JP5391946B2 - Phosphor, light emitting device using the same, and method for producing phosphor - Google Patents

Phosphor, light emitting device using the same, and method for producing phosphor Download PDF

Info

Publication number
JP5391946B2
JP5391946B2 JP2009206345A JP2009206345A JP5391946B2 JP 5391946 B2 JP5391946 B2 JP 5391946B2 JP 2009206345 A JP2009206345 A JP 2009206345A JP 2009206345 A JP2009206345 A JP 2009206345A JP 5391946 B2 JP5391946 B2 JP 5391946B2
Authority
JP
Japan
Prior art keywords
phosphor
light
emitting device
light emitting
phosphors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009206345A
Other languages
Japanese (ja)
Other versions
JP2011057763A (en
Inventor
昌治 細川
嘉典 村▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2009206345A priority Critical patent/JP5391946B2/en
Publication of JP2011057763A publication Critical patent/JP2011057763A/en
Application granted granted Critical
Publication of JP5391946B2 publication Critical patent/JP5391946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、近紫外光で効率よく励起される蛍光体及びこれを用いた発光装置並びに蛍光体の製造方法に関し、より詳しくは近紫外光で効率よく励起される黄色発光蛍光体及びこれを用いた発光装置並びに蛍光体の製造方法に関する。   The present invention relates to a phosphor that is efficiently excited by near-ultraviolet light, a light-emitting device using the phosphor, and a method for manufacturing the phosphor, and more specifically, a yellow-emitting phosphor that is efficiently excited by near-ultraviolet light and the phosphor. The present invention relates to a light emitting device and a method for manufacturing a phosphor.

発光ダイオード(LED)を用いたLEDランプは、信号灯、携帯電話、各種電飾、車載用表示器、あるいは各種の表示装置など、多くの分野に利用されている。またLEDと蛍光体とを組み合わせて形成した白色LED発光装置は、液晶表示器のバックライト、小型ストロボ等への応用が盛んになってきている。この白色発光の発光装置は最近では照明装置への利用も試みられており、長寿命、水銀フリーといった長所を活かすことにより、環境負荷の小さい蛍光灯代替光源として期待されている。   LED lamps using light emitting diodes (LEDs) are used in many fields such as signal lamps, mobile phones, various types of lighting, in-vehicle displays, and various types of display devices. In addition, white LED light-emitting devices formed by combining LEDs and phosphors have been actively applied to backlights of liquid crystal displays, small strobes, and the like. Recently, the white light emitting device has been tried to be used for a lighting device, and is expected to be an alternative light source for a fluorescent lamp with a small environmental load by taking advantage of its long life and mercury free.

白色発光の発光装置の構成としては、青色発光LEDと黄色発光蛍光体を組み合わせたものが挙げられる(例えば特許文献1参照)。これはLEDからの青色光と、このLEDから発せられた青色光の一部を黄色発光蛍光体で変換させた黄色光とを混色することにより、白色光を得ることができるようにしたものである。そのため蛍光体としては、LEDから発光される420nm〜470nmの波長の青色光により効率よく励起され、黄色に発光する蛍光体が求められている。   As a configuration of a light emitting device that emits white light, a combination of a blue light emitting LED and a yellow light emitting phosphor can be used (see, for example, Patent Document 1). This is to allow white light to be obtained by mixing blue light from the LED and yellow light obtained by converting a part of the blue light emitted from the LED with a yellow light emitting phosphor. is there. Therefore, as a phosphor, there is a demand for a phosphor that is efficiently excited by blue light having a wavelength of 420 nm to 470 nm emitted from an LED and emits yellow light.

しかしながら、この構成では420nm〜470nm波長の青色光は蛍光体に吸収されなかった透過光を利用するために、蛍光体の量や蛍光体層の厚みに青色透過光量の差が生じ、白色光の色のばらつきが大きくなる課題があった。   However, in this configuration, since blue light having a wavelength of 420 nm to 470 nm uses transmitted light that is not absorbed by the phosphor, a difference in the amount of transmitted blue light occurs in the amount of phosphor and the thickness of the phosphor layer. There was a problem that the color variation was large.

このため白色発光の発光装置の構成として、350nm〜420nmの波長域の紫外光LEDと、該LEDで励起される青色発光蛍光体と、該LEDで励起されると共に青色光では励起され難い黄色発光蛍光体を組み合わせたものが挙げられる(例えば特許文献2参照)。このような構成において各種蛍光体の比率を制御すれば、蛍光体の全体量の変化、蛍光体層の厚みの差が生じても、青色光と黄色光はほぼ一定に保たれるため色ばらつき発生し難い。そこでこの方式においては350nm〜420nmの波長域の近紫外光により励起可能な青色、黄色に発光する高効率な蛍光体が求められる。   For this reason, as a configuration of a white light emitting device, an ultraviolet light LED having a wavelength range of 350 nm to 420 nm, a blue light emitting phosphor excited by the LED, and a yellow light emitting that is excited by the LED and hardly excited by blue light. A combination of phosphors is exemplified (for example, see Patent Document 2). In such a configuration, if the ratio of various phosphors is controlled, even if there is a change in the total amount of the phosphor or a difference in the thickness of the phosphor layer, the blue light and the yellow light are kept almost constant, resulting in color variations. It is hard to occur. Therefore, in this method, a highly efficient phosphor that emits blue and yellow light that can be excited by near-ultraviolet light in a wavelength range of 350 nm to 420 nm is required.

しかしながら、近紫外域以上の波長で励起可能であり、しかも効率の高い黄色発光蛍光体は未だ実用化が進んでいない。このため、上記のような白色発光の発光装置の分野では高効率で実用に耐えうる黄色発光蛍光体の開発が特に望まれていた。   However, yellow light-emitting phosphors that can be excited at wavelengths in the near-ultraviolet region and have high efficiency have not yet been put into practical use. For this reason, in the field of white light emitting devices as described above, it has been particularly desired to develop a yellow light emitting phosphor that can be practically used with high efficiency.

特開2008−274240号公報JP 2008-274240 A 特開2009−38348号公報JP 2009-38348 A

本発明は上記の点に鑑みてなされたものであり、その主な目的は、近紫外光、特に400nm付近で効率よく励起され、540〜600nmにピーク波長を有する発光スペクトルである光を効率よく発光する蛍光体及びその製造方法並びにこの蛍光体を用いた発光装置を提供することにある。   The present invention has been made in view of the above points, and its main purpose is to efficiently emit near-ultraviolet light, particularly light having an emission spectrum having a peak wavelength in the range of 540 to 600 nm. An object of the present invention is to provide a phosphor that emits light, a manufacturing method thereof, and a light-emitting device using the phosphor.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明者らは鋭意研究の結果、特定の元素組成比を有する蛍光体により、上記課題を解決することができることを見出し、本発明を完成させるに至った。   As a result of intensive studies, the present inventors have found that the above problem can be solved by a phosphor having a specific elemental composition ratio, and have completed the present invention.

すなわち、本発明に係る蛍光体によれば、成を以下の一般式で表すことができる。
That is, according to the phosphor of the present invention, it is possible to represent the set formed by the following general formula.

Cax1Srx2ReyEuzSi6aClb
(上式において、ReはSc,Y,La,Ce,Pr,Gd,Tb,Dy,Ho,Tm,Luよりなる群から選ばれる少なくとも一であり、
2≦x1≦3
3≦x2≦4
5.0≦x1+x2≦7.0、
0<y<0.05
0<z≦1.5、
a=(x1+x2)+(3/2)y+z+12−(1/2)b、
1.0≦b≦2.0である。)
Ca x1 Sr x2 Re y Eu z Si 6 O a Cl b
(In the above formula, Re is at least one selected from the group consisting of Sc, Y, La, Ce, Pr, Gd, Tb, Dy, Ho, Tm, and Lu;
2 ≦ x1 ≦ 3
3 ≦ x2 ≦ 4
5.0 ≦ x1 + x2 ≦ 7.0,
0 <y <0.05 ,
0 <z ≦ 1.5,
a = (x1 + x2) + (3/2) y + z + 12− (1/2) b,
1.0 ≦ b ≦ 2.0. )

これにより、近紫外領域の励起光で励起して黄色に発光可能な蛍光体を得ることができる。また、発光スペクトルの半値幅も広く、さらに高輝度で温度特性に優れ、高温時の色ずれ、輝度低下も少ない温度特性が良好な蛍光体が得られる。   As a result, a phosphor capable of emitting yellow light when excited with excitation light in the near ultraviolet region can be obtained. In addition, a phosphor having a wide half-value width of the emission spectrum, high brightness, excellent temperature characteristics, and excellent temperature characteristics with little color shift and low brightness at high temperatures can be obtained.

前記Ca、Srの一部は、Mg、Ba、Zn、Mnよりなる群から選ばれる一種以上の元素により置換されていても良い。   A part of the Ca and Sr may be substituted with one or more elements selected from the group consisting of Mg, Ba, Zn, and Mn.

ピーク波長が350nm〜420nmの波長域の光に励起されて、発光スペクトルのピーク波長が540〜600nmの波長域にできる。これにより、近紫外領域の励起光で励起して黄色に発光可能な蛍光体を得ることができる。   The peak wavelength of the emission spectrum can be set to a wavelength range of 540 to 600 nm by being excited by light having a wavelength range of 350 nm to 420 nm. As a result, a phosphor capable of emitting yellow light when excited with excitation light in the near ultraviolet region can be obtained.

室温における蛍光体の輝度を基準として、200℃に加熱した際の蛍光体の輝度が56%以上とできる。これにより、高温時でも輝度低下の起こり難い、温度特性に優れた蛍光体を得ることができる。   Based on the luminance of the phosphor at room temperature, the luminance of the phosphor when heated to 200 ° C. can be 56% or more. As a result, it is possible to obtain a phosphor excellent in temperature characteristics in which the luminance is hardly lowered even at high temperatures.

少なくとも50重量%以上が結晶を有することができる。これにより、発光輝度を高くすることができ、また蛍光体の加工性が向上される。   At least 50% by weight or more can have crystals. Thereby, the light emission luminance can be increased and the processability of the phosphor is improved.

前記蛍光体の粒径を2μm〜50μmの範囲とできる。これにより、発光装置に蛍光体を用いた際の色むらを抑制できる利点が得られる。   The particle size of the phosphor can be in the range of 2 μm to 50 μm. Thereby, the advantage which can suppress the color nonuniformity at the time of using fluorescent substance for a light-emitting device is acquired.

近紫外領域から可視光の短波長側の光を発する励起光源と、上記蛍光体で構成された第一蛍光体と、前記励起光源からの光の少なくとも一部を吸収し、420nm〜480nmにピーク波長を有する蛍光を発する1種類以上の第二蛍光体と、前記第一、第二蛍光体を含有する透光性樹脂とを用いることができる。これにより、色むらを抑制した高品質な発光装置を得ることができる。   Absorbs at least part of the light from the excitation light source that emits light on the short-wavelength side of visible light from the near ultraviolet region, the first phosphor composed of the phosphor, and the excitation light source, and peaks at 420 nm to 480 nm. One or more types of second phosphors that emit fluorescence having a wavelength and a translucent resin containing the first and second phosphors can be used. Thereby, a high-quality light-emitting device with suppressed color unevenness can be obtained.

前記第二蛍光体が、前記第一蛍光体よりも中心粒径が大きく、前記第二蛍光体は前記透光性樹脂において前記励起光源の近傍に分布して色変換層を形成し、前記第一蛍光体は前記透光性樹脂において前記色変換層の外側に分布させることができる。これにより、第二蛍光体により構成される色変換層により効率良く色変換させることができ、かつその外側に分散された第一蛍光体により色むらを抑制できる。   The second phosphor has a larger central particle diameter than the first phosphor, and the second phosphor is distributed in the vicinity of the excitation light source in the translucent resin to form a color conversion layer. One phosphor can be distributed outside the color conversion layer in the translucent resin. Thereby, color conversion can be efficiently performed by the color conversion layer constituted by the second phosphor, and color unevenness can be suppressed by the first phosphor dispersed on the outside thereof.

前記第二蛍光体として、アパタイト又はBAM系蛍光体、シリケート系蛍光体を含むことができる。   As said 2nd fluorescent substance, an apatite or a BAM type fluorescent substance and a silicate type fluorescent substance can be included.

前記第二蛍光体として、Ca5(PO43(Cl,Br):Eu又はBaMgAl1017:Eu、(Sr,Ba,Ca)3MgSi28:Euを含むことができる。 The second phosphor may include Ca 5 (PO 4 ) 3 (Cl, Br): Eu or BaMgAl 10 O 17 : Eu, (Sr, Ba, Ca) 3 MgSi 2 O 8 : Eu.

本発明に係る蛍光体の製造方法によれば、以下の一般式で表される組成に含有される元素を含む単体、酸化物、窒化物又は炭酸塩を調製すると共に塩素を含有させるよう、粉砕及び/又は混合する工程と、得られた原料を坩堝に詰め、還元雰囲気中にて焼成する工程と、焼成された原料を固液分離して乾燥し、粉砕、分散、濾過して目的の蛍光体粉末を得る工程と、を含み、前記焼成の際にフラックスとしてアルカリ土類金属塩化物を添加することができる。   According to the method for producing a phosphor according to the present invention, a simple substance, an oxide, a nitride, or a carbonate containing an element contained in the composition represented by the following general formula is prepared and ground so as to contain chlorine. And / or mixing step, filling the obtained raw material in a crucible and firing in a reducing atmosphere, solid-liquid separation of the fired raw material, drying, pulverizing, dispersing and filtering to obtain the desired fluorescence A step of obtaining a body powder, and alkaline earth metal chloride can be added as a flux during the firing.

Cax1Srx2ReyEuzSi6aClb
(上式において、ReはSc,Y,La,Ce,Pr,Gd,Tb,Dy,Ho,Tm,Luよりなる群から選ばれる少なくとも一であり、
2≦x1≦3
3≦x2≦4
5.0≦x1+x2≦7.0、
0<y<0.05
0<z≦1.5、
a=(x1+x2)+(3/2)y+z+12−(1/2)b、
1.0≦b≦2.0である。)
Ca x1 Sr x2 Re y Eu z Si 6 O a Cl b
(In the above formula, Re is at least one selected from the group consisting of Sc, Y, La, Ce, Pr, Gd, Tb, Dy, Ho, Tm, and Lu;
2 ≦ x1 ≦ 3
3 ≦ x2 ≦ 4
5.0 ≦ x1 + x2 ≦ 7.0,
0 <y <0.05 ,
0 <z ≦ 1.5,
a = (x1 + x2) + (3/2) y + z + 12− (1/2) b,
1.0 ≦ b ≦ 2.0. )

これにより、近紫外領域の励起光で励起して黄色に発光可能な蛍光体を得ることができる。また、発光スペクトルの半値幅も広く、さらに高輝度で温度特性に優れ、高温時の色ずれ、輝度低下も少ない温度特性が良好な蛍光体が得られる。また反応性を向上させ、フラックスとして作用し、反応促進効果を得ることができる。   As a result, a phosphor capable of emitting yellow light when excited with excitation light in the near ultraviolet region can be obtained. In addition, a phosphor having a wide half-value width of the emission spectrum, high brightness, excellent temperature characteristics, and excellent temperature characteristics with little color shift and low brightness at high temperatures can be obtained. Moreover, the reactivity can be improved, it can act as a flux, and the reaction promotion effect can be acquired.

前記アルカリ土類金属塩化物をSrCl2とすることができる。これにより、融点が低く反応性を促進できるので、蛍光体の粒径を温度によらず制御できる利点が得られる。 The alkaline earth metal chloride can be SrCl 2 . Thereby, since the melting point is low and the reactivity can be promoted, there is an advantage that the particle size of the phosphor can be controlled regardless of the temperature.

実施例1及び比較例1に係る蛍光体の発光スペクトルを示すグラフである。4 is a graph showing emission spectra of phosphors according to Example 1 and Comparative Example 1. 実施例1及び比較例1に係る蛍光体の反射スペクトルを示すグラフである。6 is a graph showing reflection spectra of phosphors according to Example 1 and Comparative Example 1. 実施例1及び比較例1に係る蛍光体の励起スペクトルを示すグラフである。6 is a graph showing excitation spectra of phosphors according to Example 1 and Comparative Example 1. 実施例1及び比較例1に係る蛍光体の電子顕微鏡写真を示すイメージ図である。It is an image figure which shows the electron micrograph of the fluorescent substance which concerns on Example 1 and Comparative Example 1. FIG. 実施例19に係る発光装置の概略断面図である。22 is a schematic cross-sectional view of a light emitting device according to Example 19. FIG. 図5の発光装置の発光スペクトルを示すグラフである。It is a graph which shows the emission spectrum of the light-emitting device of FIG.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための蛍光体及びその製造方法並びにこの蛍光体を用いた発光装置を例示するものであって、本発明は蛍光体及びその製造方法並びにこの蛍光体を用いた発光装置を以下のものに特定しない。また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a phosphor for embodying the technical idea of the present invention, a method for manufacturing the phosphor, and a light emitting device using the phosphor. The manufacturing method and the light emitting device using this phosphor are not specified as follows. Further, the present specification by no means specifies the members shown in the claims to the members of the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention unless otherwise specified, and are merely explanations. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments.

色名と色度座標との関係、光の波長範囲と単色光の色名との関係等は、JIS Z8110に従う。具体的には、380nm〜455nmが青紫色、455nm〜485nmが青色、485nm〜495nmが青緑色、495nm〜548nmが緑色、548nm〜573nmが黄緑色、573nm〜584nmが黄色、584nm〜610nmが黄赤色、610nm〜780nmが赤色である。
(実施の形態1)
The relationship between the color name and chromaticity coordinates, the relationship between the wavelength range of light and the color name of monochromatic light, and the like comply with JIS Z8110. Specifically, 380 nm to 455 nm is blue purple, 455 nm to 485 nm is blue, 485 nm to 495 nm is blue green, 495 nm to 548 nm is green, 548 nm to 573 nm is yellow green, 573 nm to 584 nm is yellow, 584 nm to 610 nm is yellow red , 610 nm to 780 nm is red.
(Embodiment 1)

実施の形態1に係る蛍光体は、一般式がCax1Srx2ReyEuzSi6aClbで示される。この式において、ReはSc,Y,La,Ce,Pr,Gd,Tb,Dy,Ho,Tm,Luよりなる群から選ばれる少なくとも一であり、またEuはユーロピウム、Siはケイ素である。さらに、2≦x1≦3、3≦x2≦4、5.0≦x1+x2≦7.0、0<y<0.05、0<z≦1.5、a=(x1+x2)+(3/2)y+z+12−(1/2)b、1.0≦b≦2.0である。さらにこの蛍光体は、希土類であるEuが発光中心となる。 Phosphor according to Embodiment 1, the general formula is represented by Ca x1 Sr x2 Re y Eu z Si 6 O a Cl b. In this formula, Re is at least one selected from the group consisting of Sc, Y, La, Ce, Pr, Gd, Tb, Dy, Ho, Tm, and Lu, Eu is europium, and Si is silicon. Further, 2 ≦ x1 ≦ 3, 3 ≦ x2 ≦ 4, 5.0 ≦ x1 + x2 ≦ 7.0, 0 <y <0.05 , 0 <z ≦ 1.5, a = (x1 + x2) + (3/2 ) Y + z + 12− (1/2) b, 1.0 ≦ b ≦ 2.0. Further, in this phosphor, Eu, which is a rare earth, becomes the emission center.

このCa、Srの一部は、Mg、Ba、Zn、Mnよりなる群から選ばれる一種以上の元素により置換されていてもよい。   A part of Ca and Sr may be substituted with one or more elements selected from the group consisting of Mg, Ba, Zn and Mn.

この蛍光体は、近紫外線から可視光の短波長側領域の光を吸収して、励起光の発光ピーク波長よりも長波長側に蛍光体の発光ピーク波長を有する光を放出する。すなわち、主発光ピークが近紫外光により効率よく励起され、540〜600nmに発光スペクトルのピークを有する光を効率よく発光するものである。従って、この蛍光体を近紫外光から青色光を発する蛍光体と組み合わせて用いることによって、高発光効率で、蛍光体層の厚みに依存され難い発光装置を形成することができる。   This phosphor absorbs light in the short wavelength region of visible light from near ultraviolet rays, and emits light having the emission peak wavelength of the phosphor longer than the emission peak wavelength of excitation light. That is, the main emission peak is efficiently excited by near ultraviolet light, and light having an emission spectrum peak at 540 to 600 nm is efficiently emitted. Therefore, by using this phosphor in combination with a phosphor emitting blue light from near-ultraviolet light, a light emitting device with high luminous efficiency and hardly depending on the thickness of the phosphor layer can be formed.

本明細書において、近紫外線領域から可視光の短波長領域は、特に限定されないが240〜420nmの領域をいう。具体的には、290nm〜410nmの範囲の励起光源を用いることが好ましい。   In the present specification, the short wavelength region from the near ultraviolet region to the visible light is not particularly limited, but refers to a region of 240 to 420 nm. Specifically, it is preferable to use an excitation light source in the range of 290 nm to 410 nm.

また蛍光体は、少なくとも一部が結晶を有することが好ましい。例えばガラス体(非晶質)は構造がルーズなため、蛍光体中の成分比率が一定せず色度むらを生じる虞がある。したがって、これを回避するため生産工程における反応条件を厳密に一様になるよう制御する必要が生じる。一方、実施の形態1に係る蛍光体は、ガラス体でなく結晶性を有する粉体あるいは粒体とできるため、製造及び加工が容易である。また、この蛍光体は有機媒体に均一に溶解でき、発光性プラスチックやポリマー薄膜材料の調整が容易に達成できる。具体的に、実施の形態1に係る蛍光体は、少なくとも50重量%以上、より好ましくは80重量%以上が結晶を有している。これは、発光性を有する結晶相の割合を示し、50重量%以上、結晶相を有しておれば、実用に耐え得る発光が得られるため好ましい。ゆえに結晶相が多いほど良い。これにより、発光輝度を高くすることができ、かつ加工性が高まる。
(粒径)
Moreover, it is preferable that at least a part of the phosphor has a crystal. For example, since the glass body (amorphous) has a loose structure, the component ratio in the phosphor is not constant, and chromaticity may be uneven. Therefore, in order to avoid this, it is necessary to control the reaction conditions in the production process to be strictly uniform. On the other hand, since the phosphor according to the first embodiment can be made of powder or particles having crystallinity instead of a glass body, it is easy to manufacture and process. Further, this phosphor can be uniformly dissolved in an organic medium, and adjustment of a light emitting plastic or a polymer thin film material can be easily achieved. Specifically, in the phosphor according to Embodiment 1, at least 50 wt% or more, more preferably 80 wt% or more has crystals. This indicates the proportion of the crystalline phase having luminescent properties, and if it has a crystalline phase of 50% by weight or more, light emission that can withstand practical use can be obtained. Therefore, the more crystal phases, the better. Thereby, the light emission luminance can be increased and the workability is improved.
(Particle size)

発光装置に搭載することを考慮すれば、蛍光体の粒径は中心粒径が2μm〜50μmの範囲が好ましく、より好ましくは5μm〜30μmとする。また、この中心粒径値を有する蛍光体が、頻度高く含有されていることが好ましい。さらに、粒度分布においても狭い範囲に分布しているものが好ましい。粒径、及び粒度分布のばらつきが小さく、光学的に優れた特徴を有する粒径の大きな蛍光体を用いることにより、より色むらが抑制され、良好な色調を有する発光装置が得られる。したがって、上記の範囲の粒径を有する蛍光体であれば、光の吸収率及び変換効率が高い。一方、2μmより小さい粒径を有する蛍光体は、凝集体を形成しやすい傾向にある。   In consideration of mounting in a light emitting device, the particle diameter of the phosphor is preferably in the range of 2 μm to 50 μm, more preferably 5 μm to 30 μm. Moreover, it is preferable that the phosphor having this central particle size value is contained with high frequency. Furthermore, the particle size distribution is preferably distributed in a narrow range. By using a phosphor having a large particle size with small variations in particle size and particle size distribution and having optically excellent characteristics, a light emitting device having a favorable color tone can be obtained with further suppressed color unevenness. Therefore, a phosphor having a particle size in the above range has high light absorption and conversion efficiency. On the other hand, a phosphor having a particle size smaller than 2 μm tends to form an aggregate.

また蛍光体をLEDチップ等の励起光源と組み合わせた発光装置とする場合は、透光性樹脂中で分散されてLEDチップの近傍に分布して色変換層を形成する。この際、蛍光体の粒径を均一に近付ける他、小粒径の蛍光体と大粒径の蛍光体とを組み合わせることもできる。この場合は、小粒径の蛍光体を色変換層の外側に分布させることが好ましい。これにより大粒径蛍光体により構成される色変換層により効率良く色変換させることができ、かつその外側に分散された小粒径蛍光物質により色むらを抑制できる。   In the case of a light emitting device in which a phosphor is combined with an excitation light source such as an LED chip, a color conversion layer is formed by being dispersed in a translucent resin and distributed in the vicinity of the LED chip. At this time, in addition to making the particle size of the phosphor close to uniform, it is also possible to combine a phosphor with a small particle size and a phosphor with a large particle size. In this case, it is preferable to distribute phosphors having a small particle diameter outside the color conversion layer. Thereby, color conversion can be efficiently performed by the color conversion layer constituted by the large particle size phosphor, and color unevenness can be suppressed by the small particle size fluorescent material dispersed on the outside thereof.

具体的には、上述した蛍光体を第一蛍光体とし、これに加えて同じ励起光源からの光を吸収して励起され、420nm〜480nmにピーク波長を有する蛍光を発する1種類以上の第二蛍光体とを組み合わせ、透光性樹脂に含有させる。この第二蛍光体は、第一蛍光体よりも中心粒径を大きいものとする。   Specifically, the phosphor described above is used as the first phosphor, and in addition to this, one or more second types that are excited by absorbing light from the same excitation light source and emit fluorescence having a peak wavelength at 420 nm to 480 nm. A phosphor is combined and contained in a translucent resin. This second phosphor has a larger center particle size than the first phosphor.

このような大粒径の蛍光体としては、中心粒径を10μm〜60μmの範囲に調整したものを使用する。例えば中心粒径が約13μmのCa5(PO43(Cl,Br):Euのアパタイト蛍光体やBaMgAl1017:EuのBAM蛍光体、(Sr,Ba,Ca)3MgSi28:Eu、CaMgSi26:Euのシリケート蛍光体、Y2.965Al512:Ce0.035のアルミン酸蛍光体などが利用できる。また小粒径の蛍光体としては、中心粒径を0.2μm〜8μmの範囲に調整したものを使用する。例えば5μm〜7μmの上記蛍光体を使用する。あるいは、より小さい粒径に調整してもよく、例えば第一蛍光体の中心粒径を0.2μm〜1.5μmの範囲に設定する。これにより、第二蛍光体により構成される色変換層により効率良く色変換させることができ、かつその外側に分散された第一蛍光体により色むらを抑制できる。すなわち、青色発光蛍光体粒子に黄色発光蛍光体粒子が分散される状態となって、蛍光体を高密度に充填できる。この結果、励起光が黄色発光蛍光体に直接照射されやすくなる。逆に言うと、第二蛍光体であるBAM系蛍光体やアパタイト系蛍光体、シリケート系蛍光体(例えばCa5(PO43(Cl,Br):EuやBaMgAl1017:Eu、(Sr,Ba,Ca)3MgSi28:Eu)が発光する460nm付近の青色光では、黄色発光蛍光体は殆ど励起されないため、励起光源からの光が効率よく黄色発光蛍光体に照射されるよう、青色発光蛍光体の外側に位置させることで、黄色発光蛍光体の励起を効果的に実現できる。逆に、蛍光体の粒径を黄色発光蛍光体と青色発光蛍光体で同様にしておくと、蛍光体同士の間に隙間が生じやすくなり、励起光が漏れやすくなる。特に本実施の形態では、励起光源として可視光でなく近紫外光を利用しているため、該励起光を外部に漏らすことなく、発光装置内部で有効に利用することが肝要となる。このため、異なる粒径の蛍光体の組み合わせを用いることで、上述の通り励起光を有効利用できる利点が得られる。
(製造方法)
As such a large particle size phosphor, one having a center particle size adjusted to a range of 10 μm to 60 μm is used. For example, Ca 5 (PO 4 ) 3 (Cl, Br): Eu apatite phosphor having a center particle diameter of about 13 μm, BaMgAl 10 O 17 : Eu BAM phosphor, (Sr, Ba, Ca) 3 MgSi 2 O 8 : Eu, CaMgSi 2 O 6 : Eu silicate phosphor, Y 2.965 Al 5 O 12 : Ce 0.035 aluminate phosphor, etc. can be used. As the phosphor having a small particle diameter, a phosphor having a center particle diameter adjusted to a range of 0.2 μm to 8 μm is used. For example, the phosphor of 5 to 7 μm is used. Or you may adjust to a smaller particle size, for example, the center particle size of a 1st fluorescent substance is set to the range of 0.2 micrometer-1.5 micrometers. Thereby, color conversion can be efficiently performed by the color conversion layer constituted by the second phosphor, and color unevenness can be suppressed by the first phosphor dispersed on the outside thereof. That is, the yellow light-emitting phosphor particles are dispersed in the blue light-emitting phosphor particles, and the phosphor can be filled with high density. As a result, it becomes easy to irradiate the excitation light directly to the yellow light emitting phosphor. Conversely, the second phosphor, BAM phosphor, apatite phosphor, silicate phosphor (for example, Ca 5 (PO 4 ) 3 (Cl, Br): Eu, BaMgAl 10 O 17 : Eu, ( Sr, Ba, Ca) 3 MgSi 2 O 8 : Eu) emits light from the excitation light source efficiently because the yellow light emitting phosphor is hardly excited by the blue light near 460 nm emitted from the light. Thus, the excitation of the yellow light-emitting phosphor can be effectively realized by being positioned outside the blue light-emitting phosphor. Conversely, if the phosphors have the same particle size for the yellow light emitting phosphor and the blue light emitting phosphor, a gap is likely to be generated between the phosphors, and the excitation light is likely to leak. In particular, in the present embodiment, near ultraviolet light is used as the excitation light source instead of visible light, so it is important to effectively use the excitation light inside the light emitting device without leaking the excitation light to the outside. For this reason, the advantage which can utilize excitation light effectively as mentioned above is acquired by using the combination of the fluorescent substance of a different particle size.
(Production method)

次に、実施の形態1に係る蛍光体の製造方法について説明する。蛍光体は、その組成に含有される元素の単体や酸化物、炭酸塩あるいは窒化物などを原料とし、各原料を所定の塩素の一部が飛散あるいは溶出してしまうため、これを考慮して、塩素を調整することができる。これらの原料にさらにフラックスなどの添加材料を適宜加え、混合機を用いて湿式又は乾式で混合する。混合機は工業的に通常用いられているボールミルの他、振動ミル、ロールミル、ジェットミルなどの粉砕機を用いて粉砕して比表面積を大きくすることもできる。また、粉末の比表面積を一定範囲とするために、工業的に用いられている沈降槽、ハイドロサイクロン、遠心分離器などの湿式分離機、サイクロン、エアセパレータなどの乾式分級機を用いて分級することもできる。
(焼成)
Next, a method for manufacturing the phosphor according to Embodiment 1 will be described. Phosphors are made from simple elements, oxides, carbonates or nitrides of the elements contained in the composition, and some of the prescribed chlorine is scattered or eluted from each raw material. Chlorine can be adjusted. Additive materials such as flux are appropriately added to these raw materials, and they are mixed wet or dry using a mixer. The mixer can be pulverized using a pulverizer such as a vibration mill, a roll mill, a jet mill, or the like, in addition to a ball mill that is usually used industrially, to increase the specific surface area. In addition, in order to keep the specific surface area of the powder within a certain range, classification is performed using industrially used sedimentation tanks, hydrocyclones, centrifuges and other wet separators, cyclones, air separators and other dry classifiers. You can also.
(Baking)

上記の混合した原料をSiC、石英、アルミナ、BN等の坩堝に詰め、N2、H2の還元雰囲気中にて焼成を行う。焼成雰囲気はアルゴン雰囲気、アンモニア雰囲気なども使用することができる。焼成は1000℃〜1150℃の温度で1時間〜30時間行う。
(粉砕等)
The mixed raw materials are packed in a crucible made of SiC, quartz, alumina, BN or the like and fired in a reducing atmosphere of N 2 and H 2 . As the firing atmosphere, an argon atmosphere, an ammonia atmosphere, or the like can also be used. Firing is performed at a temperature of 1000 ° C. to 1150 ° C. for 1 hour to 30 hours.
(Crushing etc.)

次いで焼成されたものを粉砕、分散、濾過等して目的の蛍光体粉末を得る。固液分離は濾過、吸引濾過、加圧濾過、遠心分離、デカンテーションなどの工業的に通常用いられる方法により行うことができる。乾燥は、真空乾燥機、熱風加熱乾燥機、コニカルドライヤー、ロータリーエバポレーターなどの工業的に通常用いられる装置により行うことができる。   Next, the fired product is pulverized, dispersed, filtered, etc. to obtain the desired phosphor powder. Solid-liquid separation can be performed by industrially used methods such as filtration, suction filtration, pressure filtration, centrifugation, and decantation. Drying can be performed by industrially used apparatuses such as a vacuum dryer, a hot-air heating dryer, a conical dryer, and a rotary evaporator.

蛍光体原料に関して、原料のSiO2の純度は、2N以上のものが好ましいが、Li、Na、K、B、Cuなどの異なる元素が含有されていてもよい。さらに、Siの一部をGe,Snで置換することもできる。 Regarding the phosphor raw material, the purity of SiO 2 as the raw material is preferably 2N or higher, but may contain different elements such as Li, Na, K, B, and Cu. Furthermore, a part of Si can be replaced with Ge and Sn.

アルカリ土類のMg、Ca、Sr、Baはハロゲン塩と酸化物、炭酸塩、リン酸塩、珪酸塩などを組み合わせて、所定のハロゲン比率となるように使用することができる。また、ハロゲンを導入する場合、アルカリ土類のハロゲン塩の変わりにハロゲンを含むアンモニウム塩を用いることができる。
(賦活剤)
Alkaline earth Mg, Ca, Sr, and Ba can be used in combination with halogen salts and oxides, carbonates, phosphates, silicates, and the like to achieve a predetermined halogen ratio. In addition, when a halogen is introduced, an ammonium salt containing a halogen can be used instead of the alkaline earth halogen salt.
(Activator)

さらに、賦活剤のEuは、好ましくは単独で使用されるが、ハロゲン塩、酸化物、炭酸塩、リン酸塩、珪酸塩などを使用することができる。また、Euを必須とする混合物を使用する場合、所望により配合比を変えることができる。このようにEuの一部を他の元素で置換することで、他の元素は、共賦活として作用する。これより色調を変化させることができ、発光特性の調整を行うことができる。ユーロピウムは、主に2価と3価のエネルギー準位を持つが、実施の形態1の蛍光体では、Eu2+を賦活剤として用いる。 Further, Eu as the activator is preferably used alone, but halogen salts, oxides, carbonates, phosphates, silicates and the like can be used. Moreover, when using the mixture which requires Eu, a compounding ratio can be changed as desired. Thus, by replacing a part of Eu with another element, the other element acts as a co-activation. As a result, the color tone can be changed, and the light emission characteristics can be adjusted. Europium mainly has bivalent and trivalent energy levels, but the phosphor of Embodiment 1 uses Eu 2+ as an activator.

また、原料としてEuの化合物を使用しても良い。この場合、原料は精製したものを用いる方が良いが、市販の物を用いても良い。具体的にはEuの化合物として酸化ユーロピウムEu23、金属ユーロピウム、窒化ユーロピウムなども使用可能である。また、原料のEuは、イミド化合物、アミド化合物を用いることもできる。酸化ユーロピウムは、高純度のものが好ましく、また市販のものも使用することができる。 Further, a Eu compound may be used as a raw material. In this case, it is better to use a purified raw material, but a commercially available product may be used. Specifically, europium oxide Eu 2 O 3 , metal europium, europium nitride, and the like can be used as Eu compounds. The raw material Eu may be an imide compound or an amide compound. Europium oxide preferably has a high purity, and commercially available products can also be used.

さらに、Eu以外の添加する希土類元素は、通常、酸化物、水酸化物で加えられることが好ましいが、これに限定されるものではなく、塩化物、臭化物、ヨウ化物、フッ化物、リン酸塩、炭酸塩、硫酸塩、若しくはその他の無機塩類でも良く、また、予め他の原料に含まれている状態でも良い。   Furthermore, it is preferable that the rare earth element to be added other than Eu is usually added in the form of an oxide or hydroxide, but is not limited thereto, and is not limited to chloride, bromide, iodide, fluoride, phosphate. , Carbonates, sulfates or other inorganic salts may be used, or they may be contained in other raw materials in advance.

また、原料は精製したものが好ましい。これにより、精製工程を必要としないため、蛍光体の製造工程を簡略化でき、安価な蛍光体を提供することができるからである。   The raw material is preferably purified. Thereby, since a purification process is not required, the manufacturing process of the phosphor can be simplified, and an inexpensive phosphor can be provided.

以下、実施の形態の蛍光体における一例として、蛍光体及びこれを用いた発光装置並びに蛍光体の製造方法を説明する。   Hereinafter, as an example of the phosphor according to the embodiment, a phosphor, a light emitting device using the phosphor, and a method for manufacturing the phosphor will be described.

表1に、実施例1〜18及び比較例1〜9の各蛍光体の発光特性を示す。具体的には、各蛍光体の仕込み組成と得られた蛍光体の粒径、波長400nmで励起されたときの発光特性として、色度(x、y)、比較例1を基準(100%)としたときの相対輝度Y(%)を、それぞれ評価した。図1は、実施例1及び比較例1に係る各蛍光体の発光スペクトルを示す。図2は、反射スペクトルを示す。図3は、励起スペクトルを示す。図4は、蛍光体の顕微鏡写真を示す。   Table 1 shows the light emission characteristics of the phosphors of Examples 1 to 18 and Comparative Examples 1 to 9. Specifically, the charged composition of each phosphor, the particle size of the obtained phosphor, and the light emission characteristics when excited at a wavelength of 400 nm, the chromaticity (x, y), and Comparative Example 1 as a reference (100%) Relative luminance Y (%) was evaluated. FIG. 1 shows emission spectra of phosphors according to Example 1 and Comparative Example 1. FIG. 2 shows the reflection spectrum. FIG. 3 shows the excitation spectrum. FIG. 4 shows a photomicrograph of the phosphor.

実施例1〜18は、比較例に比して輝度の向上が確認できた。また実施例1〜18に係る蛍光体の粒径は、比較例と比べて小さくすることができた。これは希土類を添加することで蛍光体の反応が抑制されたためと思われる。   In Examples 1 to 18, it was confirmed that the luminance was improved as compared with the comparative example. Moreover, the particle size of the phosphors according to Examples 1 to 18 could be reduced as compared with the comparative example. This is probably because the reaction of the phosphor was suppressed by adding rare earth.

実施例1では、仕込み組成比において、Ca:Sr:Sc:Eu:Si:Cl=2.56:5.03:0.03:0.6:6.0:5.62(SrとClはSrCl2がフラックス成分となるように、所与の組成より過剰に仕込んでいる)となるように各原料を秤量する。 In Example 1, in the charged composition ratio, Ca: Sr: Sc: Eu: Si: Cl = 2.56: 5.03: 0.03: 0.6: 6.0: 5.62 (Sr and Cl are Each raw material is weighed so that SrCl 2 becomes a flux component and is charged in excess of a given composition.

具体的には、実施例1の蛍光体原料として以下の粉末を計量した。ただし、各蛍光体原料の純度を100%と仮定している。
炭酸カルシウム(CaCO3)・・・・ 8.31g
炭酸ストロンチウム(SrCO3)・・・・ 41.71g
塩化カルシウム(CaCl2)・・・・ 15.47g
塩化ストロンチウム(SrCl2)・・・・ 14.02g
酸化ユーロピウム(Eu23)・・・・ 7.78g
酸化スカンジウム(Sc23)・・・・ 0.15g
酸化ケイ素(SiO2)・・・・ 26.57g
Specifically, the following powders were weighed as the phosphor material of Example 1. However, the purity of each phosphor material is assumed to be 100%.
Calcium carbonate (CaCO 3 ) ... 8.31 g
Strontium carbonate (SrCO 3 ) ... 41.71 g
Calcium chloride (CaCl 2 ) ... 15.47g
Strontium chloride (SrCl 2 ) ... 14.02 g
Europium oxide (Eu 2 O 3 ) ... 7.78 g
Scandium oxide (Sc 2 O 3 ) 0.15 g
Silicon oxide (SiO 2 ) ... 26.57 g

秤取した原料をボールミルによって乾式で十分に混合し、さらに坩堝に詰め、還元雰囲気中にて1100℃で4時間焼成する。焼成されたものを粉砕及び水洗を行い、蛍光体粉末を得た。なお蛍光体の正確な組成及び組成比は不明であるが、SrCl2は過剰に存在しているため、水洗によってCl2が洗い流される結果、水洗後の実組成は(Ca,Sr,Re,Eu)7Si618Cl2と思われる。このように、仕込み組成と実組成は大きく異なると思われる。 The weighed raw materials are thoroughly mixed in a dry manner by a ball mill, further packed in a crucible, and baked at 1100 ° C. for 4 hours in a reducing atmosphere. The fired product was pulverized and washed with water to obtain a phosphor powder. Although the exact composition and composition ratio of the phosphor are unknown, since SrCl 2 is present in excess, Cl 2 is washed away by water washing, so that the actual composition after water washing is (Ca, Sr, Re, Eu). ) 7 Si 6 O 18 Cl 2 Thus, the charged composition and the actual composition seem to be greatly different.

以上のようにして、半値幅の広いブロードな蛍光発光を得ることができた。これにより、赤色発光の蛍光体を特に添加せずとも十分な演色性を持った発光を得ることができる。ただ、さらに演色性を向上させるため、赤色系の蛍光を発する蛍光体を混合することも可能であることはいうまでもない。このような赤色発光蛍光体としては、(Ca,Sr)2Si58:Euや(Ca,Sr)AlSiBN3:Eu、0.5MgF2・3.5MgO・GeO2:Mn、Ln22S:Eu(Ln=Y,La,Gdなど)などの蛍光体が好適に利用できる。例えば、一般式がMxAlySizab:Eu2+(0.5≦x≦3、0.5≦y≦3、0.5≦z≦9、0≦a≦3、0.5≦b≦3)で示され、MはMg、Zn、Ca、Sr、Baの群から選ばれる少なくとも一である。 As described above, broad fluorescence emission having a wide half-value width could be obtained. Thereby, it is possible to obtain light emission having sufficient color rendering properties without adding a red light emitting phosphor. However, it goes without saying that phosphors emitting red fluorescence can be mixed in order to further improve color rendering. As such a red light emitting phosphor, (Ca, Sr) 2 Si 5 N 8 : Eu, (Ca, Sr) AlSiBN 3 : Eu, 0.5 MgF 2 .3.5MgO · GeO 2 : Mn, Ln 2 O A phosphor such as 2 S: Eu (Ln = Y, La, Gd, etc.) can be suitably used. For example, the general formula M x Al y Si z O a N b: Eu 2+ (0.5 ≦ x ≦ 3,0.5 ≦ y ≦ 3,0.5 ≦ z ≦ 9,0 ≦ a ≦ 3, 0.5 ≦ b ≦ 3), and M is at least one selected from the group consisting of Mg, Zn, Ca, Sr, and Ba.

実施例1と同じ方法で、所定の配合比になるように原料を調整して合成した。これにより一定の希土類、添加量を用いた輝度が最大11%向上した。このように405nm励起でも輝度の高い黄色蛍光体を得ることができる。とくにSc,Y,La,Ce,Tb,Hoは添加量が多くても良好な輝度を示した。
(温度特性)
In the same manner as in Example 1, the raw materials were adjusted and synthesized so as to have a predetermined blending ratio. As a result, the luminance using a certain rare earth and the added amount was improved by up to 11%. Thus, a yellow phosphor with high luminance can be obtained even by excitation at 405 nm. In particular, Sc, Y, La, Ce, Tb, and Ho showed good luminance even when the addition amount was large.
(Temperature characteristics)

表2に、各蛍光体の室温(約27℃)の輝度を基準(100%)として、100℃及び200℃に加熱した際の各蛍光体の相対輝度を示す。この表から、高温時の輝度の劣化が比較例に比して抑制されること、すなわち高温でも輝度低下の起こり難い、温度特性に優れた蛍光体であることが確認できた。   Table 2 shows the relative luminance of each phosphor when heated to 100 ° C. and 200 ° C. with the luminance at room temperature (about 27 ° C.) of each phosphor as a reference (100%). From this table, it was confirmed that the deterioration of luminance at high temperature was suppressed as compared with the comparative example, that is, the phosphor was excellent in temperature characteristics and did not easily decrease in luminance even at high temperature.

温度特性は、発光素子の表面に蛍光体を設けたとき、高い発光特性を示しているかを表すものであり、相対輝度(%)が高いものほど温度特性が良く、蛍光体が安定であることを示している。特に発光素子に投入された電流の一部が熱となり、更に発光素子から放出された発光を蛍光体が吸収して発光する際、蛍光体の発光ロスの一部も熱となる。このため、蛍光体付近は比較的に高温となることから、温度特性が良好なものほど、信頼性の高い白色発光装置とすることができる。この結果から実施例に係る蛍光体の方が、比較例よりも温度特性が良好であり、信頼性が高いことが確認できる。特に実施例11〜13、18において、比較例に比して高い数値を示しており、温度特性が優れている。これらの結果から、温度特性が概ね5〜10%改善されたことが確認できた。   The temperature characteristic indicates whether or not the phosphor exhibits high emission characteristics when a phosphor is provided on the surface of the light emitting element. The higher the relative luminance (%), the better the temperature characteristic and the more stable the phosphor. Is shown. In particular, part of the current supplied to the light emitting element becomes heat, and when the phosphor absorbs light emitted from the light emitting element and emits light, part of the light emission loss of the phosphor also becomes heat. For this reason, since the vicinity of the phosphor becomes a relatively high temperature, the better the temperature characteristics, the more reliable the white light emitting device can be made. From this result, it can be confirmed that the phosphor according to the example has better temperature characteristics and higher reliability than the comparative example. In particular, Examples 11 to 13 and 18 show higher numerical values than the comparative examples, and the temperature characteristics are excellent. From these results, it was confirmed that the temperature characteristics were improved by about 5 to 10%.

さらに表3に、得られた蛍光体の分析値と、該分析値より求めた、Si=6とした場合の組成比を示す。この表から、仕込み組成と実際に得られた実組成とが大きく異なることが判る。特にSrCl2が相当過剰に存在しているため、水洗後の実質的な組成(化学式)は(Ca,Sr,Re,Eu)7Si618Cl2と思われる。元素分析値より、実質的な組成より一部アルカリ金属と希土類元素、ハロゲンが少なくなっていると考えられる。 Furthermore, Table 3 shows the analysis value of the obtained phosphor and the composition ratio obtained from the analysis value when Si = 6. From this table, it can be seen that the charged composition and the actual composition actually obtained differ greatly. In particular, since SrCl 2 is present in a considerably excessive amount, the substantial composition (chemical formula) after washing with water seems to be (Ca, Sr, Re, Eu) 7 Si 6 O 18 Cl 2 . From the elemental analysis values, it is considered that some alkali metals, rare earth elements, and halogens are less than the substantial composition.

(発光装置) (Light emitting device)

以下、上述の実施の形態に係る蛍光体を採用した発光装置を実施例19、20として説明する。図5は、一般的な発光装置を示す概略断面図である。この発光装置100は、上部に開口したカップ形状のパッケージ110と、このパッケージ110のカップ形状内に搭載された発光素子101とを備える。またパッケージ110の表面には正負のリード電極111が形成されている。発光素子は、このリード電極111の一方の電極に載置されて、他方の電極とは導電ワイヤ104を介して電気的に接続されている。さらにパッケージ110のカップ内は蛍光体102を含有する封止樹脂103により充填されており、この封止樹脂103でもって発光素子101を封止している。   Hereinafter, light emitting devices employing the phosphors according to the above-described embodiments will be described as Examples 19 and 20. FIG. 5 is a schematic cross-sectional view showing a general light emitting device. The light emitting device 100 includes a cup-shaped package 110 having an opening at the top, and a light-emitting element 101 mounted in the cup shape of the package 110. Positive and negative lead electrodes 111 are formed on the surface of the package 110. The light emitting element is placed on one electrode of the lead electrode 111, and is electrically connected to the other electrode via the conductive wire 104. Further, the cup of the package 110 is filled with a sealing resin 103 containing a phosphor 102, and the light emitting element 101 is sealed with the sealing resin 103.

そして発光素子101は、リード電極111を介して外部より電力の供給を受けて発光する。発光素子101より出射された光は、封止樹脂103内を透過しながらその一部を蛍光体102でもって波長変換されて、封止樹脂103の上部から混色光が放出される。また発光装置100は、反射部材112でもって発光素子101からの出射光を光取り出し側へと反射させ、光取り出し効率を向上させることができる。この反射部材112は一般的に金属で構成され、例えば反射率の高い銀や金、アルミニウムでもってリード電極111上を被覆して設けられる。以下、発光装置の各部材について説明する。   The light emitting element 101 emits light upon receiving power supply from the outside via the lead electrode 111. A part of the light emitted from the light emitting element 101 is converted by the phosphor 102 while passing through the sealing resin 103, and mixed color light is emitted from the upper part of the sealing resin 103. In addition, the light emitting device 100 can reflect the light emitted from the light emitting element 101 to the light extraction side with the reflection member 112, and can improve the light extraction efficiency. The reflecting member 112 is generally made of metal, and is provided so as to cover the lead electrode 111 with, for example, silver, gold, or aluminum having high reflectivity. Hereinafter, each member of the light emitting device will be described.

(発光素子)
発光素子は、近紫外線から可視光の短波長領域の光を発するものを使用することができる。好ましくは290nm〜410nmに発光ピーク波長を有するものとする。これにより、本発明に係る蛍光体を効率よく励起し、また可視光を有効活用することができるからである。また、励起光源に発光素子を利用することによって、高効率で入力に対する出力のリニアリティが高く、機械的衝撃にも強い安定した発光装置を得ることができる。
(複数の蛍光体の組み合わせ)
本発明に係る上述の蛍光体は、単独で用いることもできるが、他の蛍光体と組み合わせて使用することもできる。特に本発明の実施の形態に係る蛍光体は、発光ピーク波長の色相と隣接する他の色相の光を吸収しにくく、つまり他の色相に発光する蛍光体への影響を与えにくいため、加色により混色光を放出する発光装置に好適に採用できる。他の蛍光体と干渉しにくい蛍光体は、励起による変換効率を高めて、意図する色相の波長光を高輝度に放出することができる。したがって、複数の蛍光体を含有する発光装置の場合、少なくとも一の蛍光体を本発明の蛍光体とすることが好ましい。この場合、他の蛍光体は発光素子からの光を吸収し、発光素子及び一の蛍光体と異なる波長の光に波長変換できるものとする。
(Light emitting element)
As the light-emitting element, one that emits light in a short wavelength region from near ultraviolet to visible light can be used. Preferably, it has an emission peak wavelength at 290 to 410 nm. This is because the phosphor according to the present invention can be excited efficiently and visible light can be effectively utilized. In addition, by using a light emitting element as an excitation light source, a stable light emitting device with high efficiency, high output linearity with respect to input, and strong mechanical shock can be obtained.
(Combination of multiple phosphors)
Although the above-mentioned phosphor according to the present invention can be used alone, it can also be used in combination with other phosphors. In particular, the phosphor according to the embodiment of the present invention is difficult to absorb light of other hues adjacent to the hue of the emission peak wavelength, that is, it is difficult to affect the phosphor emitting light in other hues. Therefore, it can be suitably used for a light emitting device that emits mixed color light. A phosphor that hardly interferes with other phosphors can increase the conversion efficiency by excitation and emit light having a wavelength of an intended hue with high luminance. Therefore, in the case of a light emitting device containing a plurality of phosphors, it is preferable that at least one phosphor is the phosphor of the present invention. In this case, the other phosphors absorb light from the light emitting element and can be converted into light having a wavelength different from that of the light emitting element and the one phosphor.

また発光装置に搭載する複数の蛍光体を、実施の形態及び実施の形態の変形例で示す蛍光体で構成することが好ましい。つまりホスト結晶の組成を同一としながら発光の色相をそれぞれ黄色及び緑色とする各蛍光体をそれぞれ含有する発光装置とできる。この発光装置は、それぞれの蛍光体の比重を略同一とできるため、封止樹脂に包含される各蛍光体を略均一に拡散させることができる。略一様に配置される蛍光体は、各色相の光が偏在することを低減できるため、混色の割合を均等として、発光の指向性を緩和させることができる。つまり色むらが防止された発光装置とでき好ましい。また、上述の通り互いに干渉しにくい蛍光体を複数含有させることで、該蛍光体における蛍光を二次的に吸収することを回避して、輝度の低下を防止できる。   In addition, it is preferable that the plurality of phosphors mounted on the light-emitting device be formed using the phosphors described in the embodiment and the modified example of the embodiment. That is, it is possible to obtain a light emitting device that contains phosphors having the same composition of the host crystal and the yellow and green light emission hues, respectively. In this light emitting device, the specific gravity of each phosphor can be made substantially the same, so that each phosphor contained in the sealing resin can be diffused substantially uniformly. Since the phosphors arranged substantially uniformly can reduce the uneven distribution of light of each hue, the ratio of color mixture can be made uniform and the directivity of light emission can be reduced. That is, a light emitting device in which color unevenness is prevented is preferable. In addition, as described above, by including a plurality of phosphors that do not easily interfere with each other, secondary absorption of fluorescence in the phosphors can be avoided, and a reduction in luminance can be prevented.

また発光装置に含有される蛍光体は上記に限定されず、上記の蛍光体に代えて、あるいは上記の蛍光体に加えて、種々のものが採用できる。例えば、Eu、Ce等のランタノイド系元素で主に賦活される窒化物系蛍光体・酸窒化物系蛍光体・サイアロン系蛍光体、Eu等のランタノイド系、Mn等の遷移金属系の元素により主に付活されるアルカリ土類金属ハロゲンアパタイト蛍光体、アルカリ土類金属ホウ酸ハロゲン蛍光体、アルカリ土類金属アルミン酸塩蛍光体、アルカリ土類金属珪酸塩、アルカリ土類金属硫化物、アルカリ土類金属チオガレート、アルカリ土類金属窒化ケイ素、ゲルマン酸塩、又は、Ce等のランタノイド系元素で主に付活される希土類アルミン酸塩、希土類珪酸塩又はEu等のランタノイド系元素で主に賦活される有機及び有機錯体等から選ばれる少なくともいずれか一以上であることが好ましい。例えば、(Y,Gd,Tb)3(Ga,Al)512:Ce、(Ca,Sr)2Si58:Eu、(Ca,Sr)AlSiN3:Eu、(Ca,Sr,Ba)Si222:Euなどが列挙される。種々の蛍光体を搭載することで様々な色調の発光装置を提供することができる。また、蛍光体をデバイスに搭載する形態において、その2種類以上の蛍光体を混合して用いても良いし、それぞれ別の層として配置しても良い。
(実施例19、20)
Further, the phosphor contained in the light emitting device is not limited to the above, and various materials can be employed instead of the above phosphor or in addition to the above phosphor. For example, nitride phosphors / oxynitride phosphors / sialon phosphors mainly activated by lanthanoid elements such as Eu and Ce, lanthanoid elements such as Eu, and transition metal elements such as Mn. Activated alkaline earth metal halogen apatite phosphor, alkaline earth metal borate halogen phosphor, alkaline earth metal aluminate phosphor, alkaline earth metal silicate, alkaline earth metal sulfide, alkaline earth Activated mainly by lanthanoid elements such as rare earth aluminates, rare earth silicates or Eu mainly activated by lanthanoid elements such as metal thiogallate, alkaline earth metal silicon nitride, germanate, or Ce It is preferably at least one selected from the group consisting of organic and organic complexes. For example, (Y, Gd, Tb) 3 (Ga, Al) 5 O 12 : Ce, (Ca, Sr) 2 Si 5 N 8 : Eu, (Ca, Sr) AlSiN 3 : Eu, (Ca, Sr, Ba ) Si 2 O 2 N 2 : Eu and the like are listed. By mounting various phosphors, light emitting devices with various colors can be provided. Further, in the embodiment in which the phosphor is mounted on the device, the two or more kinds of phosphors may be mixed and used, or may be arranged as separate layers.
(Examples 19 and 20)

次に、実際に発光装置を作成した実施例19、20について説明する。実施例19、20は、上記実施例12に係る黄色発光のクロロシリケート蛍光体に、青色発光蛍光体とLED素子とを組み合わせたものである。実施例19、20の詳細を、表4に示す。この表に示すように、実施例19は青色発光蛍光体としてCa5(PO43(Cl,Br):Euを、実施例20はBAM蛍光体としてBaMgAl1017:Euを、それぞれ使用している。LED素子はセラミックスパッケージの表面実装型(SMD)素子でダイスのサイズが320μm×320μm、ピーク波長が405nmの近紫外光を発光する。この素子を用いて発光装置を構成し、蛍光体を塗布した後シリコーン樹脂で封止した。また、この結果得られた発光装置の発光スペクトルを図6に示す。この表、グラフに示すように、いずれも演色性に優れた発光装置を得ることができた。 Next, Examples 19 and 20 in which light emitting devices were actually created will be described. In Examples 19 and 20, the yellow-emitting chlorosilicate phosphor according to Example 12 is combined with a blue-emitting phosphor and an LED element. Details of Examples 19 and 20 are shown in Table 4. As shown in this table, Example 19 uses Ca 5 (PO 4 ) 3 (Cl, Br): Eu as the blue light-emitting phosphor, and Example 20 uses BaMgAl 10 O 17 : Eu as the BAM phosphor. doing. The LED element is a surface-mount type (SMD) element of a ceramic package, and emits near-ultraviolet light having a die size of 320 μm × 320 μm and a peak wavelength of 405 nm. A light-emitting device was configured using this element, and after applying a phosphor, it was sealed with a silicone resin. In addition, an emission spectrum of the light-emitting device obtained as a result is shown in FIG. As shown in this table and graph, a light emitting device having excellent color rendering properties could be obtained.

以上のようにして得られた発光装置は、従来のピーク波長460nm程度の青色発光LEDとYAG蛍光体を組み合わせた発光装置と比べ、色ばらつきの少ない高品質な発光出力を得ることができた。特に従来の発光装置では、青色光のピーク値がLED素子によりばらつく上、LED素子上にポッティングなどで塗布された蛍光体層の膜厚によって青色光の透過割合も変化する。また膜厚が全面に均一でない場合や、LED素子の周囲などでも膜厚の不均一がみられ、このような蛍光体の不均一によって波長変換の程度も変動し、結果として白色光のスペクトルが素子毎にばらついたり、部位によって出力光が不均一となる色むらが生じるという問題があった。   The light-emitting device obtained as described above was able to obtain a high-quality light-emitting output with little color variation compared to a conventional light-emitting device combining a blue light-emitting LED having a peak wavelength of about 460 nm and a YAG phosphor. In particular, in the conventional light emitting device, the peak value of blue light varies depending on the LED element, and the transmission ratio of the blue light varies depending on the film thickness of the phosphor layer coated on the LED element by potting or the like. In addition, when the film thickness is not uniform over the entire surface or even around the LED element, the film thickness is non-uniform, and the degree of wavelength conversion also fluctuates due to such non-uniformity of the phosphor, resulting in a spectrum of white light. There has been a problem in that unevenness in color occurs in which the light varies from element to element and the output light becomes non-uniform depending on the part.

これに対して本実施の形態では、LEDからの光が可視光でないため、このような透過光のばらつきに左右されず、安定した出力光を得ることができた。出力光が蛍光体層の膜厚に依存しないことで、信頼性を高めることができる。   In contrast, in the present embodiment, since the light from the LED is not visible light, stable output light can be obtained without being affected by such variations in transmitted light. Reliability can be improved because the output light does not depend on the thickness of the phosphor layer.

さらに出力光の色温度も、3000K〜5800Kの範囲で白色光を得ることができた。   Furthermore, the color temperature of the output light was able to obtain white light in the range of 3000K to 5800K.

このように、クロロシリケート系蛍光体に希土類酸化物を添加することで、優れた特性の黄色発光蛍光体を得ることができた。この理由は、希土類酸化物が共賦活剤として働いたためか、あるいはフラックスとして機能しているのかは不明であるが、温度特性と輝度の向上に有効であることが確認できた。これにより実用的な黄色発光蛍光体が実現できるので、LEDチップなどの励起光源と組み合わせた発光装置とした場合の蛍光体層の不均一に起因する出力光ばらつきが抑制され、この結果歩留まりが向上し、高品質な照明を得ることが可能となる。   As described above, by adding the rare earth oxide to the chlorosilicate phosphor, a yellow light-emitting phosphor having excellent characteristics could be obtained. The reason for this is unknown whether the rare earth oxide worked as a co-activator or whether it functions as a flux, but it was confirmed that it was effective in improving temperature characteristics and brightness. As a result, a practical yellow light-emitting phosphor can be realized, so that variations in output light caused by non-uniformity of the phosphor layer when a light-emitting device combined with an excitation light source such as an LED chip is suppressed, resulting in improved yield. In addition, high-quality lighting can be obtained.

本発明の蛍光体及びこれを用いた発光装置並びに蛍光体の製造方法は、蛍光表示管、ディスプレイ、PDP、CRT、FL、FEDおよび投射管等、特に青色発光ダイオード又は紫外線発光ダイオードを光源とする発光特性に極めて優れた白色の照明用光源、LEDディスプレイ、バックライト光源、信号機、照明式スイッチ、各種センサ及び各種インジケータ等に好適に利用できる。特に発光むらが少なく信頼性の高い蛍光体などが得られるので、産業上の利用価値は極めて高い。   The phosphor of the present invention, the light-emitting device using the same, and the method for producing the phosphor use a fluorescent display tube, display, PDP, CRT, FL, FED, projection tube, etc., particularly a blue light-emitting diode or an ultraviolet light-emitting diode as a light source. It can be suitably used for a white illumination light source, an LED display, a backlight light source, a traffic light, an illumination switch, various sensors, various indicators, and the like that have extremely excellent light emission characteristics. In particular, since highly reliable phosphors with little uneven emission are obtained, the industrial utility value is extremely high.

100…発光装置
101…発光素子
102…蛍光体
103…封止樹脂
104…導電ワイヤ
110…パッケージ
111…リード電極
112…反射部材
DESCRIPTION OF SYMBOLS 100 ... Light-emitting device 101 ... Light-emitting element 102 ... Phosphor 103 ... Sealing resin 104 ... Conductive wire 110 ... Package 111 ... Lead electrode 112 ... Reflective member

Claims (9)

成が以下の一般式で表されることを特徴とする蛍光体。
Cax1Srx2ReyEuzSi6aClb
(上式において、ReはSc,Y,La,Ce,Pr,Gd,Tb,Dy,Ho,Tm,Luよりなる群から選ばれる少なくとも一であり、
2≦x1≦3
3≦x2≦4
5.0≦x1+x2≦7.0、
0<y<0.05
0<z≦1.5、
a=(x1+x2)+(3/2)y+z+12−(1/2)b、
1.0≦b≦2.0である。)
Phosphor, wherein a set formed is represented by the following general formula.
Ca x1 Sr x2 Re y Eu z Si 6 O a Cl b
(In the above formula, Re is at least one selected from the group consisting of Sc, Y, La, Ce, Pr, Gd, Tb, Dy, Ho, Tm, and Lu;
2 ≦ x1 ≦ 3
3 ≦ x2 ≦ 4
5.0 ≦ x1 + x2 ≦ 7.0,
0 <y <0.05 ,
0 <z ≦ 1.5,
a = (x1 + x2) + (3/2) y + z + 12− (1/2) b,
1.0 ≦ b ≦ 2.0. )
前記Ca、Srの一部は、Mg、Ba、Zn、Mnよりなる群から選ばれる一種以上の元素により置換されていることを特徴とする請求項1に記載の蛍光体。   2. The phosphor according to claim 1, wherein a part of the Ca and Sr is substituted with one or more elements selected from the group consisting of Mg, Ba, Zn, and Mn. 請求項1又は2に記載の蛍光体であって、
ピーク波長が350nm〜420nmの波長域の光に励起されて、
発光スペクトルのピーク波長が540〜600nmの波長域にあることを特徴とする蛍光体。
The phosphor according to claim 1 or 2,
Excited by light having a peak wavelength of 350 nm to 420 nm,
A phosphor having a peak wavelength of an emission spectrum in a wavelength range of 540 to 600 nm.
請求項1から3のいずれか一に記載の蛍光体であって、
室温における蛍光体の輝度を基準として、200℃に加熱した際の蛍光体の輝度が56%以上であることを特徴とする蛍光体。
The phosphor according to any one of claims 1 to 3,
A phosphor having a luminance of 56% or more when heated to 200 ° C., based on the luminance of the phosphor at room temperature.
近紫外領域から可視光の短波長側の光を発する励起光源と、
請求項1から4のいずれか一に記載の第一蛍光体と、
前記励起光源からの光の少なくとも一部を吸収し、420nm〜480nmにピーク波長を有する蛍光を発する1種類以上の第二蛍光体と、
前記第一、第二蛍光体を含有する透光性樹脂と、
を用いることを特徴とする発光装置。
An excitation light source that emits light on the short wavelength side of visible light from the near ultraviolet region;
The first phosphor according to any one of claims 1 to 4,
One or more second phosphors that absorb at least part of the light from the excitation light source and emit fluorescence having a peak wavelength of 420 nm to 480 nm;
A translucent resin containing the first and second phosphors;
A light emitting device characterized by using the above.
請求項5に記載の発光装置であって、
前記第二蛍光体が、前記第一蛍光体よりも中心粒径が大きく、
前記第二蛍光体は前記透光性樹脂において前記励起光源の近傍に分布して色変換層を形成し、前記第一蛍光体は前記透光性樹脂において前記色変換層の外側に分布してなることを特徴とする発光装置。
The light-emitting device according to claim 5,
The second phosphor has a larger central particle size than the first phosphor,
The second phosphor is distributed near the excitation light source in the translucent resin to form a color conversion layer, and the first phosphor is distributed outside the color conversion layer in the translucent resin. A light emitting device characterized by comprising:
請求項5又は6に記載の発光装置であって、
前記第二蛍光体として、アパタイト系蛍光体、BAM系蛍光体、又はシリケート系蛍光体を含んでなることを特徴とする発光装置。
The light-emitting device according to claim 5 or 6,
A light emitting device comprising an apatite phosphor, a BAM phosphor, or a silicate phosphor as the second phosphor.
蛍光体の製造方法であって、
以下の一般式で表される組成に含有される元素を含む単体、酸化物、窒化物又は炭酸塩を調製すると共に塩素を含有させるよう、粉砕及び/又は混合する工程と、
得られた原料を坩堝に詰め、還元雰囲気中にて焼成する工程と、
焼成された原料を固液分離して乾燥し、粉砕、分散、濾過して目的の蛍光体粉末を得る工程と、
を含み、
前記焼成の際にフラックスとしてアルカリ土類金属塩化物を添加することを特徴とする蛍光体の製造方法。
Cax1Srx2ReyEuzSi6aClb
(上式において、ReはSc,Y,La,Ce,Pr,Gd,Tb,Dy,Ho,Tm,Luよりなる群から選ばれる少なくとも一であり、
2≦x1≦3
3≦x2≦4
5.0≦x1+x2≦7.0、
0<y<0.05
0<z≦1.5、
a=(x1+x2)+(3/2)y+z+12−(1/2)b、
1.0≦b≦2.0である。)
A method for producing a phosphor, comprising:
A step of preparing a simple substance, an oxide, a nitride or a carbonate containing an element contained in the composition represented by the following general formula and pulverizing and / or mixing so as to contain chlorine;
Packing the obtained raw material in a crucible and firing in a reducing atmosphere;
Solid-liquid separation of the fired raw material, drying, pulverization, dispersion, and filtration to obtain the desired phosphor powder;
Including
A method for producing a phosphor, comprising adding an alkaline earth metal chloride as a flux during the firing.
Ca x1 Sr x2 Re y Eu z Si 6 O a Cl b
(In the above formula, Re is at least one selected from the group consisting of Sc, Y, La, Ce, Pr, Gd, Tb, Dy, Ho, Tm, and Lu;
2 ≦ x1 ≦ 3
3 ≦ x2 ≦ 4
5.0 ≦ x1 + x2 ≦ 7.0,
0 <y <0.05 ,
0 <z ≦ 1.5,
a = (x1 + x2) + (3/2) y + z + 12− (1/2) b,
1.0 ≦ b ≦ 2.0. )
請求項8に記載の蛍光体の製造方法であって、
前記アルカリ土類金属塩化物がSrCl2であることを特徴とする蛍光体の製造方法。
It is a manufacturing method of the fluorescent substance according to claim 8,
The method for producing a phosphor, wherein the alkaline earth metal chloride is SrCl 2 .
JP2009206345A 2009-09-07 2009-09-07 Phosphor, light emitting device using the same, and method for producing phosphor Active JP5391946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009206345A JP5391946B2 (en) 2009-09-07 2009-09-07 Phosphor, light emitting device using the same, and method for producing phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009206345A JP5391946B2 (en) 2009-09-07 2009-09-07 Phosphor, light emitting device using the same, and method for producing phosphor

Publications (2)

Publication Number Publication Date
JP2011057763A JP2011057763A (en) 2011-03-24
JP5391946B2 true JP5391946B2 (en) 2014-01-15

Family

ID=43945771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009206345A Active JP5391946B2 (en) 2009-09-07 2009-09-07 Phosphor, light emitting device using the same, and method for producing phosphor

Country Status (1)

Country Link
JP (1) JP5391946B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057764A (en) * 2009-09-07 2011-03-24 Nichia Corp Phosphor, light-emitting apparatus using the same, and manufacturing method for phosphor

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9293644B2 (en) 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US8933644B2 (en) 2009-09-18 2015-01-13 Soraa, Inc. LED lamps with improved quality of light
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
JP2013033854A (en) * 2011-08-02 2013-02-14 Koito Mfg Co Ltd Light wavelength conversion member
US9488324B2 (en) 2011-09-02 2016-11-08 Soraa, Inc. Accessories for LED lamp systems
DE202013012940U1 (en) * 2012-05-04 2023-01-19 Soraa, Inc. LED lamps with improved light quality
CN103013504B (en) * 2012-12-14 2014-12-03 陕西科技大学 Preparation method of single-substrate Ca2SiO3Cl2:xTb<3+> fluorescent powder for white-light LEDs (light-emitting diodes)
US9761763B2 (en) 2012-12-21 2017-09-12 Soraa, Inc. Dense-luminescent-materials-coated violet LEDs
US9410664B2 (en) 2013-08-29 2016-08-09 Soraa, Inc. Circadian friendly LED light source
CN104869688B (en) * 2014-12-18 2018-08-24 北京宝沃汽车有限公司 A kind of backlight regulating switch to degrade with work light brightness
CN108351444B (en) * 2015-12-04 2021-10-26 东丽株式会社 Phosphor sheet, light-emitting body using same, light source unit, display, and method for manufacturing light-emitting body
JP2020196824A (en) * 2019-06-04 2020-12-10 株式会社小糸製作所 Phosphor, wavelength conversion member and illumination device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY131962A (en) * 2001-01-24 2007-09-28 Nichia Corp Light emitting diode, optical semiconductor device, epoxy resin composition suited for optical semiconductor device, and method for manufacturing the same
JP2003147351A (en) * 2001-11-09 2003-05-21 Taiwan Lite On Electronics Inc Manufacturing method of white light source
JP4228098B2 (en) * 2002-08-29 2009-02-25 東ソー株式会社 Alkaline earth metal silicate phosphor and light emitting device
CN100590173C (en) * 2006-03-24 2010-02-17 北京有色金属研究总院 Fluorescent powder and manufacturing method and electric light source produced thereby
CN100590172C (en) * 2006-07-26 2010-02-17 北京有色金属研究总院 Siliceous LED fluorescent powder and manufacturing method and produced luminescent device
JP5222600B2 (en) * 2007-04-05 2013-06-26 株式会社小糸製作所 Phosphor
JP5360857B2 (en) * 2007-05-17 2013-12-04 Necライティング株式会社 Green light emitting phosphor, manufacturing method thereof, and light emitting device using the same
JP2009038248A (en) * 2007-08-02 2009-02-19 Panasonic Corp Semiconductor device and its manufacturing method
JP5530128B2 (en) * 2009-07-31 2014-06-25 株式会社小糸製作所 Phosphor and light emitting device
JP5532769B2 (en) * 2009-09-07 2014-06-25 日亜化学工業株式会社 Phosphor, light emitting device using the same, and method for producing phosphor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057764A (en) * 2009-09-07 2011-03-24 Nichia Corp Phosphor, light-emitting apparatus using the same, and manufacturing method for phosphor

Also Published As

Publication number Publication date
JP2011057763A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP5391946B2 (en) Phosphor, light emitting device using the same, and method for producing phosphor
JP5544881B2 (en) Phosphor, light emitting device using the same, and method for producing phosphor
JP5847908B2 (en) Oxycarbonitride phosphor and light emitting device using the same
JP5092667B2 (en) Light emitting device
JP6406109B2 (en) Phosphor, light emitting device using the same, and method for producing phosphor
JP6361549B2 (en) Phosphor, light emitting device using the same, and method for producing phosphor
JP6102763B2 (en) Phosphor, light emitting device using the same, and method for producing phosphor
JP2008285662A (en) Method for producing inorganic substance, phosphor, phosphor-including composition, emission device, illumination device, and image display device
JP2008095091A (en) Fluorescent substance and its production method, fluorescent substance containing composition, light emitting device, image display device, and illuminating device
JP2009030042A (en) Phosphor, method for producing phosphor, phosphor-containing composition, and light-emitting device
JP2014224231A (en) Phosphor, light-emitting apparatus using the same, and phosphor production method
JP2009040918A (en) Fluorescent substance and its production method, composition containing fluorescent substance, light emitting device, and image display and illuminating device
JP5532769B2 (en) Phosphor, light emitting device using the same, and method for producing phosphor
JP5194672B2 (en) Carbonitride phosphor, light-emitting device using the same, and method for producing carbonitride phosphor
JP2009040944A (en) Phosphor, phosphor-containing composition, light emitter, lighting apparatus, and image display device
JP5523676B2 (en) Phosphor and light emitting device using the same
JP6833683B2 (en) Fluorescent material and its manufacturing method, and LED lamp
JP5590092B2 (en) Phosphor, phosphor-containing composition, light emitting device, image display device and lighting device
JP4706358B2 (en) Blue light emitting phosphor and method for manufacturing the same, light emitting device, illumination device, backlight for display and display
JP2008174621A (en) Phosphor, phosphor-containing composition, light-emitting device, image display device and illumination device
JP5402008B2 (en) Phosphor production method, phosphor, and light emitting device using the same
JP5446493B2 (en) Phosphor and light emitting device using the same
JP6008017B2 (en) Phosphor and light emitting device using the same
JP5310087B2 (en) Phosphor and light emitting device using the same
JP2006348070A (en) Oxynitride-based phosphor and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Ref document number: 5391946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250