JP6058617B2 - Phosphor and method for producing phosphor - Google Patents

Phosphor and method for producing phosphor Download PDF

Info

Publication number
JP6058617B2
JP6058617B2 JP2014238742A JP2014238742A JP6058617B2 JP 6058617 B2 JP6058617 B2 JP 6058617B2 JP 2014238742 A JP2014238742 A JP 2014238742A JP 2014238742 A JP2014238742 A JP 2014238742A JP 6058617 B2 JP6058617 B2 JP 6058617B2
Authority
JP
Japan
Prior art keywords
phosphor
light
crystal
diffraction
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014238742A
Other languages
Japanese (ja)
Other versions
JP2015038228A (en
Inventor
大長 久芳
久芳 大長
岩崎 剛
剛 岩崎
公典 榎本
公典 榎本
四ノ宮 裕
裕 四ノ宮
忍 青▲柳▼
忍 青▲柳▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Original Assignee
Koito Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd filed Critical Koito Manufacturing Co Ltd
Priority to JP2014238742A priority Critical patent/JP6058617B2/en
Publication of JP2015038228A publication Critical patent/JP2015038228A/en
Application granted granted Critical
Publication of JP6058617B2 publication Critical patent/JP6058617B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/773Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7732Halogenides
    • C09K11/7733Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7735Germanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Description

本発明は、紫外線又は短波長可視光で効率良く励起され発光する蛍光体に関する。 The present invention relates to a phosphor that is efficiently excited and emitted by ultraviolet light or short-wavelength visible light.

発光素子と、当該発光素子が発生する光により励起され当該発光素子とは異なる波長域の光を発生する蛍光体とを組み合わせることにより、所望の色の光を得るように構成された種々の発光装置が知られている。
特に近年、長寿命且つ消費電力が少ない白色発光装置として、紫外線又は短波長可視光を発光する発光ダイオード(LED)やレーザダイオード(LD)等の半導体発光素子と、これらを励起光源とする蛍光体とを組み合わせることで白色光を得るように構成された発光装置が注目されている。
このような白色発光装置の具体例として、(1)青色光を発光するLEDと、青色光によって励起され黄色光を発光する蛍光体とを組み合わせる方式や、(2)紫色光又は紫外線を発光するLEDと、紫色光又は紫外線によって励起され赤、緑、青、黄等の色の光をそれぞれ発光する蛍光体を複数組み合わせる方式等が知られている。
Various light-emitting elements configured to obtain light of a desired color by combining a light-emitting element and a phosphor that is excited by light generated by the light-emitting element and generates light having a wavelength region different from that of the light-emitting element. The device is known.
In particular, in recent years, as a white light-emitting device with long life and low power consumption, semiconductor light-emitting diodes such as light-emitting diodes (LEDs) and laser diodes (LD) that emit ultraviolet light or short-wavelength visible light, and phosphors using these as light sources for excitation A light-emitting device configured to obtain white light by combining the above is drawing attention.
Specific examples of such a white light emitting device include (1) a method of combining an LED that emits blue light and a phosphor that emits yellow light when excited by blue light, and (2) emits purple light or ultraviolet light. A method is known in which an LED and a plurality of phosphors that emit light of colors such as red, green, blue, and yellow are excited by violet light or ultraviolet light.

特許第3503139号公報Japanese Patent No. 3503139 特開2005−126577号公報JP 2005-126777 A 特開2003−110150号公報JP 2003-110150 A

しかし、上記(1)の方式の白色発光装置においては、青色と黄色の中間の波長領域の光がほとんど存在しないこと、及び蛍光体から得られる赤色領域の光が少ないことから、演色性が低いという問題があった。また、LEDと蛍光体の光を混色して白色光を得ていることから、例えば、白色発光装置の製造工程において蛍光体の塗布量等がばらつくと、LEDと蛍光体の発光する光量のバランスが崩れるため、得られる白色光のスペクトルにもばらつきが生じるという問題があった。
一方、上記(2)の方式の白色発光装置は、演色性は優れているものの、紫外線領域又は短波長可視光領域に強い励起帯を有する蛍光体が見出されておらず、高出力の白色発光装置の実現は困難な状況にあった。そのため、紫外線領域又は短波長可視光領域に強い励起帯を有し効率よく可視光を発光可能な蛍光体の開発が強く望まれていた。特に、従来より知られているインジウム含有の窒化ガリウム系(InGaN系)紫外LEDは、400nm付近の波長域での発光特性が良好であることから、400nm付近の波長域で効率良く励起され高い発光強度の可視光を発光可能な蛍光体の開発が強く望まれていた。
また、演色性の高い発光装置を実現するために、発光スペクトルがブロードである蛍光体の開発も強く望まれていた。
However, in the white light emitting device of the method (1), the color rendering property is low because there is almost no light in the middle wavelength region of blue and yellow and there is little light in the red region obtained from the phosphor. There was a problem. In addition, since the white light is obtained by mixing the light of the LED and the phosphor, for example, if the amount of the phosphor applied varies in the manufacturing process of the white light emitting device, the balance of the amount of light emitted by the LED and the phosphor As a result, the spectrum of white light obtained varies.
On the other hand, although the white light emitting device of the method (2) is excellent in color rendering, no phosphor having a strong excitation band in the ultraviolet region or the short wavelength visible light region has been found, and a high output white light device. Realization of a light emitting device was difficult. Therefore, there has been a strong demand for the development of a phosphor that has a strong excitation band in the ultraviolet region or the short wavelength visible light region and can efficiently emit visible light. In particular, the conventionally known indium-containing gallium nitride (InGaN) ultraviolet LED has good emission characteristics in the wavelength region near 400 nm, and is thus excited efficiently and emits high light in the wavelength region near 400 nm. Development of a phosphor capable of emitting intense visible light has been strongly desired.
In addition, in order to realize a light emitting device with high color rendering properties, it has been strongly desired to develop a phosphor having a broad emission spectrum.

本発明は、上記のような事情を鑑みてなされたものであり、その目的は、紫外線又は短波長可視光、特に400nm付近の波長域で効率良く励起され高い発光強度の可視光を発光可能な蛍光体を提供することを目的としている。   The present invention has been made in view of the above circumstances, and its purpose is to emit ultraviolet light or short-wavelength visible light, particularly visible light with high emission intensity that is efficiently excited in the wavelength region near 400 nm. The object is to provide a phosphor.

本発明者らは、上記課題を解決すべく研究を重ねた結果、一般式がM・aMO・bM:M(但し、MはSi、Ge、Ti、Zr及びSnからなる群より選ばれる少なくとも1種の元素、MはCa、Sr、Mg、Ba及びZnからなる群より選ばれる少なくとも1種の元素、MはMg、Ca、Sr、Ba及びZnからなる群より選ばれる少なくとも1種の元素、Xは少なくとも1種のハロゲン元素、Mは希土類元素及びMnからなる群より選ばれるEu2+を必須とする少なくとも1種の元素を示す。aは0.1≦a≦1.3、bは0.1≦b≦0.25の範囲である)で表される蛍光体は、紫外線又は短波長可視光、特に400nm付近の波長域で効率良く励起され高い発光強度の可視光を発光することを新たに見出し本発明を完成するに至った。 As a result of repeated studies to solve the above-mentioned problems, the inventors have a general formula of M 1 O 2 .aM 2 O.bM 3 X 2 : M 4 (where M 1 is Si, Ge, Ti, Zr And at least one element selected from the group consisting of Sn, M 2 is at least one element selected from the group consisting of Ca, Sr, Mg, Ba and Zn, and M 3 is Mg, Ca, Sr, Ba and Zn at least one element selected from the group consisting of, X is at least one halogen element, M 4 is .a indicating at least one element essentially including Eu 2+ selected from the group consisting of rare earth elements and Mn The phosphor represented by 0.1 ≦ a ≦ 1.3 and b is in the range of 0.1 ≦ b ≦ 0.25) is effective in the ultraviolet or short wavelength visible light, particularly in the wavelength region near 400 nm. Emits visible light with high emission intensity when excited. As a result, the present invention has been completed.

すなわち本発明に係る蛍光体は、一般式がM・aMO・bM:M(但し、MはSi、Ge、Ti、Zr及びSnからなる群より選ばれる少なくとも1種の元素、MはMg、Ca、Sr、Ba及びZnからなる群より選ばれる少なくとも1種の元素、MはMg、Ca、Sr、Ba及びZnからなる群より選ばれる少なくとも1種の元素、Xは少なくとも1種のハロゲン元素、Mは希土類元素及びMnからなる群より選ばれるEu2+を必須とする少なくとも1種の元素を示す。aは0.1≦a≦1.3、bは0.1≦b≦0.25の範囲である)で表されることを特徴とする。 That is, the phosphor according to the present invention has a general formula of M 1 O 2 .aM 2 O.bM 3 X 2 : M 4 (where M 1 is at least selected from the group consisting of Si, Ge, Ti, Zr and Sn). one element, at least one M 2 is of Mg, Ca, Sr, at least one element selected from the group consisting of Ba and Zn, M 3 is selected from the group consisting of Mg, Ca, Sr, Ba and Zn X represents at least one halogen element, M 4 represents at least one element essential to Eu 2+ selected from the group consisting of rare earth elements and Mn, and a represents 0.1 ≦ a ≦ 1.3. , B is in a range of 0.1 ≦ b ≦ 0.25).

上記蛍光体においては、前記一般式のMの含有量をc(モル比)とすると、cの範囲は0.03<c/(a+c)<0.8であることがより好ましい。 In the phosphor, the range of c is more preferably 0.03 <c / (a + c) <0.8, where c (molar ratio) is the content of M 4 in the general formula.

また、上記蛍光体においては、前記一般式のMは少なくともSiを必須とし、Siの割合が80mol%以上であり、前記一般式のMは少なくともCa及び/又はSrを必須とし、Ca及び/又はSrの割合が60mol%以上であり、前記一般式のMは少なくともSrを必須とし、Srが30mol%以上であり、前記一般式のXは少なくともClを必須とし、Clの割合が50mol%以上であることがより好ましい。 Further, in the phosphor, M 1 in the general formula requires at least Si and the ratio of Si is 80 mol% or more, and M 2 in the general formula requires at least Ca and / or Sr, and Ca and And / or the ratio of Sr is 60 mol% or more, M 3 in the above general formula requires at least Sr, Sr is 30 mol% or more, X in the general formula includes at least Cl, and the ratio of Cl is 50 mol%. % Or more is more preferable.

また、上記蛍光体においては、前記一般式のaが0.3≦a≦1.2、bが0.1≦b≦0.20の範囲であり、且つMの含有量cが0.05≦c/(a+c)≦0.5であることがより好ましい。 In the phosphor, a in the general formula is in the range of 0.3 ≦ a ≦ 1.2, b is in the range of 0.1 ≦ b ≦ 0.20, and the content c of M 4 is 0.00. It is more preferable that 05 ≦ c / (a + c) ≦ 0.5.

本発明の蛍光体は、その製造方法が特に限定されるものではないが、出発原料の中に、少なくとも下記(1)〜(4)の組成式で表される化合物を、これらの各化合物のモル比が(1):(2)=1:0.1〜1.0、(2):(3)=1:0.2〜12.0、(2):(4)=1:0.05〜4.0の範囲となるように含み、当該出発原料を混合及び焼成することにより得ることができる。
(1)M
(2)M
(3)M
(4)M
(但し、MはSi、Ge、Ti、Zr及びSnからなる群より選ばれる少なくとも1種の元素、MはMg、Ca、Sr、Ba及びZnからなる群より選ばれる少なくとも1種の元素、MはMg、Ca、Sr、Ba及びZnからなる群より選ばれる少なくとも1種の元素、Xは少なくとも1種のハロゲン元素、Mは希土類元素及びMnからなる群より選ばれるEu2+を必須とする少なくとも1種の元素を示す。)
The production method of the phosphor of the present invention is not particularly limited, but at least the compounds represented by the following composition formulas (1) to (4) are included in the starting materials. The molar ratio is (1) :( 2) = 1: 0.1 to 1.0, (2) :( 3) = 1: 0.2 to 12.0, (2) :( 4) = 1: 0. 0.05 to 4.0, and can be obtained by mixing and firing the starting materials.
(1) M 1 O 2
(2) M 2 O
(3) M 3 X 2
(4) M 4
(Where M 1 is at least one element of Si, Ge, Ti, at least one element selected from the group consisting of Zr and Sn, M 2 is selected from the group consisting of Mg, Ca, Sr, Ba and Zn , M 3 is at least one element selected from the group consisting of Mg, Ca, Sr, Ba and Zn, X is at least one halogen element, M 4 is Eu 2+ selected from the group consisting of rare earth elements and Mn. (Indicates at least one element that is essential.)

上記出発原料においては、前記組成式(1)のMは少なくともSiを必須とし、Siの割合が80mol%以上であり、前記組成式(2)のMは少なくともCa及び/又はSrを必須とし、Ca及び/又はSrの割合が60mol%以上であり、前記組成式(3)前記一般式のMは少なくともSrを必須とし、Srが30mol%以上であり、前記一般式のXは少なくともClを必須とし、Clの割合が50mol%以上であることが好ましい。 In the starting material, M 1 in the composition formula (1) requires at least Si, the proportion of Si is 80 mol% or more, and M 2 in the composition formula (2) requires at least Ca and / or Sr. And the ratio of Ca and / or Sr is 60 mol% or more, M 3 in the composition formula (3) is at least Sr essential, Sr is 30 mol% or more, and X in the general formula is at least It is preferable that Cl is essential and the proportion of Cl is 50 mol% or more.

上記出発原料においては、前記組成式(1)〜(4)の各化合物のモル比が(1):(2)=1:0.25〜1.0、(2):(3)=1:0.3〜6.0、(2):(4)=1:0.05〜3.0の範囲で秤量されることが好ましい。
更には、前記各化合物のモル比が(1):(2)=1:0.25〜1.0、(2):(3)=1:0.3〜4.0、(2):(4)=1:0.05〜3.0の範囲であることがより好ましい。
In the above starting materials, the molar ratio of each compound of the composition formulas (1) to (4) is (1) :( 2) = 1: 0.25 to 1.0, (2) :( 3) = 1. : It is preferable to weigh in the range of 0.3-6.0, (2) :( 4) = 1: 0.05-3.0.
Furthermore, the molar ratio of each compound is (1) :( 2) = 1: 0.25-1.0, (2) :( 3) = 1: 0.3-4.0, (2): (4) = 1: More preferably in the range of 0.05 to 3.0.

尚、上記出発原料においては、前記組成式(3)の原料は化学量論比以上の過剰量を秤量することが好ましい。この過剰添加は原料混合物の焼成中にハロゲン元素の一部が気化蒸発してしまうことを考慮したものであり、ハロゲン元素の不足に起因する蛍光体の結晶欠陥の発生を防止することができる。
また、この過剰添加は融剤としても働き、反応促進、及び結晶性向上にも寄与する。
In addition, in the said starting material, it is preferable to weigh the excess of the raw material of said compositional formula (3) more than a stoichiometric ratio. This excessive addition takes into consideration that a part of the halogen element evaporates and evaporates during firing of the raw material mixture, and it is possible to prevent the occurrence of crystal defects of the phosphor due to the lack of the halogen element.
Further, this excessive addition also acts as a flux, contributing to reaction promotion and crystallinity improvement.

本発明の蛍光体は、その結晶構造が特に限定されるものではないが、蛍光体に含まれる結晶の少なくとも一部が、輝石型の結晶構造を有する結晶であることが好ましい。
また、蛍光体に含まれる結晶の少なくとも一部が、結晶系:単斜晶、ブラベ格子:底心単斜格子、空間群:C2/mに属する結晶であることが好ましい。
The crystal structure of the phosphor of the present invention is not particularly limited, but it is preferable that at least a part of the crystals contained in the phosphor is a crystal having a pyroxene type crystal structure.
Further, it is preferable that at least a part of the crystals contained in the phosphor is a crystal belonging to crystal system: monoclinic crystal, Brave lattice: bottom-centered monoclinic lattice, space group: C2 / m.

本発明の蛍光体は、そのX線回折の測定結果が特に限定されるものではないが、蛍光体に含まれる結晶の少なくとも一部が、CuのKα特性X線を用いたX線回折パターンにおいて、回折角2θが29.0°以上30.5°以下の範囲に存在する最も強度の高い回折ピークの回折強度を100とした場合に、回折角2θが28.0°以上29.5°以下の範囲に回折強度50以上を示す回折ピークが存在し、回折角2θが19.0°以上22.0°以下の範囲に回折強度8以上を示すピークが存在し、回折角2θが25.0°以上28.0°以下の範囲に回折強度15以上を示すピークが存在し、回折角2θが34.5°以上37.5°以下の範囲に回折強度15以上を示すピークが存在し、回折角2θが40.0°以上42.5°以下の範囲に回折強度10以上を示し、回折角2θが13.0°以上15.0°以下の範囲に回折強度10以上を示すピークが存在する蛍光体であることが好ましい。   The X-ray diffraction measurement result of the phosphor of the present invention is not particularly limited, but at least a part of the crystals contained in the phosphor is in an X-ray diffraction pattern using Cu Kα characteristic X-rays. The diffraction angle 2θ is 28.0 ° or more and 29.5 ° or less when the diffraction intensity of the highest diffraction peak existing in the range of diffraction angle 2θ of 29.0 ° or more and 30.5 ° or less is 100. There is a diffraction peak having a diffraction intensity of 50 or more, a diffraction angle 2θ of 19.0 ° to 22.0 ° is a peak having a diffraction intensity of 8 or more, and a diffraction angle 2θ of 25.0. There is a peak having a diffraction intensity of 15 or more in the range of from 0 ° to 28.0 °, and a peak having a diffraction intensity of 15 or more in the range of the diffraction angle 2θ of from 34.5 ° to 37.5 °. Diffraction intensity within the range of bending angle 2θ of 40.0 ° or more and 42.5 ° or less It represents 0 or more, and a diffraction angle 2θ is phosphor with a peak having a diffraction intensity of 10 or more in the range of 13.0 ° or 15.0 ° or less.

また、蛍光体に含まれる結晶の少なくとも一部が、MoのKα特性X線を用いた回折パターンにおいて、回折角2θが12.5°以上15.0°以下の範囲に存在する最も強度の高い回折ピークの回折強度を100とした場合に、回折角2θが12.0°以上14.5°以下の範囲に回折強度50以上を示す回折ピークが存在し、回折角2θが8.0°以上10.5°以下の範囲に回折強度8以上を示すピークが存在し、回折角2θが11.0°以上13.0°以下の範囲に回折強度15以上を示すピークが存在し、回折角2θが15.5°以上17.0°以下の範囲に回折強度15以上を示すピークが存在し、回折角2θが17.5°以上19.5°以下の範囲に回折強度10以上を示し、回折角2θが5.0°以上8.0°以下の範囲に回折強度10以上を示すピークが存在することが好ましい。   Further, at least a part of the crystals contained in the phosphor has the highest intensity when the diffraction angle 2θ is in the range of 12.5 ° to 15.0 ° in the diffraction pattern using Mo Kα characteristic X-rays. When the diffraction intensity of the diffraction peak is 100, there is a diffraction peak showing a diffraction intensity of 50 or more in a range of diffraction angle 2θ of 12.0 ° or more and 14.5 ° or less, and diffraction angle 2θ of 8.0 ° or more. A peak showing a diffraction intensity of 8 or more exists in a range of 10.5 ° or less, a peak showing a diffraction intensity of 15 or more exists in a range of a diffraction angle 2θ of 11.0 ° or more and 13.0 ° or less, and a diffraction angle 2θ. In the range of 15.5 ° to 17.0 °, and the diffraction angle 2θ is in the range of 17.5 ° to 19.5 ° with a diffraction intensity of 10 or more. The diffraction intensity is 10 or more in the range where the bending angle 2θ is 5.0 ° or more and 8.0 ° or less Preferably a peak showing a exists.

本発明の蛍光体において、より高い発光強度を得る為には、蛍光体に含まれる上記結晶の量ができるだけ多いこと、できれば単相から構成されていることが望ましく、上記結晶の含有量が20質量%以上であることが望ましい。さらに好ましくは50質量%以上で発光強度が著しく向上する。   In the phosphor of the present invention, in order to obtain a higher emission intensity, it is desirable that the amount of the crystal contained in the phosphor is as large as possible, preferably composed of a single phase, and the content of the crystal is 20 It is desirable that it is at least mass%. More preferably, the emission intensity is remarkably improved at 50% by mass or more.

尚、特性が低下しない範囲で他の結晶相若しくはアモルファス相との混合物から構成することもでき、特に、上記出発原料の混合比において、SiOを過剰に添加し、SiOから構成される結晶であるクオーツ、トリジマイト、クリストバライト等が若干の副産物として合成される蛍光体では、発光強度が向上する場合もある。 Incidentally, it is also possible that a characteristic composed of a mixture of the other crystal phase or amorphous phase within the range not lowering, in particular, the mixing ratio of the starting materials, SiO 2 is excessively added, the crystal consists of SiO 2 In the case of a phosphor in which quartz, tridymite, cristobalite or the like is synthesized as a slight byproduct, the emission intensity may be improved.

本発明の蛍光体は、その用途が特に限定されるものではないが、励起光源と組み合わせることにより各種の発光装置とすることができる。   The use of the phosphor of the present invention is not particularly limited, but various phosphors can be obtained by combining with the excitation light source.

上記発光装置において、紫外線又は短波長可視光を励起光源とする場合には、本発明の蛍光体は350〜430nmの波長域に強い励起帯があることが発光効率、発光輝度等の観点から好ましい。   In the above light-emitting device, when ultraviolet light or short-wavelength visible light is used as an excitation light source, the phosphor of the present invention preferably has a strong excitation band in the wavelength region of 350 to 430 nm from the viewpoint of light emission efficiency, light emission luminance, and the like. .

また、上記発光装置において、白色発光装置とする場合には、本発明の蛍光体は発光スペクトルのピークが560〜590nmの波長域にあり、半値幅が100nm以上であることが演色性等の観点から好ましい。   In the above light emitting device, when a white light emitting device is used, the phosphor of the present invention has an emission spectrum peak in a wavelength range of 560 to 590 nm and a half width of 100 nm or more in terms of color rendering properties and the like. To preferred.

本発明の蛍光体は、紫外線領域又は短波長可視光領域に強い励起帯を有し効率よく可視光を発光可能である。特に、400nm付近の波長域で効率良く励起され発光スペクトルがブロードな光を発光可能である。   The phosphor of the present invention has a strong excitation band in the ultraviolet region or short-wavelength visible light region, and can emit visible light efficiently. In particular, light that is excited efficiently in the wavelength region near 400 nm and has a broad emission spectrum can be emitted.

また、本発明の蛍光体を用いれば、演色性に優れ、高出力の発光装置を得ることができる。更に、他の蛍光体と組み合わせることで、演色性に優れ、高出力の白色発光装置を得ることができる。   Moreover, if the phosphor of the present invention is used, a light-emitting device having excellent color rendering properties and high output can be obtained. Furthermore, by combining with other phosphors, it is possible to obtain a white light emitting device with excellent color rendering and high output.

単結晶母体結晶のX線回折写真の一例を示す図である。It is a figure which shows an example of the X-ray-diffraction photograph of a single crystal base crystal. 粉末母体結晶のX線回折(測定2)についてのフィッティング図である。It is a fitting figure about the X-ray diffraction (measurement 2) of a powder base crystal. 粉末母体結晶と本発明の実施例2の蛍光体のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of a powder base crystal and the fluorescent substance of Example 2 of this invention. 本発明の実施例1の蛍光体のX線回折(測定3)のフィッティング図である。It is a fitting figure of the X-ray diffraction (measurement 3) of the fluorescent substance of Example 1 of this invention. 本発明の実施例1の蛍光体の発光スペクトル(実線)及び比較例1の蛍光体の発光スペクトル(点線)を示す図である。It is a figure which shows the emission spectrum (solid line) of the fluorescent substance of Example 1 of this invention, and the emission spectrum (dotted line) of the fluorescent substance of the comparative example 1. 本発明の実施例2の蛍光体の発光スペクトル(実線)及び比較例1の蛍光体の発光スペクトル(点線)を示す図である。It is a figure which shows the emission spectrum (solid line) of the fluorescent substance of Example 2 of this invention, and the emission spectrum (dotted line) of the fluorescent substance of the comparative example 1. 本発明の実施例3の蛍光体の発光スペクトル(実線)及び比較例1の蛍光体の発光スペクトル(点線)を示す図である。It is a figure which shows the emission spectrum (solid line) of the fluorescent substance of Example 3 of this invention, and the emission spectrum (dotted line) of the fluorescent substance of the comparative example 1. 本発明の実施例4の蛍光体の発光スペクトル(実線)及び比較例1の蛍光体の発光スペクトル(点線)を示す図である。It is a figure which shows the emission spectrum (solid line) of the fluorescent substance of Example 4 of this invention, and the emission spectrum (dotted line) of the fluorescent substance of the comparative example 1. 本発明の実施例5の蛍光体の発光スペクトル(実線)及び比較例1の蛍光体の発光スペクトル(点線)を示す図である。It is a figure which shows the emission spectrum (solid line) of the fluorescent substance of Example 5 of this invention, and the emission spectrum (dotted line) of the fluorescent substance of the comparative example 1. 本発明の実施例6の蛍光体の発光スペクトル(実線)及び比較例1の蛍光体の発光スペクトル(点線)を示す図である。It is a figure which shows the emission spectrum (solid line) of the fluorescent substance of Example 6 of this invention, and the emission spectrum (dotted line) of the fluorescent substance of the comparative example 1. 本発明の実施例1の蛍光体の励起スペクトルを示す図である。It is a figure which shows the excitation spectrum of the fluorescent substance of Example 1 of this invention. 本発明の実施例1の蛍光体についてのCuのKα特性X線を用いたX線回折の測定結果を示す図である。It is a figure which shows the measurement result of the X-ray diffraction using the K alpha characteristic X ray of Cu about the fluorescent substance of Example 1 of this invention. 本発明の実施例4の蛍光体についてのCuのKα特性X線を用いたX線回折の測定結果を示す図である。It is a figure which shows the measurement result of the X ray diffraction which used the K alpha characteristic X ray of Cu about the fluorescent substance of Example 4 of this invention. 本発明の蛍光体を利用した発光装置の一実施例を示す概略断面図である。It is a schematic sectional drawing which shows one Example of the light-emitting device using the fluorescent substance of this invention. 本発明の実施例7の発光装置の発光スペクトル(実線)及び比較例2の発光装置の発光スペクトル(点線)を示す図面である。It is drawing which shows the emission spectrum (solid line) of the light-emitting device of Example 7 of this invention, and the light emission spectrum (dotted line) of the light-emitting device of the comparative example 2. FIG.

以下、本発明について詳細に説明するが、本発明は以下の例示などによって何ら制限されるものではない。   Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following examples.

本発明の蛍光体は、例えば、次のようにして得ることができる。
本発明の蛍光体は、原料として下記(1)〜(4)の組成式で表される化合物を用いることができる。
(1)M(MはSi、Ge、Ti、Zr、Sn等の4価の元素を示す。)
(2)MO(MはMg、Ca、Sr、Ba、Zn等の2価の元素を示す。)
(3)M(MはMg、Ca、Sr、Ba、Zn等の2価の元素、Xはハロゲン元素を示す。)
(4)M(MはEu2+等の希土類元素及び/又はMnを示す。)
The phosphor of the present invention can be obtained, for example, as follows.
In the phosphor of the present invention, compounds represented by the following composition formulas (1) to (4) can be used as raw materials.
(1) M 1 O 2 (M 1 represents a tetravalent element such as Si, Ge, Ti, Zr, or Sn.)
(2) M 2 O (M 2 represents a divalent element such as Mg, Ca, Sr, Ba, Zn, etc.)
(3) M 3 X 2 (M 3 is a divalent element such as Mg, Ca, Sr, Ba, Zn, etc., and X is a halogen element.)
(4) M 4 (M 4 represents a rare earth element such as Eu 2+ and / or Mn.)

前記(1)の組成式の原料として、例えば、SiO、GeO、TiO、ZrO、SnO等を用いることができる。
前記(2)の組成式の原料として、例えば、2価の金属イオンの炭酸塩、酸化物、水酸化物等を用いることができる。
前記(3)の組成式の原料として、例えば、SrCl、SrCl・6HO、MgCl、MgCl・6HO、CaCl、CaCl・2HO、BaCl、BaCl・2HO、ZnCl、MgF、CaF、SrF、BaF、ZnF、MgBr、CaBr、SrBr、BaBr、ZnBr、MgI、CaI、SrI、BaI、ZnI等を用いることができる。
前記(4)の組成式の原料として、例えば、Eu、Eu(CO、Eu(OH)、EuCl、MnO、Mn(OH)、MnCO、MnCl・4HO、Mn(NO・6HO等を用いることができる。
As the raw material of the composition formula (1), for example, SiO 2 , GeO 2 , TiO 2 , ZrO 2 , SnO 2 or the like can be used.
As a raw material of the composition formula (2), for example, a carbonate, oxide, hydroxide or the like of a divalent metal ion can be used.
Examples of the raw material of the composition formula (3) include SrCl 2 , SrCl 2 .6H 2 O, MgCl 2 , MgCl 2 .6H 2 O, CaCl 2 , CaCl 2 .2H 2 O, BaCl 2 , BaCl 2 .2H. 2 O, ZnCl 2, MgF 2 , CaF 2, SrF 2, BaF 2, ZnF 2, MgBr 2, CaBr 2, SrBr 2, BaBr 2, ZnBr 2, MgI 2, CaI 2, SrI 2, BaI 2, ZnI 2 Etc. can be used.
As a raw material of the composition formula (4), for example, Eu 2 O 3 , Eu 2 (CO 3 ) 3 , Eu (OH) 3 , EuCl 3 , MnO, Mn (OH) 2 , MnCO 3 , MnCl 2 .4H 2 O, Mn (NO 3 ) 2 · 6H 2 O, or the like can be used.

前記(1)の組成式の原料としては、Mが少なくともSiを必須とし、Si、Ge、Ti、Zr及びSnからなる群より選ばれる少なくとも1種の元素であり、Siの割合が80mol%以上である化合物が好ましい。
前記(2)の組成式の原料としては、Mが少なくともCa及び/又はSrを必須とし、Mg、Ca、Sr、Ba及びZnからなる群より選ばれる少なくとも1種の元素であり、Ca及び/又はSrの割合が60mol%以上である化合物が好ましい。
前記(3)の組成式の原料としては、Mが少なくともSrを必須とし、Mg、Ca、Sr、Mg、Ba及びZnからなる群より選ばれる少なくとも1種の元素であり、Srが30mol%以上である化合物が好ましく、Xが少なくともClを必須とする少なくとも1種のハロゲン元素であり、Clの割合が50mol%以上である化合物が好ましい。
前記(4)の組成式の原料としては、Mが2価のEuを必須とする希土類元素であることが好ましく、Mn又はEu以外の希土類元素等を含んでもよい。
As a raw material of the composition formula (1), M 1 is at least Si, which is at least one element selected from the group consisting of Si, Ge, Ti, Zr and Sn, and the ratio of Si is 80 mol%. The compound which is the above is preferable.
As a raw material of the composition formula (2), M 2 is at least one element selected from the group consisting of Mg, Ca, Sr, Ba, and Zn, at least Ca and / or Sr essential, and Ca and A compound having a ratio of / or Sr of 60 mol% or more is preferred.
As a raw material of the composition formula (3), M 3 is at least Sr essential, is at least one element selected from the group consisting of Mg, Ca, Sr, Mg, Ba and Zn, and Sr is 30 mol%. The above compounds are preferable, and the compound in which X is at least one halogen element in which at least Cl is essential and the proportion of Cl is 50 mol% or more is preferable.
As a raw material of the composition formula (4), M 4 is preferably a rare earth element in which divalent Eu is essential, and may contain a rare earth element other than Mn or Eu.

前記(1)〜(4)の組成式の原料のモル比を、(1):(2)=1:0.1〜1.0、(2):(3)=1:0.2〜12.0、(2):(4)=1:0.05〜4.0、好ましくは、(1):(2)=1:0.25〜1.0、(2):(3)=1:0.3〜6.0、(2):(4)=1:0.05〜3.0、より好ましくは(1):(2)=1:0.25〜1.0、(2):(3)=1:0.3〜4.0、(2):(4)=1:0.05〜3.0割合で秤量し、秤量した各原料をアルミナ乳鉢に入れ約30分粉砕混合し、原料混合物を得る。この原料混合物をアルミナ坩堝に入れ、還元雰囲気の電気炉で、雰囲気(5/95)の(H/N)、温度900以上1100℃未満で3〜40時間焼成し、焼成物を得る。この焼成物を温純水で丹念に洗浄し、余剰の塩化物を洗い流すことにより本発明の蛍光体を得ることができる。 The molar ratio of the raw materials of the composition formulas (1) to (4) is (1) :( 2) = 1: 0.1 to 1.0, (2) :( 3) = 1: 0.2 to 12.0, (2) :( 4) = 1: 0.05-4.0, preferably (1) :( 2) = 1: 0.25-1.0, (2) :( 3) = 1: 0.3-6.0, (2) :( 4) = 1: 0.05-3.0, more preferably (1) :( 2) = 1: 0.25-1.0, (2): (3) = 1: 0.3-4.0, (2) :( 4) = 1: 0.05-3.0 Weighed and put each weighed raw material in an alumina mortar Grind and mix for 30 minutes to obtain a raw material mixture. This raw material mixture is put into an alumina crucible and fired in an electric furnace in a reducing atmosphere at (H 2 / N 2 ) in an atmosphere (5/95) at a temperature of 900 to 1100 ° C. for 3 to 40 hours to obtain a fired product. The phosphor of the present invention can be obtained by carefully washing the fired product with warm pure water and washing away excess chloride.

特に、(3)の組成式の原料(2価の金属ハロゲン化物)は化学量論比以上の過剰量を秤量することが好ましい。それは、焼成中にハロゲン元素の一部が気化蒸発してしまうことを考慮したものであり、ハロゲン元素の不足に起因する蛍光体の結晶欠陥の発生を防止するためである。また、過剰に加えられた(3)原料は、焼成温度では液化し、固相反応の融剤として働き、固相反応の促進及び、結晶性を向上させる働きも示す。   In particular, the raw material (divalent metal halide) having the composition formula (3) is preferably weighed in excess of the stoichiometric ratio. This is because it is considered that a part of the halogen element is vaporized and evaporated during firing, and this is to prevent the occurrence of crystal defects in the phosphor due to the lack of the halogen element. In addition, the excessively added (3) raw material is liquefied at the calcination temperature, works as a solid-phase reaction flux, promotes the solid-phase reaction, and improves the crystallinity.

尚、前記原料混合物の焼成後においては、上記の過剰添加された(3)の組成式の原料は、製造された蛍光体の中で不純物として存在する。そこで、純度及び発光強度が高い蛍光体を得るためには、これらの不純物を温純水で洗い流す必要がある。
本発明の蛍光体の一般式に示された組成比は不純物を洗い流した後の組成比であり、上記のように過剰添加され不純物となった(3)の組成式の原料はこの組成比において加味されていない。
In addition, after baking of the said raw material mixture, the raw material of the composition formula of said (3) added excessively exists as an impurity in the manufactured fluorescent substance. Therefore, in order to obtain a phosphor having high purity and high emission intensity, it is necessary to wash away these impurities with warm pure water.
The composition ratio shown in the general formula of the phosphor of the present invention is the composition ratio after the impurities are washed away, and the raw material of the composition formula (3), which is added excessively and becomes impurities as described above, is in this composition ratio. Not taken into account.

本発明の蛍光体において発光効率の高い蛍光体を得るには、不純物となる金属元素を極力少なくすることが好ましい。特にFe、Co、Ni等の遷移金属元素は発光の阻害剤として作用するため、これらの元素の合計が500ppm以下になるように、純度の高い原料の使用、及び合成工程での不純物の混入を防ぐことが好ましい。   In order to obtain a phosphor with high luminous efficiency in the phosphor of the present invention, it is preferable to reduce the number of metal elements as impurities as much as possible. In particular, since transition metal elements such as Fe, Co, and Ni act as light emission inhibitors, use high-purity raw materials and mix impurities in the synthesis process so that the total of these elements is 500 ppm or less. It is preferable to prevent.

また、本発明の蛍光体は、励起光源と組み合わせることにより各種の発光装置とすることができる。   Moreover, the phosphor of the present invention can be made into various light emitting devices by being combined with an excitation light source.

励起光源としては、例えば、LEDやLD等の半導体発光素子、真空放電や熱発光からの発光を得るための光源、電子線励起発光素子等を用いることができる。
特に、本発明の蛍光体は400nm付近の波長域で効率良く励起され高い発光強度の可視光を発光するため、400nm付近の波長域を発光する励起光源と組み合わせることが好ましい。
As the excitation light source, for example, a semiconductor light emitting element such as an LED or an LD, a light source for obtaining light emission from vacuum discharge or thermoluminescence, an electron beam excitation light emitting element, or the like can be used.
In particular, since the phosphor of the present invention is efficiently excited in the wavelength region near 400 nm and emits visible light with high emission intensity, it is preferably combined with an excitation light source that emits light in the wavelength region near 400 nm.

これらの励起光源と本発明の蛍光体とを組み合わせるにあたっては、本発明の蛍光体粉末を耐光性の良好な透明樹脂(シリコーン、フッ素、ゾルゲルシリカ等)に分散させ、これをLED等の励起光源上に塗布し、透明樹脂を硬化させることで固定化することができる。
このとき、透明樹脂への分散性や塗布性の観点から、本発明の蛍光体粉末の平均粒径が0.1〜20μmの範囲にあることが好ましい。
In combining these excitation light sources and the phosphor of the present invention, the phosphor powder of the present invention is dispersed in a transparent resin (silicone, fluorine, sol-gel silica, etc.) having good light resistance, and this is used as an excitation light source such as an LED. It can be fixed by applying it on top and curing the transparent resin.
At this time, it is preferable that the average particle diameter of the phosphor powder of the present invention is in the range of 0.1 to 20 μm from the viewpoint of dispersibility in transparent resin and applicability.

発光装置としての用途は、例えば、LED、LD、蛍光灯、蛍光表示管(VFD)、フィールドエミッションディスプレイ(FED)、プラズマディスプレイパネル(PDP)、陰極線管(CCFL)などが考えられる。特に、本発明の蛍光体は黄色系の発光に優れており、他の蛍光体及び/又は他の光源と組み合わせ加色混合することで白色発光装置を構成することができる。例えば、励起光源として紫外線又は短波長可視光を発光するLED又はLDを用い、これに本発明の蛍光体と他の青色領域の蛍光体を組み合わせることで白色発光装置を構成することができる。   For example, LED, LD, fluorescent lamp, fluorescent display tube (VFD), field emission display (FED), plasma display panel (PDP), cathode ray tube (CCFL) may be used as the light emitting device. In particular, the phosphor of the present invention is excellent in yellow light emission, and a white light emitting device can be formed by combining and mixing with other phosphors and / or other light sources. For example, a white light emitting device can be configured by using an LED or LD that emits ultraviolet light or short-wavelength visible light as an excitation light source, and combining the phosphor of the present invention with another blue region phosphor.

<本発明の蛍光体の結晶構造の特定>
本発明の蛍光体の結晶構造等の決定は、以下に述べる母体結晶の単結晶を成長させ、その分析結果に基づいて行なった。
この母体結晶は、前記一般式M・aMO・bM:Mにおいて、M=Si、M=Ca及びSr、M=Sr、X=Clとし、Mは含有しない物質である。
<Identification of crystal structure of phosphor of the present invention>
Determination of the crystal structure and the like of the phosphor of the present invention was carried out based on the analysis results obtained by growing a single crystal of a host crystal described below.
This base crystal has M 1 = Si, M 2 = Ca and Sr, M 3 = Sr, X = Cl in the general formula M 1 O 2 · aM 2 O · bM 3 X 2 : M 4 , and M 4 Is a substance that does not contain.

<母体結晶の生成と分析>
母体結晶の単結晶の結晶成長は、以下の手順で実施した。
まず、SiO、CaO、SrClの各原料をこれらのモル比がSiO:CaO:SrCl=1:0.71:1.07となるように秤量し、秤量した各原料をアルミナ乳鉢に入れ約30分粉砕混合し、原料混合物を得た。この原料混合物をタブレット型に詰め100MPaで一軸圧縮成形をし、成形体を得た。この成形体をアルミナ坩堝に入れ蓋をした後に、大気中で1030℃で36時間焼成し、焼成物を得た。得られた焼成物を温純水と超音波で洗浄し、母体結晶を得た。
このようにして生成した母体結晶の中にΦ0.2mmの単結晶を得た。
<Generation and analysis of parent crystals>
The crystal growth of the single crystal of the base crystal was performed by the following procedure.
First, each raw material of SiO 2 , CaO, and SrCl 2 was weighed so that the molar ratio thereof was SiO 2 : CaO: SrCl 2 = 1: 0.71: 1.07, and each weighed raw material was placed in an alumina mortar. The mixture was pulverized and mixed for about 30 minutes to obtain a raw material mixture. This raw material mixture was packed in a tablet mold and uniaxially compression molded at 100 MPa to obtain a molded body. The molded body was put in an alumina crucible and covered, and then fired in air at 1030 ° C. for 36 hours to obtain a fired product. The obtained fired product was washed with warm pure water and ultrasonic waves to obtain a base crystal.
A single crystal having a diameter of 0.2 mm was obtained in the base crystal thus produced.

得られた母体結晶について、以下の方法で元素定量分析を行ない、組成比(前記一般式におけるa、bの値)を決定した。
1.Siの定量分析
母体結晶を炭酸ナトリウムで白金坩堝中で融解した後に、希硝酸で溶解処理して定容とした。この溶液についてICP発光分光分析装置(SIIナノテクノロジー株式会社製:SPS−4000)を用いSi量を測定した。
2.金属元素の定量分析
母体結晶を不活性ガス下で過塩素酸、硝酸及びフッ化水素酸で加熱分解し、希硝酸で溶解処理して定容とした。この溶液についてICP発光分光分析装置(SIIナノテクノロジー株式会社製:SPS−4000)を用い金属元素量を測定した。
3.Clの定量分析
母体結晶を管状電気炉で燃焼し、発生ガスを吸着液に吸着させた。この溶液についてDionex社製DX−500を用いイオンクロマトグラフ法でCl量を決定した。
4.Oの定量分析
母体結晶をLECO社製の窒素酸素分析装置TC−436を用い、試料をアルゴン中で熱分解させ、発生酸素を赤外線吸収法で定量した。
About the obtained base crystal, the element quantitative analysis was performed with the following method, and the composition ratio (value of a, b in the said general formula) was determined.
1. Quantitative analysis of Si The base crystal was melted with sodium carbonate in a platinum crucible and then dissolved in diluted nitric acid to obtain a constant volume. About this solution, the amount of Si was measured using the ICP emission-spectral-analysis apparatus (SII nanotechnology Co., Ltd. product: SPS-4000).
2. Quantitative analysis of metal elements The base crystals were thermally decomposed with perchloric acid, nitric acid and hydrofluoric acid under an inert gas, and dissolved with dilute nitric acid to obtain a constant volume. About this solution, the amount of metal elements was measured using the ICP emission-spectral-analysis apparatus (SII nanotechnology Co., Ltd. product: SPS-4000).
3. Quantitative analysis of Cl The base crystals were burned in a tubular electric furnace, and the generated gas was adsorbed to the adsorbing liquid. The Cl amount of this solution was determined by ion chromatography using DX-500 manufactured by Dionex.
4). Quantitative analysis of O The base crystal was pyrolyzed in argon using a nitrogen oxygen analyzer TC-436 manufactured by LECO, and the generated oxygen was quantified by an infrared absorption method.

以上の元素定量分析の結果、得られた母体結晶の大凡の組成比は下記の通りである。
SiO・1.05(Ca0.6,Sr0.4)O・0.15SrCl
また、ピクノメータによって測定した前記母体結晶の比重は3.4であった。
As a result of the above elemental quantitative analysis, the approximate composition ratio of the obtained host crystal is as follows.
SiO 2 · 1.05 (Ca 0.6 , Sr 0.4 ) O · 0.15SrCl 2
The specific gravity of the host crystal measured by a pycnometer was 3.4.

母体結晶の単結晶について、イメージングプレート単結晶自動X線構造解析装置(RIGAKU製:R−AXIS RAPID)により、MoのKα線(波長λ=0.71Å)を用いたX線回折パターンを測定した(以下、測定1と呼ぶ)。
この測定1により得られたX線回折写真の一例を図1に示す。
X-ray diffraction pattern using Mo Kα ray (wavelength λ = 0.71Å) was measured for the single crystal of the parent crystal by an imaging plate single crystal automatic X-ray structure analyzer (RIGAKU: R-AXIS RAPID). (Hereinafter referred to as measurement 1).
An example of an X-ray diffraction photograph obtained by this measurement 1 is shown in FIG.

測定1により、2θ<60°(d>0.71Å)の範囲で得られた5709本の回折斑点を用いて以下の結晶構造解析を行なった。   From measurement 1, the following crystal structure analysis was performed using 5709 diffraction spots obtained in the range of 2θ <60 ° (d> 0.71 Å).

母体結晶について、測定1によるX線回折パターンから、データ処理ソフト(RIGAKU 製:Rapid Auto)を用い、母体結晶の結晶系、ブラベ格子、空間群、及び格子定数を以下の通り決定した。
結晶系:単斜晶
ブラベ格子:底心単斜格子
空間群:C2/m
格子定数:
a=13.3036(12)Å
b=8.3067(8)Å
c=9.1567(12)Å
α=γ=90°
β=110.226(5)°
V=949.50(18)Å
For the parent crystal, the crystal system, Brave lattice, space group, and lattice constant of the parent crystal were determined from the X-ray diffraction pattern obtained by Measurement 1 using data processing software (Rigaku: Rapid Auto) as follows.
Crystalline system: Monoclinic Brave lattice: Bottom monoclinic lattice Space group: C2 / m
Lattice constant:
a = 13.3030 (12) Å
b = 8.3067 (8) Å
c = 9.1567 (12) Å
α = γ = 90 °
β = 110.226 (5) °
V = 949.50 (18) 3 3

その後、結晶構造解析ソフト(RIGAKU製:Crystal Stracture)を用い、直接法により大まかな構造を決定した後、最小二乗法により構造パラメータ(席占有率、原子座標、温度因子等)を精密化した。
精密化は、|F|>2σの独立な1160点の|F|に対して行ない、その結果、信頼度因子R=2.7%の結晶構造モデルが得られた。
当該結晶構造モデルを、以後「初期構造モデル」と呼ぶ。
Thereafter, a rough structure was determined by a direct method using crystal structure analysis software (manufactured by RIGAKU: Crystal Structure), and then structural parameters (seat occupancy, atomic coordinates, temperature factor, etc.) were refined by a least square method.
Refinement was performed on | F | of independent 1160 points with | F |> 2σ F , and as a result, a crystal structure model with a reliability factor R 1 = 2.7% was obtained.
The crystal structure model is hereinafter referred to as “initial structure model”.

単結晶から求めた初期構造モデルの原子座標と占有率を表1に示す。
Table 1 shows the atomic coordinates and occupancy of the initial structure model obtained from the single crystal.

単結晶より求めた初期構造モデルの組成比は、以下のように算出された。
SiO・1.0(Ca0.6,Sr0.4)O・0.17SrCl
The composition ratio of the initial structure model obtained from the single crystal was calculated as follows.
SiO 2 · 1.0 (Ca 0.6 , Sr 0.4 ) O · 0.17SrCl 2

上記解析の結果、本発明の結晶は、X線回折に広く用いられるX線回折データベースであるICDD(International Center for Diffraction Date)に登録されていない新規構造の結晶であることが判明した。   As a result of the above analysis, it has been found that the crystal of the present invention is a crystal having a novel structure that is not registered in ICDD (International Center for Diffraction Date), which is an X-ray diffraction database widely used for X-ray diffraction.

次に、蛍光体と同等形態である粉末の母体結晶を調整し、初期構造モデルに属した結晶構造となっているか調べた。   Next, the host crystal of the powder having the same form as the phosphor was prepared, and it was examined whether the crystal structure belonged to the initial structure model.

粉末母体結晶の調整は、以下の手順で行った。まず、SiO、CaO、SrO、SrClの各原料をこれらのモル比がSiO:CaO:SrO:SrCl=1.0:0.7:0.2:1.0となるように秤量し、秤量した各原料をアルミナ乳鉢に入れ約30分粉砕混合し、原料混合物を得た。この原料混合物をタブレット型に詰め100MPaで一軸圧縮成形をし、成形体を得た。この成形体をアルミナ坩堝に入れ蓋をした後に、1030℃で5〜40時間焼成し、焼成物を得た。得られた焼成物を温純水と超音波で洗浄し、粉末母体結晶を得た。 The powder base crystal was adjusted according to the following procedure. First, each raw material of SiO 2 , CaO, SrO, and SrCl 2 is weighed so that the molar ratio thereof is SiO 2 : CaO: SrO: SrCl 2 = 1.0: 0.7: 0.2: 1.0. Each raw material weighed was placed in an alumina mortar and ground and mixed for about 30 minutes to obtain a raw material mixture. This raw material mixture was packed in a tablet mold and uniaxially compression molded at 100 MPa to obtain a molded body. The molded body was placed in an alumina crucible and covered, and then fired at 1030 ° C. for 5 to 40 hours to obtain a fired product. The obtained fired product was washed with warm pure water and ultrasonic waves to obtain a powder base crystal.

次に、粉末母体結晶の詳細な結晶構造を求めるために、名古屋大学の高分解能粉末X線回折装置(RIGAKU製:特注品)により、MoのKα特性X線を用い、粉末X線回折測定を行った(以下、測定2と呼ぶ)。
測定2の結果に対し、リートベルト解析を実施し結晶構造を特定した。リートベルト解析を実施するに当り、モデルとして前記初期構造モデルの格子定数、原子座標及び、空間群を用い、最少ニ乗法により構造モデルの精密化を行った。
Next, in order to obtain the detailed crystal structure of the powder base crystal, a powder X-ray diffraction measurement is performed using a Kα characteristic X-ray of Mo with a high-resolution powder X-ray diffractometer (manufactured by RIGAKU: custom-made) of Nagoya University. (Hereinafter referred to as measurement 2).
Rietveld analysis was performed on the result of measurement 2 to identify the crystal structure. In conducting the Rietveld analysis, the structural model was refined by the least-squares method using the lattice constant, atomic coordinates, and space group of the initial structural model as a model.

その結果、測定2で観測された回折パターンとリートベルト解析によりフィッティングした計算回折パターンはよく一致しており、一致尺度を判定するR因子は、RWP=2.84%と非常に小さな値を示した。このことより、前記単結晶の母体結晶と粉末の母体結晶は同じ構造の結晶と断定された。 As a result, the diffraction pattern observed in measurement 2 and the calculated diffraction pattern fitted by Rietveld analysis are in good agreement, and the R factor for determining the coincidence scale is a very small value of R WP = 2.84%. Indicated. From this, the single crystal base crystal and the powder base crystal were determined to be crystals having the same structure.

図2に、測定2についてのリートベルト解析のフィッティング図を示す。
図2における上段は、実線がリートベルト解析で求めた計算による粉末X線回折パターンであり、十字プロットが測定2により観測された粉末X回折パターンを示す。
図2における中段は、リートベルト解析で求めた計算による回折のピーク角度を示す。
図2における下段は、上段に示した粉末X線回折パターンの計算値と観測値の差をプロットしたものであり、両者の差はほとんどなく、よく一致していることが分かる。
FIG. 2 shows a Rietveld analysis fitting diagram for Measurement 2. FIG.
In the upper part of FIG. 2, the solid line is the powder X-ray diffraction pattern obtained by the calculation obtained by Rietveld analysis, and the cross plot shows the powder X diffraction pattern observed by the measurement 2.
The middle part in FIG. 2 shows the peak angle of diffraction by calculation obtained by Rietveld analysis.
The lower part in FIG. 2 is a plot of the difference between the calculated value and the observed value of the powder X-ray diffraction pattern shown in the upper part, and there is almost no difference between the two.

精密化された粉末母体結晶の格子定数を以下に示す。
a=13.2468(4)Å、b=8.3169(2)Å、c=9.1537(3)Å
α=γ=90°、β=110.251(2)°
V=946.1(1)Å
The lattice constant of the refined powder base crystal is shown below.
a = 13.2468 (4) Å, b = 8.3169 (2) Å, c = 9.1537 (3) Å
α = γ = 90 °, β = 110.251 (2) °
V = 946.1 (1) 3 3

精密化された粉末母体結晶の原子座標を表2に示す。
Table 2 shows the atomic coordinates of the refined powder base crystal.

測定2を基にリートベルト解析によって算出した、前記粉末母体結晶の理論組成比を下記の示す。
<粉末母体結晶の理論組成比>
SiO・1.0(Ca0.6,Sr0.4)O・0.17SrCl
The theoretical composition ratio of the powder base crystal calculated by Rietveld analysis based on Measurement 2 is shown below.
<Theoretical composition ratio of powder base crystal>
SiO 2 · 1.0 (Ca 0.6 , Sr 0.4 ) O · 0.17SrCl 2

前記母体結晶において、固溶体を形成可能な元素を以下列挙する。
ここで固溶体とは、前記母体結晶を構成する元素の組成比の変動、または、前記母体結晶を構成する元素の一部を別の元素に置換して、母体結晶とは格子定数は異なるものの同一の結晶構造をもつものを言う。
<母体結晶に固溶可能な元素群>
SiOのSi置換元素:Ge、Ti、Zr、及びSn
(Ca0.6,Sr0.4)OのCa及び/又はSr置換元素:Mg、Ba、Zn、Mn及び希土類元素
SrClのSr置換元素:Mg、Ca、Ba、及びZn
SrClのCl置換元素:F、Br、及びI
また、4族元素の酸化物で構成するSiOの一部を1/2(B,P)O,1/2(Al,P)Oに置き換えることも出来る。
Elements that can form a solid solution in the host crystal are listed below.
Here, the solid solution is the same although the lattice constant is different from the parent crystal by changing the composition ratio of the elements constituting the parent crystal, or by substituting a part of the elements constituting the parent crystal with another element. It has a crystal structure of
<Elements that can be dissolved in the base crystal>
Si-substituted element of SiO 2 : Ge, Ti, Zr, and Sn
Ca and / or Sr substitution elements of (Ca 0.6 , Sr 0.4 ) O: Mg, Ba, Zn, Mn and rare earth elements Sr substitution elements of SrCl 2 : Mg, Ca, Ba, and Zn
Cl substitution element of SrCl 2 : F, Br, and I
In addition, a part of SiO 2 composed of Group 4 element oxide can be replaced with 1/2 (B, P) O 4 , 1/2 (Al, P) O 4 .

<本発明の蛍光体の結晶構造の同定>
前記固溶体の結晶構造の同定はX線回折や中性子線回折の回折結果の同一性により判定可能であるが、元となる結晶から構成元素の一部が固溶可能な他の元素に置き換わった結晶は、格子定数が変化するため、元の結晶と同じ結晶構造に属する結晶であっても、回折結果が完全な同一とはならない。
同じ結晶構造に属する結晶において、元素の置き換わりにより格子定数が小さくなれば回折角度は高角度側にシフトし、格子定数が大きくなれば回折角度は低角度側にシフトする。
<Identification of crystal structure of phosphor of the present invention>
Identification of the crystal structure of the solid solution can be determined by the identity of the diffraction results of X-ray diffraction or neutron diffraction, but a crystal in which a part of the constituent element is replaced with another element capable of solid solution from the original crystal Since the lattice constant changes, even if the crystal belongs to the same crystal structure as the original crystal, the diffraction results are not completely the same.
In crystals belonging to the same crystal structure, the diffraction angle shifts to the high angle side when the lattice constant decreases due to element replacement, and the diffraction angle shifts to the low angle side when the lattice constant increases.

そこで、前記粉末母体結晶と、当該母体結晶を構成するCa及び/又はSr(前記一般式におけるM元素)の一部を蛍光体の発光中心となるEu2+(前記一般式におけるM元素)に置き換えた本発明の蛍光体(後述する実施例1及び実施例2)とが、同じ結晶構造に属するかについて、以下2種の判定方法を用いて評価した。 Therefore, Eu 2+ (M 4 element in the general formula) in which the powder base crystal and a part of Ca and / or Sr (M 2 element in the general formula) constituting the host crystal serve as the emission center of the phosphor. Whether the phosphors of the present invention (Example 1 and Example 2 to be described later) that were replaced with belong to the same crystal structure was evaluated using the following two determination methods.

まず、固有量が小さい結晶の場合には、簡易に結晶構造を同定する判定方法として、X線回折結果から得られるX線回折チャートのピーク位置(2θ)が、主要ピークについて一致した場合に両者の結晶構造が同じであると判定することができる。
尚、この判定に用いる主要ピークは最も回折強度の強い10本程度で判定するのが良い。
First, in the case of a crystal having a small intrinsic amount, as a determination method for easily identifying the crystal structure, when the peak position (2θ) of the X-ray diffraction chart obtained from the X-ray diffraction result coincides with the main peak, both Can be determined to have the same crystal structure.
It should be noted that the main peak used for this determination is preferably determined by about ten peaks having the strongest diffraction intensity.

図3に、本発明の蛍光体と前記粉末母体結晶のX線回折パターンを示す。
上段は、CuのKα特性X線の波長を用いた、本発明の蛍光体(後述する実施例2)の粉末X線回折パターンである。
下段が、リートベルト解析により決定された粉末母体結晶の結晶構造から計算した、CuのKα特性X線に対する粉末X線回折パターンである。
この図3から、両者のX線チャートが主要ピークについて非常によく一致しており、同じ結晶構造から成り立っていることが分かる。
FIG. 3 shows an X-ray diffraction pattern of the phosphor of the present invention and the powder base crystal.
The upper row is a powder X-ray diffraction pattern of the phosphor of the present invention (Example 2 described later) using the wavelength of the Kα characteristic X-ray of Cu.
The lower row is a powder X-ray diffraction pattern for Cu Kα characteristic X-rays calculated from the crystal structure of the powder base crystal determined by Rietveld analysis.
From FIG. 3, it can be seen that the X-ray charts of both agree very well with respect to the main peak and are composed of the same crystal structure.

更に詳しく結晶構造を同定する判定方法として、判定対象のX線回折(又は中性子線回折)の結果を前記初期結晶モデルの格子定数、原子座標及び、空間群をモデルに用いリートベルト解析を行い、R因子を求めることにより同じ構造であるか判定できる。
具体的には、判定対象のリートベルト解析が、前記粉末母体結晶のリートベルト解析と同レベルの低いR因子に収束すれば、同じ構造の結晶と判断できる。
また、リートベルト解析で得られた格子定数や原子座標を比較することにより、微細な構造の違いを議論することができる。
As a determination method for identifying the crystal structure in more detail, the result of X-ray diffraction (or neutron diffraction) to be determined is subjected to Rietveld analysis using the lattice constant, atomic coordinates, and space group of the initial crystal model as a model, It can be judged whether it is the same structure by calculating | requiring R factor.
Specifically, if the Rietveld analysis to be determined converges to a low R factor at the same level as the Rietveld analysis of the powder base crystal, it can be determined that the crystals have the same structure.
In addition, by comparing lattice constants and atomic coordinates obtained by Rietveld analysis, it is possible to discuss fine structural differences.

この判定方法を用いるため、まず、本発明の蛍光体(後述する実施例1)について、前記測定2と同様の条件でX線回折パターンを測定した(以下、測定3と呼ぶ)。
得られたX線回折パターン基づいて前記初期構造モデルをモデルとしたリートベルト解析を行った。その結果、判定基準のR因子Rwp値は3.69%と非常に小さく、前記粉末母体結晶のRwp値と同等レベルで収束した。
図4に、測定3についてのリートベルト解析のフィッティング図を示す。
図4における上段は、実線がリートベルト解析で求めた計算による粉末X線回折パターンであり、十字プロットが測定3により観測された粉末X回折パターンを示す。
図4における中段は、リートベルト解析で求めた計算による回折のピーク角度を示す。
図4における下段は、上段に示した粉末X線回折パターンの計算値と観測値の差をプロットしたものであり、両者の差はほとんどなく、よく一致していることが分かる。
以上より、本発明の蛍光体は母体結晶と同じ結晶構造であるものと判定される。
In order to use this determination method, first, an X-ray diffraction pattern of the phosphor of the present invention (Example 1 to be described later) was measured under the same conditions as in Measurement 2 (hereinafter referred to as Measurement 3).
Based on the obtained X-ray diffraction pattern, Rietveld analysis was performed using the initial structure model as a model. As a result, the R factor R wp value of the criterion was very small as 3.69%, and converged at the same level as the R wp value of the powder base crystal.
FIG. 4 shows a fitting diagram of Rietveld analysis for measurement 3.
In the upper part of FIG. 4, the solid line is the powder X-ray diffraction pattern calculated by Rietveld analysis, and the cross plot shows the powder X diffraction pattern observed by the measurement 3.
The middle part in FIG. 4 shows the peak angle of diffraction by calculation obtained by Rietveld analysis.
The lower part of FIG. 4 is a plot of the difference between the calculated value and the observed value of the powder X-ray diffraction pattern shown in the upper part.
From the above, it is determined that the phosphor of the present invention has the same crystal structure as the host crystal.

以下、本発明を実施例によりさらに具体的に説明する。
まず、本発明の蛍光体を実施例により説明するが、下記蛍光体の化学組成、原料、製造方法等の記載は、本発明の蛍光体の実施形態を何ら制限するものではない。
Hereinafter, the present invention will be described more specifically with reference to examples.
First, the phosphor of the present invention will be described with reference to examples. However, the following description of the chemical composition, raw material, production method, and the like of the phosphor does not limit the embodiment of the phosphor of the present invention.

<実施例1>
SiO・0.9(Ca0.5,Sr0.5)O・0.17SrCl:Eu2+ 0.1で表される蛍光体。
本実施例1は、一般式M・aMO・bM:Mにおいて、M=Si、M=Ca/Sr(モル比50/50)、M=Sr、X=Cl、M=Eu2+、a=0.9、b=0.17、Mの含有量c(モル比)がc/(a+c)=0.1となるように合成した蛍光体である。
本実施例1の製造は、まず、SiO、Ca(OH)、SrCl・6HO、及びEuの各原料をこれらのモル比がSiO:Ca(OH):SrCl・6HO:Eu=1.0:0.65:1.0:0.13となるように秤量し、秤量した各原料をアルミナ乳鉢に入れ約30分粉砕混合し、原料混合物を得た。この原料混合物をアルミナ坩堝に入れ、還元雰囲気の電気炉で雰囲気(5/95)の(H/N)、1030℃で5〜40時間焼成し、焼成物を得た。得られた焼成物を温純水で丹念に洗浄し、本実施例1の蛍光体を得た。
<Example 1>
A phosphor represented by SiO 2 · 0.9 (Ca 0.5 , Sr 0.5 ) O · 0.17SrCl 2 : Eu 2+ 0.1 .
In this example 1, the general formula M 1 O 2 .aM 2 O.bM 3 X 2 : M 4 has M 1 = Si, M 2 = Ca / Sr (molar ratio 50/50), M 3 = Sr, A phosphor synthesized such that X = Cl, M 4 = Eu 2+ , a = 0.9, b = 0.17, and the content c (molar ratio) of M 4 is c / (a + c) = 0.1 It is.
In the manufacture of Example 1, first, SiO 2 , Ca (OH) 2 , SrCl 2 .6H 2 O, and Eu 2 O 3 were used in a molar ratio of SiO 2 : Ca (OH) 2 : SrCl. 2 · 6H 2 O: Eu 2 O 3 = 1.0: 0.65: 1.0: 0.13 were weighed so, the raw materials were weighed and mixed placed about 30 minutes pulverized in an alumina mortar, raw A mixture was obtained. This raw material mixture was put into an alumina crucible and fired at 1030 ° C. for 5 to 95 hours (H 2 / N 2 ) in an atmosphere (5/95) in a reducing atmosphere electric furnace to obtain a fired product. The obtained fired product was carefully washed with warm pure water to obtain the phosphor of Example 1.

<実施例2>
SiO・0.95(Ca0.65,Sr0.35)O・0.17SrCl:Eu2+ 0.05で表される蛍光体。
本実施例2は、一般式M・aMO・bM:Mにおいて、M=Si、M=Ca/Sr(モル比65/35)、M=Sr、X=Cl、M=Eu2+、a=0.95、b=0.17、Mの含有量c(モル比)がc/(a+c)=0.05となるように合成した蛍光体である。
本実施例2の製造は、まず、まず、SiO、Ca(OH)、SrCl・6HO、及びEuの各原料をこれらのモル比がSiO:Ca(OH):SrCl・6HO:Eu=1.0:0.77:1.0:0.07となるように秤量し、その後は実施例1と同様の方法で本実施例2の蛍光体を得た。
<Example 2>
A phosphor represented by SiO 2 · 0.95 (Ca 0.65 , Sr 0.35 ) O · 0.17SrCl 2 : Eu 2+ 0.05 .
In this example 2, the general formula M 1 O 2 .aM 2 O.bM 3 X 2 : M 4 , M 1 = Si, M 2 = Ca / Sr (molar ratio 65/35), M 3 = Sr, A phosphor synthesized such that X = Cl, M 4 = Eu 2+ , a = 0.95, b = 0.17, and the content c (molar ratio) of M 4 is c / (a + c) = 0.05 It is.
In the production of Example 2, first, SiO 2 , Ca (OH) 2 , SrCl 2 .6H 2 O, and Eu 2 O 3 are used in a molar ratio of SiO 2 : Ca (OH) 2. : SrCl 2 · 6H 2 O: Eu 2 O 3 = 1.0: 0.77: 1.0: 0.07 Weighed so as to be the same as that of Example 1 after that. A phosphor was obtained.

<実施例3>
SiO・0.84(Ca0.55,Sr0.45)O・0.17SrCl:Eu2+ 0.16で表される蛍光体。
本実施例3は、一般式M・aMO・bM:Mにおいて、M=Si、M=Ca/Sr(モル比55/45)、M=Sr、X=Cl、M=Eu2+、a=0.84、b=0.17、Mの含有量c(モル比)がc/(a+c)=0.16となるように合成した蛍光体である。
本実施例3の製造は、まず、SiO、Ca(OH)、SrCl・6HO、及びEuの各原料をこれらのモル比がSiO:Ca(OH):SrCl・6HO:Eu=1.0:0.52:1.0:0.19となるように秤量し、その後は実施例1と同様の方法で本実施例3の蛍光体を得た。
<Example 3>
A phosphor represented by SiO 2 · 0.84 (Ca 0.55 , Sr 0.45 ) O · 0.17SrCl 2 : Eu 2+ 0.16 .
In this example 3, the general formula M 1 O 2 .aM 2 O.bM 3 X 2 : M 4 has M 1 = Si, M 2 = Ca / Sr (molar ratio 55/45), M 3 = Sr, A phosphor synthesized such that X = Cl, M 4 = Eu 2+ , a = 0.84, b = 0.17, and the content c (molar ratio) of M 4 is c / (a + c) = 0.16 It is.
In the manufacture of Example 3, first, SiO 2 , Ca (OH) 2 , SrCl 2 .6H 2 O, and Eu 2 O 3 were used in a molar ratio of SiO 2 : Ca (OH) 2 : SrCl. 2 · 6H 2 O: Eu 2 O 3 = 1.0: 0.52: 1.0: were weighed so that 0.19, then the phosphor of the present example 3 in the same manner as in example 1 Got.

<実施例4>
SiO・0.9(Ca0.6,Sr0.4)O・0.17SrCl:Eu2+ 0.1で表される蛍光体。
本実施例4は、一般式M・aMO・bM:Mにおいて、M=Si、M=Ca/Sr(モル比60/40)、M=Sr、X=Cl、M=Eu2+、a=0.9、b=0.17、Mの含有量c(モル比)がc/(a+c)=0.1となるように合成した蛍光体である。
また、本実施例4は、原料の混合比においてSiOを過剰に添加することで、蛍光体内にクリストバライトを生成させた実施例である。
本実施例4の製造は、まず、SiO、Ca(OH)、SrCl・6HO、及びEuの各原料をこれらのモル比がSiO:Ca(OH):SrCl・6HO:Eu=1.1:0.45:1.0:0.13となるように秤量し、その後は実施例1と同様の方法で本実施例4の蛍光体を得た。
<Example 4>
A phosphor represented by SiO 2 · 0.9 (Ca 0.6 , Sr 0.4 ) O · 0.17SrCl 2 : Eu 2+ 0.1 .
In this example 4, in the general formula M 1 O 2 .aM 2 O.bM 3 X 2 : M 4 , M 1 = Si, M 2 = Ca / Sr (molar ratio 60/40), M 3 = Sr, A phosphor synthesized such that X = Cl, M 4 = Eu 2+ , a = 0.9, b = 0.17, and the content c (molar ratio) of M 4 is c / (a + c) = 0.1 It is.
Further, Example 4 is an example in which cristobalite was generated in the phosphor by adding excessive SiO 2 at the mixing ratio of the raw materials.
In the manufacture of Example 4, first, SiO 2 , Ca (OH) 2 , SrCl 2 .6H 2 O, and Eu 2 O 3 were used in a molar ratio of SiO 2 : Ca (OH) 2 : SrCl. 2 · 6H 2 O: Eu 2 O 3 = 1.1: 0.45: 1.0: 0.13, then the phosphor of example 4 in the same manner as in example 1 Got.

<実施例5>
SiO・0.86(Ca0.47,Sr0.52,Ba0.01)O・0.17SrCl:Eu2+ 0.14で表される蛍光体。
本実施例5は、一般式M・aMO・bM:Mにおいて、M=Si、M=Ca/Sr/Ba(モル比47/52/1)、M=Sr、X=Cl、M=Eu2+、a=0.86、b=0.17、Mの含有量cの量を規定する指標c/(a+c)=0.14 となるように合成した蛍光体である。
また、本実施例5は、M元素としてCa及びSrに加えて更にBaを固有させた実施例であり、原料の混合比においてSiOを過剰に添加することで、蛍光体内にクリストバライトを生成させた実施例である。
本実施例5の製造は、まず、SiO、CaCO、BaCO、SrCl・6HO及びEuの各原料をこれらのモル比がSiO:CaCO:BaCO:SrCl・6HO:Eu=1.68:0.45:0.02:1.0:0.13となるように秤量し、その後は実施例1と同様の方法で本実施例5の蛍光体を得た。
<Example 5>
A phosphor represented by SiO 2 · 0.86 (Ca 0.47 , Sr 0.52 , Ba 0.01 ) O · 0.17SrCl 2 : Eu 2+ 0.14 .
In Example 5, M 1 = Si, M 2 = Ca / Sr / Ba (molar ratio 47/52/1), M 4 in the general formula M 1 O 2 · aM 2 O · bM 3 X 2 : M 4 3 = Sr, X = Cl, M 4 = Eu 2+ , a = 0.86, b = 0.17, and an index c / (a + c) = 0.14 that defines the amount of content c of M 4 This is a phosphor synthesized.
In addition, Example 5 is an example in which Ba is added in addition to Ca and Sr as M 2 elements, and cristobalite is generated in the phosphor by adding excessive SiO 2 at the mixing ratio of raw materials. This is an example.
In the manufacture of Example 5, first, SiO 2 , CaCO 3 , BaCO 3 , SrCl 2 .6H 2 O, and Eu 2 O 3 are mixed at a molar ratio of SiO 2 : CaCO 3 : BaCO 3 : SrCl 2. 6H 2 O: Eu 2 O 3 = 1.68: 0.45: 0.02: 1.0: 0.13 Weighed so as to be the same as Example 1 and then Example 5 A phosphor was obtained.

<実施例6>
SiO・0.86(Ca0.49,Sr0.50,Mg0.01)O・0.17SrCl:Eu2+ 0.14で表される蛍光体。
本実施例6は、一般式M・aMO・bM:Mにおいて、M=Si、M=Ca/Sr/Mg(モル比49/50/1)、M=Sr、X=Cl、M=Eu2+、a=0.86、b=0.17、Mの含有量cの量を規定する指標c/(a+c)=0.14 となるように合成した蛍光体である。
また、本実施例5は、M元素としてCa及びSrに加えて更にMgを固有させた実施例であり、原料の混合比においてSiOを過剰に添加することで、蛍光体内にクリストバライトを生成させた実施例である。
本実施例6の製造は、まず、SiO、CaCO、MgCO、SrCl・6HO及びEuの各原料をこれらのモル比がSiO:CaCO:MgCO:SrCl・6HO:Eu=1.68:0.45:0.02:1.0:0.13となるように秤量し、その後は実施例1と同様の方法で本実施例6の蛍光体を得た。
<Example 6>
A phosphor represented by SiO 2 · 0.86 (Ca 0.49 , Sr 0.50 , Mg 0.01 ) O · 0.17SrCl 2 : Eu 2+ 0.14 .
In Example 6, M 1 = Si, M 2 = Ca / Sr / Mg (molar ratio 49/50/1), M 4 in the general formula M 1 O 2 · aM 2 O · bM 3 X 2 : M 4 3 = Sr, X = Cl, M 4 = Eu 2+ , a = 0.86, b = 0.17, and an index c / (a + c) = 0.14 that defines the amount of content c of M 4 This is a phosphor synthesized.
In addition, Example 5 is an example in which Mg is added in addition to Ca and Sr as M 2 elements, and cristobalite is generated in the phosphor by adding excessive SiO 2 at the mixing ratio of raw materials. This is an example.
In the manufacture of Example 6, first, SiO 2 , CaCO 3 , MgCO 3 , SrCl 2 .6H 2 O, and Eu 2 O 3 are used in a molar ratio of SiO 2 : CaCO 3 : MgCO 3 : SrCl 2. 6H 2 O: Eu 2 O 3 = 1.68: 0.45: 0.02: 1.0: 0.13 Weighed so as to be the same as in Example 1 after that. A phosphor was obtained.

尚、実施例1〜6の組成比(前記一般式におけるa、bの値)は、前述した母体結晶の結晶構造に関する各データに基づき、電子プローブマイクロアナライザー(日本電子製:JOEL JXA−8800R)を用いて測定、及び決定をした。   The composition ratios of Examples 1 to 6 (values of a and b in the above general formula) are based on the above-described data relating to the crystal structure of the parent crystal, an electronic probe microanalyzer (manufactured by JEOL: JOEL JXA-8800R). Was used to measure and determine.

<比較例>
比較例として、BaMgAl1017:Eu,Mnで表される蛍光体(化成オプトニクス株式会社製)を用いた。
この蛍光体は、国家プロジェクト「高効率電光変換化合物半導体開発(21世紀のあかり計画)」においてリストアップされた近紫外励起の緑色発光の蛍光体のうち、耐光性に優れたものとして知られている。
<Comparative example>
As a comparative example, a phosphor represented by BaMgAl 10 O 17 : Eu, Mn (manufactured by Kasei Optonics Co., Ltd.) was used.
This phosphor is known to have excellent light resistance among the near-ultraviolet-excited green-emitting phosphors listed in the national project “Development of high-efficiency electro-optic conversion compound semiconductor (21st Century Lighting Project)”. Yes.

実施例1〜6及び比較例の蛍光体について、400nm励起下における発光強度を測定した。その測定結果を比較例の蛍光体を100とする相対値として表3に示す。
About the fluorescent substance of Examples 1-6 and a comparative example, the emitted light intensity under 400 nm excitation was measured. The measurement results are shown in Table 3 as relative values with the phosphor of the comparative example as 100.

表3から、実施例1〜6の蛍光体は比較例1に対し少なくとも1.3倍以上の積分発光強度を示している。このことから、実施例1〜6の蛍光体は、400nm付近の波長域で効率良く励起され高い発光強度の可視光を発光可能であることが分かる。
また、原料の混合比においてSiOを過剰に添加することで、蛍光体内にクリストバライトを生成させた実施例4〜6は、実施例1〜3に比べて更に良好な発光特性を示していることが分かる。
From Table 3, the phosphors of Examples 1 to 6 have an integrated emission intensity at least 1.3 times that of Comparative Example 1. From this, it can be seen that the phosphors of Examples 1 to 6 are efficiently excited in the wavelength region near 400 nm and can emit visible light with high emission intensity.
Moreover, the addition of SiO 2 excess in the mixing ratios of raw materials, Examples 4-6 which were generated cristobalite fluorescent body, that shows more excellent emission characteristics as compared with Examples 1 to 3 I understand.

図5に、400nm励起下における実施例1の蛍光体の発光スペクトル(実線)及び比較例1の発光スペクトル(点線)を示す。
図6に、400nm励起下における実施例2の蛍光体の発光スペクトル(実線)及び比較例1の発光スペクトル(点線)を示す。
図7に、400nm励起下における実施例3の蛍光体の発光スペクトル(実線)及び比較例1の発光スペクトル(点線)を示す。
図8に、400nm励起下における実施例4の蛍光体の発光スペクトル(実線)及び比較例1の蛍光体の発光スペクトル(点線)を示す。
図9に、400nm励起下における実施例5の蛍光体の発光スペクトル(実線)及び比較例1の蛍光体の発光スペクトル(点線)を示す。
図10に、400nm励起下における実施例6の蛍光体の発光スペクトル(実線)及び比較例1の蛍光体の発光スペクトル(点線)を示す。
尚、図5〜10におけるグラフの縦軸は比較例との相対的な発光強度を示すものである。
FIG. 5 shows the emission spectrum (solid line) of the phosphor of Example 1 under excitation at 400 nm and the emission spectrum (dotted line) of Comparative Example 1.
FIG. 6 shows the emission spectrum (solid line) of the phosphor of Example 2 under 400 nm excitation and the emission spectrum (dotted line) of Comparative Example 1.
FIG. 7 shows the emission spectrum (solid line) of the phosphor of Example 3 under excitation at 400 nm and the emission spectrum (dotted line) of Comparative Example 1.
FIG. 8 shows the emission spectrum (solid line) of the phosphor of Example 4 and the emission spectrum (dotted line) of the phosphor of Comparative Example 1 under 400 nm excitation.
FIG. 9 shows the emission spectrum (solid line) of the phosphor of Example 5 and the emission spectrum (dotted line) of the phosphor of Comparative Example 1 under 400 nm excitation.
FIG. 10 shows the emission spectrum (solid line) of the phosphor of Example 6 and the emission spectrum (dotted line) of the phosphor of Comparative Example 1 under 400 nm excitation.
In addition, the vertical axis | shaft of the graph in FIGS. 5-10 shows the relative light emission intensity with a comparative example.

図5〜10から、実施例1〜6の蛍光体は、いずれも発光スペクトルのピークが560〜590nmの波長域にあり、半値幅が100nm以上であることが分かる。このことから、実施例1〜6の蛍光体は演色性の高いブロードな可視光を発光可能であることが分かる。   5 to 10, it can be seen that the phosphors of Examples 1 to 6 all have an emission spectrum peak in the wavelength region of 560 to 590 nm and a half width of 100 nm or more. From this, it can be seen that the phosphors of Examples 1 to 6 can emit broad visible light with high color rendering properties.

図11に、実施例1の蛍光体の励起スペクトルを示す。
図11から、実施例1の蛍光体は、350〜430nmの波長域に強い励起帯があることが分かる。このことから、実施例1の蛍光体は400nm付近の波長域で効率よく励起されることが分かる。
また、図11から、実施例1の蛍光体は、450〜480nmの波長域の光をほとんど吸収しないことが分かる。このことから、実施例1の蛍光体は青色と混色し白色光を合成した場合、青色を吸収することがないので色ずれが少ないことが分かる。
FIG. 11 shows the excitation spectrum of the phosphor of Example 1.
From FIG. 11, it can be seen that the phosphor of Example 1 has a strong excitation band in the wavelength range of 350 to 430 nm. From this, it can be seen that the phosphor of Example 1 is efficiently excited in the wavelength region near 400 nm.
In addition, FIG. 11 shows that the phosphor of Example 1 hardly absorbs light in the wavelength region of 450 to 480 nm. From this, it can be seen that when the phosphor of Example 1 is mixed with blue color and synthesized white light, it does not absorb blue color and therefore there is little color shift.

図12に、実施例1の蛍光体について測定したCuのKα特性X線を用いたX線回折パターンを示す。
図13に、実施例4の蛍光体について測定したCuのKα特性X線を用いたX線回折パターンを示す。
FIG. 12 shows the X-ray diffraction pattern using Cu Kα characteristic X-rays measured for the phosphor of Example 1.
FIG. 13 shows an X-ray diffraction pattern using Cu Kα characteristic X-rays measured for the phosphor of Example 4.

図12〜13から、いずれのCuのKα特性X線を用いたX線回折パターンにおいても、回折角2θが29.0°以上30.5°以下の範囲に存在する最も強度の高い回折ピークの回折強度を100とした場合に、回折角2θが28.0°以上29.5°以下の範囲に回折強度50以上を示す回折ピークが存在し、回折角2θが19.0°以上22.0°以下の範囲に回折強度8以上を示すピークが存在し、回折角2θが25.0°以上28.0°以下の範囲に回折強度15以上を示すピークが存在し、回折角2θが34.5°以上37.5°以下の範囲に回折強度15以上を示すピークが存在し、回折角2θが40.0°以上42.5°以下の範囲に回折強度10以上を示し、回折角2θが13.0°以上15.0°以下の範囲に回折強度10以上を示すピークが存在することが分かる。
このことから、前記粉末母体結晶、実施例1、及び実施例4は、いずれも同じ結晶構造に属することが示唆される。
12 to 13, in any X-ray diffraction pattern using the Kα characteristic X-ray of Cu, the diffraction peak 2θ having a diffraction angle 2θ in the range of 29.0 ° or more and 30.5 ° or less has the highest intensity. When the diffraction intensity is 100, a diffraction peak having a diffraction intensity of 50 or more exists in the range of the diffraction angle 2θ of 28.0 ° or more and 29.5 ° or less, and the diffraction angle 2θ is 19.0 ° or more and 22.0. There is a peak showing a diffraction intensity of 8 or more in the range of ° or less, a peak showing a diffraction intensity of 15 or more in a range of the diffraction angle 2θ of 25.0 ° or more and 28.0 ° or less, and a diffraction angle 2θ of 34. There is a peak showing a diffraction intensity of 15 or more in a range of 5 ° or more and 37.5 ° or less, a diffraction angle 2θ of 40.0 ° or more and 42.5 ° or less showing a diffraction intensity of 10 or more, and a diffraction angle 2θ of A diffraction intensity of 10 or more is exhibited in the range of 13.0 ° or more and 15.0 ° or less. It can be seen that over click is present.
This suggests that the powder base crystal, Example 1 and Example 4 all belong to the same crystal structure.

また、図13においては、2θ=21.7°付近に、図12では確認できないクリストバライトに由来する回折ピーク(図中の矢印)が確認できる。
このことから、実施例4は不純物を含んでいるが、その結晶構造は前記母体結晶や実施例1と同じ結晶構造に属しており、その発光特性は実施例1〜3よりも良好であることが分かる。
In addition, in FIG. 13, a diffraction peak (arrow in the figure) derived from cristobalite that cannot be confirmed in FIG. 12 can be confirmed near 2θ = 21.7 °.
From this, Example 4 contains impurities, but its crystal structure belongs to the same crystal structure as that of the parent crystal and Example 1, and its emission characteristics are better than those of Examples 1 to 3. I understand.

次に、本発明の蛍光体の利用形態を発光装置の実施例により説明するが、下記発光装置の形態は本発明の蛍光体の利用形態を何ら制限するものではない。   Next, the usage pattern of the phosphor of the present invention will be described with reference to examples of the light emitting device. However, the mode of the following light emitting device does not limit the usage pattern of the phosphor of the present invention.

<発光装置の実施例7>
図14は、本発明の蛍光体を利用した発光装置の概略断面図である。図14に示す発光装置1は、基板2上に電極3a及び3bが形成されている。電極3a上には励起光源としての半導体発光素子4がマウント部材5により固定されている。半導体発光素子4と電極3aは前記マウント部材5により通電されており、半導体発光素子4と電極3bはワイヤー6により通電されている。半導体発光素子の上には蛍光層7が形成されている。
<Example 7 of Light Emitting Device>
FIG. 14 is a schematic cross-sectional view of a light emitting device using the phosphor of the present invention. In the light emitting device 1 shown in FIG. 14, electrodes 3 a and 3 b are formed on a substrate 2. A semiconductor light emitting element 4 as an excitation light source is fixed on the electrode 3 a by a mount member 5. The semiconductor light emitting element 4 and the electrode 3 a are energized by the mount member 5, and the semiconductor light emitting element 4 and the electrode 3 b are energized by the wire 6. A fluorescent layer 7 is formed on the semiconductor light emitting device.

基板2は、導電性を有しないが熱伝導性は高い材料によって形成されることが好ましく、例えば、セラミック基板(窒化アルミニウム基板、アルミナ基板、ムライト基板、ガラスセラミック基板)やガラスエポキシ基板等を用いることができる。
本実施例においては窒素化アルミニウム基板を用いた。
The substrate 2 is preferably formed of a material that has no electrical conductivity but high thermal conductivity. For example, a ceramic substrate (aluminum nitride substrate, alumina substrate, mullite substrate, glass ceramic substrate), a glass epoxy substrate, or the like is used. be able to.
In this example, an aluminum nitride substrate was used.

電極3a及び3bは、金や銅等の金属材料によって形成された導電層である。
本実施例においては、電極3aを陽極、電極3bを陰極とし、金を用いて基板上2に設けた。
The electrodes 3a and 3b are conductive layers formed of a metal material such as gold or copper.
In this embodiment, the electrode 3a is an anode, the electrode 3b is a cathode, and is provided on the substrate 2 using gold.

半導体発光素子4は、本発明の蛍光体を発光装置に利用する際の励起光源の一例であり、例えば、紫外線又は短波長可視光を発光するLEDやLD等を用いることができる。具体例として、InGaN系の化合物半導体を挙げることができる。InGaN系の化合物半導体は、Inの含有量によって発光波長域が変化する。Inの含有量が多いと発光波長が長波長となり、少ない場合は短波長となる傾向を示すが、ピーク波長が400nm付近となる程度にInが含有されたInGaN系の化合物半導体が電光変換における量子効率が最も高くなるという結果が示されている。
本実施例においては、405nmに発光ピークを持つ1mm四方のLED(SemiLEDs社製:MvpLEDTMSL−V−U40AC)を用いた。
The semiconductor light-emitting element 4 is an example of an excitation light source when the phosphor of the present invention is used in a light-emitting device. For example, an LED or LD that emits ultraviolet light or short-wavelength visible light can be used. Specific examples include InGaN-based compound semiconductors. The emission wavelength range of the InGaN-based compound semiconductor varies depending on the In content. When the In content is large, the emission wavelength is long, and when it is small, the wavelength tends to be short. However, InGaN-based compound semiconductors containing In such a degree that the peak wavelength is around 400 nm are quantum in electro-optic conversion. The results show the highest efficiency.
In this example, a 1 mm square LED (SemiLEDs: MvpLED SL-V-U40AC) having an emission peak at 405 nm was used.

マウント部材5は、例えば銀ペースト等の導電性接着材であり、半導体発光素子4の下面を電極3aに固定し、半導体発光素子4の下面側電極と基板2上の電極3aを電気的に接続する。
本実施例においては、銀ペースト(エイブルスティック社製:84−1LMISR4)を電極3a上にディスペンサーを用いて滴下し、当該銀ペースト上に半導体発光素子4の下面を接着させ、175℃環境下で1時間硬化させた。
The mount member 5 is a conductive adhesive such as silver paste, for example, and fixes the lower surface of the semiconductor light emitting element 4 to the electrode 3a, and electrically connects the lower surface side electrode of the semiconductor light emitting element 4 and the electrode 3a on the substrate 2. To do.
In this example, a silver paste (manufactured by Able Stick: 84-1LMISR4) is dropped onto the electrode 3a using a dispenser, and the lower surface of the semiconductor light-emitting element 4 is adhered onto the silver paste under an environment of 175 ° C. Cured for 1 hour.

ワイヤー6は、金ワイヤー等の導電部材であり、例えば超音波熱圧着等により半導体発光素子4の上面側電極及び電極3bに接合され、両者を電気的に接続する。
本実施例においては、Φ45μmの金ワイヤーを半導体発光素子4の上面側電極及び基板2上の電極3bに超音波熱圧着にて接合した。
The wire 6 is a conductive member such as a gold wire, and is bonded to the upper surface side electrode of the semiconductor light emitting element 4 and the electrode 3b by, for example, ultrasonic thermocompression bonding, and electrically connects both.
In this example, a Φ45 μm gold wire was bonded to the upper surface side electrode of the semiconductor light emitting element 4 and the electrode 3b on the substrate 2 by ultrasonic thermocompression bonding.

蛍光層7には、少なくとも本発明の蛍光体を含む1種又は複数種類の蛍光体がバインダー部材によって半導体発光素子4の上面を覆う膜状に封止されている。このような蛍光層7は、例えば、液状又はゲル状のバインダー部材に蛍光体を混入した蛍光体ペーストを作製した後、当該蛍光体ペーストを半導体発光素子4の上面に塗布し、その後に塗布した蛍光体ペーストのバインダー部材を硬化することにより形成することができる。
バインダー部材としては、例えば、シリコーン樹脂やフッ素樹脂等を用いることができる。特に、本発明の蛍光体は、励起光として400nm付近の波長域の光を用いることが好ましいことから、耐紫外線性能に優れたバインダー部材を使用することが好ましい。
In the phosphor layer 7, at least one or more kinds of phosphors including the phosphor of the present invention are sealed in a film shape covering the upper surface of the semiconductor light emitting element 4 with a binder member. For example, such a phosphor layer 7 is prepared by preparing a phosphor paste in which a phosphor is mixed in a liquid or gel binder member, and then applying the phosphor paste on the upper surface of the semiconductor light emitting element 4. It can be formed by curing the binder member of the phosphor paste.
As the binder member, for example, a silicone resin or a fluorine resin can be used. In particular, since the phosphor of the present invention preferably uses light having a wavelength region near 400 nm as excitation light, it is preferable to use a binder member having excellent ultraviolet resistance.

蛍光層7には、本発明の蛍光体とは異なる発光特性を有する1種又は複数種類の蛍光体を混入することができる。これにより、異なる複数種類の波長域の光を合成して種々の色の光を得ることができる。   The fluorescent layer 7 can be mixed with one or more kinds of phosphors having emission characteristics different from those of the phosphor of the present invention. As a result, light of various colors can be obtained by combining light of a plurality of different wavelength ranges.

また、蛍光層7には、種々の物性を有する蛍光体以外の物質を混入することもできる。例えば、金属酸化物、硫化物等のバインダー部材よりも屈折率の高い物質を蛍光層7に混入することにより、蛍光層7の屈折率を高めることができる。これにより、半導体発光素子4から発生する光が蛍光層7入射する際に生ずる全反射を低減させ、蛍光層7への励起光の取り込み効率を向上させるという効果が得られる。更に、混入する物質の粒子径をナノサイズにすることで、蛍光層7の透明度を低下させることなく屈折率を高めることができる。   The fluorescent layer 7 can also be mixed with substances other than phosphors having various physical properties. For example, the refractive index of the fluorescent layer 7 can be increased by mixing a substance having a higher refractive index than that of a binder member such as metal oxide or sulfide into the fluorescent layer 7. As a result, it is possible to reduce the total reflection that occurs when the light generated from the semiconductor light emitting element 4 enters the fluorescent layer 7 and to improve the efficiency of taking excitation light into the fluorescent layer 7. Furthermore, the refractive index can be increased without reducing the transparency of the fluorescent layer 7 by making the particle size of the substance to be mixed nanosize.

本実施例においては、バインダー部材としてシリコーン樹脂(東レダウコーニングシリコーン社製:JCR6140)を用い、これに下記蛍光体の混合物が30vol%なるように混入した蛍光体ペーストを作製し、この蛍光体ペーストを半導体発光素子4の上面に100μm厚で塗布した後、80℃環境下で40分、その後に150℃環境下で60分のステップ硬化にて固定化することで蛍光層7を形成した。
<実施例7に用いた蛍光体>
本発明の実施例4の蛍光体(黄)と蛍光体Sr10(POCl:Eu(青)(化成オプトロニクス製:KY−663)とを配合比(重量比)1(黄):1.5(青)で混合した蛍光体の混合物を用いた。
<比較例2に用いた蛍光体>
比較例として、蛍光体BaMgAl1017:Eu(青)と蛍光体BaMgAl1017:Eu,Mn(緑)と蛍光体LaS:Euとを配合比(重量比)3(青):12(緑):85(赤)で混同した蛍光体の混合物を用いた。
In this example, a silicone resin (manufactured by Toray Dow Corning Silicone Co., Ltd .: JCR6140) was used as a binder member, and a phosphor paste was prepared in which the phosphor mixture was mixed to 30 vol%. This phosphor paste Was applied to the upper surface of the semiconductor light emitting element 4 at a thickness of 100 μm, and then fixed by step curing for 40 minutes in an 80 ° C. environment and then for 60 minutes in a 150 ° C. environment, thereby forming the fluorescent layer 7.
<Phosphor used in Example 7>
The phosphor (yellow) of Example 4 of the present invention and phosphor Sr 10 (PO 4 ) 6 Cl 2 : Eu (blue) (made by Kasei Optronics: KY-663) are blended (weight ratio) 1 (yellow) : A mixture of phosphors mixed at 1.5 (blue) was used.
<Phosphor used in Comparative Example 2>
As a comparative example, a phosphor BaMgAl 10 O 17 : Eu (blue), a phosphor BaMgAl 10 O 17 : Eu, Mn (green), and a phosphor La 2 O 2 S: Eu are mixed in a ratio (weight ratio) 3 (blue). ): 12 (green): A mixture of phosphors confused with 85 (red) was used.

以上のように構成された発光装置1において、電極3aと3bに対し駆動電流を印加すると、半導体発光素子4が通電され、半導体発光素子4は蛍光層7へ向けて紫外線や短波長可視光等の半導体発光素子4固有の波長域の光を照射する。この光により蛍光層7内の蛍光体が励起され、蛍光体は固有の波長域の光を照射する。このような仕組みを利用し、半導体発光素子4及び/又は蛍光体を種々選択することで所望する光を照射する発光装置とすることができる。   In the light emitting device 1 configured as described above, when a driving current is applied to the electrodes 3a and 3b, the semiconductor light emitting element 4 is energized, and the semiconductor light emitting element 4 is directed toward the fluorescent layer 7 by ultraviolet rays, short wavelength visible light, or the like. The light of the wavelength range specific to the semiconductor light emitting element 4 is irradiated. The phosphor in the phosphor layer 7 is excited by this light, and the phosphor emits light in a specific wavelength region. By utilizing such a mechanism, the light emitting device that emits desired light can be obtained by variously selecting the semiconductor light emitting element 4 and / or the phosphor.

実施例7及び比較例2の発光装置に積分球内で1〜50mAの電流を投入し発光させ、分光器(Instrument System社製:CAS140B−152)で発光出力を測定した。その結果を以下詳述する。
尚、比較例2の発光装置は、蛍光体の材料以外は実施例5と同じ構成の発光装置であり、同一の条件において測定を行った。
The light emitting devices of Example 7 and Comparative Example 2 were made to emit light by supplying a current of 1 to 50 mA in an integrating sphere, and the light emission output was measured with a spectroscope (manufactured by Instrument System: CAS140B-152). The results are described in detail below.
The light emitting device of Comparative Example 2 was a light emitting device having the same configuration as that of Example 5 except for the phosphor material, and the measurement was performed under the same conditions.

表4に、実施例7及び比較例2の発光装置に5、10、50mAの駆動電流を印加したときの各発光装置の発光出力(光束)を、比較例2の発光装置に5mAの駆動電流を印加したときの発光出力(光束)を1.0とする相対値として示す。
この表4より、実施例7の発光装置は比較例2に対し高出力の発光装置であることが分かる。
Table 4 shows the light emission output (light flux) of each light emitting device when a driving current of 5, 10, 50 mA is applied to the light emitting devices of Example 7 and Comparative Example 2, and the driving current of 5 mA to the light emitting device of Comparative Example 2. It shows as a relative value where the light emission output (light beam) when 1.0 is applied is 1.0.
From Table 4, it can be seen that the light-emitting device of Example 7 is a higher-power light-emitting device than Comparative Example 2.

図15に、実施例7及び比較例2の発光装置に50mAの駆動電流を印加したときの各発光装置の発光スペクトルを示す。
尚、図15におけるグラフの縦軸は比較例との相対的な発光強度を示すものである。
この図15より、実施例7の発光装置は比較例2に対しブロードな発光スペクトルを示しており、高演色性(Ra=76)であることが分かる。
FIG. 15 shows an emission spectrum of each light-emitting device when a drive current of 50 mA is applied to the light-emitting devices of Example 7 and Comparative Example 2.
In addition, the vertical axis | shaft of the graph in FIG. 15 shows relative light emission intensity with a comparative example.
FIG. 15 shows that the light-emitting device of Example 7 shows a broad emission spectrum compared to Comparative Example 2, and has high color rendering properties (Ra = 76).

以上、本発明の蛍光体を実施例に沿って説明したが、本発明はこれらの実施例に限られるものではなく、種々の変更、改良、組み合わせ、利用形態等が考えられることは言うまでもない。   As described above, the phosphor of the present invention has been described with reference to the examples. However, the present invention is not limited to these examples, and it is needless to say that various modifications, improvements, combinations, usage forms, and the like can be considered.

本発明の蛍光体は、種々の発光装置に利用することができる。   The phosphor of the present invention can be used in various light emitting devices.

1:発光装置
2:基板
3a:電極(陽極)
3b:電極(陰極)
4:半導体発光素子
5:マウント部材
6:ワイヤー
7:蛍光層
1: Light-emitting device 2: Substrate 3a: Electrode (anode)
3b: Electrode (cathode)
4: Semiconductor light emitting element 5: Mount member 6: Wire 7: Fluorescent layer

Claims (5)

一般式がSiO・aMO・bSrCl:Eu2+
(但し、MはMg、Ca、Sr及びBaからなる群より選ばれる少なくともCa及びSrを必須とする元素を示し、Mの全元素(Mg、Ca、Sr及びBa)のうちCa及びSrの割合が60mol%より大きい。aは0.1≦a≦1.3、bは0.1≦b≦0.25の範囲である)で表されることを特徴とする蛍光体。
The general formula is SiO 2 · aMO · bSrCl 2 : Eu 2+
(However, M represents an element essential for at least Ca and Sr selected from the group consisting of Mg, Ca, Sr and Ba, and the proportion of Ca and Sr in all elements of M (Mg, Ca, Sr and Ba) Is greater than 60 mol%, a is 0.1 ≦ a ≦ 1.3, and b is in the range of 0.1 ≦ b ≦ 0.25.
前記一般式のEu2+の含有量をc(モル比)とすると、0.03<c/(a+c)<0.8であることを特徴とする請求項1に記載の蛍光体。 2. The phosphor according to claim 1, wherein 0.03 <c / (a + c) <0.8, where c is a molar ratio of Eu 2+ in the general formula. 前記一般式において、aが0.30≦a≦1.2、bが0.1≦b≦0.2の範囲であり、且つEu2+の含有量cが0.05≦c/(a+c)≦0.5であることを特徴とする請求項1または2に記載の蛍光体。 In the above general formula, a is in the range of 0.30 ≦ a ≦ 1.2, b is in the range of 0.1 ≦ b ≦ 0.2, and the Eu 2+ content c is 0.05 ≦ c / (a + c). The phosphor according to claim 1, wherein ≦ 0.5. 出発原料の中に、少なくとも下記(1)〜(4)の組成式で表される化合物を、これらの各化合物のモル比が(1):(2)=1:0.1〜1.0、(2):(3)=1:0.2〜12.0、(2):(4)=1:0.05〜4.0の範囲となるように含み、当該出発原料を混合及び焼成することを特徴とする蛍光体の製造方法
(1)SiO
(2)MO
(3)SrCl
(4)Eu2+
(但し、MはMg、Ca、Sr及びBaからなる群より選ばれる少なくともCa及びSrを必須とする元素を示し、Mの全元素(Mg、Ca、Sr及びBa)のうちCa及びSrの割合が60mol%より大きい。)
In the starting materials, at least the compounds represented by the composition formulas (1) to (4) below are used, and the molar ratio of these compounds is (1) :( 2) = 1: 0.1 to 1.0. , (2) :( 3) = 1: 0.2-12.0, (2) :( 4) = 1: 0.05-4.0, the starting materials are mixed and the method for producing a phosphor, wherein the calcination child.
(1) SiO 2
(2) MO
(3) SrCl 2
(4) Eu 2+
(However, M represents an element essential for at least Ca and Sr selected from the group consisting of Mg, Ca, Sr and Ba, and the proportion of Ca and Sr in all elements of M (Mg, Ca, Sr and Ba) Is greater than 60 mol%.)
350〜430nmの波長域に強い励起帯があることを特徴とする請求項1〜のいずれかに記載の蛍光体。 The phosphor according to any one of claims 1 to 3 , wherein there is a strong excitation band in a wavelength region of 350 to 430 nm.
JP2014238742A 2007-04-05 2014-11-26 Phosphor and method for producing phosphor Active JP6058617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014238742A JP6058617B2 (en) 2007-04-05 2014-11-26 Phosphor and method for producing phosphor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007099019 2007-04-05
JP2007099019 2007-04-05
JP2014238742A JP6058617B2 (en) 2007-04-05 2014-11-26 Phosphor and method for producing phosphor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013047985A Division JP2013139576A (en) 2007-04-05 2013-03-11 Phosphor

Publications (2)

Publication Number Publication Date
JP2015038228A JP2015038228A (en) 2015-02-26
JP6058617B2 true JP6058617B2 (en) 2017-01-11

Family

ID=40052620

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2008080192A Active JP5222600B2 (en) 2007-04-05 2008-03-26 Phosphor
JP2013047985A Pending JP2013139576A (en) 2007-04-05 2013-03-11 Phosphor
JP2014238742A Active JP6058617B2 (en) 2007-04-05 2014-11-26 Phosphor and method for producing phosphor

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2008080192A Active JP5222600B2 (en) 2007-04-05 2008-03-26 Phosphor
JP2013047985A Pending JP2013139576A (en) 2007-04-05 2013-03-11 Phosphor

Country Status (4)

Country Link
JP (3) JP5222600B2 (en)
KR (1) KR100996215B1 (en)
CN (1) CN101307229B (en)
FR (1) FR2917748B1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5222600B2 (en) * 2007-04-05 2013-06-26 株式会社小糸製作所 Phosphor
JP4999783B2 (en) * 2007-07-12 2012-08-15 株式会社小糸製作所 Light emitting device
CN102804420A (en) * 2009-06-23 2012-11-28 株式会社小糸制作所 Light emitting module
JP5530128B2 (en) * 2009-07-31 2014-06-25 株式会社小糸製作所 Phosphor and light emitting device
JP5391946B2 (en) * 2009-09-07 2014-01-15 日亜化学工業株式会社 Phosphor, light emitting device using the same, and method for producing phosphor
JP5532769B2 (en) * 2009-09-07 2014-06-25 日亜化学工業株式会社 Phosphor, light emitting device using the same, and method for producing phosphor
KR101098006B1 (en) * 2009-09-29 2011-12-23 한국화학연구원 The phosphor based on (halo-)silicate and manufacturing method for the same
EP2518128B1 (en) * 2009-12-21 2018-08-01 Koito Manufacturing Co., Ltd. Phosphor and light-emitting device
WO2011092798A1 (en) * 2010-01-27 2011-08-04 株式会社小糸製作所 Phosphor and light-emitting device
JP2011181793A (en) * 2010-03-03 2011-09-15 Koito Mfg Co Ltd Light emitting device
WO2012111312A1 (en) 2011-02-14 2012-08-23 株式会社小糸製作所 Method for producing fluorescent substance
JP2013095879A (en) * 2011-11-02 2013-05-20 Koito Mfg Co Ltd Phosphor

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790490A (en) * 1971-03-03 1974-02-05 Gen Electric Europium and manganese activated strontium chlorosilicate phosphor
JPS5842590B2 (en) * 1977-08-30 1983-09-20 株式会社東芝 fluorescent lamp
JPS54100990A (en) * 1978-01-26 1979-08-09 Toshiba Corp Manufacture of fluorescent substance
FR2432039B1 (en) * 1978-07-28 1981-08-14 Rhone Poulenc Ind
JPS5944330B2 (en) * 1978-10-16 1984-10-29 三菱電機株式会社 fluorescent material
DE3863870D1 (en) * 1987-08-17 1991-08-29 Agfa Gevaert Nv REPRODUCTION OF X-RAY IMAGES BY PHOTO-READABLE PHOSPHORUS.
JPH0586364A (en) * 1991-09-27 1993-04-06 Toshiba Lighting & Technol Corp Fluorescent lamp
KR100338860B1 (en) * 1996-01-22 2002-07-18 이시즈까 가즈오 Photostimulable phosphor
CN1186103A (en) * 1996-12-26 1998-07-01 中国科学院长春物理研究所 Green fluorescent powder and preparation thereof
JP3396443B2 (en) * 1998-09-22 2003-04-14 株式会社オハラ Luminescent fluorescent glass ceramics
JP2000192034A (en) 1998-12-25 2000-07-11 Fuji Photo Film Co Ltd Production of phosphor
JP3928684B2 (en) * 1999-07-12 2007-06-13 株式会社 ゼネラルアサヒ Red phosphorescent phosphor
JP3699879B2 (en) * 2000-03-31 2005-09-28 株式会社日立製作所 Insertable remote inspection system
US6501100B1 (en) * 2000-05-15 2002-12-31 General Electric Company White light emitting phosphor blend for LED devices
AT410266B (en) 2000-12-28 2003-03-25 Tridonic Optoelectronics Gmbh LIGHT SOURCE WITH A LIGHT-EMITTING ELEMENT
JP4032173B2 (en) * 2002-05-31 2008-01-16 東ソー株式会社 Phosphor and light emitting device
JP2005272831A (en) * 2004-02-27 2005-10-06 Sumitomo Chemical Co Ltd Method for producing silicate phosphor
US7321191B2 (en) * 2004-11-02 2008-01-22 Lumination Llc Phosphor blends for green traffic signals
CN100491497C (en) * 2005-01-12 2009-05-27 孙家跃 Long-afterglow yellow fluorophor and preparation method thereof
US7276183B2 (en) * 2005-03-25 2007-10-02 Sarnoff Corporation Metal silicate-silica-based polymorphous phosphors and lighting devices
JP2007145958A (en) * 2005-11-25 2007-06-14 Matsushita Electric Works Ltd Fluorophor and light-emitting device
US8906262B2 (en) * 2005-12-02 2014-12-09 Lightscape Materials, Inc. Metal silicate halide phosphors and LED lighting devices using the same
JP5281755B2 (en) * 2006-06-29 2013-09-04 独立行政法人産業技術総合研究所 Phosphor
JP5222600B2 (en) * 2007-04-05 2013-06-26 株式会社小糸製作所 Phosphor

Also Published As

Publication number Publication date
KR20080091032A (en) 2008-10-09
JP5222600B2 (en) 2013-06-26
FR2917748A1 (en) 2008-12-26
KR100996215B1 (en) 2010-11-24
CN101307229A (en) 2008-11-19
FR2917748B1 (en) 2013-10-11
JP2013139576A (en) 2013-07-18
CN101307229B (en) 2012-07-04
JP2008274240A (en) 2008-11-13
JP2015038228A (en) 2015-02-26

Similar Documents

Publication Publication Date Title
JP6058617B2 (en) Phosphor and method for producing phosphor
JP4999783B2 (en) Light emitting device
JP5530128B2 (en) Phosphor and light emitting device
EP2015614B1 (en) Light emitting device
JP5145934B2 (en) Phosphor and method for producing the same, and light emitting device using the phosphor
JP5840499B2 (en) Phosphor and light emitting device
WO2020262200A1 (en) Fluorescent body, fluorescent body manufacturing method, light-emitting element, light-emitting device, and image display device
US7704411B2 (en) Phosphor
JPWO2019188319A1 (en) Fluorescent material and light emitting device using it
JP2012114333A (en) Light-emitting module
WO2011092798A1 (en) Phosphor and light-emitting device
JP2023049445A (en) Phosphor, production method of the same, and light emitting device
JP2024001371A (en) Phosphor particle, method for producing the same, light-emitting device, and image display device
JP2011003786A (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161207

R150 Certificate of patent or registration of utility model

Ref document number: 6058617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150