusion films 2 and 2 to form a water chamber. Reference numeral 4 denotes a polyethylene thin tube having an outer diameter of 3 mm, which is a water supply port. 5 is a stopper, and 6 is a water chamber.

図1に示す第2発明の冷却シートにあって、水室6から拡散膜1を通してしみ出て来た水は大気中に蒸発して空気中に拡散して行く。従って冷却シートに接する空気には水蒸気の拡散層が形成される。この水蒸気の拡散層を風力で払拭してやれば冷却シート近傍の空気の水蒸気密度は低下し蒸発が促進される。その結果、冷却効果も促進されることとなる。 勿論、冷却シートの表面に送風する装置(図示せず)を付帯することで、冷却を促進することが可能である。   In the cooling sheet of the second invention shown in FIG. 1, the water that has oozed out of the water chamber 6 through the diffusion film 1 evaporates into the atmosphere and diffuses into the air. Accordingly, a water vapor diffusion layer is formed in the air in contact with the cooling sheet. If this water vapor diffusion layer is wiped off by wind force, the water vapor density of the air in the vicinity of the cooling sheet is lowered and evaporation is promoted. As a result, the cooling effect is also promoted. Of course, it is possible to promote cooling by attaching a device (not shown) for blowing air to the surface of the cooling sheet.

第2発明の冷却シートは、例えば、図2に示すように、ネッククーラー10に適用できる。具体的には、図2(a)、(b)に示すネッククーラー10は、例えば、帯状のネッククーラー本体11の中央部に、冷却シート12を挿入する挿入部を設け、その挿入部に、カートリッジ式の冷却シートを着脱可能に挿入して構成されている。
なお、図2(a)が、ネッククーラー本体11とカートリッジ式の冷却シート12が分離した状態を示しており、図2(b)が、ネッククーラー本体11の中央部にカートリッジ式の冷却シート12が挿入されて構成されている状態である。
また、第2発明の冷却シートは、例えば、図3に示すように、冷却シート内蔵型のネッククーラー10とすることができる。具体的には、図3に示すネッククーラー10は、例えば、帯状のネッククーラー本体11中央部に、冷却シート12が一体化されて内蔵されている。図3に示すネッククーラー10において、冷却シート12は、ネッククーラー11本体と接着剤や熱融着等で一体にすることが好ましい。
The cooling sheet of the second invention can be applied to the neck cooler 10, for example, as shown in FIG. Specifically, the neck cooler 10 shown in FIGS. 2A and 2B is provided with an insertion portion for inserting the cooling sheet 12 in the central portion of the belt-shaped neck cooler main body 11, for example, A cartridge type cooling sheet is detachably inserted.
2A shows a state where the neck cooler body 11 and the cartridge type cooling sheet 12 are separated, and FIG. 2B shows a cartridge type cooling sheet 12 at the center of the neck cooler body 11. Is inserted and configured.
The cooling sheet according to the second aspect of the invention can be a neck cooler 10 with a built-in cooling sheet, for example, as shown in FIG. Specifically, the neck cooler 10 shown in FIG. 3 has a cooling sheet 12 integrated and incorporated in a central portion of a belt-like neck cooler main body 11, for example. In the neck cooler 10 shown in FIG. 3, the cooling sheet 12 is preferably integrated with the neck cooler 11 main body by an adhesive, heat fusion, or the like.

以下、第2発明による実施例で更に具体的に説明するが、本発明の範囲がこの実施例で限定されないことは言うまでもない。 Hereinafter, the present invention will be described in more detail with reference to examples, but it goes without saying that the scope of the present invention is not limited to these examples.

(実施例1)
ポリエチレンプロピレンジエンマーゴム(商品名JSREP57C)100gに微粉末シリカ(商品名ニプシルVN−3)100g、パラフィン系オイル143gを二本ロールで混練りし厚さ0.5mmの水拡散膜とした。この膜を二本ロールを使用しロール温度120℃で11号帆布に圧着し積層してシートを調製した。上記シートから縦12cm・横19.5cmの四角形シート(符号1と2との積層体)を二枚切り出し、図1に説明した構造の冷却シートの雛形を作った。この積層体の周縁に幅1.5cm・厚さ0.08mmの不織布を支持体としたアクリル樹脂系の両面接着テープ3を貼り二枚のシートを拡散膜1、1の面が向き合う様に重ねて貼り合わせた。従って、縦9cm・横16.5cmの四角形の水室6が形成される。
Example 1
100 g of polyethylene propylene dienemer rubber (trade name JSREP57C) and 100 g of fine powder silica (trade name Nipsil VN-3) and 143 g of paraffinic oil were kneaded by two rolls to form a water diffusion film having a thickness of 0.5 mm. This film was pressure-bonded to a No. 11 canvas at a roll temperature of 120 ° C. using two rolls and laminated to prepare a sheet. Two rectangular sheets (laminated body of reference numerals 1 and 2) having a length of 12 cm and a width of 19.5 cm were cut out from the above sheet to form a cooling sheet template having the structure described in FIG. Acrylic resin-based double-sided adhesive tape 3 having a 1.5 cm wide and 0.08 mm thick nonwoven fabric as a support is attached to the periphery of this laminate, and the two sheets are laminated so that the surfaces of diffusion films 1 and 1 face each other. And pasted together. Accordingly, a rectangular water chamber 6 having a length of 9 cm and a width of 16.5 cm is formed.

この冷却シートに約50gの水を図1に示したポリエチレン細管4を通して注入し密栓5した。次にこの冷却シートを自然界に相似するように循環風量を制限した35℃の恒温装置の中に静置した。冷却シートの裏側下面の表面温度は約2時間後に26℃で平衡に達し、表側上面の表面温度は約4時間後に27.5℃で平衡に達した。
単位時間当たりの水の蒸発量を水室蒸発面全面積で除し、水の質量流速つまり透過速度とすれば、その値は4.381×10−6g/cm・secとなった。更に拡散係数は5.918×10−7cm/secとなった。またこの冷却シート全体で1時間当たり4.78gの水が蒸発している。冷却シートの表面温度は恒温装置内の風量に左右され、冷却性能の絶対評価とはならないが、水が蒸発しているのは確実でありその量がその環境での冷却シート性能の評価値にはなる。上記の蒸発速度を吸熱速度に換算すれば36.1J/cm・secとなる。更にシート全体の面積当たりの効率を計算すれば127.2W/mとなり、第2発明の冷却シート1平方メートル当たり約100Wの白熱電灯の熱を吸収すると同等と考えられる。
About 50 g of water was poured into the cooling sheet through the polyethylene thin tube 4 shown in FIG. Next, this cooling sheet was left still in a constant temperature apparatus of 35 ° C. in which the circulation air volume was limited so as to be similar to the natural world. The surface temperature of the lower back surface of the cooling sheet reached an equilibrium at 26 ° C. after about 2 hours, and the surface temperature of the upper surface of the cooling sheet reached an equilibrium at 27.5 ° C. after about 4 hours.
Dividing the evaporation amount of water per unit time by the total area of the water chamber evaporation surface to obtain the mass flow rate of water, that is, the permeation rate, the value was 4.381 × 10 −6 g / cm 2 · sec. Further, the diffusion coefficient was 5.918 × 10 −7 cm 2 / sec. In addition, 4.78 g of water evaporates per hour in the entire cooling sheet. The surface temperature of the cooling sheet depends on the air volume inside the thermostat and is not an absolute evaluation of the cooling performance, but it is certain that the water has evaporated, and that amount is an evaluation value of the cooling sheet performance in that environment. It becomes. When the above evaporation rate is converted into an endothermic rate, 36.1 J / cm 2 · sec is obtained. Further, the efficiency per area of the entire sheet is calculated to be 127.2 W / m 2 , which is considered equivalent to absorbing the heat of the incandescent lamp of about 100 W per square meter of the cooling sheet of the second invention.

(実施例2)
実施例1の帆布の代わりに木綿の晒布2を使用した場合は、水の透過速度は4.829×10−6g/cm・secであった。
(Example 2)
When the cotton bleached cloth 2 was used in place of the canvas of Example 1, the water permeation rate was 4.829 × 10 −6 g / cm 2 · sec.

(実施例3)
実施例1の帆布の代わりに作業服用ポリエステル生地2を使用した場合は、水の透過速度は6.232×10−6g/cm・secであった。
Example 3
When the polyester fabric 2 for work clothes was used instead of the canvas of Example 1, the water permeation rate was 6.232 × 10 −6 g / cm 2 · sec.

(実施例4)
実施例1の拡散膜1のみの場合は水の透過速度は2.568×10−6g/cm・secであった。この例から、織布等を使用した場合の方がより水の透過速度が大きくなる傾向にあると云える。
Example 4
In the case of only the diffusion film 1 of Example 1, the water permeation rate was 2.568 × 10 −6 g / cm 2 · sec. From this example, it can be said that the water permeation rate tends to be greater when woven fabric or the like is used.

(比較例1)
実施例1の微粉末シリカの代わりに、無機系吸水剤であるモンモリロナイトを使用した場合水の透過速度は殆ど零に近い値を示した。
(Comparative Example 1)
When montmorillonite, which is an inorganic water-absorbing agent, was used in place of the fine powder silica of Example 1, the water permeation rate was almost zero.

(実施例5)
実施例1で使用した厚さ0.5mmの水拡散膜1の片面に厚さ約0.01mmのポリエステル製不織布と他面に厚さ約0.1mmのポリエチレンネット(網状物)を熱圧着しポリエチレン側を向かい合わせて更に熱圧着した。これから幅25mmの短冊を切り出し剥離接着力を測定した。この場合5.8kgで材質が破壊した。
一方、ポリエチレンネットで裏打ちしない場合の剥離接着力は0.15kgであった。
(Example 5)
A polyester non-woven fabric having a thickness of approximately 0.01 mm and a polyethylene net having a thickness of approximately 0.1 mm are applied to one side of the water diffusion membrane 1 having a thickness of 0.5 mm used in Example 1 and the other surface. The polyethylene side was further faced and further thermocompression bonded. From this, a strip with a width of 25 mm was cut out and the peel adhesion was measured. In this case, the material was destroyed at 5.8 kg.
On the other hand, the peel adhesive strength when not backed with a polyethylene net was 0.15 kg.

(実施例6)
実施例1で作製した冷却シートの脇から外枠長さ92mm・回転数2000rpm・送風量1.22m/minのパソコン用送風機で蒸発面に送風した。水の透過速度は室温20℃で9.770×10−6g/cm・secであった。蒸発面に送風することで蒸発を促進することが分かつた。
(Example 6)
The air was blown from the side of the cooling sheet produced in Example 1 to the evaporation surface with a personal computer blower having an outer frame length of 92 mm, a rotational speed of 2000 rpm, and an air blowing amount of 1.22 m 3 / min. The water permeation rate was 9.770 × 10 −6 g / cm 2 · sec at room temperature of 20 ° C. It has been found that evaporation is promoted by blowing air to the evaporation surface.

(実施例7)
実施例1で使用した水拡散膜とポリエチレンプロピレンジエンマーゴム(商品名JSREP57C)、微粉末シリカ(商品名ニプシルVN−3)、パラフィン系オイルの配合比は同様とし、水溶性防カビ剤である2−メルカプトピリジンN−オキシドナトリウム(和光純薬工業(株))、非水溶性防カビ剤である2−(4−チアゾリル)ベンゾイミダゾール(東京化成工業(株))又はヒバ油のいずれかを全重量に対して1質量%(3.43g)添加した厚さ0.5mmの水拡散膜を作製した。
そして、JIS Z 2911(2010)に従い、上記各水拡散膜の防カビ性を評価した。試験環境は26℃、95%RH以上とし、4週間後に目視で観察することで、防カビ性を評価した。
結果を図4に示す。
図4より、2−メルカプトピリジンN−オキシドナトリウムで、最も防カビ性が得られることが示された。
(Example 7)
The water diffusion membrane used in Example 1, polyethylene propylene dienemer rubber (trade name JSREP57C), fine powder silica (trade name Nipsil VN-3), and paraffinic oil have the same blending ratio and are water-soluble fungicides. 2-Mercaptopyridine N-oxide sodium (Wako Pure Chemical Industries, Ltd.), 2- (4-thiazolyl) benzimidazole (Tokyo Chemical Industry Co., Ltd.) or Hiba Oil, which is a water-insoluble fungicidal agent A water diffusion film having a thickness of 0.5 mm was prepared by adding 1% by mass (3.43 g) to the total weight.
And according to JIS Z 2911 (2010), the anti-mold property of each said water diffusion film was evaluated. The test environment was 26 ° C. and 95% RH or more, and the antifungal property was evaluated by visual observation after 4 weeks.
The results are shown in FIG.
From FIG. 4, it was shown that 2-mercaptopyridine N-oxide sodium provides the most fungicidal properties.

(実施例8)
冷却シートと市販品Aとの冷却性能を、以下の方法で比較した。
まず、ポリエチレンプロピレンジエンマーゴム(商品名JSREP57C)100gに微粉末シリカ(商品名ニプシルVN−3)100g、パラフィン系オイル143gを二本ロールで混練りした後、カレンダーロール成形機を用いて水拡散膜を成形し、その表面にスフ(ステープル・ファイバー)と圧着した厚さ0.4mmの積層シートを作製した。そして、上記積層シートの中央部にポリプロピレン製の注水口を取り付けた後、0.2mm厚のブルーシート(ポリエチレン製)の四辺を100℃のプレス機を用いて貼り合わせ、冷却シートを作製した。
次に、上記冷却シートに、水温19℃の水道水を約380g注入し密栓した。また、上記市販品Aには、水道水を約580g注入し密栓した。これらを30±2℃、50±5%RHの環境下で厚さ3mmの合板の上に設置し、上記冷却シート及び上記市販品Aが接触している面の温度変化をサーモグラフィによって測定した。30分経過時までは5分毎に測定し、それ以後は10分毎に測定した。
結果を図5に表示する。
図5より、上記市販品Aに比べ、上記冷却シートの方が、冷却効果が長続きすることが示された。
なお、合板表面の初期温度は、30.8℃であった。
(Example 8)
The cooling performance between the cooling sheet and the commercial product A was compared by the following method.
First, 100 g of polyethylene propylene dienemer rubber (trade name JSREP57C) and 100 g of fine powder silica (trade name Nipsil VN-3) and 143 g of paraffinic oil are kneaded with two rolls, and then water diffusion using a calendar roll molding machine. A film was formed, and a 0.4 mm-thick laminated sheet was produced by pressing the film with a staple (staple fiber). And after attaching the water inlet made from a polypropylene to the center part of the said lamination sheet, the four sides of the 0.2 mm thick blue sheet (made from polyethylene) were bonded together using a 100 degreeC press, and the cooling sheet was produced.
Next, about 380 g of tap water having a water temperature of 19 ° C. was poured into the cooling sheet and sealed. Moreover, about 580g of tap water was inject | poured into the said commercial item A, and it sealed. These were placed on a 3 mm thick plywood in an environment of 30 ± 2 ° C. and 50 ± 5% RH, and the temperature change of the surface where the cooling sheet and the commercial product A were in contact was measured by thermography. Measurements were taken every 5 minutes until 30 minutes, and thereafter every 10 minutes.
The results are displayed in FIG.
FIG. 5 shows that the cooling sheet has a longer cooling effect than the commercial product A.
The initial temperature of the plywood surface was 30.8 ° C.

(実施例9)
実施例8と同様の方法で作製した厚さ0.23mmの積層シート(水拡散膜+スフ)と市販品Bから切り出した厚さ0.26mmのポリウレタンシートの透湿量を比較した。
実験は以下のように行った。
図6に示すように、35℃の恒温槽内に電子天秤を設置した後、プラスチック製カップを、水を30g入れ上記積層シート(水拡散膜+スフ)及び上記ポリウレタンシートをサンプルとして用いて上記カップに蓋をした状態で逆さまにし、各シートの表面が天秤に接触しないように設置した。なお、積層シート(水拡散膜+スフ)の場合、上記カップを逆さまにした際に水拡散膜側が水と接触するように、プラスチック製カップに取り付けた。
水が各シートを透過することによる重量変化を、電子天秤のインターバル記録機能を使用し自動的に記録した。
結果を図7に表示する。
図7より、市販品Bから切り出したポリウレタンシートに比べ、上記積層シート(水拡散膜+スフ)の方が、透湿量は高いことが示された。
Example 9
The moisture permeability of the 0.23 mm-thick laminated sheet (water diffusion film + sufu) produced by the same method as in Example 8 and the 0.26 mm-thick polyurethane sheet cut out from the commercial product B were compared.
The experiment was performed as follows.
As shown in FIG. 6, after placing the electronic balance in a constant temperature bath at 35 ° C., the plastic cup was filled with 30 g of water, and the above laminated sheet (water diffusion membrane + sufu) and the above polyurethane sheet were used as samples. The cup was turned upside down with the lid on, and was placed so that the surface of each sheet did not touch the balance. In the case of a laminated sheet (water diffusion film + sufu), it was attached to a plastic cup so that when the cup was turned upside down, the water diffusion film side was in contact with water.
The change in weight due to the permeation of water through each sheet was automatically recorded using the interval recording function of the electronic balance.
The results are displayed in FIG.
FIG. 7 shows that the laminated sheet (water diffusion film + sufu) has a higher moisture permeability than the polyurethane sheet cut out from the commercial product B.

(実施例10)
溶融粘度測定装置(東洋精機製作所製、キャピログラフ1C)に、内径1mm・外径2mmのチューブ状キャピラリを取り付け、チューブ状水拡散用冷却基材を作製した。成形温度は90℃とし、押出速度は任意とした。
図8に示すように、チューブ状水拡散用冷却基材の成形が可能であることが示された。
(Example 10)
A tube-shaped capillary with an inner diameter of 1 mm and an outer diameter of 2 mm was attached to a melt viscosity measuring apparatus (Capillograph 1C, manufactured by Toyo Seiki Seisakusho Co., Ltd.) to prepare a tube-shaped water diffusion cooling base material. The molding temperature was 90 ° C., and the extrusion speed was arbitrary.
As shown in FIG. 8, it was shown that the cooling water base for tubular water diffusion can be formed.

近年、地球温暖化現象が顕著になり夏期の猛暑日日数が富に増加している。この猛暑を凌ぐために益々電力の使用が増加し、それに比例して温室効果ガス排出も増加し地球温暖化が進行するという社会的なジレンマに陥っている。本発明の冷却シートによる冷却は温室効果ガスを排出しない省エネルギー的、省資源的な冷却法であり、その実用性は顕著である。   In recent years, the global warming phenomenon has become remarkable, and the number of hot days in summer has been increasing. In order to surpass this intense heat, the use of electric power is increasing, and greenhouse gas emissions increase in proportion to it, falling into a social dilemma in which global warming proceeds. The cooling by the cooling sheet of the present invention is an energy-saving and resource-saving cooling method that does not emit greenhouse gases, and its practicality is remarkable.

第2発明の冷却シートの用途としては、建築物の屋根や壁の冷却が先ず考えられる。具体的には、ビル屋上、一般住居の屋根や壁、倉庫、簡易仮設住居並びに簡易テントの屋根部分、各種家畜小屋の屋根部分の冷却である。また自動車や電車等各種運送車両の屋根部分の冷却もある。更には柔軟性に優れ軽量であることから、作業服、ベスト、帽子等の服飾関係の用途も考えられる。その他、コンピューター、パソコン等の各種計器の冷却にも適用可能である。   As a use of the cooling sheet of the second invention, cooling of a roof or a wall of a building is first considered. Specifically, it is cooling of the roof of a building, roofs and walls of ordinary dwellings, warehouses, simple temporary dwellings, roofs of simple tents, and roofs of various livestock sheds. There is also cooling of the roof of various transport vehicles such as cars and trains. Furthermore, since it is flexible and lightweight, it can be used for clothing-related applications such as work clothes, vests, and hats. In addition, it can be applied to cooling various instruments such as computers and personal computers.

1 水拡散膜(第1発明の基材)
2 帆布
3 両面接着剤
4 ポリエチレン細管(外径3mm)
5 栓
6 水室
10 ネッククーラー
11 ネッククーラー本体
12 冷却シート
1 Water diffusion membrane (base material of the first invention)
2 Canvas 3 Double-sided adhesive 4 Polyethylene capillary (outer diameter 3 mm)
5 Plug 6 Water chamber 10 Neck cooler 11 Neck cooler body 12 Cooling sheet

Claims (12)

水が充填される水室の周囲の全部分又は一部分を、高分子ポリマーに比表面積150〜380m/gの微粉末シリカ及び液状軟化剤を配合した水拡散用冷却基材よりなる水拡散膜で構成したことを特徴とする冷却シート All of the parts or portion of the circumference of the water chamber where the water is filled, consisting finely divided silica and cooling substrates for water diffusion blended with liquid softener having a specific surface area 150~380m 2 / g to high polymer water diffusion A cooling sheet comprising a film . 重量部数で前記高分子ポリマー100部に対して、前記微粉末シリカを30部から150部、前記液状軟化剤を50部から200部使用した請求項1記載の冷却シートThe cooling sheet according to claim 1, wherein 30 to 150 parts of the fine powder silica and 50 to 200 parts of the liquid softening agent are used with respect to 100 parts by weight of the high molecular weight polymer. 前記高分子ポリマーが非極性ゴムである請求項1又は2記載の冷却シートThe cooling sheet according to claim 1, wherein the polymer is a nonpolar rubber. 重量部数で前記高分子ポリマー100部に対して、前記微粉末シリカを70部から120部用いた請求項1乃至3いずれか1記載の冷却シートThe cooling sheet according to any one of claims 1 to 3, wherein 70 to 120 parts of the fine powdered silica are used with respect to 100 parts by weight of the high-molecular polymer. 重量部数で前記高分子ポリマー100部に対して、前記液状軟化剤を70部から170部用いた請求項1乃至3いずれか1記載の冷却シートThe cooling sheet according to any one of claims 1 to 3, wherein the liquid softening agent is used in an amount of 70 to 170 parts by weight based on 100 parts of the polymer. 前記水拡散膜が、布類で裏打ちされた請求項1乃至5いずれか1記載の冷却シート。 The cooling sheet according to any one of claims 1 to 5 , wherein the water diffusion film is lined with a cloth. 前記水拡散膜の水室内の水と接触する面が、300℃以下の温度で溶融するポリマーの多孔性シートで裏打ちされた請求項1乃至6いずれか1記載の冷却シート。 The cooling sheet according to any one of claims 1 to 6, wherein a surface of the water diffusion membrane that contacts water in the water chamber is lined with a porous sheet of a polymer that melts at a temperature of 300 ° C or lower. 前記水室がその周囲の一部を非透水性膜で覆った構造である請求項乃至いずれか1記載の冷却シート。 The cooling sheet according to any one of claims 1 to 7, wherein the water chamber has a structure in which a part of the periphery of the water chamber is covered with a water-impermeable film. 前記非透水性膜がポリエチレンフィルムである請求項記載の冷却シート。 The cooling sheet according to claim 8 , wherein the water-impermeable membrane is a polyethylene film. 前記非透水性膜がポリ塩化ビニルフイルムである請求項記載の冷却シート。 The cooling sheet according to claim 8 , wherein the water-impermeable film is a polyvinyl chloride film. 表面に送風する装置を付帯した請求項1乃至5いずれか1記載の冷却シート。 The cooling sheet according to any one of claims 1 to 5, wherein a device for blowing air on the surface is attached. 請求項乃至11いずれか1記載の冷却シートが着脱可能に挿入されて構成されたことを特徴とするネッククーラー。 Neck Cooler, characterized in that claims 1 to 11 cooling sheets as claimed in any one is constituted by removably inserted.
JP2012068325A 2011-03-23 2012-03-23 Cooling seat and neck cooler Active JP6061483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012068325A JP6061483B2 (en) 2011-03-23 2012-03-23 Cooling seat and neck cooler

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011064405 2011-03-23
JP2011064405 2011-03-23
JP2012068325A JP6061483B2 (en) 2011-03-23 2012-03-23 Cooling seat and neck cooler

Publications (2)

Publication Number Publication Date
JP2012210407A JP2012210407A (en) 2012-11-01
JP6061483B2 true JP6061483B2 (en) 2017-01-18

Family

ID=47264893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012068325A Active JP6061483B2 (en) 2011-03-23 2012-03-23 Cooling seat and neck cooler

Country Status (1)

Country Link
JP (1) JP6061483B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3011719B1 (en) * 2013-10-10 2016-05-27 S M Europe DEVICE FOR REFRESHING THE EXTERNAL SURFACE OF A BODY
KR101618521B1 (en) 2015-07-15 2016-05-04 차점숙 Ice scarf
CN113423392A (en) * 2019-02-18 2021-09-21 久光制药株式会社 Cooling fin

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195049A (en) * 1986-02-22 1987-08-27 Sumika Color Kk Production of highly water absorbing resin composition
JPS63216564A (en) * 1987-03-05 1988-09-08 井島 文子 Cooling towel
JPH0651772B2 (en) * 1988-03-31 1994-07-06 大日精化工業株式会社 Water-swellable resin composition
GB8927365D0 (en) * 1989-12-04 1990-01-31 Ici Plc Reagent
JP3108465B2 (en) * 1991-07-10 2000-11-13 株式会社東芝 Personal communication system
JP2000281531A (en) * 1999-03-29 2000-10-10 Nitto Denko Corp Cosmetic sheet
JP2001040512A (en) * 1999-07-22 2001-02-13 Seft Dev Lab Co Ltd Cooling clothing
JP2002045389A (en) * 2000-08-03 2002-02-12 Fuji Latex Kk Cooling bag equipped with moisture permeable membrane

Also Published As

Publication number Publication date
JP2012210407A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
CN101631999B (en) Sheets for total heat exchangers
TWI311636B (en)
CA2439921C (en) Use of ionomers in order to seal insulating materials
US20110192579A1 (en) Total heat exchange element and total heat exchanger
JP5156504B2 (en) Composite membrane and moisture adjustment module using the same
US9671134B2 (en) Vapor heating implement
TWI313626B (en)
JP6061483B2 (en) Cooling seat and neck cooler
KR20120012990A (en) Coated membranes for enthalpy exchange and other applications
JP2010196396A (en) Concrete curing sheet
US20010010847A1 (en) Heating packet
WO2018131719A1 (en) Sheet for total heat exchange element and method for producing sheet for total heat exchange element
CN204776541U (en) High hygroscopic desiccation agent is with compound membrane non -woven fabrics with by its wrapping bag of making
KR102548315B1 (en) Packaging material for desiccant and moisture absorption product containing same
CN207683073U (en) A kind of special transfer mould film of synthetic leather
CN105035492A (en) Laminating non-woven fabric for high-hygroscopic drying agent, preparation method thereof and packaging bag made of laminating non-woven fabric
JP6057569B2 (en) Cooling sheet
JPS60235624A (en) Humidistat
JP2013013688A (en) Cooling sheet
JPH0759809A (en) Sheet-like exothermic element
JPWO2012056506A1 (en) Total heat exchange element and total heat exchanger
JPH11159023A (en) Heat insulating material
JP6340577B2 (en) Total heat exchange element partition member and total heat exchange element and heat exchange type ventilator using the total heat exchange element partition member
US20230166217A1 (en) Pleated composite pervaporation laminate and method of making same
JP2004250863A (en) Interior material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161111

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161213

R150 Certificate of patent or registration of utility model

Ref document number: 6061483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250