JP6060472B1 - 3D shape measuring device - Google Patents
3D shape measuring device Download PDFInfo
- Publication number
- JP6060472B1 JP6060472B1 JP2015230164A JP2015230164A JP6060472B1 JP 6060472 B1 JP6060472 B1 JP 6060472B1 JP 2015230164 A JP2015230164 A JP 2015230164A JP 2015230164 A JP2015230164 A JP 2015230164A JP 6060472 B1 JP6060472 B1 JP 6060472B1
- Authority
- JP
- Japan
- Prior art keywords
- light
- plate member
- optical path
- incident
- reflected light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Abstract
【課題】 レーザ光を走査する3角測量法の測定原理の3次元形状測定装置において、簡易の方法でラインセンサの中心線と反射光の光路とが常に交差するようにする。【解決手段】 入射口板状部材20の厚さを、出射口板状部材18の外面と入射口板状部材20の外面が同一平面内に含まれ、入射口板状部材20に入射する反射光の光路は、結像レンズの光軸と一致しており、入射する反射光の入射位置と入射方向の逆方向を走査したレーザ光の走査平面に投影した位置と方向が、走査したレーザ光の出射口板状部材18から出射する位置と方向と一致するとしたときの、出射口板状部材18に入射する前のレーザ光の光路を延長させたラインと、入射口板状部材20に入射した反射光の光路を走査平面に投影した光路と、が交差する点Sから出射口板状部材18の外面までの距離で設定する。【選択図】図4PROBLEM TO BE SOLVED: To make a center line of a line sensor and an optical path of reflected light always intersect each other by a simple method in a three-dimensional shape measuring apparatus based on a measurement principle of a triangulation method for scanning laser light. SOLUTION: The thickness of an entrance port plate member 20 is such that the outer surface of an exit port plate member 18 and the outer surface of the entrance port plate member 20 are included in the same plane, and the light incident on the entrance port plate member 20 is reflected. The optical path of the light coincides with the optical axis of the imaging lens, and the position and direction projected on the scanning plane of the laser light scanned in the direction opposite to the incident position of the incident reflected light and the incident direction are scanned laser light. Of the laser beam before entering the exit port plate member 18 and the incident port plate member 20 when the beam exits from the exit port plate member 18 and the direction and direction. The distance from the point S where the optical path of the reflected light projected onto the scanning plane intersects to the outer surface of the exit port plate member 18 is set. [Selection] Figure 4
Description
本発明は、走査されたレーザ光を測定対象物に照射して測定対象物の照射箇所で発生する散乱光の一部を受光し、3角測量法の測定原理により測定対象物の3次元形状を測定する3次元形状測定装置に関する。 The present invention irradiates a scanned laser beam onto a measurement object, receives a part of scattered light generated at the irradiated portion of the measurement object, and uses the measurement principle of the triangulation method to measure the three-dimensional shape of the measurement object. The present invention relates to a three-dimensional shape measuring apparatus for measuring
従来から、レーザ光をガルバノミラーやポリゴンミラー等の走査機器を用いて走査しながら測定対象物に照射し、測定対象物の照射箇所で発生する散乱光の一部を、該走査機器と結像レンズを介してラインセンサで受光し、測定対象物の3次元形状を測定する装置が知られている。この3次元形状測定装置は、走査されたレーザ光の照射方向とラインセンサの受光位置とを同じタイミングで検出し、ラインセンサの受光位置から3角測量法の測定原理により測定対象物までの距離を検出して、それぞれのレーザ光の照射点における座標を算出することで、測定対象物の3次元形状を測定している。このような3次元形状測定装置としては、例えば特許文献1に示されているように、レーザ光を走査するとともに、走査範囲の中心におけるレーザ光の光軸に垂直でレーザ光を走査する平面(以下、走査平面という)に平行な回転軸周りにレーザ光出射器、走査機器、結像レンズ及びラインセンサ等を含む筐体を回転させることで、走査平面の方向を変化させる装置がある。また、例えば特許文献2に示されているように、走査平面に垂直な方向に該筐体を移動させることで、走査平面の位置を変化させる装置がある。また、例えば特許文献3に示されているように、該筐体をアーム式移動装置に取付け、該筐体の位置と方向を検出しながら、該筐体を移動させることで、走査平面の位置と方向を変化させる装置がある。どの方式も、レーザ光の照射方向、走査平面の位置または方向、及びラインセンサの受光位置を精度よく検出し、ラインセンサの受光位置と測定対象物までの距離との関係を精度よく求めておけば、測定対象物の3次元形状を精度よく測定することができる。 Conventionally, a laser beam is irradiated onto a measurement object while scanning with a scanning device such as a galvanometer mirror or a polygon mirror, and a part of the scattered light generated at the irradiated portion of the measurement object is imaged with the scanning device. An apparatus that receives light with a line sensor via a lens and measures a three-dimensional shape of a measurement object is known. This three-dimensional shape measuring apparatus detects the irradiation direction of the scanned laser beam and the light receiving position of the line sensor at the same timing, and the distance from the light receiving position of the line sensor to the measurement object by the measurement principle of the triangulation method. Is detected, and the coordinates at the irradiation point of each laser beam are calculated to measure the three-dimensional shape of the measurement object. As such a three-dimensional shape measuring apparatus, as shown in Patent Document 1, for example, a plane that scans laser light and scans the laser light perpendicular to the optical axis of the laser light at the center of the scanning range (see FIG. There is an apparatus that changes the direction of the scanning plane by rotating a casing including a laser beam emitter, a scanning device, an imaging lens, a line sensor, and the like around a rotation axis parallel to the scanning plane. For example, as disclosed in Patent Document 2, there is an apparatus that changes the position of a scanning plane by moving the casing in a direction perpendicular to the scanning plane. For example, as shown in Patent Document 3, the casing is attached to an arm type moving device, and the position of the scanning plane is moved by moving the casing while detecting the position and direction of the casing. There is a device that changes the direction. In any method, the laser light irradiation direction, the position or direction of the scanning plane, and the light receiving position of the line sensor can be accurately detected, and the relationship between the light receiving position of the line sensor and the distance to the measurement object can be accurately determined. For example, it is possible to accurately measure the three-dimensional shape of the measurement object.
図1はレーザ光源10から出射され、コリメーティングレンズ12で平行光になったレーザ光をガルバノミラー14とモータ16を用いて走査しながら測定対象物OBに照射し、測定対象物OBの照射箇所で発生する散乱光の一部(以下、反射光という)を、ガルバノミラー14と結像レンズ22を介してラインセンサ24で受光し、測定対象物OBの3次元形状を測定する装置の構成を簡略的に示す図である。図1に示すように、3次元形状測定装置は、レーザ光の出射口18と反射光の入射口20をガラス板等の透光性板状部材からなる窓にし、筐体に開口を設けず、筐体内にゴミや水分が入るのを防止することが多い。特に、屋外にある測定対象物を高い頻度で測定する3次元形状測定装置や、屋外に設置する3次元形状測定装置は、そのようにする必要がある。 In FIG. 1, a laser beam emitted from a laser light source 10 and collimated by a collimating lens 12 is irradiated to a measurement object OB while being scanned using a galvano mirror 14 and a motor 16, and the measurement object OB is irradiated. Configuration of an apparatus for measuring a three-dimensional shape of a measurement object OB by receiving a part of scattered light generated at a location (hereinafter referred to as reflected light) by a line sensor 24 via a galvanometer mirror 14 and an imaging lens 22. FIG. As shown in FIG. 1, in the three-dimensional shape measuring apparatus, the laser light exit port 18 and the reflected light entrance port 20 are windows made of a light-transmitting plate member such as a glass plate, and no opening is provided in the housing. In many cases, dust and moisture are prevented from entering the housing. In particular, a three-dimensional shape measuring apparatus that measures an object to be measured outdoors with high frequency and a three-dimensional shape measuring apparatus that is installed outdoors need to do so.
しかしながら、発明者は、レーザ光の出射口18と反射光の入射口20を透光性板状部材にした場合、レーザ光の出射口18の透光性板状部材(以下、出射口板状部材18という)に対する入射角が大きくなるほど、反射光の入射口20の透光性板状部材(以下、入射口板状部材20という)に入射した後の反射光の光路は走査平面に投影して見ると、レーザ光の光路からずれることを見出した。そして、これにより、レーザ光の出射口板状部材18に対する入射角が大きくなるほど、ラインセンサ24に入射する反射光の光路はその手前の結像レンズ22の光軸からずれ、ラインセンサ24における反射光の強度分布の形が悪くなり、測定精度に影響することを見出した。 However, when the inventor uses the laser light exit port 18 and the reflected light entrance 20 as a translucent plate-like member, the inventor has a translucent plate-like member (hereinafter referred to as an exit aperture plate-like member) of the laser light exit port 18. As the incident angle with respect to the member 18 increases, the optical path of the reflected light after entering the translucent plate member (hereinafter referred to as the incident port plate member 20) of the incident port 20 of the reflected light is projected onto the scanning plane. As a result, it was found that the laser beam deviates from the optical path. As a result, the larger the incident angle of the laser beam with respect to the exit aperture plate member 18, the more the optical path of the reflected light incident on the line sensor 24 is displaced from the optical axis of the imaging lens 22 in front of the line sensor 24. It was found that the shape of the light intensity distribution deteriorates and affects the measurement accuracy.
また、発明者は、上記の現象は理論的に説明できることも見出した。図2は走査平面に投影して見たときのレーザ光の光路と反射光の光路を示しており、実線はレーザ光の光路、点線は反射光の光路である。レーザ光は図2の紙面に対して平行であるのに対し、反射光は図2の紙面に対して測定対象物での反射位置に基づく角度を有する。これは、図1に示すように3角測量法の測定原理を用いた3次元形状測定装置は、レーザ光の光軸と結像レンズ22を介してラインセンサ24に入射する反射光の光軸とは、レーザ光反射位置に基づく角度を有するためである。図2において入射口板状部材20に入射する反射光が紙面に対し平行であれば、走査平面に投影して見たとき、入射した後も反射光の光路はレーザ光の光路と同じになる。しかし、入射口板状部材20に入射する反射光は紙面に対して角度を有しているので、反射光の入射口板状部材20に対する入射角は、レーザ光の出射口板状部材18に対する入射角とは異なり、反射光が入射口板状部材20に入射した後の光路は図2の点線が示すようにレーザ光の光路に対してずれる。そして、反射光が入射口板状部材20の内側面から出射する時点のずれがそのまま、ラインセンサの中心線に対する反射光の光路のずれになる。そして、このずれは、レーザ光の出射口板状部材18に対する入射角が0(すなわち垂直入射)のときは、走査平面に投影して見ると反射光の光路は入射口板状部材20に垂直であるので発生せず、レーザ光の出射口板状部材18に対する入射角が大きくなるほど大きくなる。すなわち、レーザ光の走査範囲の中心付近ではずれは発生せず、レーザ光の走査範囲の両端で最も大きいずれが発生する。 The inventor has also found that the above phenomenon can be explained theoretically. FIG. 2 shows the optical path of the laser light and the optical path of the reflected light when projected onto the scanning plane, and the solid line is the optical path of the laser light and the dotted line is the optical path of the reflected light. The laser light is parallel to the paper surface of FIG. 2, whereas the reflected light has an angle based on the reflection position on the measurement object with respect to the paper surface of FIG. As shown in FIG. 1, the three-dimensional shape measuring apparatus using the measurement principle of the triangulation method is configured such that the optical axis of the laser light and the optical axis of the reflected light incident on the line sensor 24 through the imaging lens 22. This is because the angle is based on the laser light reflection position. In FIG. 2, if the reflected light incident on the entrance port plate-like member 20 is parallel to the paper surface, the reflected light path is the same as the optical path of the laser light even after incident when viewed on the scanning plane. . However, since the reflected light incident on the entrance port plate member 20 has an angle with respect to the paper surface, the incident angle of the reflected light with respect to the entrance port plate member 20 is relative to the exit port plate member 18 of the laser light. Unlike the incident angle, the optical path after the reflected light enters the entrance port plate member 20 is deviated from the optical path of the laser light as indicated by the dotted line in FIG. Then, the deviation at the time when the reflected light is emitted from the inner side surface of the entrance port plate-like member 20 is the deviation of the optical path of the reflected light with respect to the center line of the line sensor. This deviation is due to the fact that when the incident angle of the laser beam with respect to the exit aperture plate member 18 is 0 (ie, perpendicular incidence), the optical path of the reflected light is perpendicular to the entrance aperture plate member 20 when projected onto the scanning plane. Therefore, it does not occur and becomes larger as the incident angle of the laser beam with respect to the emission port plate member 18 increases. That is, no deviation occurs near the center of the scanning range of the laser beam, and the largest occurs at both ends of the scanning range of the laser beam.
図2においては、出射口板状部材18と入射口板状部材20が、走査平面に投影して見たとき、重なっている状態であるが、重なっていなくても、反射光の光路のずれは発生する。これは、図3に示すように、透光性板状部材1がAの位置にあってもBの位置にあっても、透光性板状部材1の姿勢が同じで入射する光Liの光路が同じであれば、出射した後の光Loの光路は同じになることからも理解できる。 In FIG. 2, the exit aperture plate-like member 18 and the entrance aperture plate-like member 20 are overlapped when viewed on the scanning plane, but even if they are not overlapped, the optical path of the reflected light is shifted. Will occur. This is because, as shown in FIG. 3, the translucent plate-like member 1 has the same posture as the incident light Li, regardless of whether the translucent plate-like member 1 is at position A or B. If the optical paths are the same, it can be understood from the fact that the optical paths of the emitted light Lo are the same.
上述した反射光の光路ずれの問題に対応するには、出射口板状部材18と入射口板状部材20を可能な限り薄くする方法が考えられるが、強度の点で問題がある。特に屋外に設置する3次元形状測定装置は所定の強度を有する必要があるので不可能である。また、反射光の光路のずれが発生する分、反射光の光路を補正するシステムを設ける方法が考えられるが、レーザ光の走査速度は高速であるので、そのようなシステムを設けると装置のコストが大幅にアップするという問題がある。 In order to cope with the problem of the optical path deviation of the reflected light described above, a method of making the exit port plate member 18 and the entrance port plate member 20 as thin as possible can be considered, but there is a problem in terms of strength. In particular, a three-dimensional shape measuring apparatus installed outdoors is not possible because it needs to have a predetermined strength. In addition, there is a method of providing a system that corrects the optical path of the reflected light as much as the deviation of the optical path of the reflected light occurs. However, since the scanning speed of the laser light is high, the cost of the apparatus is increased when such a system is provided. There is a problem that is greatly improved.
本発明はこの問題を解消するためなされたもので、その目的は、走査されたレーザ光を測定対象物に照射して測定対象物の照射箇所で発生する散乱光の一部を受光し、3角測量法の測定原理により測定対象物の3次元形状を測定する3次元形状測定装置において、装置をコストアップさせることなく、出射口板状部材と入射口板状部材の強度を保ったままで、常にラインセンサの中心線と反射光の光路が交差するようにした3次元形状測定装置を提供することにある。言い換えると、走査平面に投影した反射光の光路が、常にレーザ光の光路からずれないようにした3次元形状測定装置を提供することにある。 The present invention has been made to solve this problem, and an object of the present invention is to irradiate the measurement object with a scanned laser beam and receive a part of the scattered light generated at the irradiation position of the measurement object. In the three-dimensional shape measuring apparatus that measures the three-dimensional shape of the measurement object according to the measurement principle of the angle surveying method, while maintaining the strength of the exit port plate member and the incident port plate member without increasing the cost of the device, An object of the present invention is to provide a three-dimensional shape measuring apparatus in which the center line of a line sensor and the optical path of reflected light always intersect. In other words, it is an object to provide a three-dimensional shape measuring apparatus in which the optical path of reflected light projected on the scanning plane is not always shifted from the optical path of laser light.
上記目的を達成するために、本発明の特徴は、走査手段を用いて走査したレーザ光を第1の透光性板状部材を介して測定対象物に照射し、測定対象物で発生した散乱光の一部である反射光を、第2の透光性板状部材、走査手段および結像レンズを介してラインセンサで受光し、ラインセンサにおける受光位置を用いて測定対象物の3次元形状を測定する3次元形状測定装置において、第2の透光性板状部材は、第1の透光性板状部材と平行であり、第2の透光性板状部材の厚さは、第1の透光性板状部材の外面と第2の透光性板状部材の外面が同一平面内に含まれ、第2の透光性板状部材に入射する反射光の光路は、結像レンズの光軸と一致しており、入射する反射光の入射位置と入射方向の逆方向を走査したレーザ光の走査平面に投影した位置と方向が、走査したレーザ光の第1の透光性板状部材から出射する位置と方向と一致するとしたときの、走査したレーザ光の第1の透光性板状部材に対する入射角が0以外の値であるときの、第1の透光性板状部材に入射する前の走査したレーザ光の光路を延長させたラインと、第2の透光性板状部材に入射した反射光の光路を走査したレーザ光の走査平面に投影した光路と、が交差する点から第1の透光性板状部材の外面までの距離で設定されているようにしたことにある。 In order to achieve the above object, the present invention is characterized by irradiating a measurement object with a laser beam scanned using a scanning means via the first light-transmitting plate member, and causing scattering generated by the measurement object. Reflected light, which is part of the light, is received by the line sensor via the second translucent plate-like member, the scanning means, and the imaging lens, and the three-dimensional shape of the measurement object using the light receiving position in the line sensor In the three-dimensional shape measuring apparatus for measuring the second translucent plate member, the second translucent plate member is parallel to the first translucent plate member, and the thickness of the second translucent plate member is The outer surface of the first translucent plate-shaped member and the outer surface of the second translucent plate-shaped member are included in the same plane, and the optical path of the reflected light incident on the second translucent plate-shaped member is an image. It is coincident with the optical axis of the lens, and is projected onto the scanning plane of the laser beam scanned in the opposite direction of the incident position and the incident direction of the incident reflected light The incident angle of the scanned laser light with respect to the first light-transmitting plate-like member when the position and the direction coincide with the position and direction of the scanned laser light emitted from the first light-transmitting plate-like member is A line obtained by extending the optical path of the scanned laser light before entering the first light-transmitting plate-like member when the value is other than 0, and the reflected light entering the second light-transmitting plate-like member The optical path projected on the scanning plane of the laser beam that has scanned this optical path is set at the distance from the point of intersection to the outer surface of the first translucent plate-like member.
これによれば、第2の透光性板状部材である入射口板状部材の厚さを適切な値に設定するという極めて簡単な方法により、走査平面に投影した反射光の光路が常にレーザ光の光路からずれないようにすることができる。発明者は、上述のように第2の透光性板状部材である入射口板状部材の厚さを設定すると、理論的に、走査範囲すべてにおいて走査平面に投影した反射光の光路のレーザ光の光路からのずれは、無視できるレベルにまで小さくなることを見出した。該理論は、発明を実施するための形態で説明する。 According to this, the optical path of the reflected light projected on the scanning plane is always a laser by a very simple method of setting the thickness of the entrance plate member that is the second translucent plate member to an appropriate value. It is possible to prevent deviation from the optical path of light. When the inventor sets the thickness of the incident-light plate member that is the second light-transmissive plate member as described above, theoretically, the laser of the optical path of the reflected light projected on the scanning plane in the entire scanning range. It has been found that the deviation of the light from the optical path is reduced to a negligible level. The theory will be described in the detailed description.
また、本発明の他の特徴は、走査手段を用いて走査したレーザ光を第1の透光性板状部材を介して測定対象物に照射し、測定対象物で発生した散乱光の一部である反射光を、第2の透光性板状部材、走査手段および結像レンズを介してラインセンサで受光し、ラインセンサにおける受光位置を用いて測定対象物の3次元形状を測定する3次元形状測定装置において、第2の透光性板状部材は、第1の透光性板状部材と平行であるとともに厚さが同じであり、第1と第2の透光性板状部材は、第1と第2の透光性板状部材の屈折率の関係が、第1の透光性板状部材の両面と第2の透光性板状部材の両面が同一平面内に含まれ、第2の透光性板状部材に入射する反射光の光路は結像レンズの光軸と一致しており、入射する反射光の入射位置と入射方向の逆方向を走査したレーザ光の走査平面に投影した位置と方向が、走査したレーザ光の第1の透光性板状部材から出射する位置と方向と一致するとしたときの、走査したレーザ光の第1の透光性板状部材に対する入射角が0以外の値であるときの、走査したレーザ光の光路と、反射光の光路を走査したレーザ光の走査平面に投影した光路とが一致する屈折率の関係になるものが選択されているようにしたことにある。 Another feature of the present invention is that a part of the scattered light generated by the measurement object is irradiated by irradiating the measurement object with the laser light scanned using the scanning means via the first light-transmissive plate member. Is reflected by the line sensor via the second translucent plate member, the scanning means, and the imaging lens, and the three-dimensional shape of the measurement object is measured using the light receiving position in the line sensor. In the three-dimensional shape measuring apparatus, the second translucent plate-like member is parallel to the first translucent plate-like member and has the same thickness, and the first and second translucent plate-like members. The relationship between the refractive indexes of the first and second translucent plate-like members is such that both sides of the first translucent plate-like member and both sides of the second translucent plate-like member are included in the same plane. The optical path of the reflected light incident on the second translucent plate-shaped member coincides with the optical axis of the imaging lens, and the incident position and incident position of the incident reflected light The scanned laser when the position and direction projected on the scanning plane of the laser beam scanned in the opposite direction coincides with the position and direction of the scanned laser beam emitted from the first translucent plate-like member When the incident angle of light with respect to the first translucent plate-shaped member is a value other than 0, the optical path of the scanned laser light and the optical path projected onto the scanning plane of the laser light scanned through the optical path of the reflected light That is, the one having the matching refractive index relationship is selected.
これによっても、第1の透光性板状部材である出射口板状部材と第2の透光性板状部材である入射口板状部材の屈折率の関係を適切な関係にするという極めて簡単な方法により、走査平面に投影した反射光の光路が常にレーザ光の光路からずれないようにすることができる。発明者は、第1と第2の透光性板状部材である出射口板状部材と入射口板状部材の屈折率の関係には、理論的に、走査範囲すべてにおいて走査平面に投影した反射光の光路のレーザ光の光路からのずれが、無視できるレベルにまで小さくなる関係があることを見出した。該理論は、発明を実施するための形態で説明する。 This also makes the relationship between the refractive indexes of the exit port plate member, which is the first light transmissive plate member, and the incident port plate member, which is the second light transmissive plate member, appropriate. By a simple method, the optical path of the reflected light projected on the scanning plane can be prevented from always deviating from the optical path of the laser light. The inventor theoretically projected the relationship between the refractive indexes of the exit aperture plate member and the entrance aperture plate member, which are the first and second translucent plate members, on the scanning plane in the entire scanning range. It has been found that there is a relationship in which the deviation of the optical path of the reflected light from the optical path of the laser light is reduced to a negligible level. The theory will be described in the detailed description.
また、本発明の他の特徴は、走査手段を用いて走査したレーザ光を第1の透光性板状部材を介して測定対象物に照射し、測定対象物で発生した散乱光の一部である反射光を、第2の透光性板状部材、前記走査手段および結像レンズを介してラインセンサで受光し、ラインセンサにおける受光位置を用いて測定対象物の3次元形状を測定する3次元形状測定装置において、第2の透光性板状部材は、第1の透光性板状部材と走査したレーザ光の走査平面とが交差するラインに平行な軸周りに第1の透光性板状部材と所定の角度を有し、第2の透光性板状部材の厚さは、第1の透光性板状部材の外面と第2の透光性板状部材の外面が交差するラインは、結像レンズの光軸と交差し、第2の透光性板状部材に入射する反射光の光路は結像レンズの光軸と一致しており、入射する反射光の入射位置と入射方向の逆方向を走査したレーザ光の走査平面に投影した位置と方向が、走査したレーザ光の第1の透光性板状部材から出射する位置と方向と一致するとしたときの、走査したレーザ光の第1の透光性板状部材に対する入射角が0以外の値であるときの、第1の透光性板状部材に入射する前の走査したレーザ光の光路を延長させたラインと、第2の透光性板状部材に入射した反射光の光路を走査したレーザ光の走査平面に投影した光路とが交差する点を含む走査平面の法線、および第2の透光性板状部材に入射した反射光の光路を、走査平面と第1の透光性板状部材に垂直な平面に投影したときの交点から前記第2の透光性板状部材の外面までの距離で設定されているようにしたことにある。 Another feature of the present invention is that a part of the scattered light generated by the measurement object is irradiated by irradiating the measurement object with the laser light scanned using the scanning means via the first light-transmissive plate member. The reflected light is received by the line sensor via the second translucent plate member, the scanning means and the imaging lens, and the three-dimensional shape of the measurement object is measured using the light receiving position of the line sensor. In the three-dimensional shape measuring apparatus, the second light-transmitting plate-shaped member has a first light-transmitting plate-shaped member around the axis parallel to a line intersecting the scanning plane of the scanned laser beam. The thickness of the second light transmissive plate member has a predetermined angle with the light transmissive plate member, and the outer surface of the first light transmissive plate member and the outer surface of the second light transmissive plate member Intersects the optical axis of the imaging lens, and the optical path of the reflected light incident on the second light-transmissive plate member is the light of the imaging lens. The position and direction projected on the scanning plane of the laser beam scanned in the direction opposite to the incident position of the incident reflected light and the incident direction are from the first translucent plate-shaped member of the scanned laser light. Incident to the first translucent plate-like member when the incident angle of the scanned laser beam with respect to the first translucent plate-like member is a value other than 0 when it coincides with the emission position and direction The line where the optical path of the scanned laser light before the crossing and the optical path projected on the scanning plane of the laser light scanned on the optical path of the reflected light incident on the second light-transmissive plate-like member intersect From the intersection when the normal line of the scanning plane including and the optical path of the reflected light incident on the second translucent plate-like member are projected onto the plane perpendicular to the scan plane and the first translucent plate-like member It is to be set by the distance to the outer surface of the second translucent plate-like member
これによれば、第2の透光性板状部材である入射口板状部材が第1の透光性板状部材である出射口板状部材に対して角度を有する場合であっても、第2の透光性板状部材である入射口板状部材の厚さを適切な値に設定するという極めて簡単な方法により、走査平面に投影した反射光の光路が常にレーザ光の光路からずれないようにすることができる。発明者は、入射口板状部材が出射口板状部材に対して角度を有する場合でも、上述のように第2の透光性板状部材である入射口板状部材の厚さを設定すると、理論的に、走査範囲すべてにおいて走査平面に投影した反射光の光路のレーザ光の光路からのずれは、無視できるレベルにまで小さくなることを見出した。該理論は、発明を実施するための形態で説明する。 According to this, even if the incident port plate-shaped member that is the second light-transmissive plate-shaped member has an angle with respect to the output port plate-shaped member that is the first light-transmissive plate-shaped member, The optical path of the reflected light projected on the scanning plane is always deviated from the optical path of the laser light by an extremely simple method of setting the thickness of the incident-light plate-like member, which is the second light-transmissive plate-like member, to an appropriate value. Can not be. The inventor sets the thickness of the incident aperture plate-shaped member, which is the second light-transmissive plate-shaped member, as described above even when the incident aperture plate-shaped member has an angle with respect to the output aperture plate-shaped member. Theoretically, it has been found that the deviation of the optical path of the reflected light projected onto the scanning plane from the optical path of the laser light in the entire scanning range is reduced to a negligible level. The theory will be described in the detailed description.
また、本発明の他の特徴は、走査手段を用いて走査したレーザ光を第1の透光性板状部材を介して測定対象物に照射し、測定対象物で発生した散乱光の一部である反射光を、第2の透光性板状部材、走査手段および結像レンズを介してラインセンサで受光し、ラインセンサにおける受光位置を用いて測定対象物の3次元形状を測定する3次元形状測定装置において、第2の透光性板状部材は、第1の透光性板状部材と走査したレーザ光の走査平面とが交差するラインに平行な軸周りに第1の透光性板状部材と所定の角度を有するとともに、第1の透光性板状部材と厚さが同じであり、第1と第2の透光性板状部材は、第1と第2の透光性板状部材の屈折率の関係が、第1の透光性板状部材の外面と第2の透光性板状部材の外面が交差するラインは、結像レンズの光軸と交差し、第2の透光性板状部材に入射する反射光の光路は結像レンズの光軸と一致しており、入射する反射光の入射位置と入射方向の逆方向を走査したレーザ光の走査平面に投影した位置と方向が、走査したレーザ光の第1の透光性板状部材から出射する位置と方向と一致するとしたときの、走査したレーザ光の第1の透光性板状部材に対する入射角が0以外の値であるときの、走査したレーザ光の第1の透光性板状部材の内面から走査手段側の光路と、反射光の第2の透光性板状部材の内面から走査手段側の光路を走査したレーザ光の走査平面に投影した光路とが一致する屈折率の関係になるものが選択されているようにしたことにある。 Another feature of the present invention is that a part of the scattered light generated by the measurement object is irradiated by irradiating the measurement object with the laser light scanned using the scanning means via the first light-transmissive plate member. Is reflected by the line sensor via the second translucent plate member, the scanning means, and the imaging lens, and the three-dimensional shape of the measurement object is measured using the light receiving position in the line sensor. In the three-dimensional shape measuring apparatus, the second translucent plate-shaped member includes a first translucent plate around an axis parallel to a line intersecting the first translucent plate-shaped member and the scanning plane of the scanned laser beam. The first and second translucent plate-shaped members have the same angle as the first translucent plate-shaped member and have the same thickness as the first translucent plate-shaped member. The relationship of the refractive index of the light-transmitting plate member is such that the outer surface of the first light-transmitting plate member and the outer surface of the second light-transmitting plate member intersect. Is intersecting with the optical axis of the imaging lens, and the optical path of the reflected light incident on the second light-transmissive plate member is coincident with the optical axis of the imaging lens. Scanned laser when the position and direction projected on the scanning plane of the laser beam scanned in the opposite direction coincide with the position and direction of the scanned laser beam emitted from the first translucent plate-like member When the incident angle of light with respect to the first translucent plate-like member is a value other than 0, the optical path on the scanning means side from the inner surface of the first translucent plate-like member of the scanned laser beam and the reflected light The one that has a refractive index relationship that matches the optical path projected on the scanning plane of the laser beam that has scanned the optical path on the scanning means side from the inner surface of the second translucent plate-shaped member is selected. It is in.
これによっても、第2の透光性板状部材である入射口板状部材が第1の透光性板状部材である出射口板状部材に対して角度を有する場合であっても、第1の透光性板状部材である出射口板状部材と第2の透光性板状部材である入射口板状部材の屈折率の関係を適切な関係にするという極めて簡単な方法により、走査平面に投影した反射光の光路が常にレーザ光の光路からずれないようにすることができる。発明者は、入射口板状部材が出射口板状部材に対して角度を有する場合でも、第1と第2の透光性板状部材である出射口板状部材と入射口板状部材の屈折率の関係には、理論的に、走査範囲すべてにおいて走査平面に投影した反射光の光路のレーザ光の光路からのずれが、無視できるレベルにまで小さくなる関係があることを見出した。該理論は、発明を実施するための形態で説明する。 Even in this case, even if the incident port plate-shaped member that is the second light-transmissive plate-shaped member has an angle with respect to the output port plate-shaped member that is the first light-transmissive plate-shaped member, By a very simple method of making the relationship between the refractive indexes of the exit port plate member, which is a light transmissive plate member, and the incident port plate member, which is a second light transmissive plate member, an appropriate relationship, The optical path of the reflected light projected on the scanning plane can be prevented from always deviating from the optical path of the laser light. The inventor of the present invention provides an output port plate member and an input port plate member that are the first and second translucent plate members even when the input port plate member has an angle with respect to the output port plate member. It has been found that the relationship between the refractive indexes theoretically has a relationship in which the deviation of the optical path of the reflected light projected onto the scanning plane from the optical path of the laser light is reduced to a negligible level in the entire scanning range. The theory will be described in the detailed description.
また、本発明の他の特徴は、走査手段を用いて走査したレーザ光を第1の透光性板状部材を介して測定対象物に照射し、測定対象物で発生した散乱光の一部である反射光を、第2の透光性板状部材、走査手段および結像レンズを介してラインセンサで受光し、ラインセンサにおける受光位置を用いて測定対象物の3次元形状を測定する3次元形状測定装置において、第2の透光性板状部材は、第1の透光性板状部材と走査したレーザ光の走査平面とが交差するラインに平行な軸周りに第1の透光性板状部材と所定の角度γを有するとともに、第1の透光性板状部材と厚さ及び屈折率が同じであり、所定の角度γは、第1の透光性板状部材の外面と第2の透光性板状部材の外面が交差するラインは、結像レンズの光軸と交差し、第2の透光性板状部材に入射する反射光の光路は結像レンズの光軸と一致しており、入射する反射光の入射位置と入射方向の逆方向を走査したレーザ光の走査平面に投影した位置と方向が、走査したレーザ光の第1の透光性板状部材から出射する位置と方向と一致するとしたときの、走査したレーザ光の第1の透光性板状部材に対する入射角が0以外の値であるときの、走査したレーザ光の第1の透光性板状部材の内面から走査手段側の光路と、反射光の第2の透光性板状部材の内面から走査手段側の光路を走査したレーザ光の走査平面に投影した光路とが一致する角度に設定されているようにしたことにある。 Another feature of the present invention is that a part of the scattered light generated by the measurement object is irradiated by irradiating the measurement object with the laser light scanned using the scanning means via the first light-transmissive plate member. Is reflected by the line sensor via the second translucent plate member, the scanning means, and the imaging lens, and the three-dimensional shape of the measurement object is measured using the light receiving position in the line sensor. In the three-dimensional shape measuring apparatus, the second translucent plate-shaped member includes a first translucent plate around an axis parallel to a line intersecting the first translucent plate-shaped member and the scanning plane of the scanned laser beam. And the first translucent plate-like member have the same thickness and refractive index as the first translucent plate-like member, and the predetermined angle γ is the outer surface of the first translucent plate-like member. The line where the outer surface of the second translucent plate member intersects the optical axis of the imaging lens, and the second translucent plate shape The optical path of the reflected light incident on the member coincides with the optical axis of the imaging lens, and the position and direction projected on the scanning plane of the laser light scanned in the opposite direction to the incident position of the incident reflected light and the incident direction, The incident angle of the scanned laser beam with respect to the first translucent plate-like member is a value other than 0 when it coincides with the position and direction of the scanned laser beam emitted from the first translucent plate-like member. Scanning laser light scans the optical path on the scanning means side from the inner surface of the first light transmitting plate-like member and the optical path on the scanning means side from the inner surface of the second light-transmissive plate member on the reflected light. This is because the angle is set so that the optical path projected onto the scanning plane of the laser beam coincides with the optical path.
これによれば、第2の透光性板状部材である入射口板状部材の第1の透光性板状部材である出射口板状部材に対する角度γを適切な角度に設定するという極めて簡単な方法により、走査平面に投影した反射光の光路が常にレーザ光の光路からずれないようにすることができる。発明者は、角度γには、理論的に、走査範囲すべてにおいて走査平面に投影した反射光の光路のレーザ光の光路からのずれが、無視できるレベルにまで小さくなる値があることを見出した。該理論は、発明を実施するための形態で説明する。 According to this, the angle γ of the incident port plate member that is the second light transmissive plate member with respect to the output port plate member that is the first light transmissive plate member is set to an appropriate angle. By a simple method, the optical path of the reflected light projected on the scanning plane can be prevented from always deviating from the optical path of the laser light. The inventor has found that the angle γ theoretically has a value at which the deviation of the optical path of the reflected light projected onto the scanning plane from the optical path of the laser light is reduced to a negligible level in the entire scanning range. . The theory will be described in the detailed description.
(第1実施形態)
以下、本発明の第1実施形態について説明する。第1実施形態は、出射口板状部材18と入射口板状部材20が平行になっている3次元形状測定装置において、入射口板状部材20の厚さを適切に設定することで、走査平面に投影した反射光の光路がレーザ光の光路からずれないようにする形態である。なお、レーザ光を走査して測定対象物OBに照射し、反射光をラインセンサで受光して3角測量法の測定原理を用いて測定対象物OBの形状を測定する3次元形状測定装置(以下、レーザ走査式3次元形状測定装置という)の構成は、先行技術文献である特許文献1乃至特許文献3で説明されており、公知技術であるので、入射口板状部材20の厚さを適切に設定する方法のみを説明する。
(First embodiment)
The first embodiment of the present invention will be described below. In the first embodiment, in the three-dimensional shape measuring apparatus in which the exit port plate member 18 and the entrance port plate member 20 are parallel, scanning is performed by appropriately setting the thickness of the entrance port plate member 20. In this mode, the optical path of the reflected light projected onto the plane is not shifted from the optical path of the laser light. Note that a three-dimensional shape measuring apparatus (scanning laser beam, irradiating the measurement object OB, receiving reflected light with a line sensor, and measuring the shape of the measurement object OB using the measurement principle of the triangulation method ( Hereinafter, the configuration of the laser scanning type three-dimensional shape measuring apparatus) is described in Patent Documents 1 to 3 which are prior art documents and is a known technique. Only how to set it properly is explained.
図4はレーザ走査式3次元形状測定装置において、出射口板状部材18と入射口板状部材20を通過するレーザ光と反射光の光路を走査平面に投影して見た図であり、レーザ光は実線、反射光は点線で示されている。出射口板状部材18と入射口板状部材20の両面は、走査平面に対し垂直で、走査平面に投影して見たとき両面が同一位置にある。レーザ光は、出射口板状部材18の点Lへ入射角Θで入射し、屈折角αで屈折して反対側の面に入射角αで入射して屈折角Θで出射する。走査平面は出射口板状部材18に対し垂直であるので、レーザ光は出射口板状部材18に入射して屈折しても走査平面内にある。すなわち、レーザ光は図4の紙面内にあると見なせる。 FIG. 4 is a view of a laser scanning type three-dimensional shape measuring apparatus, in which the optical paths of laser light and reflected light passing through the exit port plate member 18 and the entrance port plate member 20 are projected onto the scan plane and viewed. Light is indicated by a solid line, and reflected light is indicated by a dotted line. Both surfaces of the exit port plate member 18 and the entrance port plate member 20 are perpendicular to the scanning plane, and both surfaces are in the same position when projected onto the scanning plane. The laser light enters the point L of the exit plate member 18 at an incident angle Θ, is refracted at a refraction angle α, is incident on the opposite surface at an incident angle α, and is emitted at a refraction angle Θ. Since the scanning plane is perpendicular to the exit port plate member 18, the laser light is in the scan plane even if it enters the exit port plate member 18 and is refracted. That is, it can be considered that the laser beam is in the plane of FIG.
反射光は、レーザ光照射点で発生する散乱光の内、結像レンズ22を介してラインセンサ24で受光する光であるが、走査平面に投影して見たときラインセンサ24で受光される光は、結像レンズ22の光軸と略一致する光路の散乱光のみである。また、レーザ走査式3次元形状測定装置においては、走査平面に投影して見たとき結像レンズ22の光軸はレーザ光の光軸と一致するように調整されているので、走査平面に投影して見たとき、反射光はレーザ光と同じ光路で戻ると見なせる。すなわち、図4において、入射口板状部材20に入射する反射光は、出射口板状部材18から出射するレーザ光と重なっている。 The reflected light is the light received by the line sensor 24 through the imaging lens 22 among the scattered light generated at the laser light irradiation point, but is received by the line sensor 24 when projected onto the scanning plane. The light is only scattered light in an optical path that substantially coincides with the optical axis of the imaging lens 22. Further, in the laser scanning type three-dimensional shape measuring apparatus, since the optical axis of the imaging lens 22 is adjusted so as to coincide with the optical axis of the laser light when projected onto the scanning plane, it is projected onto the scanning plane. Therefore, it can be considered that the reflected light returns in the same optical path as the laser light. That is, in FIG. 4, the reflected light incident on the entrance port plate member 20 overlaps with the laser light emitted from the exit port plate member 18.
図4においては(走査平面に投影して見た場合は)、入射口板状部材20に入射する反射光の光路はレーザ光の光路と同じであるが、図1に示すように、反射光の光路は走査平面に対し角度を有している。この反射光の光路の走査平面に対する角度をβとすると、反射光の方向は図4の紙面に対して角度βを成している。この角度βを成しているため、走査平面に投影して見たときの反射光の屈折角は、レーザ光の屈折角αより小さくなり、入射口板状部材20に入射した反射光は図4の点線の光路を進み、点Rから出射する。点Rから出射した反射光は、走査平面に投影して見るとレーザ光と平行に進む。これは、図3に示すように、平行な透光性板状部材1に光Liが入射した場合、出射する光Loは光Liと平行であり、入射口板状部材20に入射する反射光は、走査平面に投影して見るとレーザ光と光路が同じであることから理解できる。すなわち、走査平面に投影して見たときの反射光の光路のレーザ光の光路からのずれは、点Lと点Rの間の距離にcosΘを乗算した値である。 In FIG. 4 (when projected onto the scanning plane), the optical path of the reflected light incident on the entrance port plate member 20 is the same as the optical path of the laser light, but as shown in FIG. The optical path has an angle with respect to the scanning plane. If the angle of the optical path of the reflected light with respect to the scanning plane is β, the direction of the reflected light is an angle β with respect to the paper surface of FIG. Since this angle β is formed, the refraction angle of the reflected light when projected onto the scanning plane is smaller than the refraction angle α of the laser light, and the reflected light incident on the entrance port plate member 20 is shown in FIG. The light travels along the dotted optical path 4 and exits from point R. The reflected light emitted from the point R travels in parallel with the laser light when viewed on the scanning plane. As shown in FIG. 3, when light Li is incident on the parallel translucent plate-like member 1, the emitted light Lo is parallel to the light Li, and the reflected light is incident on the entrance port plate-like member 20. Can be understood from the fact that the laser beam and the optical path are the same when projected onto the scanning plane. That is, the deviation of the optical path of the reflected light from the optical path of the laser light when projected onto the scanning plane is a value obtained by multiplying the distance between the points L and R by cos Θ.
出射口板状部材18と入射口板状部材20の厚さがT1で同じであれば、上述したように入射口板状部材20から出射した反射光の光路はレーザ光の光路に対してずれる。しかし、図4に示すように、反射光の入射口板状部材20から出射する点を、出射口板状部材18に入射するレーザ光の光路を延長させたライン(2点鎖線で示されるライン)と入射口板状部材20に入射した反射光の光路が交差する点である点Sにすると、出射した反射光の光路はレーザ光の光路に一致する。すなわち、図4に示すように、入射口板状部材20の厚さをT2にすれば反射光は点Sから出射し、反射光の光路はレーザ光の光路に一致する。以下、反射光の光路がレーザ光の光路に対してずれない入射口板状部材20の厚さT2を計算する方法について説明する。 If the thicknesses of the exit port plate member 18 and the entrance port plate member 20 are the same at T1, the optical path of the reflected light emitted from the entrance port plate member 20 deviates from the optical path of the laser light as described above. . However, as shown in FIG. 4, a line (a line indicated by a two-dot chain line) in which the optical path of the laser beam incident on the exit port plate member 18 is extended from the point where the reflected light exits from the entrance port plate member 20. ) And the point S, which is the point where the optical path of the reflected light incident on the entrance port plate member 20 intersects, the optical path of the emitted reflected light coincides with the optical path of the laser light. That is, as shown in FIG. 4, when the thickness of the entrance port plate member 20 is T2, the reflected light is emitted from the point S, and the optical path of the reflected light coincides with the optical path of the laser light. Hereinafter, a method for calculating the thickness T2 of the entrance port plate member 20 in which the optical path of the reflected light is not shifted from the optical path of the laser light will be described.
図4に示すように反射光の入射口板状部材20への入射点を原点(0,0,0)にし、入射口板状部材20の外面の垂直方向をX軸、入射口板状部材20の外面と走査平面とが交差するラインの方向をY軸、走査平面(図4の紙面)に垂直な方向をZ軸とした座標軸を考える。そして、反射光の入射口板状部材20に入射する前の光路に平行な単位ベクトルVrを考えると、この単位ベクトルVrのベクトル成分(a,b,c)は、レーザ光の点Lにおける入射角Θ(出射口板状部材18から出射するときの屈折角Θ)と、反射光の走査平面(図4の紙面であり、X−Y平面)に対する角度βとを用いて、以下の数1で表すことができる。
(数1)
(a,b,c)=(cosβ・cosΘ,cosβ・sinΘ,−sinβ)
また、反射光の原点(0,0,0)における入射角Θkは、入射口板状部材20に入射する前の反射光の光路と入射口板状部材20の外面の法線とが成す角度であるので、これは、単位ベクトルVrと単位ベクトル(1,0,0)とが成す角度であり、ベクトルの内積の式を用いて、以下の数2で表すことができる。
(数2)
Θk = cos−1(cosβ・cosΘ)
また、反射光の原点(0,0,0)における屈折角αkは、入射口板状部材20の屈折率nと入射角Θkを用いて以下の数3で表すことができる。
(数3)
αk = sin−1(sinΘk/n)
As shown in FIG. 4, the incident point of the reflected light to the entrance plate member 20 is the origin (0, 0, 0), the vertical direction of the outer surface of the entrance plate member 20 is the X axis, and the entrance plate member. Let us consider a coordinate axis in which the direction of the line where the outer surface of 20 intersects with the scanning plane is the Y axis, and the direction perpendicular to the scanning plane (paper surface in FIG. 4) is the Z axis. Considering the unit vector Vr parallel to the optical path before the reflected light is incident on the incident aperture plate member 20, the vector components (a, b, c) of the unit vector Vr are incident at the point L of the laser light. Using the angle Θ (the refraction angle Θ when exiting from the exit port plate member 18) and the angle β with respect to the scanning plane of the reflected light (the paper plane of FIG. 4 and the XY plane), Can be expressed as
(Equation 1)
(A, b, c) = (cosβ · cosΘ, cosβ · sinΘ, −sinβ)
The incident angle Θk at the origin (0, 0, 0) of the reflected light is an angle formed by the optical path of the reflected light before entering the entrance port plate member 20 and the normal of the outer surface of the entrance port plate member 20. Therefore, this is an angle formed by the unit vector Vr and the unit vector (1, 0, 0), and can be expressed by the following formula 2 using an equation of the inner product of the vectors.
(Equation 2)
Θk = cos −1 (cos β · cos Θ)
Further, the refraction angle αk at the origin (0, 0, 0) of the reflected light can be expressed by the following Equation 3 using the refractive index n and the incident angle Θk of the entrance port plate member 20.
(Equation 3)
αk = sin −1 (sin Θk / n)
次に、反射光の入射口板状部材20に入射した後の光路に平行な単位ベクトルViを考え、この単位ベクトルViのベクトル成分を(x,y,z)とすると、単位ベクトルViは大きさ1であるので、まず以下の数4が成り立つ。
(数4)
x2+y2+z2 = 1
そして、単位ベクトルVrと単位ベクトルViが成す角度は、入射角Θkから屈折角αkを減算した角度であるので、ベクトルの内積の式から、以下の数5が成り立つ。
(数5)
a・x+b・y+c・z = cos(Θk−αk)
また、単位ベクトルVrと単位ベクトルViの外積のベクトルは、入射口板状部材20の外面に平行なベクトルになるので、ベクトルのX成分は0になり、以下の数6が成り立つ。
(数6)
c・y−b・z = 0
数4乃至数6において、単位ベクトルVrのベクトル成分(a,b,c)、入射角Θk及び屈折角αkは数1乃至数3で得られるので、未知数は単位ベクトルViのベクトル成分(x,y,z)のみである。よって、数4乃至数6の連立方程式を解くことで、単位ベクトルViのベクトル成分(x,y,z)を求めることができる。
Next, a unit vector Vi parallel to the optical path after the reflected light is incident on the incident-port plate member 20 is considered. If the vector component of the unit vector Vi is (x, y, z), the unit vector Vi is large. Therefore, the following equation 4 is established.
(Equation 4)
x 2 + y 2 + z 2 = 1
Since the angle formed by the unit vector Vr and the unit vector Vi is an angle obtained by subtracting the refraction angle αk from the incident angle Θk, the following equation 5 is established from the vector inner product equation.
(Equation 5)
a * x + b * y + c * z = cos (Θk−αk)
Further, since the vector of the outer product of the unit vector Vr and the unit vector Vi is a vector parallel to the outer surface of the entrance port plate-like member 20, the X component of the vector is 0, and the following Expression 6 is established.
(Equation 6)
c · y−b · z = 0
In Equations 4 to 6, since the vector component (a, b, c), the incident angle Θk, and the refraction angle αk of the unit vector Vr are obtained in Equations 1 to 3, the unknown is the vector component (x, y, z) only. Therefore, the vector components (x, y, z) of the unit vector Vi can be obtained by solving the simultaneous equations of Equations 4 to 6.
ここまでの説明で、レーザ光の点Lにおける入射角Θ(出射口板状部材18から出射するときの屈折角Θ)と、反射光の走査平面(図4の紙面であり、X−Y平面)に対する角度βと入射口板状部材20の屈折率nから、単位ベクトルViのベクトル成分(x,y,z)を求めることができることがわかる。次に、X−Y平面(図4の紙面)において原点を通り、単位ベクトルViに平行な直線を考えると、この直線の式は以下の数7である。
(数7)
Y = (y/x)・X
そして、出射口板状部材18に入射する前のレーザ光の光路のX−Y平面における直線の式は、角度Θ、角度α、出射口板状部材18の厚さT1を用いて以下の数8で表すことができる。
(数8)
Y = tanΘ・X − T1・(tanΘ−tanα)
数7と数8の連立方程式を解いてXとYを求めると、これは図4の点Sの座標であり、点SとY軸(入射口板状部材20の外面)との間の距離が、反射光の光路がレーザ光の光路に対してずれない入射口板状部材20の厚さT2である。そして、点SとY軸との間の距離は点SのX座標であるので、数7と数8の連立方程式を解いてXを求めれば、それは、反射光の光路がずれない入射口板状部材20の厚さT2である。よって、厚さT2は、数7と数8からXを求め、XをT2にした以下の数9で求めることができる。
(数9)
T2 = T1・[(tanΘ−tanα)/{tanΘ−(y/x)}]
そして、角度αはレーザ光の点Lにおける屈折角であり出射口板状部材18から出射するときの入射角であるが、これは角度Θと出射口板状部材18の屈折率nから以下の数10で求めることができる。
(数10)
α = sin−1(sinΘ/n)
In the description so far, the incident angle Θ (the refraction angle Θ when emitted from the exit port plate member 18) at the point L of the laser beam and the scanning plane of the reflected light (the paper plane of FIG. 4, the XY plane). It can be seen that the vector component (x, y, z) of the unit vector Vi can be obtained from the angle β with respect to) and the refractive index n of the entrance plate member 20. Next, considering a straight line that passes through the origin and is parallel to the unit vector Vi in the XY plane (the paper surface of FIG. 4), the formula of this straight line is:
(Equation 7)
Y = (y / x) · X
And the equation of the straight line in the XY plane of the optical path of the laser beam before entering the exit port plate member 18 is expressed as follows using the angle Θ, the angle α, and the thickness T1 of the exit port plate member 18. 8 can be represented.
(Equation 8)
Y = tan Θ · X − T1 · (tan Θ−tan α)
When X and Y are obtained by solving the simultaneous equations of Equations 7 and 8, this is the coordinates of the point S in FIG. 4, and the distance between the point S and the Y axis (the outer surface of the entrance plate member 20). Is the thickness T2 of the entrance-portion plate-like member 20 in which the optical path of the reflected light is not shifted from the optical path of the laser light. Since the distance between the point S and the Y axis is the X coordinate of the point S, if X is obtained by solving the simultaneous equations of Equations 7 and 8, the incident aperture plate does not shift the optical path of the reflected light. It is the thickness T2 of the shaped member 20. Therefore, the thickness T2 can be obtained from the following equation 9 in which X is obtained from equations 7 and 8 and X is set to T2.
(Equation 9)
T2 = T1. [(Tan Θ-tan α) / {tan Θ- (y / x)}]
The angle α is a refraction angle at the point L of the laser beam and is an incident angle when the laser beam is emitted from the exit port plate member 18, which is calculated from the angle Θ and the refractive index n of the exit port plate member 18 as follows. It can be obtained from Equation 10.
(Equation 10)
α = sin −1 (sin Θ / n)
ここまでの説明により、レーザ光の出射口板状部材18への入射角Θ、反射光の走査平面に対する角度β、出射口板状部材18の厚さT1、および出射口板状部材18と入射口板状部材20の屈折率nから、反射光の光路がずれない入射口板状部材20の厚さT2を求めることができることがわかる。例として、入射角Θ=35°、角度β=23°、厚さT1=1.5mm、屈折率n=1.5275の場合で計算すると、反射光の光路がずれない入射口板状部材20の厚さT2=1.395mmとなる。 By the description so far, the incident angle Θ of the laser beam to the exit port plate member 18, the angle β of the reflected light with respect to the scanning plane, the thickness T 1 of the exit port plate member 18, and the exit port plate member 18 and the incident It can be seen from the refractive index n of the mouth plate-like member 20 that the thickness T2 of the incident mouth plate-like member 20 at which the optical path of the reflected light is not shifted can be obtained. As an example, when the incident angle Θ = 35 °, the angle β = 23 °, the thickness T1 = 1.5 mm, and the refractive index n = 1.5275, the incident aperture plate member 20 that does not shift the optical path of the reflected light. Thickness T2 = 1.395 mm.
なお、図4を用いて反射光の光路がずれない入射口板状部材20の厚さT2の計算方法について別の表現をすると、以下のようになる。まず、出射口板状部材18に入射する前の走査したレーザ光の光路を延長させたラインと、入射口板状部材20に入射した反射光の光路を走査したレーザ光の走査平面に投影した光路とが交差する点Sを求める。次に交点Sから出射口板状部材18の外面までの距離を求め、この距離を入射口板状部材20の厚さT2とする。 It should be noted that another expression for the calculation method of the thickness T2 of the entrance-portion plate member 20 in which the optical path of the reflected light is not shifted is as follows using FIG. First, a line obtained by extending the optical path of the scanned laser light before entering the exit port plate member 18 and the optical path of the reflected light incident on the entrance port plate member 20 are projected onto the scanning plane of the scanned laser light. A point S where the optical path intersects is obtained. Next, the distance from the intersection S to the outer surface of the exit port plate member 18 is obtained, and this distance is defined as the thickness T 2 of the entrance port plate member 20.
本第1実施形態ではレーザ光の走査角度を出射口板状部材18の法線方向とレーザ光が成す角度で表す。後述する第2実施形態以降の実施形態でも同様である。すなわち、以下、走査角度は入射角Θに等しいとして説明する。走査されたレーザ光は、走査角度が変化するので出射口板状部材18への入射角Θも変化する。よって、入射角Θをある値に設定して反射光の光路がずれない入射口板状部材20の厚さT2を求めても、他の入射角Θでは厚さT2は別の値になる。しかし、走査角度Θの範囲の最大値付近の値(最大の入射角Θ付近の値)を用いて厚さT2を計算すれば、走査角度Θの範囲全般にわたって、反射光の光路のレーザ光の光路に対するずれを無視できるほど小さくすることができる。以下に、反射光の光路のレーザ光の光路に対するずれを求める計算式を説明し、入射口板状部材20の厚さが出射口板状部材18と同じT1である場合と、反射光の光路がずれない厚さT2である場合で、走査角度Θの範囲全般における反射光の光路のレーザ光の光路に対するずれを示す。 In the first embodiment, the scanning angle of the laser beam is represented by an angle formed by the laser beam and the normal direction of the emission port plate member 18. The same applies to the second and subsequent embodiments to be described later. That is, in the following description, it is assumed that the scanning angle is equal to the incident angle Θ. Since the scanning angle of the scanned laser beam changes, the incident angle Θ to the exit port plate member 18 also changes. Therefore, even if the incident angle Θ is set to a certain value and the thickness T2 of the incident port plate member 20 in which the optical path of the reflected light is not shifted is obtained, the thickness T2 becomes another value at other incident angles Θ. However, if the thickness T2 is calculated using a value in the vicinity of the maximum value in the range of the scanning angle Θ (a value in the vicinity of the maximum incident angle Θ), the laser light in the optical path of the reflected light is reflected over the entire range of the scanning angle Θ. The deviation from the optical path can be made small enough to be ignored. In the following, a calculation formula for obtaining the deviation of the optical path of the reflected light from the optical path of the laser light will be described, and the case where the thickness of the entrance plate 20 is the same as that of the exit plate 18 and the optical path of the reflected light In the case where the thickness T2 does not deviate, the deviation of the optical path of the reflected light from the optical path of the laser light in the entire range of the scanning angle Θ is shown.
入射口板状部材20の厚さが出射口板状部材18と同じT1の場合、反射光の光路のレーザ光の光路に対するずれDevは、図4における点Lと点Rの間の距離にcosΘを乗算した値であり、これは数7と数8のXにT1を代入したときのYの値の差にcosΘを乗算した値であるので、以下の数11で表すことができる。
(数11)
Dev = cosΘ・T1・{tanα−(y/x)}
また、入射口板状部材20の厚さをT2にした場合、反射光の光路のレーザ光の光路に対するずれDevは、図4においてY軸からの距離がT2であるY軸に平行なラインが、レーザ光の光路の延長線のラインと交差する点、および反射光の光路と交差する点の2つの点間の距離にcosΘを乗算した値である。これは、数7と数8のXにT2を代入したときのYの値の差にcosΘを乗算した値であるので、以下の数12で表すことができる。
(数12)
Dev = cosΘ・{T1・tanα−(T1−T2)・tanΘ−T2・(y/x)}
When the thickness of the entrance port plate member 20 is the same as that of the exit port plate member 18, the deviation Dev of the optical path of the reflected light with respect to the optical path of the laser beam is equal to the distance between the point L and the point R in FIG. This is a value obtained by multiplying the difference between the Y values when substituting T1 into X in Equations 7 and 8, and can be expressed by Equation 11 below.
(Equation 11)
Dev = cosΘ · T1 · {tan α− (y / x)}
Further, when the thickness of the entrance plate member 20 is T2, the deviation Dev of the optical path of the reflected light with respect to the optical path of the laser light is a line parallel to the Y axis whose distance from the Y axis is T2 in FIG. , A value obtained by multiplying the distance between two points, the point that intersects the line of the extension of the optical path of the laser light and the point that intersects the optical path of the reflected light, by cos Θ. This is a value obtained by multiplying the difference between the values of Y when T2 is substituted for X in Equations 7 and 8, and can be expressed by Equation 12 below.
(Equation 12)
Dev = cosΘ · {T1 · tan α− (T1−T2) · tanΘ−T2 · (y / x)}
図5(A)は、例として、走査角度Θの範囲を0〜35°、角度β=23°、厚さT1=1.5mm、厚さT2=1.395mm、屈折率n=1.5275とし、走査角度Θに対する反射光の光路のレーザ光の光路に対するずれを計算してグラフにしたものである。点線は、入射口板状部材20の厚さが出射口板状部材18と同じT1の場合であり、数11により計算したずれである。実線は、入射口板状部材20の厚さがT2=1.395mmの場合であり、数12により計算したずれである。厚さT2=1.395mmは、上述したように、角度β、厚さT1および屈折率nが上記の値で走査角度Θ(入射角Θ)=35°のとき、反射光の光路がずれない厚さである。 In FIG. 5A, for example, the range of the scanning angle Θ is 0 to 35 °, the angle β = 23 °, the thickness T1 = 1.5 mm, the thickness T2 = 1.395 mm, and the refractive index n = 1.5275. And the deviation of the optical path of the reflected light with respect to the scanning angle Θ with respect to the optical path of the laser light is calculated and graphed. A dotted line is a case where the thickness of the entrance port plate-like member 20 is T1 which is the same as that of the exit port plate-like member 18, and is a deviation calculated by Equation 11. The solid line is the case where the thickness of the entrance-portion plate-like member 20 is T2 = 1.395 mm, and is a deviation calculated by Equation 12. The thickness T2 = 1.395 mm, as described above, when the angle β, the thickness T1, and the refractive index n are the above values and the scanning angle Θ (incident angle Θ) = 35 °, the optical path of the reflected light is not shifted. Is the thickness.
図5(A)を見ると分かるように、入射口板状部材20の厚さをT2=1.395mmにすると走査角度Θ(入射角Θ)が35°のとき、ずれは0であり、それ以外の走査角度Θ(入射角Θ)のときは0以外の値になるが、入射口板状部材20の厚さが出射口板状部材18と同じT1の場合に比べ、ずれは極めて小さい。よって、入射口板状部材20の厚さを、走査角度の範囲の最大値付近の値(最大の入射角付近の値)を用いて計算した厚さT2で設定すれば、走査角度の範囲全般において反射光の光路のレーザ光の光路に対するずれを無視できるほど小さくすることができる。 As can be seen from FIG. 5A, when the thickness of the entrance plate member 20 is T2 = 1.395 mm, when the scanning angle Θ (incident angle Θ) is 35 °, the deviation is 0, The scanning angle Θ (incidence angle Θ) other than is a value other than 0, but the deviation is extremely small as compared with the case where the thickness of the entrance port plate member 20 is the same as that of the exit port plate member 18. Therefore, if the thickness of the entrance port plate member 20 is set to a thickness T2 calculated using a value near the maximum value of the scanning angle range (a value near the maximum incident angle), the entire scanning angle range is set. In FIG. 5, the deviation of the optical path of the reflected light from the optical path of the laser light can be made small enough to be ignored.
なお、厚さT2は、レーザ光の入射角Θとして走査角度Θの範囲の最大値付近の値(最大の入射角Θ付近の値)を用いて計算した値を用いるのが好ましいが、そうでないレーザ光の入射角Θを用いて計算した値を用いても、入射口板状部材20の厚さが出射口板状部材18と同じT1の場合に比べてずれを小さくすることができる。例として、走査角度Θ(入射角Θ)=1°、角度β=23°、厚さT1=1.5mm、屈折率n=1.5275の場合で計算すると、反射光の光路がずれない入射口板状部材20の厚さT2=1.375mmとなる。そして、入射口板状部材20の厚さをT2=1.375mmにして同様のグラフを作成すると、図5(B)のようになり、走査角度Θの範囲の最大値付近でずれは大きくなるが、入射口板状部材20の厚さが出射口板状部材18と同じT1の場合に比べれば、ずれはかなり小さくすることができる。 The thickness T2 is preferably a value calculated using a value in the vicinity of the maximum value in the range of the scanning angle Θ (a value in the vicinity of the maximum incident angle Θ) as the incident angle Θ of the laser beam, but it is not so. Even if the value calculated using the incident angle Θ of the laser beam is used, the deviation can be reduced as compared with the case where the thickness of the entrance port plate member 20 is the same as that of the exit port plate member 18. As an example, when the scanning angle Θ (incident angle Θ) = 1 °, the angle β = 23 °, the thickness T1 = 1.5 mm, and the refractive index n = 1.5275 are calculated, the incident light path does not deviate. The thickness T2 of the mouth plate member 20 is 1.375 mm. Then, when a similar graph is created by setting the thickness of the entrance plate member 20 to T2 = 1.375 mm, as shown in FIG. 5B, the deviation becomes large near the maximum value in the range of the scanning angle Θ. However, as compared with the case where the thickness of the entrance port plate-like member 20 is the same as that of the exit port plate-like member 18, the deviation can be considerably reduced.
また、反射光の走査平面に対する角度βは、3次元形状測定装置に対する測定対象物OBの位置により変化するため、角度βをある値に設定して反射光の光路がずれない入射口板状部材20の厚さT2を求めても、他の角度βでは厚さT2は別の値になる。しかし、3次元形状測定装置の測定可能範囲の中心付近の角度βは、結像レンズ22の光軸と一致する反射光の光路の角度βであり、この角度βを用いて厚さT2を計算すれば、3次元形状測定装置の測定可能範囲全般にわたって、反射光の光路のレーザ光の光路に対するずれを無視できるほど小さくすることができる。この場合の反射光の光路のレーザ光の光路に対するずれを求める計算式は、上記数11と数12と同じであるので、走査角度Θ(入射角Θ)、厚さT1および屈折率nを定め、角度βの値を振れば、走査角度Θの場合と同様のグラフを作成することができる。 Further, since the angle β of the reflected light with respect to the scanning plane changes depending on the position of the measurement object OB with respect to the three-dimensional shape measuring apparatus, the angle β is set to a certain value, and the incident aperture plate-like member that does not shift the optical path of the reflected light. Even if the thickness T2 of 20 is obtained, the thickness T2 takes another value at other angles β. However, the angle β near the center of the measurable range of the three-dimensional shape measuring apparatus is the angle β of the optical path of the reflected light that coincides with the optical axis of the imaging lens 22, and the thickness T2 is calculated using this angle β. In this case, the deviation of the optical path of the reflected light with respect to the optical path of the laser light can be made small over the entire measurable range of the three-dimensional shape measuring apparatus. In this case, the calculation formula for obtaining the deviation of the optical path of the reflected light with respect to the optical path of the laser beam is the same as the above formulas 11 and 12, and therefore, the scanning angle Θ (incident angle Θ), the thickness T1 and the refractive index n are determined. If the value of the angle β is changed, a graph similar to the case of the scanning angle Θ can be created.
図6は、例として、走査角度Θ(入射角Θ)=35°、厚さT1=1.5mm、厚さT2=1.395mm、屈折率n=1.5275とし、角度βに対する反射光の光路のレーザ光の光路に対するずれを計算してグラフにしたものである。点線は、入射口板状部材20の厚さが出射口板状部材18と同じT1の場合であり、数11により計算したずれであり、実線は、入射口板状部材20の厚さがT2=1.395mmの場合であり、数12により計算したずれである。厚さT2=1.395mmは、上述したように、走査角度Θ(入射角Θ)、厚さT1および屈折率nが上記の値で角度β=23°のとき、反射光の光路がずれない厚さである。 FIG. 6 shows an example in which the scanning angle Θ (incident angle Θ) = 35 °, the thickness T1 = 1.5 mm, the thickness T2 = 1.395 mm, the refractive index n = 1.5275, and the reflected light with respect to the angle β. The deviation of the optical path relative to the optical path of the laser beam is calculated and graphed. A dotted line is a case where the thickness of the entrance port plate member 20 is the same as T1 of the exit port plate member 18, and is a deviation calculated by Equation 11, and a solid line is the thickness of the entrance port plate member 20 is T2. = 1.395 mm, which is the deviation calculated by Equation 12. As described above, when the thickness T2 = 1.395 mm, when the scanning angle Θ (incident angle Θ), the thickness T1, and the refractive index n are the above values and the angle β = 23 °, the optical path of the reflected light does not shift. Is the thickness.
図6を見ると分かるように、入射口板状部材20の厚さをT2=1.395mmにすると角度βが23°のとき、ずれは0であり、角度βが23°からずれるほどずれは大きくなるが、入射口板状部材20の厚さが出射口板状部材18と同じT1の場合に比べてずれは小さい。よって、入射口板状部材20の厚さを、結像レンズ22の光軸と一致する反射光の光路の角度βの値を用いて計算した厚さT2で設定すれば、3次元形状測定装置の測定可能範囲全般にわたって、反射光の光路のレーザ光の光路に対するずれを無視できるほど小さくすることができる。 As can be seen from FIG. 6, when the thickness of the entrance plate member 20 is T2 = 1.395 mm, the deviation is 0 when the angle β is 23 °, and the deviation is so large that the angle β deviates from 23 °. Although larger, the deviation is smaller than that in the case where the thickness of the entrance port plate member 20 is the same as that of the exit port plate member T1. Therefore, if the thickness of the entrance aperture plate member 20 is set to the thickness T2 calculated using the value of the angle β of the optical path of the reflected light coincident with the optical axis of the imaging lens 22, the three-dimensional shape measuring apparatus In the entire measurable range, the deviation of the optical path of the reflected light from the optical path of the laser light can be made small enough to be ignored.
なお、これまでの説明では、出射口板状部材18の外面と入射口板状部材20の外面とは、走査平面に投影すると同じラインになる、すなわち、出射口板状部材18の外面と入射口板状部材20の外面とは、同一平面内に含まれるとして説明した。しかし、この条件は、反射光の光路がずれない入射口板状部材20の厚さT2、および反射光の光路のレーザ光の光路に対するずれDevを計算するための便宜上のものであり、実際の3次元形状測定装置の入射口板状部材20の外面は、出射口板状部材18の外面と平行になっていれば位置は制限されない。ずなわち、図4において、入射口板状部材20の外面が上下方向に移動した位置であっても、上述した計算結果は変わらない。このことは、図3に示すように透光性板状部材1の位置が変化しても、姿勢が変化しなければ、出射した光の光路は変化しないことから理解できる。 In the above description, the outer surface of the exit port plate member 18 and the outer surface of the entrance port plate member 20 are the same line when projected onto the scanning plane, that is, the outer surface of the exit port plate member 18 is incident. The outer surface of the mouth plate-like member 20 has been described as being included in the same plane. However, this condition is for convenience in calculating the thickness T2 of the entrance plate member 20 where the optical path of the reflected light does not shift and the deviation Dev of the optical path of the reflected light with respect to the optical path of the laser light. The position of the outer surface of the entrance port plate member 20 of the three-dimensional shape measuring apparatus is not limited as long as it is parallel to the outer surface of the exit port plate member 18. That is, in FIG. 4, even if the outer surface of the entrance port plate-like member 20 is at a position moved in the vertical direction, the calculation result described above does not change. This can be understood from the fact that the optical path of the emitted light does not change if the posture does not change even if the position of the translucent plate-like member 1 changes as shown in FIG.
上記説明からも理解できるように、上記第1実施形態においては、走査機器14,16を用いて走査したレーザ光を出射口板状部材18を介して測定対象物OBに照射し、測定対象物OBで発生した散乱光の一部である反射光を、入射口板状部材20、走査機器14,16および結像レンズ22を介してラインセンサ24で受光し、ラインセンサ24における受光位置を用いて測定対象物OBの3次元形状を測定する3次元形状測定装置において、入射口板状部材20は出射口板状部材18と平行であり、入射口板状部材20の厚さは、出射口板状部材18の外面と入射口板状部材20の外面が同一平面内に含まれ、入射口板状部材20に入射する反射光の光路は、結像レンズ22の光軸と一致しており、入射する反射光の入射位置と入射方向の逆方向を走査したレーザ光の走査平面に投影した位置と方向が、走査したレーザ光の出射口板状部材18から出射する位置と方向と一致するとしたときの、走査したレーザ光の出射口板状部材18に対する入射角が0以外の値であるときの、出射口板状部材18に入射する前の走査したレーザ光の光路を延長させたラインと、入射口板状部材20に入射した反射光の光路を走査したレーザ光の走査平面に投影した光路と、が交差する点Sから出射口板状部材18の外面までの距離で設定されているようにしている。 As can be understood from the above description, in the first embodiment, the measurement object OB is irradiated with the laser beam scanned using the scanning devices 14 and 16 via the exit port plate member 18, and the measurement object is obtained. Reflected light, which is part of the scattered light generated by OB, is received by the line sensor 24 through the entrance port plate member 20, the scanning devices 14, 16 and the imaging lens 22, and the light receiving position in the line sensor 24 is used. In the three-dimensional shape measuring apparatus for measuring the three-dimensional shape of the measurement object OB, the entrance port plate member 20 is parallel to the exit port plate member 18, and the thickness of the entrance port plate member 20 is determined by the exit port. The outer surface of the plate member 18 and the outer surface of the entrance port plate member 20 are included in the same plane, and the optical path of the reflected light incident on the entrance port plate member 20 coincides with the optical axis of the imaging lens 22. , Incident position and incident method of incident reflected light The exit of the scanned laser beam when the position and direction projected on the scanning plane of the laser beam scanned in the opposite direction coincides with the position and direction of the scanned laser beam exiting from the plate member 18 When the incident angle with respect to the plate-like member 18 is a value other than 0, the light is incident on the incident-plate plate-like member 20 and the line extending the optical path of the scanned laser light before entering the exit-portion plate-like member 18. The distance is set from the point S where the optical path projected on the scanning plane of the laser beam that has scanned the optical path of the reflected light to the outer surface of the exit port plate member 18.
これによれば、入射口板状部材18の厚さを適切な値に設定するという極めて簡単な方法により、走査平面に投影した反射光の光路のレーザ光の光路からのずれを、無視できるレベルにまで小さくすることができる。 According to this, the level at which the deviation of the optical path of the reflected light projected on the scanning plane from the optical path of the laser beam can be ignored by an extremely simple method of setting the thickness of the entrance plate member 18 to an appropriate value. Can be made as small as possible.
なお、上記第1実施形態においては、出射口板状部材18と入射口板状部材20の屈折率nは等しいとした。すなわち、出射口板状部材18と入射口板状部材20は、同じ材質のものとした。しかし、出射口板状部材18と入射口板状部材20の材質を変え、屈折率nが異なる値であったとしても、上記第1実施形態で示した、反射光の光路がずれない入射口板状部材20の厚さT2、および反射光の光路のレーザ光の光路に対するずれDevの計算方法は変わらない。この場合は、出射口板状部材18の屈折率をn1とし、入射口板状部材20の屈折率をn2とすると、数3の屈折率nに屈折率n2を使用し、数10の屈折率nに屈折率n1を使用すればよい。 In the first embodiment, the refractive indexes n of the exit port plate member 18 and the entrance port plate member 20 are equal. That is, the exit port plate member 18 and the entrance port plate member 20 are made of the same material. However, even if the material of the exit aperture plate-like member 18 and the entrance aperture plate-like member 20 is changed and the refractive index n is a different value, the entrance aperture where the optical path of the reflected light does not shift as shown in the first embodiment. The calculation method of the thickness Dev of the plate-like member 20 and the deviation Dev of the optical path of the reflected light with respect to the optical path of the laser light remains the same. In this case, assuming that the refractive index of the exit port plate member 18 is n1 and the refractive index of the entrance port plate member 20 is n2, the refractive index n2 is used for the refractive index n of Equation 3, and the refractive index of Equation 10 is used. A refractive index n1 may be used for n.
(第2実施形態)
上記第1実施形態は、入射口板状部材20の厚さを適切な値に設定することで、走査平面に投影した反射光の光路のレーザ光の光路からのずれをなくした。しかし、これに替えて、出射口板状部材18と入射口板状部材20を同一厚さにして材質を異ならせ、双方の屈折率の関係を適切な関係にすることでも上記第1実施形態と同じ効果を得ることができる。本第2実施形態は、出射口板状部材18と入射口板状部材20の屈折率の関係を、反射光の光路のレーザ光の光路からのずれをなくす適切な関係にする形態である。以下、反射光の光路のレーザ光の光路からのずれをなくす出射口板状部材18と入射口板状部材20の屈折率の関係を求める方法を説明する。
(Second Embodiment)
In the first embodiment, the thickness of the entrance port plate-like member 20 is set to an appropriate value, thereby eliminating the deviation of the optical path of the reflected light projected on the scanning plane from the optical path of the laser light. However, instead of this, the first embodiment is also possible by making the exit aperture plate-like member 18 and the entrance aperture plate-like member 20 the same thickness, making the materials different, and making the relationship of the refractive indexes of both the appropriate relationships. The same effect can be obtained. In the second embodiment, the relationship between the refractive indexes of the exit port plate member 18 and the entrance port plate member 20 is an appropriate relationship that eliminates the deviation of the optical path of the reflected light from the optical path of the laser light. Hereinafter, a method of obtaining the relationship between the refractive indexes of the exit port plate member 18 and the entrance port plate member 20 that eliminates the deviation of the optical path of the reflected light from the optical path of the laser light will be described.
上記第1実施形態で説明したように、入射口板状部材20の厚さが出射口板状部材18と同じ場合、反射光の光路のレーザ光の光路に対するずれDevは、図4における点Lと点Rの間の距離にcosΘを乗算した値であり、数11で表すことができる。数11において入射口板状部材20の厚さと出射口板状部材18の厚さはT1で既知であり、レーザ光の走査角度Θ(出射口板状部材18への入射角Θ)を設定すると、未知数は屈折角αと単位ベクトルViのx,y成分の比、(y/x)である。屈折角αは数10を見るとわかるように、入射角Θと出射口板状部材18の屈折率n(以下、屈折率n1という)から求めることができる。また、単位ベクトルViのx,y成分は、数1乃至数6から、レーザ光の走査角度Θ(入射角Θ)、反射光の走査平面(図4の紙面であり、X−Y平面)に対する角度β、及び入射口板状部材20の屈折率n(以下、屈折率n2という)から求めることができる。すなわち、レーザ光の走査角度Θ(入射角Θ)、および反射光の走査平面に対する角度βを設定し、出射口板状部材18の屈折率n1を決めると、数11でずれDevが0になる屈折率n2は一義的に決まる。よって、屈折率n1の様々な値においてDevが0になる屈折率n2を求めれば、反射光の光路のレーザ光の光路からのずれをなくす出射口板状部材18と入射口板状部材20の屈折率の関係を求めることができる。 As described in the first embodiment, when the thickness of the entrance port plate-like member 20 is the same as that of the exit port plate-like member 18, the deviation Dev of the optical path of the reflected light with respect to the optical path of the laser light is a point L in FIG. Is a value obtained by multiplying the distance between the point R and the cos Θ, and can be expressed by Equation 11. In Equation 11, the thickness of the entrance plate member 20 and the thickness of the exit plate member 18 are known at T1, and the scanning angle Θ of laser light (incident angle Θ to the exit plate member 18) is set. The unknown is the ratio of the refraction angle α and the x and y components of the unit vector Vi, (y / x). As can be seen from Equation 10, the refraction angle α can be obtained from the incident angle Θ and the refractive index n (hereinafter referred to as the refractive index n1) of the exit port plate member 18. In addition, the x and y components of the unit vector Vi are based on the laser beam scanning angle Θ (incident angle Θ) and the reflected light scanning plane (the paper plane in FIG. 4, the XY plane). It can be determined from the angle β and the refractive index n (hereinafter referred to as the refractive index n2) of the entrance port plate member 20. That is, when the scanning angle Θ (incidence angle Θ) of the laser beam and the angle β of the reflected light with respect to the scanning plane are set and the refractive index n1 of the exit port plate member 18 is determined, the deviation Dev becomes 0 in Equation 11. The refractive index n2 is uniquely determined. Accordingly, if the refractive index n2 at which Dev is 0 at various values of the refractive index n1 is obtained, the exit port plate member 18 and the entrance port plate member 20 that eliminate the deviation of the optical path of the reflected light from the optical path of the laser light are obtained. The refractive index relationship can be obtained.
図7は、例として、走査角度Θ(入射角Θ)=35°、厚さT1=1.5mm、角度β=23°と設定した場合における、反射光の光路のレーザ光の光路からのずれをなくす出射口板状部材18と入射口板状部材20の屈折率の関係である。図7を見るとわかるように、出射口板状部材18と入射口板状部材20の屈折率の関係はほぼ直線の関係にある。 FIG. 7 shows, as an example, the deviation of the optical path of the reflected light from the optical path of the laser light when the scanning angle Θ (incident angle Θ) = 35 °, the thickness T1 = 1.5 mm, and the angle β = 23 °. The relationship between the refractive indexes of the exit port plate member 18 and the entrance port plate member 20 is eliminated. As can be seen from FIG. 7, the relationship between the refractive indexes of the exit port plate member 18 and the entrance port plate member 20 is substantially linear.
本第2実施形態においても、走査角度Θ(入射角Θ)と反射光の走査平面に対する角度βを設定したうえで、反射光の光路のずれをなくす出射口板状部材18と入射口板状部材20の屈折率の関係を求めた。しかし、本第2実施形態においては、走査角度Θ(入射角Θ)が0以外の別の値であれば、屈折率の関係は異ならない。また、反射光の走査平面に対する角度βについては、上記第1実施形態同様、結像レンズ22の光軸と一致する反射光の光路の角度βを用いて屈折率の関係を求めれば、3次元形状測定装置の測定可能範囲全般にわたって、反射光の光路のレーザ光の光路に対するずれを無視できるほど小さくすることができる。 Also in the second embodiment, after setting the scanning angle Θ (incidence angle Θ) and the angle β of the reflected light with respect to the scanning plane, the exit aperture plate member 18 and the incident aperture plate shape that eliminate the deviation of the optical path of the reflected light. The relationship of the refractive index of the member 20 was obtained. However, in the second embodiment, if the scanning angle Θ (incident angle Θ) is another value other than 0, the refractive index relationship does not differ. As for the angle β of the reflected light with respect to the scanning plane, as in the first embodiment, if the refractive index relationship is obtained using the angle β of the optical path of the reflected light that coincides with the optical axis of the imaging lens 22, it is three-dimensional. The deviation of the optical path of the reflected light with respect to the optical path of the laser light can be made small enough to be ignored over the entire measurable range of the shape measuring apparatus.
下記表1は、例として、走査角度Θ(入射角Θ)の範囲を0〜35°、角度β=23°、厚さT1=1.5mm、とし、走査角度Θに対する反射光の光路のレーザ光の光路に対するずれを計算して表にしたものである。「屈折率異」は、出射口板状部材18の屈折率n1=1.6042、入射口板状部材20の屈折率n2=1.5275の場合であり、角度βおよび厚さT1が上記の値で走査角度Θ(入射角Θ)=35°のとき、反射光の光路のずれが発生しない屈折率の関係である。また、「屈折率同」は、出射口板状部材18、入射口板状部材20とも屈折率n=1.5275の場合である。この場合も、反射光の光路のずれは数11により計算することができ、「屈折率同」の値は図5のグラフの点線上の値である。表1を見るとわかるように、出射口板状部材18と入射口板状部材20の屈折率の関係を適切に設定すると、走査角度Θの範囲全般にわたって、反射光の光路のレーザ光の光路に対するずれを無視できるほど小さくすることができる。また、反射光の光路のレーザ光の光路に対するずれを上記実施形態1の場合よりも小さくすることができる。 Table 1 below shows, as an example, the range of the scanning angle Θ (incident angle Θ) of 0 to 35 °, the angle β = 23 °, the thickness T1 = 1.5 mm, and the laser of the optical path of the reflected light with respect to the scanning angle Θ. The deviation of the light from the optical path is calculated and tabulated. “Different refractive index” is the case where the refractive index n1 = 1.6042 of the exit port plate-shaped member 18 and the refractive index n2 = 1.5275 of the incident port plate-shaped member 20, and the angle β and the thickness T1 are as described above. When the value is the scanning angle Θ (incident angle Θ) = 35 °, the refractive index relationship is such that no deviation of the optical path of the reflected light occurs. Further, “the same refractive index” is the case where the refractive index n = 1.5275 for both the exit port plate member 18 and the entrance port plate member 20. Also in this case, the deviation of the optical path of the reflected light can be calculated by Equation 11, and the value of “same refractive index” is the value on the dotted line of the graph of FIG. As can be seen from Table 1, when the relationship between the refractive indexes of the exit port plate member 18 and the entrance port plate member 20 is appropriately set, the optical path of the laser light of the reflected light over the entire range of the scanning angle Θ. The deviation with respect to can be made small enough to be ignored. Further, the deviation of the optical path of the reflected light from the optical path of the laser light can be made smaller than in the case of the first embodiment.
上記表1の「屈折率異」における、出射口板状部材18の屈折率n1と入射口板状部材20の屈折率n2の関係は、走査角度Θ(入射角Θ)=35°のとき反射光の光路のずれが発生しない屈折率の関係として求めたが、走査角度Θ(入射角Θ)が0以外の別の値であっても、同じ関係を求めることができる。これは、上記表1においてそれぞれの走査角度Θにおける反射光の光路のずれが殆ど0であることからも理解できる。 The relationship between the refractive index n1 of the exit aperture plate-like member 18 and the refractive index n2 of the entrance aperture plate-like member 20 in “Refractive index difference” in Table 1 is reflected when the scanning angle Θ (incident angle Θ) = 35 °. Although the refractive index relationship is determined so as not to cause a deviation of the optical path of light, the same relationship can be determined even when the scanning angle Θ (incident angle Θ) is another value other than zero. This can be understood from the fact that the deviation of the optical path of the reflected light at each scanning angle Θ in Table 1 is almost zero.
また、図8は、例として、走査角度Θ(入射角Θ)=35°、厚さT1=1.5mmとし、角度βに対する反射光の光路のレーザ光の光路に対するずれを計算してグラフにしたものである。実線は、出射口板状部材18の屈折率n1=1.6042、入射口板状部材20の屈折率n2=1.5275の場合であり、走査角度Θ(入射角Θ)と厚さT1が上記の値で角度β=23°のとき、反射光の光路のずれが発生しない屈折率の関係である。点線は、出射口板状部材18と入射口板状部材20の屈折率が1.5275で同一の場合であり、図6のグラフの点線と同一である。図8を見ると分かるように、図6とほぼ同一の関係であり、反射光の走査平面に対する角度βが23°からずれるほどずれは大きくなるが、出射口板状部材18と入射口板状部材20の屈折率が同一の場合に比べてずれは小さい。よって、出射口板状部材18と入射口板状部材20の屈折率の関係を、結像レンズ22の光軸と一致する反射光の光路における角度βの値を用いて計算した関係にすれば、3次元形状測定装置の測定可能範囲全般にわたって、反射光の光路のレーザ光の光路に対するずれを無視できるほど小さくすることができる。 Further, FIG. 8 shows, as an example, a graph in which the scanning angle Θ (incident angle Θ) = 35 ° and the thickness T1 = 1.5 mm, and the deviation of the optical path of the reflected light with respect to the angle β from the optical path of the laser light is calculated. It is a thing. The solid line shows the case where the refractive index n1 of the exit port plate member 18 is 1.6042, and the refractive index n2 of the entrance port plate member 20 is 1.5275, and the scanning angle Θ (incident angle Θ) and the thickness T1 are When the angle β is 23 ° with the above values, the relationship of the refractive index is such that the optical path of the reflected light does not shift. A dotted line is a case where the refractive index of the exit port plate-shaped member 18 and the entrance port plate-shaped member 20 is the same at 1.5275, and is the same as the dotted line of the graph of FIG. As can be seen from FIG. 8, the relationship is almost the same as that in FIG. 6, and the deviation increases as the angle β of the reflected light with respect to the scanning plane deviates from 23 °. The deviation is smaller than when the refractive index of the member 20 is the same. Therefore, if the relationship between the refractive indexes of the exit port plate member 18 and the entrance port plate member 20 is calculated using the value of the angle β in the optical path of the reflected light coincident with the optical axis of the imaging lens 22. The shift of the optical path of the reflected light with respect to the optical path of the laser light can be made small enough to be ignored over the entire measurable range of the three-dimensional shape measuring apparatus.
なお、本第2実施形態においても、出射口板状部材18の外面と入射口板状部材20の外面とは、同一平面内に含まれるとした計算式を用いて説明したが、この条件は、出射口板状部材18と入射口板状部材20の屈折率の関係、および反射光の光路のレーザ光の光路に対するずれDevを計算するための便宜上のものである。よって、本第2実施形態においても、実際の3次元形状測定装置の入射口板状部材20の外面は、出射口板状部材18の外面と平行になっていれば位置は制限されない。 In the second embodiment, the outer surface of the exit port plate-like member 18 and the outer surface of the entrance port plate-like member 20 have been described using a calculation formula that is included in the same plane. This is for the convenience of calculating the relationship between the refractive indexes of the exit port plate member 18 and the entrance port plate member 20 and the deviation Dev of the optical path of the reflected light with respect to the optical path of the laser light. Therefore, also in the second embodiment, the position of the outer surface of the entrance port plate member 20 of the actual three-dimensional shape measuring apparatus is not limited as long as it is parallel to the outer surface of the exit port plate member 18.
上記説明からも理解できるように、上記第2実施形態においては、走査機器14,16を用いて走査したレーザ光を出射口板状部材18を介して測定対象物OBに照射し、測定対象物OBで発生した散乱光の一部である反射光を、入射口板状部材20、走査機器14,16および結像レンズ22を介してラインセンサ24で受光し、ラインセンサ24における受光位置を用いて測定対象物OBの3次元形状を測定する3次元形状測定装置において、入射口板状部材20は出射口板状部材18と平行であるとともに厚さが同じであり、出射口板状部材18と入射口板状部材20は、出射口板状部材18と入射口板状部材20の屈折率の関係が、出射口板状部材18の両面と入射口板状部材20の両面が同一平面内に含まれ、入射口板状部材20に入射する反射光の光路は結像レンズ22の光軸と一致しており、入射する反射光の入射位置と入射方向の逆方向を走査したレーザ光の走査平面に投影した位置と方向が、走査したレーザ光の出射口板状部材18から出射する位置と方向と一致するとしたときの、走査したレーザ光の出射口板状部材18に対する入射角が0以外の値であるときの、走査したレーザ光の光路と、反射光の光路を走査したレーザ光の走査平面に投影した光路とが一致する屈折率の関係になるものが選択されているようにしている。 As can be understood from the above description, in the second embodiment, the measurement object OB is irradiated with the laser beam scanned using the scanning devices 14 and 16 via the emission port plate member 18, and the measurement object is obtained. Reflected light, which is part of the scattered light generated by OB, is received by the line sensor 24 through the entrance port plate member 20, the scanning devices 14, 16 and the imaging lens 22, and the light receiving position in the line sensor 24 is used. In the three-dimensional shape measuring apparatus for measuring the three-dimensional shape of the measuring object OB, the entrance port plate member 20 is parallel to the exit port plate member 18 and has the same thickness. The incident port plate member 20 has a refractive index relationship between the output port plate member 18 and the incident port plate member 20 such that both surfaces of the output port plate member 18 and both surfaces of the incident port plate member 20 are in the same plane. Included in the incident aperture plate-like member 20. The optical path of the incident reflected light coincides with the optical axis of the imaging lens 22, and the position and direction projected on the scanning plane of the laser beam scanned in the opposite direction of the incident position of the incident reflected light and the incident direction are scanned. The scanned laser when the incident angle of the scanned laser beam with respect to the emission port plate member 18 is a value other than 0 when it coincides with the position and direction of the emitted laser beam from the emission port plate member 18 The optical path and the optical path projected on the scanning plane of the laser beam that has scanned the optical path of the reflected light are selected so as to have a refractive index relationship.
これによっても、出射口板状部材18と入射口板状部材20の屈折率の関係を適切な関係にするという極めて簡単な方法により、走査平面に投影した反射光の光路のレーザ光の光路からのずれを、無視できるレベルにまで小さくすることができる。 Even in this case, from the optical path of the laser light of the reflected light projected onto the scanning plane, the refractive index relationship between the exit aperture plate-shaped member 18 and the entrance aperture plate-shaped member 20 is made an appropriate relationship. The deviation can be reduced to a negligible level.
(第3実施形態)
上記第1実施形態は、出射口板状部材18と入射口板状部材20が平行である場合において、入射口板状部材20の厚さを適切な値に設定することで、走査平面に投影した反射光の光路のレーザ光の光路からのずれをなくした。しかし、入射口板状部材20が、出射口板状部材18と走査平面が交差するラインに平行な軸周りに所定の角度γだけ回転している(傾いている)場合でも、入射口板状部材20の厚さを適切な値に設定することで、反射光の光路のレーザ光の光路からのずれをなくすことができる。本第3実施形態は、入射口板状部材20が、出射口板状部材18と走査平面が交差するラインに平行な軸周りに所定の角度γだけ傾いている場合において、反射光の光路のレーザ光の光路からのずれをなくす入射口板状部材20の厚さを設定する形態である。
(Third embodiment)
In the first embodiment, when the exit aperture plate-like member 18 and the entrance aperture plate-like member 20 are parallel, the thickness of the entrance aperture plate-like member 20 is set to an appropriate value, and projected onto the scanning plane. The deviation of the reflected light path from the laser light path is eliminated. However, even when the entrance port plate member 20 is rotated (tilted) by a predetermined angle γ around an axis parallel to the line where the exit port plate member 18 and the scanning plane intersect, the entrance port plate shape By setting the thickness of the member 20 to an appropriate value, the deviation of the optical path of the reflected light from the optical path of the laser light can be eliminated. In the third embodiment, when the entrance port plate-like member 20 is inclined by a predetermined angle γ around an axis parallel to the line intersecting the exit aperture plate-like member 18 and the scanning plane, the optical path of the reflected light This is a mode in which the thickness of the entrance port plate member 20 that eliminates the deviation from the optical path of the laser light is set.
図9は、入射口板状部材20が、出射口板状部材18と走査平面が交差するラインに平行な軸周りに、所定の角度γだけ傾いているレーザ走査式3次元形状測定装置において、出射口板状部材18を通過するレーザ光と入射口板状部材20を通過する反射光の光路を走査平面に投影して見た図であり、レーザ光は実線、反射光は点線で示されている。出射口板状部材18の両面は走査平面に対し垂直であるが、入射口板状部材20は走査平面と(90°−γ)の角度を成しているため、走査平面に投影して見た図では出射口板状部材18の両面のラインのみが表示されている。レーザ光は、第1実施形態と同様、出射口板状部材18の点Lへ入射角Θで入射し、屈折角αで屈折して反対側の面に入射角αで入射して屈折角Θで出射する。 FIG. 9 shows a laser scanning three-dimensional shape measuring apparatus in which the entrance port plate member 20 is inclined by a predetermined angle γ around an axis parallel to a line intersecting the exit port plate member 18 and the scanning plane. FIG. 4 is a diagram in which an optical path of laser light passing through the exit port plate member 18 and reflected light passing through the entrance port plate member 20 is projected onto a scanning plane, where the laser light is indicated by a solid line and the reflected light is indicated by a dotted line. ing. Although both sides of the exit port plate member 18 are perpendicular to the scanning plane, the incident port plate member 20 forms an angle of (90 ° −γ) with the scanning plane, and is projected on the scanning plane. In the figure, only the lines on both sides of the exit port plate member 18 are displayed. As in the first embodiment, the laser light is incident on the point L of the exit aperture plate member 18 at the incident angle Θ, refracted at the refraction angle α, and incident on the opposite surface at the incident angle α and the refraction angle Θ. Exit with
反射光が入射口板状部材20に入射する点は、走査平面に投影して見たとき、レーザ光が入射口板状部材20から出射する点とする。これは、反射光の光路のずれをなくす入射口板状部材20の厚さを計算するための便宜上のものである。よって、第1、第2実施形態と同様、入射口板状部材20に入射する反射光は、出射口板状部材18から出射するレーザ光と重なっている。また、第1、第2実施形態と同様、反射光の光路は走査平面に対し角度βを成しており、反射光の方向は図9の紙面に対して角度βを成している。しかし、第3実施形態においては、入射口板状部材20が出射口板状部材18に対して角度γを成しているため、走査平面に投影して見たときの反射光の屈折角は、角度γの大きさによりレーザ光の屈折角αより小さくなる場合と大きくなる場合がある。図9では大きくなる場合で示してあり、入射口板状部材20に入射した反射光は図9の点線の光路を進む。そして、反射光は点線の光路上のどこかの点から出射するが、この出射点は角度γの大きさにより変化するため、計算により求める必要がある。ただし、入射口板状部材20の厚さが出射口板状部材18と同じT1であれば、必ず出射口板状部材18の内面より手前で出射する。入射口板状部材20から出射した反射光は、第1、第2実施形態と同様、走査平面に投影して見るとレーザ光と平行に進むので、反射光の光路のレーザ光の光路からのずれは、出射した反射光の光路が出射口板状部材18の内面と交差する点と点Lの間の距離にcosΘを乗算した値である。 The point at which the reflected light is incident on the incident port plate member 20 is a point at which the laser beam is emitted from the incident port plate member 20 when projected onto the scanning plane. This is for convenience in calculating the thickness of the entrance port plate member 20 that eliminates the deviation of the optical path of the reflected light. Therefore, similarly to the first and second embodiments, the reflected light incident on the entrance port plate member 20 overlaps with the laser light emitted from the exit port plate member 18. As in the first and second embodiments, the optical path of the reflected light forms an angle β with respect to the scanning plane, and the direction of the reflected light forms an angle β with respect to the paper surface of FIG. However, in the third embodiment, since the entrance port plate member 20 forms an angle γ with respect to the exit port plate member 18, the refraction angle of the reflected light when viewed on the scanning plane is Depending on the size of the angle γ, the angle may be smaller or larger than the refraction angle α of the laser beam. FIG. 9 shows a case where it becomes larger, and the reflected light incident on the entrance port plate member 20 travels along the dotted optical path in FIG. The reflected light is emitted from some point on the dotted optical path, and this emission point varies depending on the magnitude of the angle γ, and thus needs to be obtained by calculation. However, if the thickness of the entrance port plate member 20 is the same as that of the exit port plate member 18, the entrance port plate member 20 always emits from the inner surface of the exit port plate member 18. As in the first and second embodiments, the reflected light emitted from the entrance plate member 20 proceeds in parallel with the laser light when projected onto the scanning plane, so that the reflected light from the optical path of the laser light passes through the optical path. The deviation is a value obtained by multiplying the distance between the point where the optical path of the emitted reflected light intersects the inner surface of the exit port plate member 18 and the point L by cos Θ.
図9から分かるように、反射光の入射口板状部材20からの出射点が出射口板状部材18の内面より手前であると、反射光の光路のレーザ光の光路からのずれは発生するが、入射口板状部材20の厚さを出射口板状部材18の厚さT1より大きくし、反射光の出射点を点Sにすると、出射した反射光の光路はレーザ光の光路に一致する。すなわち、反射光の出射点が点Sになるための入射口板状部材20の厚さT2を求め、入射口板状部材20の厚さをT2で設定すれば、反射光の光路はレーザ光の光路に一致する。以下、反射光の光路がレーザ光の光路に対してずれない入射口板状部材20の厚さT2を計算する方法について説明する。 As can be seen from FIG. 9, when the exit point of the reflected light from the entrance port plate member 20 is in front of the inner surface of the exit port plate member 18, the reflected light path is displaced from the laser light path. However, if the thickness of the entrance port plate member 20 is made larger than the thickness T1 of the exit port plate member 18 and the exit point of the reflected light is point S, the optical path of the emitted reflected light matches the optical path of the laser beam. To do. That is, if the thickness T2 of the entrance port plate-like member 20 at which the reflected light exit point becomes the point S is obtained and the thickness of the entrance port plate-like member 20 is set to T2, the optical path of the reflected light is the laser beam. It matches the optical path. Hereinafter, a method for calculating the thickness T2 of the entrance port plate member 20 in which the optical path of the reflected light is not shifted from the optical path of the laser light will be described.
図9に示すように、反射光が入射口板状部材20に入射する点を原点(0,0,0)にし、出射口板状部材18の外面の垂直方向をX軸、出射口板状部材18の外面と走査平面とが交差するラインの方向をY軸、走査平面(図9の紙面)に垂直な方向をZ軸とした座標軸を考える。反射光の入射口板状部材20に入射する前の光路に平行な単位ベクトルVrのベクトル成分は、第1実施形態で示されている数1である。反射光の原点(0,0,0)における入射角Θkは、単位ベクトルVrと入射口板状部材20の外面の法線ベクトルの単位ベクトル(cosγ,0,−sinγ)とが成す角度であり、ベクトルの内積の式を用いて、以下の数13で表すことができる。
(数13)
Θk = cos−1(cosγ・cosβ・cosΘ + sinβ・sinγ)
また、反射光の原点(0,0,0)における屈折角αkは、第1実施形態で示されている数3である。
As shown in FIG. 9, the point at which the reflected light enters the entrance port plate member 20 is the origin (0, 0, 0), the vertical direction of the outer surface of the exit port plate member 18 is the X axis, and the exit port plate shape Consider a coordinate axis in which the direction of the line where the outer surface of the member 18 intersects the scanning plane is the Y axis, and the direction perpendicular to the scanning plane (paper surface in FIG. 9) is the Z axis. The vector component of the unit vector Vr parallel to the optical path before the reflected light enters the incident port plate member 20 is the number 1 shown in the first embodiment. The incident angle Θk at the origin (0, 0, 0) of the reflected light is an angle formed by the unit vector Vr and the unit vector (cos γ, 0, −sin γ) of the normal vector of the outer surface of the entrance port plate member 20. The following equation 13 can be used to express the inner product of the vectors.
(Equation 13)
Θk = cos −1 (cos γ · cos β · cos Θ + sin β · sin γ)
The refraction angle αk at the origin (0, 0, 0) of the reflected light is the number 3 shown in the first embodiment.
次に、反射光の入射口板状部材20に入射した後の光路に平行な単位ベクトルViを考え、この単位ベクトルViのベクトル成分を(x,y,z)とする。ここで、反射光が入射口板状部材20に入射する点を原点(0,0,0)にし、入射口板状部材20の外面の垂直方向をX’軸、入射口板状部材20の外面と走査平面とが交差するラインの方向をY’軸、入射口板状部材20の外面に沿ったY’軸に垂直な方向をZ’軸とした座標軸を考える。すなわち、XYZ座標軸を、Y軸周りにY軸方向に見て右回りに角度γだけ回転させた座標軸である、X’Y’Z’座標軸を考える。単位ベクトルVrのベクトル成分をX’Y’Z’座標軸で表したベクトル成分を(a’,b’,c’)とすると、(a’,b’,c’)は座標変換の式である以下の数14で求めることができる。
そして、X’Y’Z’座標軸で表した単位ベクトルViのベクトル成分を(x’,y’,z’)とすると、第1実施形態で示される数4乃至数6において、a,b,cをa’,b’,c’にし、x,y,zをx’,y’,z’にした式が成り立つ。入射角Θk、屈折角αkおよび単位ベクトルVrのベクトル成分(a’,b’,c’)は求められているので、第1実施形態同様、数4乃至数6からなる連立方程式を解くことで、単位ベクトルViのベクトル成分(x’,y’,z’)を求めることができる。得られた(x’,y’,z’)はX’Y’Z’座標軸で表したベクトル成分であるので、これをXYZ座標軸で表したベクトル成分(x,y,z)にする。これは、数14の逆の座標変換を行えばよく、以下の数15の座標変換の式で計算することができる。
ここまでの説明で、レーザ光の点Lにおける入射角Θ(出射口板状部材18から出射するときの屈折角Θ)と、反射光の走査平面(図9の紙面であり、X−Y平面)に対する角度βと入射口板状部材20の屈折率nと、入射口板状部材20が出射口板状部材18に対して成す角度γから、単位ベクトルViのベクトル成分(x,y,z)を求めることができることがわかる。次に、X−Y平面(図9の紙面)において原点を通り、単位ベクトルViに平行な直線を考えると、この直線の式は、第1実施形態で示される数7である。そして、出射口板状部材18に入射する前のレーザ光の光路のX−Y平面における直線の式は、第1実施形態で示される数8である。数7と数8の連立方程式を解いてXとYを求めためものが、図9の点Sのx,y座標であり、x座標をT2にした式が第1実施形態で示される数9である。ただし、第3実施形態ではx座標イコール厚さT2ではないので、以下の数16のように数9のT2を点Sのx座標であるXsとした式で表す。
(数16)
Xs = T1・[(tanΘ−tanα)/{tanΘ−(y/x)}]
角度αは第1実施形態と同様、レーザ光の点Lにおける屈折角(出射口板状部材18から出射するときの入射角)であり、第1実施形態で示される数10で求めることができる。
In the description so far, the incident angle Θ at the point L of the laser beam (the refraction angle Θ when emitted from the exit port plate member 18) and the reflected light scanning plane (the paper plane of FIG. 9, the XY plane). ), The refractive index n of the entrance port plate member 20, and the angle γ formed by the entrance port plate member 20 with respect to the exit port plate member 18, the vector component (x, y, z) of the unit vector Vi. ) Can be obtained. Next, when considering a straight line that passes through the origin and is parallel to the unit vector Vi in the XY plane (the paper surface of FIG. 9), the formula of this straight line is Equation 7 shown in the first embodiment. And the equation of the straight line in the XY plane of the optical path of the laser beam before entering the exit port plate member 18 is Formula 8 shown in the first embodiment. The equations for solving the simultaneous equations of Equations 7 and 8 to obtain X and Y are the x and y coordinates of the point S in FIG. 9, and the equation in which the x coordinate is T2 is shown in the first embodiment. It is. However, since the x-coordinate equal thickness T2 is not used in the third embodiment, T2 in Expression 9 is expressed by an expression in which Xs as the x-coordinate of the point S is expressed as Expression 16 below.
(Equation 16)
Xs = T1 · [(tan Θ−tan α) / {tan Θ− (y / x)}]
Similarly to the first embodiment, the angle α is a refraction angle at the point L of the laser beam (incident angle when emitted from the exit port plate member 18), and can be obtained by the formula 10 shown in the first embodiment. .
次に点Sのx座標であるXsから入射口板状部材20の厚さT2を計算する方法を説明する。図10は反射光の光路をX−Z平面に投影して見た図である。すなわち、反射光の光路を、走査平面と出射口板状部材18の両面に垂直な面に投影して見た図である。反射光の出射点Pのz座標をZsとすると、原点から点Qまでの距離は、XsにZs・tanγを加算した値であることがわかり、入射口板状部材20の厚さT2は、原点から点Qまでの距離にcosγを乗算した値であることがわかる。よって、入射口板状部材20の厚さT2は、以下の数17で表される。
(数17)
T2 = (Xs+Zs・tanγ)・cosγ
点Sのx座標であるXsは上述した計算で得られている。点Pのz座標であるZsは、単位ベクトルViに平行で原点を通る直線の、x座標がXsのときのz座標として求めることができるので、単位ベクトルViのベクトル成分(x,y,z)を用いて、以下の数18で求めることができる。
(数18)
Zs = (z/x)・Xs
数17と数18から以下の数19が成り立ち、この式で反射光の光路がレーザ光の光路からずれない入射口板状部材20の厚さT2を計算することができる。
(数19)
T2 = Xs・{1+(z/x)・tanγ}・cosγ
Next, a method of calculating the thickness T2 of the entrance port plate member 20 from Xs which is the x coordinate of the point S will be described. FIG. 10 shows the reflected light path projected onto the XZ plane. In other words, the optical path of the reflected light is projected onto a plane perpendicular to both the scanning plane and the exit port plate member 18. Assuming that the z coordinate of the reflected light exit point P is Zs, the distance from the origin to the point Q is found to be a value obtained by adding Zs · tan γ to Xs, and the thickness T2 of the entrance plate member 20 is It can be seen that this is a value obtained by multiplying the distance from the origin to the point Q by cos γ. Therefore, the thickness T2 of the entrance port plate-like member 20 is expressed by the following Expression 17.
(Equation 17)
T2 = (Xs + Zs · tanγ) · cosγ
Xs which is the x coordinate of the point S is obtained by the above-described calculation. Zs, which is the z coordinate of the point P, can be obtained as the z coordinate of the straight line passing through the origin and parallel to the unit vector Vi when the x coordinate is Xs. Therefore, the vector component (x, y, z) of the unit vector Vi ) To obtain the following equation (18).
(Equation 18)
Zs = (z / x) · Xs
The following Expression 19 is established from Expression 17 and Expression 18, and the thickness T2 of the entrance plate member 20 in which the optical path of the reflected light does not deviate from the optical path of the laser light can be calculated by this expression.
(Equation 19)
T2 = Xs · {1+ (z / x) · tan γ} · cos γ
ここまでの説明で、レーザ光の出射口板状部材18への入射角Θ、反射光の走査平面に対する角度β、出射口板状部材18の厚さT1、および出射口板状部材18と入射口板状部材20の屈折率n、入射口板状部材20が出射口板状部材18に対して成す角度γから、反射光の光路がずれない入射口板状部材20の厚さT2を求めることができることがわかる。例として、入射角Θ=35°、角度β=23°、厚さT1=1.5mm、屈折率n=1.5275、角度γ=26°の場合で計算すると、反射光の光路がずれない入射口板状部材20の厚さT2=1.725mmとなる。 In the description so far, the incident angle Θ of the laser beam to the exit port plate member 18, the angle β of the reflected light with respect to the scanning plane, the thickness T 1 of the exit port plate member 18, and the exit port plate member 18 and the incident From the refractive index n of the mouth plate member 20 and the angle γ formed by the entrance port plate member 20 with respect to the exit port plate member 18, the thickness T2 of the entrance plate member 20 in which the optical path of the reflected light is not shifted is obtained. You can see that As an example, when the incident angle Θ = 35 °, the angle β = 23 °, the thickness T1 = 1.5 mm, the refractive index n = 1.5275, and the angle γ = 26 °, the optical path of the reflected light is not shifted. The thickness T2 of the entrance plate member 20 is 1.725 mm.
なお、図9および図10を用いて反射光の光路がずれない入射口板状部材20の厚さT2の計算方法について別の表現をすると、以下のようになる。最初に出射口板状部材18に入射する前の走査したレーザ光の光路を延長させたラインと、入射口板状部材20に入射した反射光の光路を走査したレーザ光の走査平面に投影した光路とが交差する点Sを求める。次に求めた交点Sを含む走査平面の法線と入射口板状部材20に入射した反射光の光路とを、走査平面と出射口板状部材18の面に垂直な平面に投影したときの交点Pを求める。そして、交点Pから入射口板状部材20の外面までの距離を求め、この距離を入射口板状部材20の厚さT2とする。 It should be noted that another expression for the calculation method of the thickness T2 of the entrance-portion plate-like member 20 where the optical path of the reflected light does not shift is as follows using FIGS. First, the optical path of the scanned laser light before entering the exit port plate member 18 is projected onto the scanning plane of the scanned laser light along the optical path of the reflected light incident on the entrance port plate member 20. A point S where the optical path intersects is obtained. Next, the normal line of the scanning plane including the obtained intersection S and the optical path of the reflected light incident on the entrance port plate member 20 are projected onto a plane perpendicular to the surface of the scan plane and the exit port plate member 18. Find the intersection point P. Then, the distance from the intersection P to the outer surface of the entrance port plate member 20 is determined, and this distance is defined as the thickness T2 of the entrance port plate member 20.
第3実施形態においても、走査されたレーザ光は走査角度Θが変化するので出射口板状部材18への入射角Θも変化する。よって、走査角度Θ(入射角Θ)をある値に設定して反射光の光路がずれない入射口板状部材20の厚さT2を求めても、他の入射角Θでは厚さT2は別の値になる。しかし、第1実施形態同様、走査角度Θの範囲の最大値付近の値(最大の入射角Θ付近の値)を用いて厚さT2を計算すれば、走査角度Θの範囲全般にわたって、反射光の光路のレーザ光の光路に対するずれを無視できるほど小さくすることができる。以下に、反射光の光路のレーザ光の光路に対するずれを求める計算式を説明し、入射口板状部材20の厚さが出射口板状部材18と同じT1の場合と、反射光の光路がずれない厚さT2の場合で、走査角度Θ(入射角Θ)の範囲全般における反射光の光路のレーザ光の光路に対するずれを示す。 Also in the third embodiment, since the scanned laser light changes in scanning angle Θ, the incident angle Θ on the exit port plate member 18 also changes. Therefore, even if the scanning angle Θ (incidence angle Θ) is set to a certain value and the thickness T2 of the entrance port plate member 20 where the optical path of the reflected light is not shifted is obtained, the thickness T2 is different at other incident angles Θ. Value. However, as in the first embodiment, if the thickness T2 is calculated using a value in the vicinity of the maximum value in the range of the scanning angle Θ (a value in the vicinity of the maximum incident angle Θ), the reflected light is reflected over the entire range of the scanning angle Θ. The deviation of the optical path with respect to the optical path of the laser light can be made small enough to be ignored. The calculation formula for obtaining the deviation of the optical path of the reflected light from the optical path of the laser light will be described below. When the thickness of the entrance port plate-like member 20 is the same as that of the exit aperture plate-like member 18, the optical path of the reflected light is In the case of the thickness T2 that does not deviate, the deviation of the optical path of the reflected light with respect to the optical path of the laser light in the entire scanning angle Θ (incident angle Θ) is shown.
入射口板状部材20の厚さをTとすると、図10に示される反射光が入射口板状部材20から出射する点のX座標は、入射口板状部材20の内面を表す平面式と、原点を通り、単位ベクトルVi(ベクトル成分(x,y,z))に平行な直線の式の交点座標を求めることで得ることができる。平面式は以下の数20であり、直線の式は以下の数21である。
(数20)
cosγ・X −sinγ・Z−T = 0
(数21)
X/x = Y/y = Z/z
反射光の出射点のX座標をXpとし、数20と数21の連立方程式を解いてXを求めることで反射光の出射点のX座標を求めると、以下の数22になる。
(数22)
Xp = T/{cosγ − sinγ・(z/x)}
Assuming that the thickness of the entrance port plate member 20 is T, the X coordinate of the point where the reflected light shown in FIG. 10 is emitted from the entrance port plate member 20 is a plane expression representing the inner surface of the entrance port plate member 20. , By obtaining the intersection coordinates of a straight line equation passing through the origin and parallel to the unit vector Vi (vector component (x, y, z)). The plane equation is the following equation 20, and the straight line equation is the following equation 21.
(Equation 20)
cos γ · X −sin γ · Z−T = 0
(Equation 21)
X / x = Y / y = Z / z
When the X coordinate of the exit point of the reflected light is Xp and X is obtained by solving the simultaneous equations of Equations 20 and 21 to obtain X, the following Equation 22 is obtained.
(Equation 22)
Xp = T / {cosγ−sinγ · (z / x)}
反射光の光路を走査平面に投影して見ると、入射口板状部材20から出射した後の光路は、レーザ光の光路と平行である。したがって、反射光の光路のレーザ光の光路に対するずれDevは、反射光の出射点のY座標と、X座標がXpのときのレーザ光の出射口板状部材18に入射する前の光路又は該光路を延長させた線のY座標との差にcosΘを乗算した値である。これは第1実施形態に示される数7と数8のXにXpを代入したときのYの値の差にcosΘを乗算した値であるので、ずれDevは以下の数23で表すことができる。
(数23)
Dev = cosΘ・{T1・tanα−(T1−Xp)・tanΘ−Xp・(y/x)}
When the optical path of the reflected light is projected onto the scanning plane, the optical path after exiting from the entrance port plate member 20 is parallel to the optical path of the laser light. Therefore, the deviation Dev of the optical path of the reflected light with respect to the optical path of the laser light is the Y-coordinate of the exit point of the reflected light and the optical path before entering the laser beam exit aperture plate member 18 when the X-coordinate is Xp or This is a value obtained by multiplying the difference from the Y coordinate of the line extending the optical path by cos Θ. Since this is a value obtained by multiplying the difference between the values of Y when Xp is substituted for X in Equations 7 and 8 shown in the first embodiment by cos Θ, the deviation Dev can be expressed by Equation 23 below. .
(Equation 23)
Dev = cosΘ · {T1 · tan α− (T1−Xp) · tan θ−Xp · (y / x)}
すなわち、入射口板状部材20の厚さを数22のTに代入して得られる反射光の出射点のX座標Xpを数23に代入することで、反射光の光路のレーザ光の光路に対するずれDevを求めることができる。そして、入射口板状部材20の厚さにT1を代入すれば、入射口板状部材20の厚さを出射口板状部材18と同じにしたときのずれDevを求めることができ、入射口板状部材20の厚さに数19で得られるT2を代入すれば、入射口板状部材20の厚さを反射光の光路がずれない厚さT2にしたときのずれDevを求めることができる。 That is, by substituting the X-coordinate Xp of the exit point of the reflected light obtained by substituting the thickness of the entrance port plate-like member 20 into T of Equation 22 into Equation 23, the optical path of the reflected light with respect to the optical path of the laser light The deviation Dev can be obtained. If T1 is substituted for the thickness of the entrance plate member 20, the deviation Dev when the thickness of the entrance plate member 20 is the same as that of the exit plate member 18 can be obtained. By substituting T2 obtained by Equation 19 into the thickness of the plate-like member 20, the deviation Dev when the thickness of the entrance-portion plate-like member 20 is set to the thickness T2 at which the optical path of the reflected light is not displaced can be obtained. .
図11(A)は、例として、走査角度Θ(入射角Θ)の範囲を0〜35°、角度β=23°、厚さT1=1.5mm、厚さT2=1.725mm、屈折率n=1.5275、角度γ=26°とし、走査角度Θに対する反射光の光路のレーザ光の光路に対するずれを計算してグラフにしたものである。点線は、入射口板状部材20の厚さを出射口板状部材18と同じT1にした場合であり、実線は、入射口板状部材20の厚さを、T2=1.725mmにした場合である。厚さT2=1.725mmは、上述したように、角度β、厚さT1、屈折率n及び角度γが上記の値で走査角度Θ(入射角Θ)=35°のとき、反射光の光路がずれない厚さT2である。 FIG. 11A shows, as an example, a range of the scanning angle Θ (incident angle Θ) of 0 to 35 °, an angle β = 23 °, a thickness T1 = 1.5 mm, a thickness T2 = 1.725 mm, and a refractive index. In this graph, the deviation of the optical path of the reflected light with respect to the scanning angle Θ with respect to the optical path of the laser light is calculated with n = 1.5275 and the angle γ = 26 °. The dotted line is the case where the thickness of the entrance port plate member 20 is the same T1 as that of the exit port plate member 18, and the solid line is the case where the thickness of the entrance port plate member 20 is T2 = 1.725 mm. It is. As described above, the thickness T2 = 1.725 mm is the optical path of the reflected light when the angle β, the thickness T1, the refractive index n, and the angle γ are the above values and the scanning angle Θ (incident angle Θ) = 35 °. The thickness T2 is not deviated.
図11(A)を見ると分かるように、第1実施形態の図5(A)と同様の関係を示している。すなわち、入射口板状部材20の厚さをT2=1.725mmにすると、走査角度Θ(入射角Θ)が35°のときずれは0であり、それ以外の走査角度Θ(入射角Θ)のときは0以外の値になるが、入射口板状部材20の厚さが出射口板状部材18と同じ場合に比べ、ずれは極めて小さい。よって、入射口板状部材20の厚さを、走査角度の範囲の最大値付近の値(最大の入射角付近の値)を用いて計算した厚さT2で設定すれば、走査角度の範囲全般において反射光の光路のレーザ光の光路に対するずれを無視できるほど小さくすることができる。 As can be seen from FIG. 11A, the same relationship as in FIG. 5A of the first embodiment is shown. That is, when the thickness of the entrance port plate member 20 is T2 = 1.725 mm, the shift is 0 when the scanning angle Θ (incident angle Θ) is 35 °, and the other scanning angle Θ (incident angle Θ). In this case, a value other than 0 is obtained, but the deviation is extremely small as compared with the case where the thickness of the entrance port plate member 20 is the same as that of the exit port plate member 18. Therefore, if the thickness of the entrance port plate member 20 is set to a thickness T2 calculated using a value near the maximum value of the scanning angle range (a value near the maximum incident angle), the entire scanning angle range is set. In FIG. 5, the deviation of the optical path of the reflected light from the optical path of the laser light can be made small enough to be ignored.
なお、第3実施形態においても、厚さT2には、レーザ光の走査角度Θ(入射角Θ)として走査角度の範囲の最大値付近の値(最大の入射角付近の値)を用いて計算した値を用いるのが好ましいが、そうでないレーザ光の走査角度Θ(入射角Θ)を用いて計算した値を用いても、入射口板状部材20の厚さが出射口板状部材18と同じT1の場合に比べてずれを小さくすることができる。例として、走査角度Θ(入射角Θ)=1°、角度β=23°、厚さT1=1.5mm、屈折率n=1.5275、角度γ=26°の場合で計算すると、反射光の光路がずれない入射口板状部材20の厚さT2=1.666mmとなる。そして、入射口板状部材20の厚さをT2=1.666mmにして同様のグラフを作成すると、図11(B)のようになり、走査角度Θの範囲の最大値付近でずれは大きくなるが、入射口板状部材20の厚さが出射口板状部材18と同じT1の場合に比べれば、ずれはかなり小さくすることができる。 Also in the third embodiment, the thickness T2 is calculated using a value near the maximum value in the range of the scan angle (value near the maximum angle of incidence) as the laser beam scan angle Θ (incident angle Θ). However, even if a value calculated using the scanning angle Θ (incident angle Θ) of the laser beam that is not so is used, the thickness of the entrance port plate member 20 is equal to that of the exit port plate member 18. The deviation can be reduced as compared with the case of the same T1. As an example, when the scanning angle Θ (incident angle Θ) = 1 °, the angle β = 23 °, the thickness T1 = 1.5 mm, the refractive index n = 1.5275, and the angle γ = 26 °, the reflected light is calculated. The thickness T2 of the entrance-portion plate-like member 20 where the optical path is not shifted is equal to 1.666 mm. Then, when a similar graph is created by setting the thickness of the entrance plate member 20 to T2 = 1.666 mm, it becomes as shown in FIG. 11B, and the deviation becomes large near the maximum value in the range of the scanning angle Θ. However, as compared with the case where the thickness of the entrance port plate-like member 20 is the same as that of the exit port plate-like member 18, the deviation can be considerably reduced.
また、第3実施形態においても、反射光の走査平面に対する角度βは、3次元形状測定装置に対する測定対象物OBの位置により変化するため、角度βをある値に設定して反射光の光路がずれない入射口板状部材20の厚さT2を求めても、他の角度βでは厚さT2は別の値になる。しかし、3次元形状測定装置の測定可能範囲の中心付近の角度βは、結像レンズ22の光軸と一致する反射光の光路の角度βであり、この角度βを用いて厚さT2を計算すれば、3次元形状測定装置の測定可能範囲全般にわたって、反射光の光路のレーザ光の光路に対するずれを無視できるほど小さくすることができる。この場合の反射光の光路のレーザ光の光路に対するずれを求める計算式は、上記数22および数23と同じであるので、走査角度Θ(入射角Θ)、厚さT1、屈折率nおよび角度γを定め、角度βの値を振れば、第1実施形態の図6と同様のグラフを作成することができる。 Also in the third embodiment, since the angle β of the reflected light with respect to the scanning plane changes depending on the position of the measurement object OB with respect to the three-dimensional shape measuring apparatus, the angle β is set to a certain value and the optical path of the reflected light is set. Even if the thickness T2 of the incident aperture plate member 20 that is not deviated is obtained, the thickness T2 takes another value at other angles β. However, the angle β near the center of the measurable range of the three-dimensional shape measuring apparatus is the angle β of the optical path of the reflected light that coincides with the optical axis of the imaging lens 22, and the thickness T2 is calculated using this angle β. In this case, the deviation of the optical path of the reflected light with respect to the optical path of the laser light can be made small over the entire measurable range of the three-dimensional shape measuring apparatus. In this case, the calculation formula for obtaining the deviation of the optical path of the reflected light with respect to the optical path of the laser beam is the same as the above formulas 22 and 23, and therefore, the scanning angle Θ (incident angle Θ), the thickness T1, the refractive index n and the angle. If γ is determined and the value of the angle β is varied, a graph similar to that of FIG. 6 of the first embodiment can be created.
図12は、例として、走査角度Θ(入射角Θ)=35°、厚さT1=1.5mm、厚さT2=1.725mm、屈折率n=1.5275、角度γ=26°とし、角度βに対する反射光の光路のレーザ光の光路に対するずれを計算してグラフにしたものである。点線は、入射口板状部材20の厚さが出射口板状部材18と同じT1の場合であり、実線は、入射口板状部材20の厚さを、T2=1.725mmにした場合である。厚さT2=1.725mmは、走査角度Θ(入射角Θ)、厚さT1、屈折率nおよび角度γが上記の値で角度β=23°のとき、反射光の光路がずれない厚さである。 FIG. 12 shows, as an example, a scanning angle Θ (incident angle Θ) = 35 °, a thickness T1 = 1.5 mm, a thickness T2 = 1.725 mm, a refractive index n = 1.5275, and an angle γ = 26 °. FIG. 6 is a graph showing the deviation of the optical path of the reflected light with respect to the angle β relative to the optical path of the laser light. The dotted line is the case where the thickness of the entrance port plate member 20 is the same as T1 of the exit port plate member 18, and the solid line is the case where the thickness of the entrance port plate member 20 is T2 = 1.725 mm. is there. The thickness T2 = 1.725 mm is a thickness at which the optical path of the reflected light is not shifted when the scanning angle Θ (incident angle Θ), the thickness T1, the refractive index n, and the angle γ are the above values and the angle β = 23 °. It is.
図12を見ると分かるように、入射口板状部材20の厚さをT2=1.725mmにすると角度βが23°のとき、ずれは0であり、角度βが23°からずれるほどずれは大きくなるが、入射口板状部材20の厚さが出射口板状部材18と同じ場合に比べてずれは極めて小さい。よって、入射口板状部材20の厚さを、結像レンズ22の光軸と一致する反射光の光路の角度βの値を用いて計算した厚さT2で設定すれば、3次元形状測定装置の測定可能範囲全般にわたって、反射光の光路のレーザ光の光路に対するずれを無視できるほど小さくすることができる。 As can be seen from FIG. 12, when the thickness of the entrance plate member 20 is T2 = 1.725 mm, the deviation is 0 when the angle β is 23 °, and the deviation is so large that the angle β deviates from 23 °. However, the deviation is extremely small as compared with the case where the thickness of the entrance port plate member 20 is the same as that of the exit port plate member 18. Therefore, if the thickness of the entrance aperture plate member 20 is set to the thickness T2 calculated using the value of the angle β of the optical path of the reflected light coincident with the optical axis of the imaging lens 22, the three-dimensional shape measuring apparatus In the entire measurable range, the deviation of the optical path of the reflected light from the optical path of the laser light can be made small enough to be ignored.
なお、これまでの説明において、反射光が入射口板状部材20に入射する点は、走査平面に投影して見たとき、レーザ光が入射口板状部材20から出射する点と同じであるとした。しかし、この条件は、反射光の光路がずれない入射口板状部材20の厚さT2、および反射光の光路のレーザ光の光路に対するずれDevを計算するための便宜上のものであり、実際の3次元形状測定装置の入射口板状部材20の外面は、出射口板状部材18と走査平面とが交差するライン周りに傾いていれば位置は制限されない。ずなわち、図9において、反射光が入射口板状部材20に入射する点が出射口板状部材18から出射したレーザ光の光路上の、又は該光路を延長させたライン上のいかなる点であっても、上述した計算結果は変わらない。このことは、図3に示すように透光性板状部材1の位置が変化しても、姿勢が変化しなければ、出射した光の光路は変化しないことから理解できる。 In the above description, the point where the reflected light is incident on the entrance port plate member 20 is the same as the point where the laser light is emitted from the entrance port plate member 20 when projected onto the scanning plane. It was. However, this condition is for convenience in calculating the thickness T2 of the entrance plate member 20 where the optical path of the reflected light does not shift and the deviation Dev of the optical path of the reflected light with respect to the optical path of the laser light. The position of the outer surface of the entrance port plate member 20 of the three-dimensional shape measuring apparatus is not limited as long as it is inclined around a line where the exit port plate member 18 and the scanning plane intersect. That is, in FIG. 9, the point where the reflected light is incident on the incident port plate member 20 is any point on the optical path of the laser light emitted from the output port plate member 18 or on the line extending the optical path. Even so, the calculation results described above do not change. This can be understood from the fact that the optical path of the emitted light does not change if the posture does not change even if the position of the translucent plate-like member 1 changes as shown in FIG.
上記説明からも理解できるように、上記第3実施形態においては、走査機器14,16を用いて走査したレーザ光を出射口板状部材18を介して測定対象物OBに照射し、測定対象物OBで発生した散乱光の一部である反射光を、入射口板状部材20、走査機器14,16および結像レンズ22を介してラインセンサ24で受光し、ラインセンサ24における受光位置を用いて測定対象物OBの3次元形状を測定する3次元形状測定装置において、入射口板状部材20は、出射口板状部材18と走査したレーザ光の走査平面とが交差するラインに平行な軸周りに出射口板状部材18と所定の角度γを有し、入射口板状部材20の厚さは、出射口板状部材18の外面と入射口板状部材20の外面が交差するラインは、結像レンズ22の光軸と交差し、入射口板状部材20に入射する反射光の光路は結像レンズ22の光軸と一致しており、入射する反射光の入射位置と入射方向の逆方向を走査したレーザ光の走査平面に投影した位置と方向が、走査したレーザ光の出射口板状部材18から出射する位置と方向と一致するとしたときの、走査したレーザ光の出射口板状部材18に対する入射角が0以外の値であるときの、出射口板状部材18に入射する前の走査したレーザ光の光路を延長させたラインと、入射口板状部材20に入射した反射光の光路を走査したレーザ光の走査平面に投影した光路とが交差する点を含む走査平面の法線、および入射口板状部材20に入射した反射光の光路を、走査平面と出射口板状部材18の面に垂直な平面に投影したときの交点から入射口板状部材20の外面までの距離で設定されているようにしている。 As can be understood from the above description, in the third embodiment, the measurement object OB is irradiated with the laser beam scanned using the scanning devices 14 and 16 via the emission port plate member 18, and the measurement object is obtained. Reflected light, which is part of the scattered light generated by OB, is received by the line sensor 24 through the entrance port plate member 20, the scanning devices 14, 16 and the imaging lens 22, and the light receiving position in the line sensor 24 is used. In the three-dimensional shape measuring apparatus for measuring the three-dimensional shape of the measuring object OB, the entrance port plate member 20 has an axis parallel to a line intersecting the exit port plate member 18 and the scanning plane of the scanned laser beam. There is a predetermined angle γ with the exit port plate member 18 around, and the thickness of the entrance port plate member 20 is a line where the outer surface of the exit port plate member 18 and the outer surface of the entrance port plate member 20 intersect. Intersects the optical axis of the imaging lens 22 The optical path of the reflected light incident on the entrance port plate member 20 is coincident with the optical axis of the imaging lens 22, and the scanning plane of the laser light scanned in the direction opposite to the incident position of the incident reflected light and the incident direction. The incident angle of the scanned laser light with respect to the emission port plate member 18 is other than 0 when the position and direction projected onto the beam coincide with the position and direction of the scanned laser beam emitted from the emission port plate member 18. When the value is a value, the scanning path of the laser beam that has scanned the optical path of the laser beam scanned before entering the exit port plate member 18 and the optical path of the reflected light incident on the entrance port plate member 20 is scanned. The normal line of the scanning plane including the point where the optical path projected on the plane intersects and the optical path of the reflected light incident on the entrance port plate member 20 are set to a plane perpendicular to the plane of the scan plane and the exit port plate member 18. From the intersection when projected, the entrance plate member 20 It is set as the distance to the outer surface.
これによれば、入射口板状部材20が出射口板状部材18に対して角度γを有する場合であっても、入射口板状部材18の厚さを適切な値に設定するという極めて簡単な方法により、走査平面に投影した反射光の光路のレーザ光の光路からのずれを、無視できるレベルにまで小さくすることができる。 According to this, even if the entrance port plate member 20 has an angle γ with respect to the exit port plate member 18, it is extremely easy to set the thickness of the entrance port plate member 18 to an appropriate value. By this method, the deviation of the optical path of the reflected light projected on the scanning plane from the optical path of the laser light can be reduced to a negligible level.
なお、上記第3実施形態においては、出射口板状部材18と入射口板状部材20の屈折率nは等しいとした。すなわち、出射口板状部材18と入射口板状部材20は、同じ材質のものとした。しかし、上記第1実施形態と同様、出射口板状部材18と入射口板状部材20の材質を変え、屈折率nが異なる値であったとしても、上記第3実施形態で示した、反射光の光路がずれない入射口板状部材20の厚さT2、および反射光の光路のレーザ光の光路に対するずれDevの計算方法は変わらない。この場合は、上記第1実施形態と同様、数3の屈折率nに入射口板状部材20の屈折率を使用し、数10の屈折率nに出射口板状部材18の屈折率を使用すればよい。 In the third embodiment, the refractive indexes n of the exit port plate member 18 and the entrance port plate member 20 are equal. That is, the exit port plate member 18 and the entrance port plate member 20 are made of the same material. However, as in the first embodiment, even if the material of the exit port plate member 18 and the entrance port plate member 20 is changed and the refractive index n is a different value, the reflection shown in the third embodiment is shown. The calculation method of the thickness T2 of the entrance plate member 20 where the optical path of the light does not shift and the deviation Dev of the reflected light path with respect to the optical path of the laser light remains the same. In this case, as in the first embodiment, the refractive index of the entrance port plate member 20 is used for the refractive index n of Formula 3, and the refractive index of the exit port plate member 18 is used for the refractive index n of Formula 10. do it.
(第4実施形態)
上記第2実施形態は、出射口板状部材18と入射口板状部材20が平行で、厚さが同じ場合において、出射口板状部材18と入射口板状部材20の屈折率の関係を適切に設定することで、走査平面に投影した反射光の光路のレーザ光の光路からのずれをなくした。しかし、出射口板状部材18と入射口板状部材20が厚さが同じで、入射口板状部材20が出射口板状部材18と走査平面が交差するラインに平行な軸周りに所定の角度γだけ回転している(傾いている)場合でも、出射口板状部材18と入射口板状部材20の屈折率の関係を適切に設定することで、反射光の光路のレーザ光の光路からのずれをなくすことができる。本第4実施形態は、出射口板状部材18と入射口板状部材20が厚さが同じで、入射口板状部材20が出射口板状部材18と走査平面が交差するラインに平行な軸周りに所定の角度γだけ傾いている場合において、反射光の光路のレーザ光の光路からのずれをなくす、出射口板状部材18と入射口板状部材20の屈折率の関係を設定する形態である。以下、反射光の光路のレーザ光の光路からのずれをなくす出射口板状部材18と入射口板状部材20の屈折率の関係を求める方法を説明する。
(Fourth embodiment)
In the second embodiment, when the exit port plate member 18 and the entrance port plate member 20 are parallel and have the same thickness, the relationship between the refractive indexes of the exit port plate member 18 and the entrance port plate member 20 is described. By setting appropriately, the deviation of the optical path of the reflected light projected on the scanning plane from the optical path of the laser light was eliminated. However, the exit port plate member 18 and the entrance port plate member 20 have the same thickness, and the entrance port plate member 20 has a predetermined axis around an axis parallel to the line where the exit port plate member 18 and the scanning plane intersect. Even when the angle γ is rotated (tilted), the optical path of the laser light in the optical path of the reflected light can be set by appropriately setting the relationship between the refractive indexes of the exit port plate member 18 and the entrance port plate member 20. Deviations from can be eliminated. In the fourth embodiment, the exit port plate member 18 and the entrance port plate member 20 have the same thickness, and the entrance port plate member 20 is parallel to the line intersecting the exit port plate member 18 and the scanning plane. When the optical axis of the reflected light is tilted by a predetermined angle γ around the axis, the relationship between the refractive indexes of the exit port plate member 18 and the entrance port plate member 20 is set so as to eliminate the deviation of the optical path of the reflected light from the optical path of the laser beam. It is a form. Hereinafter, a method of obtaining the relationship between the refractive indexes of the exit port plate member 18 and the entrance port plate member 20 that eliminates the deviation of the optical path of the reflected light from the optical path of the laser light will be described.
上記第3実施形態で説明したように、反射光の光路のレーザ光の光路に対するずれDevは、数22と数23で求めることができる。数22と数23において、入射口板状部材20の厚さTと出射口板状部材18の厚さT1は同じで既知である。また、入射口板状部材20の出射口板状部材18に対する傾き角度γも既知であり、レーザ光の走査角度Θ(入射口板状部材20への入射角Θ)を設定すると、未知数は屈折角αと、単位ベクトルViのx,y成分の比である(y/x)と、単位ベクトルViのx,z成分の比である(z/x)である。屈折角αは数10を用いて、入射角Θと出射口板状部材18の屈折率n(以下、屈折率n1という)から求めることができる。また、単位ベクトルViのx,y,z成分は、上述した説明の通り、数1、数3乃至数6、数14及び数15から、レーザ光の走査角度Θ(入射角Θ)、反射光の走査平面(図9の紙面であり、X−Y平面)に対する角度β、及び入射口板状部材20の屈折率n(以下、屈折率n2という)、入射口板状部材20の出射口板状部材18に対する傾き角度γから求めることができる。すなわち、レーザ光の走査角度Θ(入射角Θ)、反射光の走査平面に対する角度βを設定し、出射口板状部材18の屈折率n1を決めると、数23でずれDevが0になる屈折率n2は一義的に決まる。よって、屈折率n1の様々な値においてDevが0になる屈折率n2を求めれば、反射光の光路のレーザ光の光路からのずれをなくす出射口板状部材18と入射口板状部材20の屈折率の関係を求めることができる。 As described in the third embodiment, the deviation Dev of the optical path of the reflected light with respect to the optical path of the laser light can be obtained by Expression 22 and Expression 23. In Equations 22 and 23, the thickness T of the entrance port plate member 20 and the thickness T1 of the exit port plate member 18 are the same and known. Further, the inclination angle γ of the entrance port plate member 20 with respect to the exit port plate member 18 is also known, and when the scanning angle Θ of laser light (incident angle Θ to the entrance port plate member 20) is set, the unknown is refracted. The angle α is the ratio of the x and y components of the unit vector Vi (y / x), and the ratio of the x and z components of the unit vector Vi is (z / x). The refraction angle α can be obtained from the incident angle Θ and the refractive index n of the exit port plate member 18 (hereinafter referred to as the refractive index n1) using Equation 10. Further, as described above, the x, y, and z components of the unit vector Vi are obtained from the equation (1), equations (3) to (6), equations (14), and (15), and the laser beam scanning angle Θ (incident angle Θ) and reflected light. , The angle β with respect to the scanning plane (the plane of FIG. 9, the XY plane), the refractive index n of the entrance plate member 20 (hereinafter referred to as the refractive index n2), and the exit plate of the entrance plate member 20 It can be obtained from the inclination angle γ with respect to the shaped member 18. That is, when the scanning angle Θ (incident angle Θ) of the laser beam and the angle β of the reflected light with respect to the scanning plane are set and the refractive index n1 of the exit port plate member 18 is determined, the deviation Dev becomes 0 in Equation 23. The rate n2 is uniquely determined. Accordingly, if the refractive index n2 at which Dev is 0 at various values of the refractive index n1 is obtained, the exit port plate member 18 and the entrance port plate member 20 that eliminate the deviation of the optical path of the reflected light from the optical path of the laser light are obtained. The refractive index relationship can be obtained.
図13は、例として、走査角度Θ(入射角Θ)=35°、厚さT1=1.5mm、角度β=23°、角度γ=26°と設定した場合における、反射光の光路のレーザ光の光路からのずれをなくす出射口板状部材18と入射口板状部材20の屈折率の関係である。図13を見るとわかるように、第2実施形態と同様、出射口板状部材18と入射口板状部材20の屈折率の関係はほぼ直線の関係にある。 FIG. 13 shows, as an example, the laser of the optical path of the reflected light when the scanning angle Θ (incident angle Θ) = 35 °, the thickness T1 = 1.5 mm, the angle β = 23 °, and the angle γ = 26 °. This is the relationship between the refractive indexes of the exit port plate member 18 and the entrance port plate member 20 that eliminate the deviation from the optical path of light. As can be seen from FIG. 13, as in the second embodiment, the relationship between the refractive indexes of the exit port plate member 18 and the entrance port plate member 20 is substantially linear.
第4実施形態においても、走査角度Θ(入射角Θ)と反射光の走査平面に対する角度βを設定したうえで、反射光の光路のずれをなくす出射口板状部材18と入射口板状部材20の屈折率の関係を求めたので、第1乃至第3実施形態と同様、走査角度Θ(入射角Θ)と反射光の走査平面に対する角度βに対する反射光の光路のずれを示す。この場合も、反射光の光路のずれは数22と数23で求めることができる。 Also in the fourth embodiment, after setting the scanning angle Θ (incident angle Θ) and the angle β of the reflected light with respect to the scanning plane, the exit port plate member 18 and the entrance port plate member that eliminate the deviation of the optical path of the reflected light. Since the relationship of the refractive index of 20 is obtained, the deviation of the optical path of the reflected light with respect to the scanning angle Θ (incident angle Θ) and the angle β of the reflected light with respect to the scanning plane is shown as in the first to third embodiments. Also in this case, the deviation of the optical path of the reflected light can be obtained by Equations 22 and 23.
図14(A)は、例として、走査角度Θ(入射角Θ)の範囲を0〜35°、角度β=23°、厚さT1=1.5mm、角度γ=26°とし、走査角度Θに対する反射光の光路のレーザ光の光路に対するずれをグラフにしたものである。実線は、出射口板状部材18の屈折率n1=1.5275、入射口板状部材20の屈折率n2=1.6835の場合であり、角度β、厚さT1および角度γが上記の値で走査角度Θ(入射角Θ)=35°のとき、反射光の光路のずれが発生しない屈折率の関係である。また、点線は、出射口板状部材18、入射口板状部材20とも屈折率n=1.5275の場合である。第4実施形態は、第2実施形態とは異なり、35°以外の走査角度Θ(入射角Θ)のときは反射光の光路のずれは0以外の値になるが、出射口板状部材18と入射口板状部材20の屈折率が同じ場合に比べ、ずれは小さい。よって、出射口板状部材18と入射口板状部材20の屈折率の関係を適切に設定すると、反射光の光路のレーザ光の光路に対するずれを無視できるほど小さくすることができる。 In FIG. 14A, as an example, the range of the scanning angle Θ (incident angle Θ) is 0 to 35 °, the angle β = 23 °, the thickness T1 = 1.5 mm, the angle γ = 26 °, and the scanning angle Θ. Is a graph showing the deviation of the optical path of the reflected light with respect to the optical path of the laser beam. The solid line shows the case where the refractive index n1 of the exit port plate member 18 is 1.5275 and the refractive index n2 of the entrance port plate member 20 is 1.6835, and the angle β, the thickness T1, and the angle γ are the above values. Thus, when the scanning angle Θ (incident angle Θ) = 35 °, there is a refractive index relationship in which the deviation of the optical path of the reflected light does not occur. The dotted line is the case where the refractive index n = 1.5275 for both the exit port plate member 18 and the entrance port plate member 20. Unlike the second embodiment, in the fourth embodiment, when the scanning angle Θ (incident angle Θ) is other than 35 °, the deviation of the optical path of the reflected light is a value other than 0, but the exit port plate-like member 18 is used. Is smaller than the case where the refractive index of the entrance plate member 20 is the same. Therefore, when the relationship between the refractive indexes of the exit port plate member 18 and the entrance port plate member 20 is set appropriately, the deviation of the optical path of the reflected light from the optical path of the laser light can be made small enough to be ignored.
なお、第4実施形態においても、出射口板状部材18と入射口板状部材20の屈折率の関係は、走査角度Θ(入射角Θ)として走査角度の範囲の最大値付近の値(最大の入射角付近の値)を用いて計算した値を用いるのが好ましいが、そうでない走査角度Θ(入射角Θ)を用いて計算した屈折率の関係を用いても、出射口板状部材18と入射口板状部材20の屈折率が同じ場合に比べてずれを小さくすることができる。例として、入射角Θ=1°、角度β=23°、厚さT1=1.5mm、角度γ=26°とし、出射口板状部材18の屈折率n1=1.5275のときの、反射光の光路がずれない入射口板状部材20の屈折率n2を計算すると、n2=1.6226となる。そして、入射口板状部材20の屈折率n2=1.6226にして同様のグラフを作成すると、図14(B)のようになり、走査角度の範囲の最大値付近でずれは大きくなるが、出射口板状部材18と入射口板状部材20の屈折率が同じ場合に比べれば、ずれは小さくすることができる。 Also in the fourth embodiment, the relationship between the refractive indexes of the exit port plate member 18 and the entrance port plate member 20 is a value near the maximum value of the scan angle range (maximum) as the scan angle Θ (incident angle Θ). It is preferable to use a value calculated using a value near the incident angle of the incident angle), but even if the refractive index relationship calculated using the other scanning angle Θ (incident angle Θ) is used, the exit port plate member 18 is used. And the deviation can be reduced as compared with the case where the refractive indexes of the entrance plate member 20 are the same. As an example, the reflection when the incident angle Θ = 1 °, the angle β = 23 °, the thickness T1 = 1.5 mm, the angle γ = 26 °, and the refractive index n1 of the exit port plate member 18 = 1.5275. When the refractive index n2 of the entrance-portion plate member 20 in which the optical path of light is not shifted is calculated, n2 = 1.6226. Then, when a similar graph is created with the refractive index n2 of the entrance-portion plate member 20 being 1.6226, as shown in FIG. 14B, the deviation increases near the maximum value of the scanning angle range. Compared with the case where the refractive index of the exit port plate member 18 and the entrance port plate member 20 is the same, the deviation can be reduced.
また、図15は、例として、走査角度Θ(入射角Θ)=35°、厚さT1=1.5mm、角度γ=26°とし、角度βに対する反射光の光路のレーザ光の光路に対するずれを計算してグラフにしたものであり、実線は、出射口板状部材18の屈折率n1=1.5275、入射口板状部材20の屈折率n2=1.6835の場合であり、走査角度Θ(入射角Θ)、厚さT1及び角度γが上記の値で角度β=23°のとき、反射光の光路のずれが発生しない屈折率の関係である。点線は、出射口板状部材18と入射口板状部材20の屈折率が1.5275で同一の場合であり、図12のグラフの点線と同一である。図15を見ると分かるように、反射光の走査平面に対する角度βが23°からずれるほどずれは大きくなるが、出射口板状部材18と入射口板状部材20の屈折率が同一の場合に比べてずれは極めて小さい。よって、出射口板状部材18と入射口板状部材20の屈折率の関係を、結像レンズ22の光軸と一致する反射光の光路における角度βの値を用いて計算した関係にすれば、3次元形状測定装置の測定可能範囲全般にわたって、反射光の光路のレーザ光の光路に対するずれを無視できるほど小さくすることができる。 FIG. 15 shows an example in which the scanning angle Θ (incident angle Θ) = 35 °, the thickness T1 = 1.5 mm, the angle γ = 26 °, and the deviation of the optical path of the reflected light with respect to the angle β relative to the optical path of the laser light. The solid line represents the case where the refractive index n1 of the exit port plate member 18 is 1.5275 and the refractive index n2 of the entrance port plate member 20 is 1.6835, and the scanning angle When Θ (incident angle Θ), thickness T1, and angle γ are the above values and the angle β = 23 °, the refractive index relationship is such that no deviation of the optical path of the reflected light occurs. A dotted line is a case where the refractive index of the exit port plate-shaped member 18 and the entrance port plate-shaped member 20 is the same at 1.5275, and is the same as the dotted line of the graph of FIG. As can be seen from FIG. 15, the deviation increases as the angle β of the reflected light with respect to the scanning plane deviates from 23 °. However, when the refractive indexes of the exit port plate member 18 and the entrance port plate member 20 are the same. The deviation is extremely small. Therefore, if the relationship between the refractive indexes of the exit port plate member 18 and the entrance port plate member 20 is calculated using the value of the angle β in the optical path of the reflected light coincident with the optical axis of the imaging lens 22. The shift of the optical path of the reflected light with respect to the optical path of the laser light can be made small enough to be ignored over the entire measurable range of the three-dimensional shape measuring apparatus.
なお、第4実施形態においても、反射光が入射口板状部材20に入射する点は、走査平面に投影して見たとき、レーザ光が入射口板状部材20から出射する点と同じであるとした計算式を用いたが、この条件は、反射光の光路がずれない出射口板状部材18と入射口板状部材20の屈折率の関係、および反射光の光路のレーザ光の光路に対するずれDevを計算するための便宜上のものである。第4実施形態においても、実際の3次元形状測定装置の入射口板状部材20の外面は、出射口板状部材18と走査平面とが交差するライン周りに傾いていれば位置は制限されない。 In the fourth embodiment, the point where the reflected light is incident on the incident aperture plate-like member 20 is the same as the point where the laser beam is emitted from the incident aperture plate-like member 20 when projected onto the scanning plane. The calculation formula is used, but this condition is that the optical path of the laser light in the optical path of the reflected light and the relationship between the refractive indexes of the exit aperture plate-like member 18 and the incident aperture plate-like member 20 where the optical path of the reflected light does not deviate. This is a convenience for calculating the deviation Dev with respect to. Also in the fourth embodiment, the position of the outer surface of the entrance port plate member 20 of the actual three-dimensional shape measuring apparatus is not limited as long as it is inclined around the line where the exit port plate member 18 and the scanning plane intersect.
上記説明からも理解できるように、上記第4実施形態においては、走査機器14,16を用いて走査したレーザ光を出射口板状部材18を介して測定対象物OBに照射し、測定対象物OBで発生した散乱光の一部である反射光を、入射口板状部材20、走査機器14,16および結像レンズ22を介してラインセンサ24で受光し、ラインセンサ24における受光位置を用いて測定対象物OBの3次元形状を測定する3次元形状測定装置において、入射口板状部材20は、出射口板状部材18と走査したレーザ光の走査平面とが交差するラインに平行な軸周りに出射口板状部材18と所定の角度を有するとともに、出射口板状部材18と厚さが同じであり、出射口板状部材18と入射口板状部材20は、出射口板状部材18と入射口板状部材20の屈折率の関係が、出射口板状部材18の入射口板状部材20の外面が交差するラインは、結像レンズ22の光軸と交差し、入射口板状部材20に入射する反射光の光路は結像レンズ22の光軸と一致しており、入射する反射光の入射位置と入射方向の逆方向を走査したレーザ光の走査平面に投影した位置と方向が、走査したレーザ光の出射口板状部材18から出射する位置と方向と一致するとしたときの、走査したレーザ光の出射口板状部材18に対する入射角が0以外の値であるときの、走査したレーザ光の出射口板状部材18の内面から走査機器14、16側の光路と、反射光の入射口板状部材20の内面から走査機器14、16側の光路を走査したレーザ光の走査平面に投影した光路とが一致する屈折率の関係になるものが選択されているようにしている。 As can be understood from the above description, in the fourth embodiment, the measurement object OB is irradiated with the laser beam scanned using the scanning devices 14 and 16 via the emission port plate member 18, and the measurement object is obtained. Reflected light, which is part of the scattered light generated by OB, is received by the line sensor 24 through the entrance port plate member 20, the scanning devices 14, 16 and the imaging lens 22, and the light receiving position in the line sensor 24 is used. In the three-dimensional shape measuring apparatus for measuring the three-dimensional shape of the measuring object OB, the entrance port plate member 20 has an axis parallel to a line intersecting the exit port plate member 18 and the scanning plane of the scanned laser beam. The exit port plate member 18 has a predetermined angle with the exit port plate member 18 and has the same thickness as the exit port plate member 18. The exit port plate member 18 and the entrance port plate member 20 are formed of the exit port plate member. 18 and an entrance plate member The line where the outer surface of the entrance aperture plate member 20 of the exit aperture plate member 18 intersects with the refractive index of 0 intersects with the optical axis of the imaging lens 22 and is incident on the entrance aperture plate member 20. The optical path of the light coincides with the optical axis of the imaging lens 22, and the position and direction projected on the scanning plane of the laser light scanned in the direction opposite to the incident position of the incident reflected light and the incident direction are scanned laser light. When the incident angle of the scanned laser beam with respect to the emission port plate member 18 is a value other than 0 when the position and direction of the emission port plate member 18 coincide with each other, the emission of the scanned laser beam The optical path projected on the scanning plane of the laser beam scanned from the inner surface of the mouth plate member 18 to the scanning devices 14 and 16 side and the optical path on the scanning device 14 and 16 side from the inner surface of the incident port plate member 20 of the reflected light. Selects those with a refractive index relationship that matches So that has been.
これによっても、入射口板状部材20が出射口板状部材18に対して角度γを有する場合であっても、出射口板状部材18と入射口板状部材20の屈折率の関係を適切な関係にするという極めて簡単な方法により、走査平面に投影した反射光の光路のレーザ光の光路からのずれを、無視できるレベルにまで小さくすることができる。 Even in this case, even when the incident port plate member 20 has an angle γ with respect to the output port plate member 18, the relationship between the refractive indexes of the output port plate member 18 and the incident port plate member 20 is appropriately set. By the extremely simple method of establishing the above relationship, the deviation of the optical path of the reflected light projected onto the scanning plane from the optical path of the laser light can be reduced to a negligible level.
(第5実施形態)
上記第1乃至第4実施形態は、入射口板状部材20の厚さを適切な値に設定する、または出射口板状部材18と入射口板状部材20の厚さは同じで、出射口板状部材18と入射口板状部材20の屈折率の関係を適切な関係にする、のいずれかにより、走査平面に投影した反射光の光路のレーザ光の光路からのずれをなくした。しかし、出射口板状部材18と入射口板状部材20の厚さと屈折率が同じであっても、入射口板状部材20の出射口板状部材18に対する角度γを適切な値に設定することで、反射光の光路のレーザ光の光路からのずれをなくすことができる。本第5実施形態は、反射光の光路のレーザ光の光路からのずれをなくす、入射口板状部材20の出射口板状部材18に対する角度γsを設定する形態である。
(Fifth embodiment)
In the first to fourth embodiments, the thickness of the entrance port plate member 20 is set to an appropriate value, or the exit port plate member 18 and the entrance port plate member 20 have the same thickness. The deviation of the optical path of the reflected light projected on the scanning plane from the optical path of the laser light was eliminated by either making the relationship between the refractive indexes of the plate member 18 and the entrance aperture plate member 20 appropriate. However, even if the thickness and refractive index of the exit port plate member 18 and the entrance port plate member 20 are the same, the angle γ of the entrance port plate member 20 with respect to the exit port plate member 18 is set to an appropriate value. As a result, the deviation of the optical path of the reflected light from the optical path of the laser light can be eliminated. In the fifth embodiment, the angle γs of the entrance port plate member 20 with respect to the exit port plate member 18 is set to eliminate the deviation of the optical path of the reflected light from the optical path of the laser beam.
上記第3実施形態で述べたように、入射口板状部材20の出射口板状部材18に対する角度γの大きさにより、走査平面に投影して見たときの反射光の屈折角は、レーザ光の屈折角αより小さくなる場合と大きくなる場合がある。詳しく説明すると、入射口板状部材20の出射口板状部材18に対する角度γが0であるときは、走査平面に投影して見たときの反射光の屈折角は、レーザ光の屈折角αより小さく、図4に示すように入射口板状部材20に入射した後の反射光の光路は、反射光の進行方向に向かってレーザ光の光路より右側にある。この状態から入射口板状部材20の出射口板状部材18に対する角度γを大きくしていくと、走査平面に投影して見たときの反射光の屈折角は、大きくなっていき、入射口板状部材20に入射した後の反射光の光路は、反射光の進行方向に向かって左側に移動していく。そして、図9に示すように、反射光の光路は反射光の進行方向に向かってレーザ光の光路より左側になる。 As described in the third embodiment, the refraction angle of the reflected light when projected onto the scanning plane is determined by the size of the angle γ of the entrance port plate member 20 with respect to the exit port plate member 18. There are cases where the refractive angle is smaller than or larger than the light refraction angle α. More specifically, when the angle γ of the entrance port plate member 20 with respect to the exit port plate member 18 is 0, the refraction angle of the reflected light when projected onto the scanning plane is the refraction angle α of the laser beam. As shown in FIG. 4, the optical path of the reflected light after entering the entrance port plate member 20 is on the right side of the optical path of the laser light in the traveling direction of the reflected light. If the angle γ of the entrance port plate member 20 with respect to the exit port plate member 18 is increased from this state, the refraction angle of the reflected light when projected on the scanning plane is increased, and the entrance port is increased. The optical path of the reflected light after entering the plate-like member 20 moves to the left in the traveling direction of the reflected light. As shown in FIG. 9, the optical path of the reflected light is on the left side of the optical path of the laser light in the traveling direction of the reflected light.
また、反射光の出射点は、入射口板状部材20の出射口板状部材18に対する角度γが0であるときは、走査平面に投影して見たとき、出射口板状部材18の内面であるライン上にあるが、入射口板状部材20の出射口板状部材18に対する角度γを大きくしていくと、反射光の進行方向に向かって手前側に移動していく。すなわち、角度γを0から大きくしていき、反射光の光路が進行方向に向かって左側に移動し、反射光の出射点が進行方向に向かって手前側に移動していくと、反射光の出射点が出射口板状部材18に入射する前のレーザ光の光路を延長させたラインに含まれるときがある。このときの角度γが、反射光の光路のレーザ光の光路からのずれをなくす、入射口板状部材20の出射口板状部材18に対する角度γsである。以下、反射光の光路のレーザ光の光路からのずれをなくす入射口板状部材20の出射口板状部材18に対する角度γsを求める方法を説明する。 Further, when the angle γ of the incident port plate member 20 with respect to the output port plate member 18 is 0, the reflected light is emitted from the inner surface of the output port plate member 18 when projected onto the scanning plane. As the angle γ of the entrance port plate member 20 with respect to the exit port plate member 18 is increased, the incident port plate member 20 moves toward the front side in the traveling direction of the reflected light. That is, if the angle γ is increased from 0, the optical path of the reflected light moves to the left in the traveling direction, and the emission point of the reflected light moves to the near side in the traveling direction, the reflected light In some cases, the emission point is included in a line obtained by extending the optical path of the laser beam before entering the emission port plate member 18. The angle γ at this time is the angle γs of the incident port plate member 20 with respect to the output port plate member 18 that eliminates the deviation of the optical path of the reflected light from the optical path of the laser beam. Hereinafter, a method of obtaining the angle γs of the incident port plate member 20 with respect to the output port plate member 18 that eliminates the deviation of the optical path of the reflected light from the optical path of the laser light will be described.
上記第3実施形態で説明したように、入射口板状部材20が出射口板状部材18に対して角度γを有する場合、反射光の光路のレーザ光の光路に対するずれDevは、数22と数23で求めることができる。数22と数23において、入射口板状部材20の厚さTと出射口板状部材18の厚さT1は同じで既知である。また、レーザ光の走査角度Θ(入射角Θ)を設定すると、屈折角αは出射口板状部材18の屈折率nから求めることができ、また、単位ベクトルViのx,y,z成分は、上述した説明の通り、数1、数3乃至数6、数14及び数15から、レーザ光の走査角度Θ(入射角Θ)、反射光の走査平面(図4,図9の紙面であり、X−Y平面)に対する角度β、及び入射口板状部材20の屈折率n、および入射口板状部材20の出射口板状部材18に対する傾き角度γから求めることができる。すなわち、レーザ光の走査角度Θ(入射角Θ)と反射光の走査平面に対する角度βを設定し、入射口板状部材20と出射口板状部材18の厚さT1と入射口板状部材20と出射口板状部材18の屈折率nが既知であれば、数23でずれDevが0になる角度γsを求めることができる。例として、走査角度Θ(入射角Θ)=35°、角度β=23°、厚さT1=1.5mm、屈折率n=1.5275の場合で計算すると、反射光の光路がずれない入射口板状部材20の出射口板状部材18に対する角度γs=9.3°となる。 As described in the third embodiment, when the entrance port plate member 20 has an angle γ with respect to the exit port plate member 18, the deviation Dev of the optical path of the reflected light with respect to the optical path of the laser light is expressed by Equation 22. It can be obtained by Equation 23. In Equations 22 and 23, the thickness T of the entrance port plate member 20 and the thickness T1 of the exit port plate member 18 are the same and known. When the scanning angle Θ (incident angle Θ) of the laser beam is set, the refraction angle α can be obtained from the refractive index n of the exit port plate member 18, and the x, y, and z components of the unit vector Vi are As described above, the laser beam scanning angle Θ (incident angle Θ) and the reflected light scanning plane (from the paper surface of FIGS. , XY plane), the refractive index n of the entrance port plate member 20, and the inclination angle γ of the entrance port plate member 20 with respect to the exit port plate member 18. That is, the scanning angle Θ (incident angle Θ) of the laser light and the angle β with respect to the scanning plane of the reflected light are set, and the thickness T1 of the entrance port plate member 20 and the exit port plate member 18 and the entrance port plate member 20 are set. If the refractive index n of the emission port plate member 18 is known, the angle γs at which the deviation Dev becomes 0 can be obtained in Equation 23. As an example, when the scanning angle Θ (incident angle Θ) = 35 °, the angle β = 23 °, the thickness T1 = 1.5 mm, and the refractive index n = 1.5275 are calculated, the incident light path does not deviate. The angle γs of the mouth plate-like member 20 with respect to the emission mouth plate-like member 18 is 9.3 °.
第5実施形態においても、走査角度Θ(入射角Θ)と反射光の走査平面に対する角度βを設定したうえで、反射光の光路のずれをなくす入射口板状部材20の出射口板状部材18に対する角度γsを求めたので、第1乃至第4実施形態と同様、走査角度Θ(入射角Θ)と反射光の走査平面に対する角度βに対する反射光の光路のずれを示す。この場合も、反射光の光路のずれは数22と数23で求めることができる。 Also in the fifth embodiment, after setting the scanning angle Θ (incident angle Θ) and the angle β of the reflected light with respect to the scanning plane, the exit port plate member of the entrance port plate member 20 eliminates the deviation of the optical path of the reflected light. Since the angle γs with respect to 18 is obtained, similarly to the first to fourth embodiments, the deviation of the optical path of the reflected light with respect to the scanning angle Θ (incident angle Θ) and the angle β with respect to the scanning plane of the reflected light is shown. Also in this case, the deviation of the optical path of the reflected light can be obtained by Equations 22 and 23.
図16(A)は、例として、走査角度Θ(入射角Θ)の範囲を0〜35°、角度β=23°、厚さT1=1.5mm、屈折率n=1.5275とし、走査角度Θに対する反射光の光路のレーザ光の光路に対するずれをグラフにしたものである。実線は、入射口板状部材20の出射口板状部材18に対する角度γ=9.3°の場合であり、角度β、厚さT1および屈折率nが上記の値で走査角度Θ(入射角Θ)=35°のとき、反射光の光路がずれない角度γsである。また、点線は、角度γ=0の場合であり、図5の点線と同じである。図16(A)を見るとわかるように、35°以外の走査角度Θ(入射角Θ)のときは反射光の光路のずれは0以外の値になるが、出射口板状部材20の出射口板状部材18に対する角度γ=0(すなわち平行)の場合に比べ、ずれは極めて小さい。よって、出射口板状部材20の出射口板状部材18に対する角度γを適切に設定すると、反射光の光路のレーザ光の光路に対するずれを無視できるほど小さくすることができる。 In FIG. 16A, as an example, the scanning angle Θ (incident angle Θ) ranges from 0 to 35 °, the angle β = 23 °, the thickness T1 = 1.5 mm, and the refractive index n = 1.5275. 5 is a graph showing the deviation of the optical path of reflected light with respect to the angle Θ relative to the optical path of laser light. The solid line shows the case where the angle γ = 9.3 ° of the entrance port plate member 20 with respect to the exit port plate member 18, and the angle β, the thickness T1, and the refractive index n are the above values, and the scan angle Θ (incident angle). When Θ) = 35 °, the angle γs at which the optical path of the reflected light does not shift. The dotted line is the case where the angle γ = 0, and is the same as the dotted line in FIG. As can be seen from FIG. 16A, when the scanning angle Θ (incidence angle Θ) is other than 35 °, the deviation of the optical path of the reflected light becomes a value other than 0, but the exit of the exit port plate member 20 Compared with the case where the angle γ = 0 with respect to the mouth plate-like member 18 (that is, parallel), the deviation is extremely small. Accordingly, when the angle γ of the exit port plate member 20 with respect to the exit port plate member 18 is appropriately set, the deviation of the optical path of the reflected light from the optical path of the laser light can be made small enough to be ignored.
なお、第5実施形態においても、反射光の光路がずれない入射口板状部材20の出射口板状部材18に対する角度γsは、レーザ光の走査角度Θ(入射角Θ)として走査角度の範囲の最大値付近の値(最大の入射角付近の値)を用いて計算した値を用いるのが好ましいが、そうでないレーザ光の走査角度Θ(入射角Θ)を用いて計算した角度γsを用いても、入射口板状部材20の出射口板状部材18に対する角度γ=0(すなわち平行)の場合に比べてずれを小さくすることができる。例として、走査角度Θ(入射角Θ)=1°、角度β=23°、厚さT1=1.5mm、屈折率n=1.5275とし、角度γsを計算すると、角度γs=11.7°となる。そして、角度γ=11.7°にして同様のグラフを作成すると、図16(B)のようになり、走査角度Θの範囲の最大値付近でずれは大きくなるが、角度γ=0の場合に比べれば、ずれはかなり小さくすることができる。 Also in the fifth embodiment, the angle γs of the incident aperture plate-like member 20 with respect to the exit aperture plate-like member 18 where the optical path of the reflected light does not shift is a scanning angle range as the laser beam scan angle Θ (incident angle Θ). It is preferable to use a value calculated using a value in the vicinity of the maximum value (a value in the vicinity of the maximum incident angle), but an angle γs calculated using the scanning angle Θ (incident angle Θ) of the laser beam that is not so is used. However, the deviation can be reduced as compared with the case where the angle γ = 0 (that is, parallel) of the entrance port plate member 20 with respect to the exit port plate member 18. For example, when the scanning angle Θ (incident angle Θ) = 1 °, the angle β = 23 °, the thickness T1 = 1.5 mm, the refractive index n = 1.5275, and the angle γs is calculated, the angle γs = 11.7. °. When a similar graph is created with the angle γ = 11.7 °, as shown in FIG. 16B, the deviation increases near the maximum value in the range of the scanning angle Θ, but the angle γ = 0. Compared with, the deviation can be considerably reduced.
また、図17は、例として、走査角度Θ(入射角Θ)=35°、厚さT1=1.5mm、屈折率n=1.5275とし、角度βに対する反射光の光路のレーザ光の光路に対するずれを計算してグラフにしたものであり、実線は、入射口板状部材20の出射口板状部材18に対する角度γ=9.3°の場合であり、走査角度Θ(入射角Θ)、厚さT1および屈折率nが上記の値で角度β=23°のとき、反射光の光路がずれない角度γsである。点線は、角度γ=0の場合であり、図6のグラフの点線と同一である。図17を見ると分かるように、反射光の走査平面に対する角度βが23°からずれるほどずれは大きくなるが、角度γ=0の場合に比べてずれは小さい。よって、反射光の光路がずれない入射口板状部材20の出射口板状部材18に対する角度γsを、結像レンズ22の光軸と一致する反射光の光路における角度βの値を用いて計算すれば、3次元形状測定装置の測定可能範囲全般にわたって、反射光の光路のレーザ光の光路に対するずれを無視できるほど小さくすることができる。 FIG. 17 shows an example where the scanning angle Θ (incident angle Θ) = 35 °, the thickness T1 = 1.5 mm, the refractive index n = 1.5275, and the optical path of the laser beam of the reflected light with respect to the angle β. The solid line represents the case where the angle γ of the entrance port plate member 20 with respect to the exit port plate member 18 is 9.3 °, and the scanning angle Θ (incident angle Θ). When the thickness T1 and the refractive index n are the above values and the angle β = 23 °, the angle γs at which the optical path of the reflected light does not shift. The dotted line is the case where the angle γ = 0, and is the same as the dotted line in the graph of FIG. As can be seen from FIG. 17, the deviation becomes larger as the angle β of the reflected light with respect to the scanning plane deviates from 23 °, but the deviation is smaller than that in the case where the angle γ = 0. Therefore, the angle γs of the incident aperture plate-like member 20 with respect to the exit aperture plate-like member 18 where the optical path of the reflected light is not shifted is calculated using the value of the angle β in the optical path of the reflected light that coincides with the optical axis of the imaging lens 22. In this case, the deviation of the optical path of the reflected light with respect to the optical path of the laser light can be made small over the entire measurable range of the three-dimensional shape measuring apparatus.
なお、第5実施形態においても、反射光が入射口板状部材20に入射する点は、走査平面に投影して見たとき、レーザ光が入射口板状部材20から出射する点と同じであるとした計算式を用いたが、この条件は、反射光の光路がずれない入射口板状部材20の出射口板状部材18に対する角度γs、および反射光の光路のレーザ光の光路に対するずれDevを計算するための便宜上のものである。第5実施形態においても、実際の3次元形状測定装置の入射口板状部材20の外面は、出射口板状部材18と走査平面とが交差するライン周りに傾いていれば位置は制限されない。 In addition, also in 5th Embodiment, the point in which reflected light injects into the entrance-portion plate-shaped member 20 is the same as the point in which a laser beam radiate | emits from the entrance-portion plate-shaped member 20 when projected on a scanning plane. The calculation formula is used, but this condition is that the angle γs of the incident port plate member 20 with respect to the exit port plate member 18 where the optical path of the reflected light does not shift and the shift of the optical path of the reflected light with respect to the optical path of the laser beam. This is a convenience for calculating Dev. Also in the fifth embodiment, the position of the outer surface of the entrance port plate member 20 of the actual three-dimensional shape measuring apparatus is not limited as long as it is inclined around a line where the exit port plate member 18 and the scanning plane intersect.
上記説明からも理解できるように、上記第5実施形態においては、走査機器14,16を用いて走査したレーザ光を出射口板状部材18を介して測定対象物OBに照射し、測定対象物OBで発生した散乱光の一部である反射光を、入射口板状部材20、走査機器14,16および結像レンズ22を介してラインセンサ24で受光し、ラインセンサ24における受光位置を用いて測定対象物OBの3次元形状を測定する3次元形状測定装置において、入射口板状部材20は、出射口板状部材18と走査したレーザ光の走査平面とが交差するラインに平行な軸周りに出射口板状部材18と所定の角度γを有するとともに、出射口板状部材18と厚さ及び屈折率が同じであり、所定の角度γは、出射口板状部材18の外面と入射口板状部材20の外面が交差するラインは、結像レンズ22の光軸と交差し、入射口板状部材20に入射する反射光の光路は結像レンズ22の光軸と一致しており、入射する反射光の入射位置と入射方向の逆方向を走査したレーザ光の走査平面に投影した位置と方向が、走査したレーザ光の出射口板状部材18から出射する位置と方向と一致するとしたときの、走査したレーザ光の出射口板状部材18に対する入射角が0以外の値であるときの、走査したレーザ光の出射口板状部材18の内面から走査機器14,16側の光路と、反射光の入射口板状部材20の内面から走査機器14,16側の光路を走査したレーザ光の走査平面に投影した光路とが一致する角度に設定されているようにしている。 As can be understood from the above description, in the fifth embodiment, the measurement object OB is irradiated with the laser beam scanned using the scanning devices 14 and 16 via the emission port plate member 18, and the measurement object is obtained. Reflected light, which is part of the scattered light generated by OB, is received by the line sensor 24 through the entrance port plate member 20, the scanning devices 14, 16 and the imaging lens 22, and the light receiving position in the line sensor 24 is used. In the three-dimensional shape measuring apparatus for measuring the three-dimensional shape of the measuring object OB, the entrance port plate member 20 has an axis parallel to a line intersecting the exit port plate member 18 and the scanning plane of the scanned laser beam. It has a predetermined angle γ around the exit port plate member 18 and has the same thickness and refractive index as the exit port plate member 18, and the predetermined angle γ is incident on the outer surface of the exit port plate member 18. The outer surface of the mouth plate-like member 20 The line intersecting the optical axis of the imaging lens 22 intersects the optical path of the reflected light incident on the entrance port plate member 20, and the incident optical axis of the reflected light is incident. Scanned laser when the position and direction projected on the scanning plane of the laser beam scanned in the opposite direction to the position and the incident direction coincide with the position and direction of the scanned laser beam emitted from the exit port plate member 18 When the incident angle of the light with respect to the exit plate 18 is a value other than 0, the optical path from the inner surface of the scanned exit plate 18 of the laser beam to the scanning devices 14 and 16 side, and the reflected light entrance The angle is set so that the optical path projected on the scanning plane of the laser light scanned from the inner surface of the plate-like member 20 on the scanning devices 14 and 16 side coincides.
これによっても、入射口板状部材20の出射口板状部材18に対する角度γを適切な角度にするという極めて簡単な方法により、走査平面に投影した反射光の光路のレーザ光の光路からのずれを、無視できるレベルにまで小さくすることができる。 Even in this case, the deviation of the optical path of the reflected light projected on the scanning plane from the optical path of the laser beam can be made by an extremely simple method of setting the angle γ of the incident aperture plate-shaped member 20 to the output aperture plate-shaped member 18 to an appropriate angle. Can be reduced to a negligible level.
1…透光性板状部材、10…レーザ光源、12…コリメーティングレンズ、14…ガルバノミラー、16…モータ、18…出射口透光部材、20…入射口透光部材、22…結像レンズ、24…ラインセンサ、OB…測定対象物 DESCRIPTION OF SYMBOLS 1 ... Translucent plate-shaped member, 10 ... Laser light source, 12 ... Collimating lens, 14 ... Galvano mirror, 16 ... Motor, 18 ... Emission port translucent member, 20 ... Incident port translucent member, 22 ... Imaging Lens, 24 ... Line sensor, OB ... Measurement object
Claims (5)
前記第2の透光性板状部材は、前記第1の透光性板状部材と平行であり、
前記第2の透光性板状部材の厚さは、
前記第1の透光性板状部材の外面と前記第2の透光性板状部材の外面が同一平面内に含まれ、 前記第2の透光性板状部材に入射する反射光の光路は、前記結像レンズの光軸と一致しており、前記入射する反射光の入射位置と入射方向の逆方向を前記走査したレーザ光の走査平面に投影した位置と方向が、前記走査したレーザ光の前記第1の透光性板状部材から出射する位置と方向と一致するとしたときの、
前記走査したレーザ光の前記第1の透光性板状部材に対する入射角が0以外の値であるときの、前記第1の透光性板状部材に入射する前の前記走査したレーザ光の光路を延長させたラインと、前記第2の透光性板状部材に入射した反射光の光路を前記走査したレーザ光の走査平面に投影した光路と、が交差する点から前記第1の透光性板状部材の外面までの距離で設定されていることを特徴とする3次元形状測定装置。 The laser beam scanned using the scanning unit is irradiated onto the measurement object via the first light-transmitting plate member, and the reflected light, which is a part of the scattered light generated at the measurement object, is reflected on the second transmission light. In a three-dimensional shape measuring apparatus that receives light with a line sensor via an optical plate-like member, the scanning unit, and an imaging lens, and measures a three-dimensional shape of the measurement object using a light receiving position in the line sensor,
The second translucent plate-like member is parallel to the first translucent plate-like member,
The thickness of the second translucent plate-shaped member is
The outer surface of the first translucent plate-like member and the outer surface of the second translucent plate-like member are included in the same plane, and the optical path of the reflected light incident on the second translucent plate-like member Is coincident with the optical axis of the imaging lens, and the position and direction of the incident position of the incident reflected light and the direction opposite to the incident direction projected on the scanning plane of the scanned laser light are the scanned laser. When it is coincident with the position and direction of light emitted from the first translucent plate-like member,
When the incident angle of the scanned laser light with respect to the first translucent plate-shaped member is a value other than 0, the scanned laser light before entering the first translucent plate-shaped member From the point where the line in which the optical path is extended and the optical path projected on the scanning plane of the scanned laser light the optical path of the reflected light incident on the second light transmissive plate member intersects the first transparent light. A three-dimensional shape measuring apparatus, which is set by a distance to the outer surface of the optical plate-like member.
前記第2の透光性板状部材は、前記第1の透光性板状部材と平行であるとともに厚さが同じであり、
前記第1と第2の透光性板状部材は、前記第1と第2の透光性板状部材の屈折率の関係が、
前記第1の透光性板状部材の両面と前記第2の透光性板状部材の両面が同一平面内に含まれ、前記第2の透光性板状部材に入射する反射光の光路は前記結像レンズの光軸と一致しており、前記入射する反射光の入射位置と入射方向の逆方向を前記走査したレーザ光の走査平面に投影した位置と方向が、前記走査したレーザ光の前記第1の透光性板状部材から出射する位置と方向と一致するとしたときの、
前記走査したレーザ光の前記第1の透光性板状部材に対する入射角が0以外の値であるときの、前記走査したレーザ光の光路と、前記反射光の光路を前記走査したレーザ光の走査平面に投影した光路とが一致する屈折率の関係になるものが選択されていることを特徴とする3次元形状測定装置。 The laser beam scanned using the scanning unit is irradiated onto the measurement object via the first light-transmitting plate member, and the reflected light, which is a part of the scattered light generated at the measurement object, is reflected on the second transmission light. In a three-dimensional shape measuring apparatus that receives light with a line sensor via an optical plate-like member, the scanning unit, and an imaging lens, and measures a three-dimensional shape of the measurement object using a light receiving position in the line sensor,
The second translucent plate member is parallel to the first translucent plate member and has the same thickness,
The first and second translucent plate-like members have a refractive index relationship between the first and second translucent plate-like members.
The both sides of the first translucent plate-like member and the both sides of the second translucent plate-like member are included in the same plane, and the optical path of the reflected light incident on the second translucent plate-like member Is coincident with the optical axis of the imaging lens, and the position and direction in which the incident position of the incident reflected light and the direction opposite to the incident direction are projected onto the scanning plane of the scanned laser light are the scanned laser light. When it is coincident with the position and direction of emission from the first translucent plate-shaped member,
When the incident angle of the scanned laser light with respect to the first translucent plate-like member is a value other than 0, the scanned laser light and the reflected light path of the scanned laser light are scanned. 3. A three-dimensional shape measuring apparatus, wherein a refractive index that matches the optical path projected on the scanning plane is selected.
前記第2の透光性板状部材は、前記第1の透光性板状部材と前記走査したレーザ光の走査平面とが交差するラインに平行な軸周りに前記第1の透光性板状部材と所定の角度を有し、
前記第2の透光性板状部材の厚さは、
前記第1の透光性板状部材の外面と前記第2の透光性板状部材の外面が交差するラインは、前記結像レンズの光軸と交差し、前記第2の透光性板状部材に入射する反射光の光路は前記結像レンズの光軸と一致しており、前記入射する反射光の入射位置と入射方向の逆方向を前記走査したレーザ光の走査平面に投影した位置と方向が、前記走査したレーザ光の前記第1の透光性板状部材から出射する位置と方向と一致するとしたときの、
前記走査したレーザ光の前記第1の透光性板状部材に対する入射角が0以外の値であるときの、前記第1の透光性板状部材に入射する前の前記走査したレーザ光の光路を延長させたラインと、前記第2の透光性板状部材に入射した反射光の光路を前記走査したレーザ光の走査平面に投影した光路とが交差する点を含む前記走査平面の法線、および前記第2の透光性板状部材に入射した反射光の光路を、前記走査平面と前記第1の透光性板状部材に垂直な平面に投影したときの交点から前記第2の透光性板状部材の外面までの距離で設定されていることを特徴とする3次元形状測定装置。 The laser beam scanned using the scanning unit is irradiated onto the measurement object via the first light-transmitting plate member, and the reflected light, which is a part of the scattered light generated at the measurement object, is reflected on the second transmission light. In a three-dimensional shape measuring apparatus that receives light with a line sensor via an optical plate-like member, the scanning unit, and an imaging lens, and measures a three-dimensional shape of the measurement object using a light receiving position in the line sensor,
The second light-transmitting plate-like member is formed around the axis parallel to a line intersecting the first light-transmitting plate-like member and the scanning plane of the scanned laser light. Having a predetermined angle with the shaped member,
The thickness of the second translucent plate-shaped member is
A line where the outer surface of the first light transmissive plate member and the outer surface of the second light transmissive plate member intersect each other intersects with the optical axis of the imaging lens, and the second light transmissive plate. The optical path of the reflected light incident on the member is coincident with the optical axis of the imaging lens, and the position where the incident position of the incident reflected light is opposite to the incident direction is projected onto the scanning plane of the scanned laser light And the direction coincides with the position and direction of the scanned laser beam emitted from the first translucent plate-like member,
When the incident angle of the scanned laser light with respect to the first translucent plate-shaped member is a value other than 0, the scanned laser light before entering the first translucent plate-shaped member A method of the scanning plane including a point where a line in which an optical path is extended intersects with an optical path projected on the scanning plane of the scanned laser light with the optical path of reflected light incident on the second light-transmissive plate member Line and the optical path of the reflected light incident on the second translucent plate-like member from the intersection when the scanning plane and a plane perpendicular to the first translucent plate-like member are projected to the second The three-dimensional shape measuring apparatus is set by the distance to the outer surface of the translucent plate-shaped member.
前記第2の透光性板状部材は、前記第1の透光性板状部材と前記走査したレーザ光の走査平面とが交差するラインに平行な軸周りに前記第1の透光性板状部材と所定の角度を有するとともに、前記第1の透光性板状部材と厚さが同じであり、
前記第1と第2の透光性板状部材は、前記第1と第2の透光性板状部材の屈折率の関係が、
前記第1の透光性板状部材の外面と前記第2の透光性板状部材の外面が交差するラインは、前記結像レンズの光軸と交差し、前記第2の透光性板状部材に入射する反射光の光路は前記結像レンズの光軸と一致しており、前記入射する反射光の入射位置と入射方向の逆方向を前記走査したレーザ光の走査平面に投影した位置と方向が、前記走査したレーザ光の前記第1の透光性板状部材から出射する位置と方向と一致するとしたときの、
前記走査したレーザ光の前記第1の透光性板状部材に対する入射角が0以外の値であるときの、前記走査したレーザ光の前記第1の透光性板状部材の内面から前記走査手段側の光路と、前記反射光の前記第2の透光性板状部材の内面から前記走査手段側の光路を前記走査したレーザ光の走査平面に投影した光路とが一致する屈折率の関係になるものが選択されていることを特徴とする3次元形状測定装置。 The laser beam scanned using the scanning unit is irradiated onto the measurement object via the first light-transmitting plate member, and the reflected light, which is a part of the scattered light generated at the measurement object, is reflected on the second transmission light. In a three-dimensional shape measuring apparatus that receives light with a line sensor via an optical plate-like member, the scanning unit, and an imaging lens, and measures a three-dimensional shape of the measurement object using a light receiving position in the line sensor,
The second light-transmitting plate-like member is formed around the axis parallel to a line intersecting the first light-transmitting plate-like member and the scanning plane of the scanned laser light. And having a predetermined angle with the shaped member, and having the same thickness as the first translucent plate-like member,
The first and second translucent plate-like members have a refractive index relationship between the first and second translucent plate-like members.
A line where the outer surface of the first light transmissive plate member and the outer surface of the second light transmissive plate member intersect each other intersects with the optical axis of the imaging lens, and the second light transmissive plate. The optical path of the reflected light incident on the member is coincident with the optical axis of the imaging lens, and the position where the incident position of the incident reflected light is opposite to the incident direction is projected onto the scanning plane of the scanned laser light And the direction coincides with the position and direction of the scanned laser beam emitted from the first translucent plate-like member,
The scanning from the inner surface of the first light transmissive plate member of the scanned laser light when the incident angle of the scanned laser light to the first light transmissive plate member is a value other than zero. Refractive index relationship between the optical path on the means side and the optical path projected on the scanning plane of the scanned laser light from the inner surface of the second light-transmissive plate member of the reflected light to the scanning means side What is selected is a three-dimensional shape measuring apparatus.
前記第2の透光性板状部材は、前記第1の透光性板状部材と前記走査したレーザ光の走査平面とが交差するラインに平行な軸周りに前記第1の透光性板状部材と所定の角度γを有するとともに、前記第1の透光性板状部材と厚さ及び屈折率が同じであり、前記所定の角度γは、
前記第1の透光性板状部材の外面と前記第2の透光性板状部材の外面が交差するラインは、前記結像レンズの光軸と交差し、前記第2の透光性板状部材に入射する反射光の光路は前記結像レンズの光軸と一致しており、前記入射する反射光の入射位置と入射方向の逆方向を前記走査したレーザ光の走査平面に投影した位置と方向が、前記走査したレーザ光の前記第1の透光性板状部材から出射する位置と方向と一致するとしたときの、
前記走査したレーザ光の前記第1の透光性板状部材に対する入射角が0以外の値であるときの、前記走査したレーザ光の前記第1の透光性板状部材の内面から前記走査手段側の光路と、前記反射光の前記第2の透光性板状部材の内面から前記走査手段側の光路を前記走査したレーザ光の走査平面に投影した光路とが一致する角度に設定されていることを特徴とする3次元形状測定装置。 The laser beam scanned using the scanning unit is irradiated onto the measurement object via the first light-transmitting plate member, and the reflected light, which is a part of the scattered light generated at the measurement object, is reflected on the second transmission light. In a three-dimensional shape measuring apparatus that receives light with a line sensor via an optical plate-like member, the scanning unit, and an imaging lens, and measures a three-dimensional shape of the measurement object using a light receiving position in the line sensor,
The second light-transmitting plate-like member is formed around the axis parallel to a line intersecting the first light-transmitting plate-like member and the scanning plane of the scanned laser light. And having a predetermined angle γ and the same thickness and refractive index as the first translucent plate-shaped member, and the predetermined angle γ is:
A line where the outer surface of the first light transmissive plate member and the outer surface of the second light transmissive plate member intersect each other intersects with the optical axis of the imaging lens, and the second light transmissive plate. The optical path of the reflected light incident on the member is coincident with the optical axis of the imaging lens, and the position where the incident position of the incident reflected light is opposite to the incident direction is projected onto the scanning plane of the scanned laser light And the direction coincides with the position and direction of the scanned laser beam emitted from the first translucent plate-like member,
The scanning from the inner surface of the first light transmissive plate member of the scanned laser light when the incident angle of the scanned laser light to the first light transmissive plate member is a value other than zero. The optical path on the means side and the optical path projected on the scanning plane of the scanned laser light from the inner surface of the second translucent plate-like member of the reflected light to the scanning plane of the laser light are set to coincide with each other. A three-dimensional shape measuring apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015230164A JP6060472B1 (en) | 2015-11-26 | 2015-11-26 | 3D shape measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015230164A JP6060472B1 (en) | 2015-11-26 | 2015-11-26 | 3D shape measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6060472B1 true JP6060472B1 (en) | 2017-01-18 |
JP2017096818A JP2017096818A (en) | 2017-06-01 |
Family
ID=57800007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015230164A Expired - Fee Related JP6060472B1 (en) | 2015-11-26 | 2015-11-26 | 3D shape measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6060472B1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03195915A (en) * | 1989-12-25 | 1991-08-27 | Matsushita Electric Works Ltd | Optical scanning type displacement sensor |
JPH0829134A (en) * | 1994-07-12 | 1996-02-02 | Kubota Corp | Three-dimensional shape measuring apparatus |
JPH09218020A (en) * | 1996-02-13 | 1997-08-19 | Hamamatsu Syst Kaihatsu Kyodo Kumiai | Three-dimensional shape measuring equipment |
-
2015
- 2015-11-26 JP JP2015230164A patent/JP6060472B1/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03195915A (en) * | 1989-12-25 | 1991-08-27 | Matsushita Electric Works Ltd | Optical scanning type displacement sensor |
JPH0829134A (en) * | 1994-07-12 | 1996-02-02 | Kubota Corp | Three-dimensional shape measuring apparatus |
JPH09218020A (en) * | 1996-02-13 | 1997-08-19 | Hamamatsu Syst Kaihatsu Kyodo Kumiai | Three-dimensional shape measuring equipment |
Also Published As
Publication number | Publication date |
---|---|
JP2017096818A (en) | 2017-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210215825A1 (en) | Distance detection device | |
US10302413B2 (en) | Six degree-of-freedom laser tracker that cooperates with a remote sensor | |
US9879984B2 (en) | Optical scanning probe and apparatus for generating three-dimensional data using the same | |
JP5016245B2 (en) | Measurement system for determining the six degrees of freedom of an object | |
US9476695B2 (en) | Laser tracker that cooperates with a remote camera bar and coordinate measurement device | |
TWI420081B (en) | Distance measuring system and distance measuring method | |
JPH0374763B2 (en) | ||
KR20140019227A (en) | Image sensor positioning apparatus and method | |
US10012831B2 (en) | Optical monitoring of scan parameters | |
CN103940348A (en) | Device and method for detecting movement errors of working platform in multiple degrees of freedom | |
KR20140048824A (en) | Calibration apparatus, calibration method, and measurement apparatus | |
EP3187822A1 (en) | Surface shape measuring device | |
JP2017502295A (en) | Non-imaging coherent line scanner system and optical inspection method | |
JP6178138B2 (en) | 3D shape measuring device | |
JP6060472B1 (en) | 3D shape measuring device | |
US9958262B2 (en) | System for measuring three-dimensional profile of transparent object or refractive index by fringe projection | |
CN105737758B (en) | A kind of long-range profile measuring instrument | |
JP2021110601A (en) | Method of calibrating optical scanner device, optical scanner device and optical three-dimensional shape measuring device | |
US11092427B2 (en) | Metrology and profilometry using light field generator | |
CN109341600A (en) | A kind of three axis photoelectric auto-collimators | |
US10900987B2 (en) | Robust particle velocity measurement | |
US20150116731A1 (en) | Device for position determination | |
JP5487920B2 (en) | Optical three-dimensional shape measuring apparatus and optical three-dimensional shape measuring method | |
JPH10267624A (en) | Measuring apparatus for three-dimensional shape | |
TWI472801B (en) | 3d information generator for use in interactive interface and method for 3d information generation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161127 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6060472 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |