JP6060541B2 - Thermosetting resin composition for semiconductor encapsulation and semiconductor device using the same - Google Patents

Thermosetting resin composition for semiconductor encapsulation and semiconductor device using the same Download PDF

Info

Publication number
JP6060541B2
JP6060541B2 JP2012149680A JP2012149680A JP6060541B2 JP 6060541 B2 JP6060541 B2 JP 6060541B2 JP 2012149680 A JP2012149680 A JP 2012149680A JP 2012149680 A JP2012149680 A JP 2012149680A JP 6060541 B2 JP6060541 B2 JP 6060541B2
Authority
JP
Japan
Prior art keywords
component
resin composition
thermosetting resin
molar amount
total molar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012149680A
Other languages
Japanese (ja)
Other versions
JP2013199627A (en
Inventor
明子 中橋
明子 中橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012149680A priority Critical patent/JP6060541B2/en
Publication of JP2013199627A publication Critical patent/JP2013199627A/en
Application granted granted Critical
Publication of JP6060541B2 publication Critical patent/JP6060541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、半導体素子等の封止に用いられる半導体封止用熱硬化性樹脂組成物およびそれを用いた半導体装置に関するものである。   The present invention relates to a thermosetting resin composition for semiconductor sealing used for sealing semiconductor elements and the like, and a semiconductor device using the same.

従来から、トランジスター、IC、LSI等の各種半導体素子は、外部環境からの保護および半導体素子のハンドリングを簡易にする観点から、プラスチックパッケージ等により封止され半導体装置化されている。上記プラスチックパッケージとしては、成形性、接着性、電気特性、機械特性、耐湿性に優れたエポキシ樹脂組成物により樹脂封止されたものが主流となっている。   2. Description of the Related Art Conventionally, various semiconductor elements such as transistors, ICs, and LSIs are sealed with a plastic package or the like from the viewpoint of protection from the external environment and easy handling of the semiconductor elements. As the above-mentioned plastic packages, those sealed with an epoxy resin composition excellent in moldability, adhesiveness, electrical characteristics, mechanical characteristics, and moisture resistance are mainly used.

しかし、半導体装置が高密度化、小型化されていくにつれ、半導体装置の駆動温度が高くなり、その封止樹脂に対する耐熱性に関してもより高いものが要求されている。例えば、耐熱性に優れた樹脂としては、マレイミド・アリル樹脂が広く知られているが、この樹脂は硬化性が悪く、生産性を重視する分野への適用が困難であった。   However, as the semiconductor device is increased in density and size, the driving temperature of the semiconductor device is increased, and higher heat resistance is required for the sealing resin. For example, as a resin excellent in heat resistance, maleimide allyl resin is widely known. However, this resin has poor curability and is difficult to be applied to a field where productivity is important.

このような問題を有していることから、硬化性の向上,改善を図る目的で、1−プロペニル基を有する化合物を硬化剤に加える手法が検討されている(特許文献1参照)。また、耐熱性・耐電圧の向上を目的に、珪素含有硬化性組成物を用いるというような別の異なる樹脂系による封止材料も検討されている(特許文献2参照)。   Since it has such a problem, the method of adding the compound which has 1-propenyl group to a hardening | curing agent is examined for the purpose of improving and improving sclerosis | hardenability (refer patent document 1). Further, for the purpose of improving heat resistance and withstand voltage, a sealing material using another different resin system such as using a silicon-containing curable composition has been studied (see Patent Document 2).

特開平7−165825号公報JP-A-7-165825 特開2011−63688号公報JP 2011-63688 A

しかしながら、上記特許文献1等の封止材料において、特に無機質充填剤を配合,混練した封止材料による硬化物系の場合には、適切な硬化性と流動性の制御が困難であり、これが工業化への大きな障害となっていた。   However, in the sealing material of the above-mentioned Patent Document 1 or the like, particularly in the case of a cured product system using a sealing material in which an inorganic filler is blended and kneaded, it is difficult to control appropriate curability and fluidity. It was a big obstacle to the.

また、上記特許文献2の樹脂系は、ポッティングによる樹脂封止を念頭において開発された材料であるが、工業的な生産性を考慮した場合、上記ポッティングよりも生産性およびコスト的に優れた製造方法であるトランスファー成形に使用可能な樹脂系の封止材料であることが望ましいといえる。したがって、トランスファー成形のような工業生産性に適した封止材料の開発が強く望まれている。   In addition, the resin system of Patent Document 2 is a material that was developed with the resin sealing by potting in mind. However, when industrial productivity is taken into consideration, the manufacturing is superior in productivity and cost than the potting. It can be said that a resin-based sealing material that can be used for transfer molding, which is a method, is desirable. Therefore, development of a sealing material suitable for industrial productivity such as transfer molding is strongly desired.

本発明は、このような事情に鑑みなされたもので、生産性に優れたトランスファー成形可能な流動性と硬化性の両立を維持しつつ、耐熱性に優れた半導体封止用熱硬化性樹脂組成物およびそれを用いた半導体装置の提供をその目的とする。   The present invention has been made in view of such circumstances, and the thermosetting resin composition for semiconductor encapsulation having excellent heat resistance while maintaining both the fluidity and curability capable of transfer molding excellent in productivity. It is an object to provide a product and a semiconductor device using the product.

上記目的を達成するため、本発明は、下記の(A)〜(D)成分を含有する半導体止用熱硬化性樹脂組成物であって、下記の条件(x)〜(z)を満たす半導体封止用熱硬化性樹脂組成物を第1の要旨とする。
(A)1分子中に2個以上のマレイミド基を有するマレイミド化合物。
(B)下記の式(1)で表される構造単位を含有するアリル化フェノール樹脂。

Figure 0006060541
(C)下記の式(2)で表される構造単位を含有する化合物。
Figure 0006060541
(D)無機質充填剤。
(x)上記(B)成分中に含まれるアリル基の合計モル量(b)と、上記(C)成分中に含まれる1−プロペニル基の合計モル量(c)の比(b:c)が、b:c=95:5〜50:50である。
(y)上記(D)成分の含有量が、熱硬化性樹脂組成物全体の55〜93重量%である。
(z)上記(B)成分中に含まれるアリル基および上記(C)成分中に含まれる1−プロペニル基の合計モル量(bc)と、上記(A)成分中に含まれるマレイミド基の合計モル量(a)の比(bc:a)が、bc:a=15:85〜75:25である。 In order to achieve the above object, the present invention is a thermosetting resin composition for semiconductor encapsulation containing the following components (A) to (D), which satisfies the following conditions (x) to (z): A thermosetting resin composition for semiconductor encapsulation is a first gist.
(A) A maleimide compound having two or more maleimide groups in one molecule.
(B) An allylated phenol resin containing a structural unit represented by the following formula (1).
Figure 0006060541
(C) A compound containing a structural unit represented by the following formula (2).
Figure 0006060541
(D) Inorganic filler.
(X) Ratio (b: c) of the total molar amount (b) of allyl groups contained in the component (B) and the total molar amount (c) of 1-propenyl groups contained in the component (C) However, it is b: c = 95: 5-50: 50.
(Y) Content of the said (D) component is 55 to 93 weight% of the whole thermosetting resin composition.
(Z) The total molar amount (bc) of the allyl group contained in the component (B) and the 1-propenyl group contained in the component (C), and the sum of the maleimide groups contained in the component (A) The molar amount (a) ratio (bc: a) is bc: a = 15: 85-75: 25.

そして、本発明は、上記半導体封止用熱硬化性樹脂組成物を用いて、半導体素子を樹脂封止してなる半導体装置を第2の要旨とする。   And this invention makes the 2nd summary the semiconductor device formed by resin-sealing a semiconductor element using the said thermosetting resin composition for semiconductor sealing.

本発明者は、トランスファー成形に適した流動性および硬化性を備えるとともに、マレイミド樹脂の有する高い耐熱性を生かした封止材料を得るために鋭意検討を重ねた。その結果、上記特定のアリル化フェノール樹脂〔(B)成分〕、および、上記特定の構造単位を有する化合物〔(C)成分〕を用いるとともに、上記(B)成分中に含まれるアリル基の合計モル量(b)と、上記(C)成分中に含まれる1−プロペニル基の合計モル量(c)の比(b:c)を、b:c=95:5〜50:50に〔条件(x)〕、上記(D)成分の含有量を、熱硬化性樹脂組成物全体の55〜93重量%に〔条件(y)〕、上記(B)成分中に含まれるアリル基および上記(C)成分中に含まれる1−プロペニル基の合計モル量(bc)と、上記(A)成分中に含まれるマレイミド基の合計モル量(a)の比(bc:a)を、bc:a=15:85〜75:25〔条件(z)〕にそれぞれ設定すると、封止材料としてトランスファー成形可能な流動性および硬化性を維持した状態で、優れた耐熱性を有する封止材料が得られることを見出し、本発明に到達した。   The present inventor has intensively studied to obtain a sealing material having fluidity and curability suitable for transfer molding and taking advantage of the high heat resistance of the maleimide resin. As a result, the specific allylated phenol resin [component (B)] and the compound having the specific structural unit [component (C)] were used, and the total of allyl groups contained in the component (B) The ratio (b: c) between the molar amount (b) and the total molar amount (c) of 1-propenyl groups contained in the component (C) is set to b: c = 95: 5 to 50:50 [conditions (X)], the content of the component (D) is 55 to 93% by weight of the entire thermosetting resin composition [condition (y)], the allyl group contained in the component (B) and the above ( C) The ratio (bc: a) of the total molar amount (bc) of 1-propenyl groups contained in the component to the total molar amount (a) of maleimide groups contained in the component (A) is expressed as bc: a = 15: 85 to 75:25 [Condition (z)], respectively, a transformer as a sealing material While maintaining § over moldable fluidity and curability, it found that sealing material having excellent heat resistance can be obtained, thereby achieving the present invention.

上記(B)成分および(C)成分の併用、ならびに上記各条件とすることによって上記目的が達成される要因はつぎの理由によるものと推測される。すなわち、マレイミド化合物〔(A)成分〕におけるマレイミド基はアリル基と2段階にて反応するため硬化速度は遅いものである。一方、このマレイミド基は1−プロペニル基と1段階にて反応するため硬化速度が速いものである。ただし、上記1−プロペニル基はラジカルによる付加重合も進行することがあり、エン反応から始まるアリル基の場合に比べ硬化速度が速くなるが、過剰に添加すると耐熱性を下げる要因となる。これらの事項を踏まえ、エポキシ樹脂に比べて耐熱性に優れるマレイミド化合物を、マレイミド基と、アリル基および1−プロペニル基を適正な割合にて反応・硬化させるとともに、上記(D)成分である無機質充填剤の含有量を適正な範囲とすることによって、優れた耐熱性とともに良好な流動性および硬化性を実現させることに至ったのである。   It is presumed that the reason why the object is achieved by the combined use of the component (B) and the component (C) and the above conditions is as follows. That is, since the maleimide group in the maleimide compound [component (A)] reacts with the allyl group in two stages, the curing rate is slow. On the other hand, the maleimide group reacts with the 1-propenyl group in one step, so that the curing rate is high. However, the 1-propenyl group may also undergo addition polymerization by radicals, and the curing rate is faster than in the case of an allyl group starting from an ene reaction. However, if it is added excessively, it causes a decrease in heat resistance. Based on these matters, the maleimide compound, which is superior in heat resistance as compared with the epoxy resin, is reacted and cured with an appropriate ratio of maleimide group, allyl group and 1-propenyl group, and the inorganic component (D) above By setting the content of the filler within an appropriate range, it has been possible to realize excellent fluidity and curability as well as excellent heat resistance.

このように、本発明は、マレイミド化合物〔(A)成分〕、特定のアリル化フェノール樹脂〔(B)成分〕、特定の構造単位を有する化合物〔(C)成分〕、および、無機質充填剤〔(D)成分〕を用いるとともに、上記(B)成分中に含まれるアリル基の合計モル量(b)と、上記(C)成分中に含まれる1−プロペニル基の合計モル量(c)の比(b:c)を特定範囲とし〔条件(x)〕、上記(D)成分の含有量を、熱硬化性樹脂組成物全体の特定範囲とし〔条件(y)〕、上記(B)成分中に含まれるアリル基および上記(C)成分中に含まれる1−プロペニル基の合計モル量(bc)と、上記(A)成分中に含まれるマレイミド基の合計モル量(a)の比(bc:a)を特定範囲とする〔条件(z)〕半導体封止用熱硬化性樹脂組成物である。このため、封止材料としてトランスファー成形可能な良好な流動性および硬化性を備えるとともに、優れた耐熱性を有するようになる。したがって、上記半導体封止用熱硬化性樹脂組成物を用いて得られる半導体装置では、高い生産効率にて耐熱信頼性等の特性を備えたものを得ることができる。   Thus, the present invention provides a maleimide compound [component (A)], a specific allylated phenol resin [component (B)], a compound having a specific structural unit [component (C)], and an inorganic filler [ (D) component] and the total molar amount (b) of allyl groups contained in the component (B) and the total molar amount (c) of 1-propenyl groups contained in the component (C). The ratio (b: c) is a specific range [condition (x)], and the content of the component (D) is a specific range of the entire thermosetting resin composition [condition (y)], and the component (B) Ratio of the total molar amount (bc) of the allyl group contained therein and the 1-propenyl group contained in the component (C) to the total molar amount (a) of the maleimide group contained in the component (A) ( bc: Thermosetting resin set for semiconductor encapsulation with a) in a specific range [Condition (z)] Thing is. For this reason, it has the favorable fluidity | liquidity and sclerosis | hardenability which can be transfer-molded as a sealing material, and has the outstanding heat resistance. Therefore, in the semiconductor device obtained using the thermosetting resin composition for semiconductor encapsulation, a semiconductor device having characteristics such as heat resistance reliability can be obtained with high production efficiency.

そして、上記特定のアリル化フェノール樹脂〔(B)成分〕の数平均分子量が、250〜1000であると、封止工程の際の成形・硬化温度にて蒸発することなく良好な反応性が維持され、かつ耐熱性が良好な熱硬化性樹脂組成物が得られる。   And when the number average molecular weight of the said specific allylated phenol resin [(B) component] is 250-1000, favorable reactivity is maintained, without evaporating at the shaping | molding and hardening temperature in the sealing process. And a thermosetting resin composition having good heat resistance is obtained.

つぎに、本発明を実施するための形態について説明する。   Next, an embodiment for carrying out the present invention will be described.

本発明の半導体封止用熱硬化性樹脂組成物(以下、「熱硬化性樹脂組成物」と略すことがある)は、マレイミド化合物(A成分)と、特定のアリル化フェノール樹脂(B成分)と、特定の化合物(C)成分と、無機質充填剤(D成分)とを用いて得られるものであって、通常、粉末状もしくはこれを打錠したタブレット状になっている。   The thermosetting resin composition for semiconductor encapsulation of the present invention (hereinafter sometimes abbreviated as “thermosetting resin composition”) includes a maleimide compound (A component) and a specific allylated phenol resin (B component). And a specific compound (C) component and an inorganic filler (D component), which are usually in the form of a powder or tablet obtained by tableting this.

〈A:マレイミド化合物〉
上記マレイミド化合物(A成分)は、1分子中に2個以上のマレイミド基を有する化合物であり、例えば、下記の一般式(3)で表されるマレイミド化合物、下記の一般式(4)で表されるマレイミド化合物、下記の構造式(5)で表されるマレイミド化合物等があげられる。これらは単独でもしくは2種以上併せて用いることができる。
<A: Maleimide compound>
The maleimide compound (component A) is a compound having two or more maleimide groups in one molecule. For example, the maleimide compound represented by the following general formula (3) and the following general formula (4) And maleimide compounds represented by the following structural formula (5). These may be used alone or in combination of two or more.

Figure 0006060541
Figure 0006060541

Figure 0006060541
Figure 0006060541

Figure 0006060541
Figure 0006060541

〈B:特定のアリル化フェノール樹脂〉
上記マレイミド化合物(A成分)とともに用いられる特定のアリル化フェノール樹脂(B成分)は、上記マレイミド化合物(A成分)を硬化させる作用を有する硬化剤であり、下記の式(1)で表される構造単位を含有するフェノール樹脂である。
<B: Specific allylated phenol resin>
The specific allylated phenol resin (B component) used together with the maleimide compound (component A) is a curing agent having a function of curing the maleimide compound (component A), and is represented by the following formula (1). It is a phenol resin containing a structural unit.

Figure 0006060541
Figure 0006060541

そして、上記アリル化フェノール樹脂(B成分)における上記式(1)で表される構造単位の占める割合は、熱硬化性樹脂組成物の耐熱性という観点から、アリル化率が60%以上であることが好ましい。これは、上記式(1)で表される構造単位〔構造単位(1)〕とフェノール構造単位の合計量に対する構造単位(1)のモル比率[構造単位(1)/〔構造単位(1)+フェノール構造単位〕×100]が好ましくは60%以上であるということである。すなわち、この上記構造単位(1)とフェノール構造単位の合計量に対する構造単位(1)のモル比率[構造単位(1)/〔構造単位(1)+フェノール構造単位〕×100]をアリル化率といい、好ましくはこれが60%以上であるということである。上記アリル化率が上記範囲を下回り小さすぎると、得られる硬化物のガラス転移温度が低くなり耐熱性に劣る傾向がみられる。   And the ratio for which the structural unit represented by the said Formula (1) in the said allylated phenol resin (B component) occupies is 60% or more from a viewpoint of the heat resistance of a thermosetting resin composition. It is preferable. This is the molar ratio of the structural unit (1) to the total amount of the structural unit represented by the above formula (1) [structural unit (1)] and the phenol structural unit [structural unit (1) / [structural unit (1)]. + Phenol structural unit] × 100] is preferably 60% or more. That is, the molar ratio of the structural unit (1) to the total amount of the structural unit (1) and the phenol structural unit [structural unit (1) / [structural unit (1) + phenol structural unit] × 100] is allylation ratio. Preferably, this is 60% or more. If the allylation rate is below the above range and is too small, the glass transition temperature of the resulting cured product tends to be low and the heat resistance tends to be poor.

上記アリル化フェノール樹脂(B成分)は、例えば、つぎのようにして合成することができる。すなわち、フェノールノボラック樹脂、ハロゲン化アリル、塩基性化合物および溶媒を混合して加熱撹拌することにより、アリルエーテル化したフェノール樹脂が得られる。つぎに、得られたアリルエーテル化したフェノール樹脂を180〜200℃にて加熱して、上記アリルエーテル化したフェノール樹脂の一部または全部のアリル基がクライゼン転位することにより目的の上記式(1)で表される構造単位を含有するアリル化フェノール樹脂(B成分)を合成することができる。   The allylated phenol resin (component B) can be synthesized, for example, as follows. That is, an allyl etherified phenol resin can be obtained by mixing a phenol novolac resin, an allyl halide, a basic compound and a solvent and stirring with heating. Next, the obtained allyl etherified phenol resin is heated at 180 to 200 ° C., and a part or all of the allyl group of the allyl etherified phenol resin undergoes Claisen rearrangement, thereby achieving the target formula (1). The allylated phenol resin (component B) containing the structural unit represented by

また、オルソアリルフェノールとホルマリンとを混合し、これに酸触媒を添加して加熱撹拌することによっても同様に、アリル化フェノール樹脂(B成分)を合成することができる。   Alternatively, an allylated phenol resin (component B) can be synthesized in the same manner by mixing orthoallylphenol and formalin, adding an acid catalyst thereto and stirring with heating.

上記アリル化フェノール樹脂(B)成分としては、数平均分子量が200〜2000であることが好ましく、より好ましくは250〜1000である。すなわち、数平均分子量が小さ過ぎると、樹脂封止の工程の際に成形・硬化温度にて蒸発しやすくなる傾向がみられる。また、数平均分子量が大き過ぎると、耐熱性が低下する傾向がみられる。   As said allylated phenol resin (B) component, it is preferable that a number average molecular weight is 200-2000, More preferably, it is 250-1000. That is, if the number average molecular weight is too small, it tends to evaporate easily at the molding / curing temperature during the resin sealing step. Moreover, when the number average molecular weight is too large, the heat resistance tends to decrease.

なお、アリル化フェノール樹脂の数平均分子量は、例えば、つぎのようにして測定,算出される。すなわち、アリル化フェノール樹脂を0.1重量%テトラヒドロフラン(THF)溶液に調整し、25℃で1日放置する。その後、0.45μmメンブランフィルターにて濾過し、得られた濾液について分子量測定を行なう。この分子量測定には、例えば、GPC(東ソー社製、HLC−8120GPC、カラム:東ソー社製GMHXL、GMHXL、G3000HXL)が用いられる。また、この場合の測定条件は、カラム温度40℃、溶離液テトラヒドロフラン、流速0.8mL/分、注入量100μLである。そして、検出器は、示差屈折計を用い、ポリスチレン換算により数平均分子量を算出する。 The number average molecular weight of the allylated phenol resin is measured and calculated as follows, for example. That is, the allylated phenol resin is adjusted to a 0.1 wt% tetrahydrofuran (THF) solution and left at 25 ° C. for 1 day. Then, it filters with a 0.45 micrometer membrane filter, and molecular weight measurement is performed about the obtained filtrate. For this molecular weight measurement, for example, GPC (manufactured by Tosoh Corporation, HLC-8120GPC, column: Tosoh Corporation GMH XL , GMH XL , G3000H XL ) is used. The measurement conditions in this case are a column temperature of 40 ° C., an eluent tetrahydrofuran, a flow rate of 0.8 mL / min, and an injection volume of 100 μL. And a detector calculates a number average molecular weight by polystyrene conversion using a differential refractometer.

〈C:特定の化合物〉
上記A成分およびB成分とともに用いられる特定の化合物(C成分)は、下記の式(2)で表される構造単位を含有する化合物である。
<C: Specific compound>
The specific compound (C component) used together with the A component and the B component is a compound containing a structural unit represented by the following formula (2).

Figure 0006060541
Figure 0006060541

そして、上記特定の化合物(C成分)における上記式(2)で表される構造単位の占める割合は、熱硬化性樹脂組成物の耐熱性という観点から、プロペニル化率が50%以上であることが好ましい。これは、上記式(2)で表される構造単位〔構造単位(2)〕とフェノール構造単位の合計量に対する構造単位(2)のモル比率[構造単位(2)/〔構造単位(2)+フェノール構造単位〕×100]が好ましくは50%以上であるといい、この構造単位(2)とフェノール構造単位の合計量に対する構造単位(2)のモル比率[構造単位(2)/〔構造単位(2)+フェノール構造単位〕×100]をプロペニル化率という。   And the ratio for which the structural unit represented by the said Formula (2) in the said specific compound (C component) occupies has a propenylation rate of 50% or more from a viewpoint of the heat resistance of a thermosetting resin composition. Is preferred. This is the molar ratio of the structural unit (2) to the total amount of the structural unit represented by the above formula (2) [structural unit (2)] and the phenol structural unit [structural unit (2) / [structural unit (2)]. + Phenol structural unit] × 100] is preferably 50% or more, and the molar ratio of the structural unit (2) to the total amount of the structural unit (2) and the phenol structural unit [structural unit (2) / [structure Unit (2) + phenol structural unit] × 100] is referred to as propenylation rate.

上記式(2)で表される構造単位を含有する化合物(C成分)としては、例えば、上記アリル化フェノール樹脂(B成分)におけるアリル基を異性化させて、フェノール性水酸基のオルト位やパラ位に、1−プロペニル基を結合させたもの〔式(2)においてXが−Hである〕があげられる。このように、上記式(2)で表される構造単位を含有する化合物(C成分)は、例えば、上記アリル化フェノール樹脂(B成分)を準備し、このアリル化フェノール樹脂(B成分)におけるアリル基を異性化させることにより、フェノール性水酸基のオルト位やパラ位に、1−プロペニル基が結合した化合物が得られる。そして、上記式(2)で表される構造単位を含有する化合物(C成分)としては、コストの観点から、上記アリル化フェノール樹脂(B成分)を塩基性条件下で加熱撹拌してアリル基を異性化させることにより得られるもの〔式(2)においてXが−Hである〕が用いられるAs the compound (C component) containing the structural unit represented by the above formula (2), for example, the allyl group in the allylated phenol resin (B component) is isomerized to give the ortho position or para of the phenolic hydroxyl group. And a 1-propenyl group bonded to the position [in the formula (2), X is —H ] . Thus, the compound (C component) containing the structural unit represented by the above formula (2) prepares, for example, the allylated phenol resin (B component), and in this allylated phenol resin (B component). By isomerizing the allyl group, a compound in which a 1-propenyl group is bonded to the ortho position or para position of the phenolic hydroxyl group is obtained . Its to the above formula (2) containing a structural unit represented by the compound as component (C), from the viewpoint of cost, with the allylated phenol resin (B component) was heated and stirred under basic conditions What is obtained by isomerizing an allyl group [in the formula (2), X is —H] is used .

また、上述のように、上記B成分およびC成分をそれぞれ個別に準備し配合するという態様以外に、B成分の特徴的構成である前記式(1)で表される構造単位、および、C成分の特徴的構成である前記式(2)で表される構造単位の双方を備えた化合物を用いてもよい。このような化合物は、例えば、上記アリル化フェノール樹脂(B成分)を準備し、このアリル化フェノール樹脂(B成分)におけるアリル基を異性化させて、フェノール性水酸基のオルト位やパラ位に、1−プロペニル基を結合させる際の反応効率を調整することにより得ることができる。   In addition to the aspect in which the B component and the C component are separately prepared and blended as described above, the structural unit represented by the formula (1), which is a characteristic configuration of the B component, and the C component A compound having both of the structural units represented by the formula (2), which is a characteristic configuration of Such a compound is prepared, for example, by preparing the allylated phenol resin (component B), isomerizing the allyl group in the allylated phenol resin (component B), and at the ortho position or para position of the phenolic hydroxyl group. It can be obtained by adjusting the reaction efficiency when the 1-propenyl group is bonded.

そして、上記A成分,B成分およびC成分の配合割合は、下記の条件(x),(z)を満たすように設定する必要がある。   The blending ratio of the A component, B component, and C component needs to be set so as to satisfy the following conditions (x) and (z).

〈条件(x)〉
上記B成分中に含まれるアリル基の合計モル量(b)と、上記C成分中に含まれる1−プロペニル基の合計モル量(c)の比(b:c)を、b:c=95:5〜50:50とする必要がある。特に好ましくはb:c=92:8〜60:40である。すなわち、上記両者の比が上記範囲を外れると、硬化性に劣り成形性が低下するからである。より詳しくは、上記範囲を外れアリル基の合計モル量(b)の比が大きすぎると、硬化性が低下することとなり、アリル基の合計モル量(b)の比が小さすぎると、混練性が低下するからである。
<Condition (x)>
The ratio (b: c) of the total molar amount (b) of the allyl group contained in the B component and the total molar amount (c) of the 1-propenyl group contained in the C component is expressed as b: c = 95. : 5 to 50:50 is required. Particularly preferably, b: c = 92: 8 to 60:40. That is, if the ratio between the two is out of the above range, the curability is poor and the moldability is lowered. More specifically, if the ratio of the total molar amount (b) of the allyl group is too large outside the above range, the curability is lowered, and if the ratio of the total molar amount (b) of the allyl group is too small, the kneadability is reduced. This is because of a decrease.

〈条件(z)〉
上記B成分中に含まれるアリル基および上記C成分中に含まれる1−プロペニル基の合計モル量(bc)と、上記(A)成分中に含まれるマレイミド基の合計モル量(a)の比(bc:a)を、bc:a=15:85〜75:25とする必要がある。特に好ましくはbc:a=25:75〜55:45である。すなわち、上記両者の比が上記範囲を外れると、硬化性に劣り成形性が低下するからである。より詳しくは、上記範囲を外れマレイミド基の合計モル量(a)が小さすぎると、硬化性が低下し、またマレイミド基の合計モル量(a)が大きすぎても、硬化性が低下するからである。
<Condition (z)>
Ratio of the total molar amount (bc) of the allyl group contained in the B component and the 1-propenyl group contained in the C component and the total molar amount (a) of the maleimide group contained in the (A) component. It is necessary to set (bc: a) to bc: a = 15: 85 to 75:25. Most preferably, it is bc: a = 25: 75-55: 45. That is, if the ratio between the two is out of the above range, the curability is poor and the moldability is lowered. More specifically, if the total molar amount (a) of the maleimide group is too small outside the above range, the curability is lowered, and if the total molar amount (a) of the maleimide group is too large, the curability is lowered. It is.

〈D:無機質充填剤〉
上記A〜C成分とともに用いられる無機質充填剤(D成分)としては、例えば、石英ガラス、タルク、シリカ粉末(溶融シリカ粉末や結晶性シリカ粉末等)、アルミナ粉末、窒化アルミニウム粉末、窒化珪素粉末等の各種粉末があげられる。これら無機質充填剤は、破砕状、球状、あるいは摩砕処理したもの等いずれのものでも使用可能である。そして、これら無機質充填剤は単独でもしくは2種以上併せて用いられる。なかでも、得られる熱硬化性樹脂組成物の硬化体の熱線膨張係数が低減することにより内部応力を低減することができ、その結果、封止後の基板の反りを抑制することができるという点から、上記シリカ粉末を用いることが好ましく、上記シリカ粉末の中でも溶融シリカ粉末を用いることが、高充填性、高流動性という点から特に好ましい。上記溶融シリカ粉末としては、球状溶融シリカ粉末、破砕溶融シリカ粉末があげられるが、流動性という観点から、球状溶融シリカ粉末を用いることが好ましい。
<D: Inorganic filler>
Examples of the inorganic filler (D component) used together with the components A to C include quartz glass, talc, silica powder (such as fused silica powder and crystalline silica powder), alumina powder, aluminum nitride powder, and silicon nitride powder. Various powders. These inorganic fillers can be used in any form such as crushed, spherical, or ground. And these inorganic fillers are used individually or in combination of 2 or more types. Among them, the internal stress can be reduced by reducing the thermal linear expansion coefficient of the cured body of the obtained thermosetting resin composition, and as a result, warping of the substrate after sealing can be suppressed. Therefore, it is preferable to use the above silica powder, and it is particularly preferable to use a fused silica powder among the above silica powders in terms of high filling property and high fluidity. Examples of the fused silica powder include spherical fused silica powder and crushed fused silica powder. From the viewpoint of fluidity, spherical fused silica powder is preferably used.

また、無機質充填剤(D成分)の平均粒子径は、1〜50μmの範囲であることが好ましく、特に好ましくは2〜40μmの範囲のものである。なお、上記無機質充填剤(D成分)の平均粒子径は、例えば、母集団から任意の測定試料を取り出し、市販のレーザー回折散乱式粒度分布測定装置を用いて測定することができる。   The average particle size of the inorganic filler (D component) is preferably in the range of 1 to 50 μm, particularly preferably in the range of 2 to 40 μm. In addition, the average particle diameter of the said inorganic filler (D component) can take out arbitrary measurement samples from a population, for example, and can measure it using a commercially available laser diffraction scattering type particle size distribution measuring apparatus.

そして、上記無機質充填剤(D成分)の含有量は、熱硬化性樹脂組成物全体の55〜93重量%の範囲に設定される〔条件(y)〕。特に好ましくは65〜90重量%である。すなわち、無機質充填剤(D成分)の含有量が少なすぎると、耐熱性が低下する傾向がみられる。一方、無機質充填剤(D成分)の含有量が多すぎると、流動性が低下して成形性に劣る傾向がみられるからである。   And content of the said inorganic filler (D component) is set to the range of 55 to 93 weight% of the whole thermosetting resin composition [condition (y)]. Particularly preferred is 65 to 90% by weight. That is, when there is too little content of an inorganic filler (D component), the heat resistance tends to be lowered. On the other hand, when there is too much content of an inorganic filler (D component), fluidity | liquidity falls and the tendency to be inferior to a moldability is seen.

〈各種添加剤〉
また、本発明の熱硬化性樹脂組成物には、上記A〜D成分以外に、必要に応じて、上記熱硬化性樹脂組成物の機能を損なわない範囲で各種添加剤を配合することができる。例えば、離型剤、カップリング剤、ハイドロタルサイト類化合物等のイオン捕捉剤、難燃剤、酸化防止剤、低応力化剤、流動性付与剤、着色剤、顔料等があげられる。
<Various additives>
Moreover, in the thermosetting resin composition of this invention, various additives can be mix | blended in the range which does not impair the function of the said thermosetting resin composition as needed other than said AD component. . For example, a release agent, a coupling agent, an ion scavenger such as a hydrotalcite compound, a flame retardant, an antioxidant, a low stress agent, a fluidity imparting agent, a colorant, a pigment, and the like can be given.

上記離型剤としては、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸カルシウム等の化合物があげられ、例えば、カルナバワックスや酸化ポリエチレン系ワックス等が用いられ、これらは単独でもしくは2種以上併せて用いられる。   Examples of the mold release agent include compounds such as higher fatty acids, higher fatty acid esters, higher fatty acid calcium, and the like. For example, carnauba wax and polyethylene oxide wax are used, and these are used alone or in combination of two or more. .

上記カップリング剤としては、3−グリシドキシプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン等の各種カップリング剤を適宜用いることができる。   As the coupling agent, various coupling agents such as 3-glycidoxypropyltrimethoxysilane and 3-mercaptopropyltrimethoxysilane can be appropriately used.

上記難燃剤としては、有機リン系化合物、酸化アンチモン、水酸化アルミニウムや水酸化マグネシウム等の金属水酸化物等があげられる。これらは単独でもしくは2種以上併せて用いられる。   Examples of the flame retardant include organic phosphorus compounds, antimony oxide, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, and the like. These may be used alone or in combination of two or more.

上記顔料には、静電除去効果を有するカーボンブラック等を用いることができる。   As the pigment, carbon black having an electrostatic removal effect can be used.

〈熱硬化性樹脂組成物〉
本発明の熱硬化性樹脂組成物は、例えば、つぎのようにして製造することができる。すなわち、上記A〜D成分、さらに必要に応じて他の添加剤を常法に準じて適宜配合し、混練機にかけ加熱状態で溶融混練する。ついで、これを室温下にて冷却固化させた後、公知の手段によって粉砕し、必要に応じてタブレット等に打錠するという一連の工程を経由することにより目的とする熱硬化性樹脂組成物を製造することができる。
<Thermosetting resin composition>
The thermosetting resin composition of the present invention can be produced, for example, as follows. That is, the above-mentioned components A to D and further other additives as necessary are appropriately blended according to a conventional method, and are melt-kneaded in a heated state in a kneader. Next, after cooling and solidifying this at room temperature, the desired thermosetting resin composition is obtained by going through a series of steps such as pulverization by known means and tableting into tablets or the like as necessary. Can be manufactured.

〈半導体装置〉
このようにして得られる熱硬化性樹脂組成物を用いての半導体素子の封止方法は、例えば、通常のトランスファー成形等の公知のモールド方法により行うことができ、半導体装置化することができる。また、上記打錠工程を経由せず、粉砕して顆粒状態のパウダーにしたものを、圧縮成形のモールド方法に適用することも可能である。このようにして得られる半導体装置としては、ICやLSI等の半導体装置等があげられる。そして、本発明の熱硬化性樹脂組成物を用いての半導体素子の樹脂封止の際には、つぎのような成形条件に設定することが好ましい。まず、1段階目の反応工程として160〜200℃の加熱にて加熱硬化反応を生起させ、2段階目の反応工程として最終的に上記一段階目の加熱温度条件よりも高い設定となるよう160〜280℃の加熱にて加熱硬化させる。このようにして、本発明の熱硬化性樹脂組成物を用いて半導体素子を樹脂封止することにより半導体装置を製造することができる。
<Semiconductor device>
The semiconductor element sealing method using the thermosetting resin composition thus obtained can be performed by a known molding method such as normal transfer molding, for example, and a semiconductor device can be obtained. Moreover, it is also possible to apply what was pulverized and granulated powder without going through the tableting step to a compression molding method. Examples of the semiconductor device thus obtained include semiconductor devices such as IC and LSI. And when resin-sealing a semiconductor element using the thermosetting resin composition of the present invention, it is preferable to set the following molding conditions. First, a heat curing reaction is caused by heating at 160 to 200 ° C. as the first-stage reaction process, and the second-stage reaction process is finally set to be higher than the first-stage heating temperature condition 160. It is cured by heating at ~ 280 ° C. Thus, a semiconductor device can be manufactured by resin-sealing a semiconductor element using the thermosetting resin composition of the present invention.

本発明の熱硬化性樹脂組成物の硬化物を作製する場合、上記トランスファー成形の他に、シート成形、コンプレッション成形、スクリーン印刷、ディスベンション成形等の成形方法があげられる。   When producing the cured product of the thermosetting resin composition of the present invention, in addition to the transfer molding, there are molding methods such as sheet molding, compression molding, screen printing, and displacement molding.

本発明の熱硬化性樹脂組成物を用いて硬化反応により得られる硬化物は、耐熱性に特に優れることから、各種電子部品、例えば、半導体封止材料以外に、プリント配線板用積層板およびプリント配線板、半導体搭載モジュール等の電子材料等にも好適に用いられる。   Since the cured product obtained by the curing reaction using the thermosetting resin composition of the present invention is particularly excellent in heat resistance, in addition to various electronic components, for example, semiconductor encapsulating materials, laminated boards for printed wiring boards and printed boards It is also suitably used for electronic materials such as wiring boards and semiconductor-mounted modules.

つぎに、実施例について比較例と併せて説明する。ただし、本発明は、これら実施例に限定されるものではない。なお、例中、「部」、「%」とあるのは、断りのない限り重量基準を意味する。   Next, examples will be described together with comparative examples. However, the present invention is not limited to these examples. In the examples, “parts” and “%” mean weight basis unless otherwise specified.

まず、熱硬化性樹脂組成物の作製に先立って各種成分を準備した。   First, various components were prepared prior to preparation of the thermosetting resin composition.

〔マレイミド化合物a1(A成分)〕
2,2−ビス〔4−(4−マレイミドフェノキシ)フェニル〕プロパン(大和化成工業社製、BMI−4000)
[Maleimide compound a1 (component A)]
2,2-bis [4- (4-maleimidophenoxy) phenyl] propane (manufactured by Daiwa Kasei Kogyo, BMI-4000)

〔マレイミド化合物a2(A成分)〕
ビス(4−マレイミドフェニル)メタン(大和化成工業社製、BMI−1100)
[Maleimide compound a2 (component A)]
Bis (4-maleimidophenyl) methane (manufactured by Daiwa Kasei Kogyo Co., Ltd., BMI-1100)

〔マレイミド化合物a3(A成分)〕
下記に示す構造式(a3)で表されるマレイミド化合物(大和化成工業社製、BMI−2300)

Figure 0006060541
[Maleimide compound a3 (component A)]
Maleimide compound represented by structural formula (a3) shown below (manufactured by Daiwa Kasei Kogyo Co., Ltd., BMI-2300)
Figure 0006060541

〔アリル化合物b1(B成分)〕
フェノール(和光純薬工業社製)130部、37%ホルマリン(東京化成工業社製)92部、蒸留水13部、シュウ酸二水和物(関東化学社製)2部を混合し、90分還流加熱した。これに、水300部を加えて撹拌し、冷却した後に水層を分離した。ついで、150℃にて水を減圧留去し、放冷してフェノール樹脂b1を得た。得られたフェノール樹脂b1の数平均分子量についてGPCを用い前述の方法により求めたところ、318(g/mol)であった。
[Allyl compound b1 (component B)]
Mix 130 parts of phenol (manufactured by Wako Pure Chemical Industries), 92 parts of 37% formalin (manufactured by Tokyo Chemical Industry Co., Ltd.), 13 parts of distilled water and 2 parts of oxalic acid dihydrate (manufactured by Kanto Chemical Co., Ltd.) for 90 minutes. Heated to reflux. To this, 300 parts of water was added and stirred, and after cooling, the aqueous layer was separated. Subsequently, water was distilled off under reduced pressure at 150 ° C. and allowed to cool to obtain a phenol resin b1. It was 318 (g / mol) when it calculated | required by the above-mentioned method about the number average molecular weight of the obtained phenol resin b1 using GPC.

上記のようにして得られたフェノール樹脂b1を318部とし、これに臭化アリル(東京化成工業社製)400部、炭酸カリウム(和光純薬工業社製)460部、アセトン(和光純薬工業社製)500部を混合し、窒素ガス気流下、24時間加熱還流した。放冷後、濾過、濃縮して残渣に酢酸エチル(和光純薬工業社製)400部を加え、5%塩酸(和光純薬工業社製を蒸留水で希釈したもの)200部で1回、各200部の蒸留水で2回洗浄した。その後、有機層を分離し、硫酸マグネシウム(和光純薬工業社製)で乾燥させた後、濾過、濃縮してアリルエーテル化フェノール樹脂b1を得た。   The phenolic resin b1 obtained as described above was made 318 parts, and 400 parts of allyl bromide (manufactured by Tokyo Chemical Industry Co., Ltd.), 460 parts of potassium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.), acetone (Wako Pure Chemical Industries, Ltd.) 500 parts) was mixed and heated under reflux for 24 hours under a nitrogen gas stream. After standing to cool, it was filtered and concentrated, and 400 parts of ethyl acetate (manufactured by Wako Pure Chemical Industries) was added to the residue, and once with 200 parts of 5% hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd. diluted with distilled water), Washed twice with 200 parts each of distilled water. Thereafter, the organic layer was separated, dried over magnesium sulfate (manufactured by Wako Pure Chemical Industries, Ltd.), filtered and concentrated to obtain an allyl etherified phenol resin b1.

上記のようにして得られたアリルエーテル化フェノール樹脂b1を窒素ガス気流下、200℃で24時間加熱撹拌することにより、目的とするアリル化合物b1〔前記式(1)で表される構造単位を有するアリル化フェノール樹脂〕を得た。得られたアリル化合物b1の数平均分子量についてGPCを用い前述の方法により求めたところ、440(g/mol)であった。   The allyl etherified phenol resin b1 obtained as described above is heated and stirred at 200 ° C. for 24 hours under a nitrogen gas stream, whereby the target allyl compound b1 [the structural unit represented by the above formula (1) is represented. Having an allylated phenol resin]. It was 440 (g / mol) when it calculated | required by the above-mentioned method about the number average molecular weight of the obtained allyl compound b1 using GPC.

〔アリル化合物b2(B成分)〕
o,o′−ジアリルビスフェノールA(大和化成工業社製、DABPA、数平均分子量308g/mol)
[Allyl compound b2 (component B)]
o, o′-diallylbisphenol A (Daiwa Chemical Industries, DABPA, number average molecular weight 308 g / mol)

〔アリル化合物b3(B成分)〕
上記アリル化合物b1の合成方法において、37%ホルマリンの混合量を115部に変えた。このようにしてフェノール樹脂b3を得た。得られたフェノール樹脂b3の数平均分子量についてGPCを用い前述の方法により求めたところ、836(g/mol)であった。
[Allyl compound b3 (component B)]
In the synthesis method of allyl compound b1, the mixed amount of 37% formalin was changed to 115 parts. Thus, phenol resin b3 was obtained. It was 836 (g / mol) when the number average molecular weight of obtained phenol resin b3 was calculated | required by the above-mentioned method using GPC.

上記のようにして得られたフェノール樹脂b3を90部とし、これに臭化アリル(東京化成工業社製)115部、炭酸カリウム(和光純薬工業社製)130部、アセトン(和光純薬工業社製)150部を混合し、窒素ガス気流下、24時間加熱還流した。放冷後、濾過、濃縮して残渣に酢酸エチル(和光純薬工業社製)120部を加え、5%塩酸(和光純薬工業社製を蒸留水で希釈したもの)60部で1回、各60部の蒸留水で2回洗浄した。その後、有機層を分離し、硫酸マグネシウム(和光純薬工業社製)で乾燥させた後、濾過、濃縮してアリルエーテル化フェノール樹脂b3を得た。   The phenol resin b3 obtained as described above is 90 parts, and 115 parts of allyl bromide (manufactured by Tokyo Chemical Industry Co., Ltd.), 130 parts of potassium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.), acetone (Wako Pure Chemical Industries, Ltd.) 150 parts) were mixed and heated under reflux for 24 hours under a nitrogen gas stream. After standing to cool, it was filtered and concentrated, and 120 parts of ethyl acetate (manufactured by Wako Pure Chemical Industries) was added to the residue, and once with 60 parts of 5% hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd. diluted with distilled water) Washed twice with 60 parts each of distilled water. Thereafter, the organic layer was separated, dried over magnesium sulfate (manufactured by Wako Pure Chemical Industries, Ltd.), filtered and concentrated to obtain an allyl etherified phenol resin b3.

上記のようにして得られたアリルエーテル化フェノール樹脂b3を窒素ガス気流下、200℃で24時間加熱撹拌することにより、目的とするアリル化合物b3〔前記式(1)で表される構造単位を有するアリル化フェノール樹脂〕を得た。得られたアリル化合物b3の数平均分子量についてGPCを用い前述の方法により求めたところ、1100(g/mol)であった。   The allyl etherified phenol resin b3 obtained as described above is heated and stirred at 200 ° C. for 24 hours under a nitrogen gas stream, whereby the target allyl compound b3 [the structural unit represented by the above formula (1) is obtained. Having an allylated phenol resin]. It was 1100 (g / mol) when the number average molecular weight of obtained allyl compound b3 was calculated | required by the above-mentioned method using GPC.

〔1−プロペニル基を有する化合物(C成分)〕
上記で得られたアリル化合物b1を110部、水酸化カリウム(和光純薬工業社製)100部、メタノール(和光純薬工業社製)150部、n−ブタノール(和光純薬工業社製)を混合した後、加熱することによってメタノールを除去し、120℃で6時間還流させた。放冷後、メチルイソブチルケトン(和光純薬工業社製)500部を加え、各250部の10%塩酸(和光純薬工業社製を蒸留水で希釈したもの)で3回、各200部の蒸留水で3回洗浄した。その後、有機層を分離し、硫酸マグネシウム(和光純薬工業社製)で乾燥させた後、濾過、濃縮することにより1−プロペニル基を有する化合物〔前記式(2)で表される構造単位(X=−H)を有する化合物〕を得た。
[Compound having 1-propenyl group (component C)]
110 parts of the allyl compound b1 obtained above, 100 parts of potassium hydroxide (manufactured by Wako Pure Chemical Industries), 150 parts of methanol (manufactured by Wako Pure Chemical Industries), n-butanol (manufactured by Wako Pure Chemical Industries) After mixing, methanol was removed by heating and refluxed at 120 ° C. for 6 hours. After standing to cool, 500 parts of methyl isobutyl ketone (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and each 250 parts of 10% hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd. diluted with distilled water) 3 times, 200 parts of each Washed 3 times with distilled water. Thereafter, the organic layer is separated, dried over magnesium sulfate (manufactured by Wako Pure Chemical Industries, Ltd.), filtered and concentrated to obtain a compound having a 1-propenyl group [the structural unit represented by the above formula (2) ( Compound having X = -H) was obtained.

〔無機質充填剤(D成分)〕
溶融球状シリカ粉末(平均粒子径20μm)
[Inorganic filler (D component)]
Fused spherical silica powder (average particle size 20μm)

〔離型剤1〕
カルナバワックス
[Release agent 1]
Carnauba wax

〔離型剤2〕
酸化ポリエチレンワックス(クラリアント社製、PED521)
[Release agent 2]
Oxidized polyethylene wax (manufactured by Clariant, PED521)

〔カップリング剤〕
3−グリシドキシプロピルトリメトキシシラン(信越化学工業社製、KBM−403)
[Coupling agent]
3-Glycidoxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., KBM-403)

〔イオン捕捉剤〕
ハイドロタルサイト類化合物(協和化学工業社製、DHT−4A)
(Ion scavenger)
Hydrotalcite compound (Kyowa Chemical Industry Co., Ltd., DHT-4A)

〔A〜C成分の各官能基のモル数〕
A〜C成分の各官能基(マレイミド基、アリル基、1−プロペニル基)の各モル数を、下記の式により算出した。
各官能基のモル数=使用した各成分の添加量/各官能基当量
[Number of moles of each functional group of components A to C]
The number of moles of each functional group (maleimide group, allyl group, 1-propenyl group) of the A to C components was calculated by the following formula.
Number of moles of each functional group = added amount of each component used / each functional group equivalent

なお、上記各官能基(マレイミド基、アリル基、1−プロペニル基)当量は、下記のようにして定めた。その結果(各官能基当量)を後記の表1にまとめて示す。   In addition, each said functional group (maleimide group, allyl group, 1-propenyl group) equivalent was defined as follows. The results (each functional group equivalent) are shown in Table 1 below.

〔マレイミド基当量〕
マレイミド化合物a1,a2の各マレイミド基当量は、各々の分子量を2で除した値である(すなわち、マレイミド化合物a1,a2は各々マレイミド基を2個有する構造であるため)。また、マレイミド化合物a3のマレイミド基当量は、大和化成工業社製の商品カタログの値を採用した(繰り返し単位を有する構造のため)。
[Maleimide group equivalent]
Each maleimide group equivalent of maleimide compounds a1 and a2 is a value obtained by dividing each molecular weight by 2 (that is, maleimide compounds a1 and a2 each have a structure having two maleimide groups). Moreover, the value of the product catalog made by Daiwa Kasei Kogyo Co., Ltd. was adopted for the maleimide group equivalent of the maleimide compound a3 (because of the structure having a repeating unit).

〔不飽和基(アリル基、1−プロペニル基)当量〕
アリル化合物b2のアリル基当量は、分子量を2で除した値である(すなわち、アリル化合物b2はアリル基を2個有する構造であるため)。また、アリル化合物b1,b3の各アリル基当量、および、1−プロペニル基を有する化合物の1−プロペニル基当量は、JIS K6235の方法に準じて決定した。
[Unsaturated group (allyl group, 1-propenyl group) equivalent]
The allyl group equivalent of the allyl compound b2 is a value obtained by dividing the molecular weight by 2 (that is, the allyl compound b2 has a structure having two allyl groups). The allyl group equivalents of allyl compounds b1 and b3 and the 1-propenyl group equivalent of the compound having a 1-propenyl group were determined according to the method of JIS K6235.

Figure 0006060541
Figure 0006060541

〔実施例1〜16、比較例1〜6〕
後記の表2〜表5に示す各成分を同表に示す割合で、東洋精機社製のラボプラストミル(4C150−01)を用い、条件:110℃×回転数50rpmにて10分間混練を行うことにより混練物(熱硬化性樹脂組成物)を得た。
[Examples 1-16, Comparative Examples 1-6]
Kneading is carried out for 10 minutes under the conditions: 110 ° C. × rotation speed 50 rpm using a lab plast mill (4C150-01) manufactured by Toyo Seiki Co., Ltd. at the ratio shown in Table 2 to Table 5 below. As a result, a kneaded product (thermosetting resin composition) was obtained.

このようにして得られた実施例品および比較例品を用い、下記に示す方法に従って、特性を測定・評価した。これらの結果を後記の表2〜表5に併せて示す。   Using the example product and the comparative product thus obtained, the characteristics were measured and evaluated according to the methods described below. These results are also shown in Tables 2 to 5 below.

〔混練性〕
上記混練を行った際に、トルクが低い値で安定して混練できたものを◎、トルクが高いものの混練できたものを○、トルクが不安定で混練できなかったものを×として評価した。
[Kneadability]
When the above kneading was carried out, the case where the torque was stable and kneaded at a low value was evaluated as ◎, the case where the torque was high but kneaded was evaluated as ○, and the case where the torque was unstable and could not be kneaded was evaluated as x.

〔流動性・硬化性〕
上記混練したサンプルを粉砕機にかけ、さらに打錠することによりタブレットを作製した。このタブレットをトランスファー成形機に投入し、流路長18cm×流路厚み1mmの金型を用い、175℃で所定の時間圧力をかけることにより硬化体を成形した。後記の表2〜表5中の流動性評価は、10個のサンプルをトランスファー成形した中で問題なく綺麗に成形できたサンプルの個数(10個中)を示した。
[Fluidity / Curability]
The kneaded sample was put into a pulverizer and further tableted to prepare a tablet. This tablet was put into a transfer molding machine, and a cured body was molded by applying pressure at 175 ° C. for a predetermined time using a mold having a channel length of 18 cm and a channel thickness of 1 mm. The fluidity evaluations in Tables 2 to 5 below indicate the number of samples (out of 10) that could be molded beautifully without any problems during transfer molding of 10 samples.

また、表2〜表5中の硬化性評価は、6分以内に硬化してサンプルが成形できたものを◎、6分を超えて12分以下で硬化してサンプルが成形できたものを○、12分以内に硬化しなかったものを×として評価した。   The evaluations of curability in Tables 2 to 5 are ◎ for samples that were cured within 6 minutes and samples were molded, and those that were cured for over 12 minutes and less than 12 minutes were ○ Those that did not cure within 12 minutes were evaluated as x.

〔ゲル化時間〕
JIS K6910に記載のB法に従い、175℃にて測定した。
[Gelification time]
The measurement was performed at 175 ° C. according to the method B described in JIS K6910.

〔重量変化〕
上述のトランスファー成形により、直径50mm×厚み1mmの円板(硬化物)を作製した。この円板をさらに175℃で5時間、200℃で5時間、250℃で10時間硬化させ、耐熱性評価サンプルとした。このサンプルを250℃にて1000時間放置した前後の重量変化にて長期耐熱性を評価した。
[Change in weight]
A disk (cured product) having a diameter of 50 mm and a thickness of 1 mm was produced by the transfer molding described above. This disk was further cured at 175 ° C. for 5 hours, 200 ° C. for 5 hours, and 250 ° C. for 10 hours to obtain a heat resistance evaluation sample. The long-term heat resistance was evaluated by the weight change before and after leaving this sample at 250 ° C. for 1000 hours.

Figure 0006060541
Figure 0006060541

Figure 0006060541
Figure 0006060541

Figure 0006060541
Figure 0006060541

Figure 0006060541
Figure 0006060541

上記結果から、実施例品は、混練性,流動性および硬化性に優れ、かつ長期耐熱性に優れていることがわかる。中でも、実施例2〜6、8、10〜11に関しては、混練性,流動性,硬化性の全てにおいて特に優れた評価結果が得られており、ゲル化時間に関しても特に問題の生じない測定結果であった。しかも、重量変化も小さく長期耐熱性にも優れたものであった。   From the above results, it can be seen that the example products are excellent in kneadability, fluidity and curability, and excellent in long-term heat resistance. Among them, regarding Examples 2 to 6, 8, and 10 to 11, particularly excellent evaluation results were obtained in all of kneadability, fluidity, and curability, and measurement results that did not cause any particular problems with respect to gelation time. Met. Moreover, the weight change was small and the long-term heat resistance was excellent.

これに対して、条件(x)の範囲を外れ、(B)成分中に含まれるアリル基の合計モル量(b)と(C)成分中に含まれる1−プロペニル基の合計モル量(c)の比(b:c)がb:c=97:3となる配合割合に設定された比較例1品は、硬化性に劣ることとなり、硬化しなかった。   On the other hand, out of the range of the condition (x), the total molar amount (b) of the allyl group contained in the component (B) and the total molar amount of the 1-propenyl group contained in the component (C) (c ) Ratio (b: c) was set at a blending ratio of b: c = 97: 3, the product of Comparative Example 1 was inferior in curability and did not cure.

また、条件(x)の範囲を外れ、(B)成分中に含まれるアリル基の合計モル量(b)と(C)成分中に含まれる1−プロペニル基の合計モル量(c)の比(b:c)がb:c=40:60となる配合割合に設定された比較例2品は、混練性,流動性に劣り、ゲル化時間も10秒以下であることから、トランスファー成形にてサンプルを成形することができなかった。   Further, the ratio of the total molar amount (b) of the allyl group contained in the component (B) and the total molar amount (c) of the 1-propenyl group contained in the component (C) is out of the range of the condition (x). The comparative example 2 product in which (b: c) is set to a blending ratio of b: c = 40: 60 is inferior in kneadability and fluidity, and has a gelation time of 10 seconds or less. The sample could not be molded.

そして、無機質充填剤(D成分)の含有量が条件(y)を超えて95重量%となる配合割合に設定された比較例3品は、混練性に劣り、トランスファー成形にてサンプルを成形することができなかった。   And the comparative example 3 goods set to the mixture ratio from which content of an inorganic filler (D component) exceeds condition (y) and will be 95 weight% are inferior in kneadability, and shape | mold a sample by transfer molding. I couldn't.

さらに、条件(z)の範囲を外れ、(B)成分中に含まれるアリル基および(C)成分中に含まれる1−プロペニル基の合計モル量(bc)と、(A)成分中に含まれるマレイミド基の合計モル量(a)の比(bc:a)がbc:a=80:20となる配合割合に設定された比較例4品は、硬化性に劣ることとなり、硬化しなかった。   Further, out of the range of the condition (z), the total molar amount (bc) of the allyl group contained in the component (B) and the 1-propenyl group contained in the component (C), and contained in the component (A) The four comparative examples in which the ratio (bc: a) of the total molar amount (a) of maleimide groups to be set to bc: a = 80: 20 was inferior in curability and did not cure. .

また、無機質充填剤(D成分)の含有量が条件(y)を外れ55重量%未満となる配合割合に設定された比較例5品は、耐熱性に劣ることとなった。   Moreover, the comparative example 5 product in which the content of the inorganic filler (component D) was set to a blending ratio that deviated from the condition (y) and was less than 55% by weight was inferior in heat resistance.

そして、条件(z)の範囲を外れ、(B)成分中に含まれるアリル基および(C)成分中に含まれる1−プロペニル基の合計モル量(bc)と、(A)成分中に含まれるマレイミド基の合計モル量(a)の比(bc:a)がbc:a=10:90となる配合割合に設定された比較例6品は、硬化性に劣ることとなり、硬化しなかった。   Then, out of the range of the condition (z), the total molar amount (bc) of the allyl group contained in the component (B) and the 1-propenyl group contained in the component (C), and contained in the component (A) 6 products of Comparative Example in which the ratio (bc: a) of the total molar amount (a) of maleimide groups to be set to bc: a = 10: 90 was inferior in curability and did not cure. .

本発明の半導体封止用熱硬化性樹脂組成物は、トランスファー成形による樹脂封止が可能であり、工業生産性に適用した、高耐熱性を備えた半導体素子用の封止材料である。   The thermosetting resin composition for semiconductor encapsulation of the present invention can be encapsulated by transfer molding, and is a sealing material for semiconductor elements having high heat resistance applied to industrial productivity.

Claims (6)

下記の(A)〜(D)成分を含有する半導体止用熱硬化性樹脂組成物であって、下記の条件(x)〜(z)を満たすことを特徴とする半導体封止用熱硬化性樹脂組成物。
(A)1分子中に2個以上のマレイミド基を有するマレイミド化合物。
(B)下記の式(1)で表される構造単位を含有するアリル化フェノール樹脂。
Figure 0006060541
(C)下記の式(2)で表される構造単位を含有する化合物。
Figure 0006060541
(D)無機質充填剤。
(x)上記(B)成分中に含まれるアリル基の合計モル量(b)と、上記(C)成分中に含まれる1−プロペニル基の合計モル量(c)の比(b:c)が、b:c=95:5〜50:50である。
(y)上記(D)成分の含有量が、熱硬化性樹脂組成物全体の55〜93重量%である。
(z)上記(B)成分中に含まれるアリル基および上記(C)成分中に含まれる1−プロペニル基の合計モル量(bc)と、上記(A)成分中に含まれるマレイミド基の合計モル量(a)の比(bc:a)が、bc:a=15:85〜75:25である。
A thermosetting resin composition for semiconductor encapsulation containing the following components (A) to (D), which satisfies the following conditions (x) to (z): Resin composition.
(A) A maleimide compound having two or more maleimide groups in one molecule.
(B) An allylated phenol resin containing a structural unit represented by the following formula (1).
Figure 0006060541
(C) A compound containing a structural unit represented by the following formula (2).
Figure 0006060541
(D) Inorganic filler.
(X) Ratio (b: c) of the total molar amount (b) of allyl groups contained in the component (B) and the total molar amount (c) of 1-propenyl groups contained in the component (C) However, it is b: c = 95: 5-50: 50.
(Y) Content of the said (D) component is 55 to 93 weight% of the whole thermosetting resin composition.
(Z) The total molar amount (bc) of the allyl group contained in the component (B) and the 1-propenyl group contained in the component (C), and the sum of the maleimide groups contained in the component (A) The molar amount (a) ratio (bc: a) is bc: a = 15: 85-75: 25.
上記(D)成分の含有量が、熱硬化性樹脂組成物全体の65〜90重量%である請求項1記載の半導体封止用熱硬化性樹脂組成物。   The thermosetting resin composition for semiconductor encapsulation according to claim 1, wherein the content of the component (D) is 65 to 90% by weight of the entire thermosetting resin composition. 上記(B)成分中に含まれるアリル基の合計モル量(b)と、上記(C)成分中に含まれる1−プロペニル基の合計モル量(c)の比(b:c)が、b:c=92:8〜60:40である請求項1または2記載の半導体封止用熱硬化性樹脂組成物。   The ratio (b: c) of the total molar amount (b) of the allyl group contained in the component (B) and the total molar amount (c) of the 1-propenyl group contained in the component (C) is b. The thermosetting resin composition for semiconductor encapsulation according to claim 1, wherein: c = 92: 8 to 60:40. 上記(B)成分中に含まれるアリル基および上記(C)成分中に含まれる1−プロペニル基の合計モル量(bc)と、上記(A)成分中に含まれるマレイミド基の合計モル量(a)の比(bc:a)が、bc:a=25:75〜55:45である請求項1〜3のいずれか一項に記載の半導体封止用熱硬化性樹脂組成物。   The total molar amount (bc) of the allyl group contained in the component (B) and the 1-propenyl group contained in the component (C), and the total molar amount of the maleimide group contained in the component (A) ( The ratio (bc: a) of a) is bc: a = 25: 75 to 55:45. The thermosetting resin composition for semiconductor encapsulation according to any one of claims 1 to 3. 上記(B)成分の数平均分子量が、250〜1000である請求項1〜4のいずれか一項に記載の半導体封止用熱硬化性樹脂組成物。   The number average molecular weight of the said (B) component is 250-1000, The thermosetting resin composition for semiconductor sealing as described in any one of Claims 1-4. 請求項1〜5のいずれか一項に記載の半導体封止用熱硬化性樹脂組成物を用いて、半導体素子を樹脂封止してなる半導体装置。   The semiconductor device formed by resin-sealing a semiconductor element using the thermosetting resin composition for semiconductor sealing as described in any one of Claims 1-5.
JP2012149680A 2012-02-23 2012-07-03 Thermosetting resin composition for semiconductor encapsulation and semiconductor device using the same Active JP6060541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012149680A JP6060541B2 (en) 2012-02-23 2012-07-03 Thermosetting resin composition for semiconductor encapsulation and semiconductor device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012037560 2012-02-23
JP2012037560 2012-02-23
JP2012149680A JP6060541B2 (en) 2012-02-23 2012-07-03 Thermosetting resin composition for semiconductor encapsulation and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2013199627A JP2013199627A (en) 2013-10-03
JP6060541B2 true JP6060541B2 (en) 2017-01-18

Family

ID=49520100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012149680A Active JP6060541B2 (en) 2012-02-23 2012-07-03 Thermosetting resin composition for semiconductor encapsulation and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP6060541B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6494444B2 (en) * 2014-07-08 2019-04-03 昭和電工株式会社 Method for producing polyalkenylphenol compound
US10689493B2 (en) 2014-12-25 2020-06-23 Showa Denko K.K. Thermosetting resin composition
KR101900268B1 (en) * 2014-12-25 2018-09-19 쇼와 덴코 가부시키가이샤 Thermosetting resin composition
JP6546527B2 (en) * 2015-04-27 2019-07-17 エア・ウォーター株式会社 Composition, epoxy resin curing agent, epoxy resin composition, thermosetting composition, cured product, semiconductor device, and interlayer insulating material
JP6537188B2 (en) * 2016-02-19 2019-07-03 京セラ株式会社 Molding material for sealing and electronic component device
CN110225931A (en) * 2017-04-19 2019-09-10 昭和电工株式会社 Hardening resin composition, its solidfied material and the structural body comprising the solidfied material
JP6319703B1 (en) * 2017-07-11 2018-05-09 群栄化学工業株式会社 Propenyl group-containing resin, resin composition, resin varnish, laminate manufacturing method, thermosetting molding material and sealing material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3724055A1 (en) * 1987-07-21 1989-02-02 Basf Ag BISMALEINIMID RESIN
JP2570923B2 (en) * 1991-06-07 1997-01-16 信越化学工業株式会社 Thermosetting resin composition
JP3021454B2 (en) * 1991-10-15 2000-03-15 東亞合成株式会社 Curable composition
JP3189254B2 (en) * 1992-02-28 2001-07-16 東亞合成株式会社 Low viscosity thermosetting resin composition
JPH05239155A (en) * 1992-02-28 1993-09-17 Toagosei Chem Ind Co Ltd Low viscousity thermosetting resin composition
JPH06132426A (en) * 1992-10-22 1994-05-13 Nitto Denko Corp Semiconductor device
JPH07165825A (en) * 1993-12-16 1995-06-27 Sumitomo Bakelite Co Ltd Thermosetting resin composition
JP2001011142A (en) * 1999-06-28 2001-01-16 Toagosei Co Ltd Curable composition
JP4793565B2 (en) * 2005-03-24 2011-10-12 信越化学工業株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5292091B2 (en) * 2005-04-28 2013-09-18 サイテク・テクノロジー・コーポレーシヨン Bismaleimide resin system with improved manufacturing characteristics
JP2008111111A (en) * 2006-10-04 2008-05-15 Shin Etsu Chem Co Ltd Epoxy resin composition for encapsulating semiconductor and thin semiconductor device
JP5526700B2 (en) * 2009-10-21 2014-06-18 三菱樹脂株式会社 Polymaleimide composition

Also Published As

Publication number Publication date
JP2013199627A (en) 2013-10-03

Similar Documents

Publication Publication Date Title
JP6060541B2 (en) Thermosetting resin composition for semiconductor encapsulation and semiconductor device using the same
JP6503725B2 (en) Epoxy resin composition, resin sheet, semi-cured epoxy resin composition, cured epoxy resin composition and metal substrate
TWI687449B (en) Epoxy resin hardening accelerator
TWI655238B (en) Epoxy resin composition, use thereof and filler for epoxy resin composition
KR101997351B1 (en) Epoxy resin composition
JP2009001638A (en) Molding resin composition, molded article and semiconductor package
TW201341421A (en) Epoxy resin hardening accelerator
JP4404302B2 (en) Epoxy resin curing agent, composition and use thereof
JP5991007B2 (en) Thermosetting resin composition and semiconductor device using the same
WO2020218457A1 (en) Curable-resin composition, cured product of curable-resin composition, production method for curable-resin composition and cured product of curable-resin composition, and semiconductor device
WO2019131096A1 (en) Encapsulating epoxy resin composition for ball grid array package, cured epoxy resin object, and electronic component/device
JP4958720B2 (en) Molded products and semiconductor packages
JP2000212395A (en) Epoxy resin composition and semiconductor apparatus
JP6765252B2 (en) Compositions, semiconductor encapsulation compositions, and cured products of these compositions
TW201942170A (en) Phenolic resin and producing method thereof, and epoxy resin composition and cured product thereof
JP2017071786A (en) Thermosetting resin composition and semiconductor device prepared therewith
JP2016164257A (en) Thermosetting resin composition and semiconductor device using the same
KR20190096741A (en) Epoxy resin composition
JP7410052B2 (en) Composition for cured resin, cured product of the composition, method for producing the composition and cured product, and semiconductor device
JP2002047337A (en) Resin composition for sealing and semiconductor sealing device
KR102126847B1 (en) Epoxy resin composition
JP6335374B2 (en) Epoxy resin composition and use thereof
JP2010018738A (en) Nonflammable molding resin composition and molded product
JP2009173845A (en) Epoxy resin composition for use in semiconductor encapsulation and semiconductor device using it
JPH06322121A (en) Resin composition for sealing semiconductor and resin-sealed semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161128

R151 Written notification of patent or utility model registration

Ref document number: 6060541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350