JP6055232B2 - Cooling plate and cooling device - Google Patents

Cooling plate and cooling device Download PDF

Info

Publication number
JP6055232B2
JP6055232B2 JP2012178117A JP2012178117A JP6055232B2 JP 6055232 B2 JP6055232 B2 JP 6055232B2 JP 2012178117 A JP2012178117 A JP 2012178117A JP 2012178117 A JP2012178117 A JP 2012178117A JP 6055232 B2 JP6055232 B2 JP 6055232B2
Authority
JP
Japan
Prior art keywords
heat transfer
partition
path
cooling plate
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012178117A
Other languages
Japanese (ja)
Other versions
JP2014036193A (en
Inventor
俊之 細川
俊之 細川
木村 直樹
直樹 木村
幹雄 大高
幹雄 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2012178117A priority Critical patent/JP6055232B2/en
Publication of JP2014036193A publication Critical patent/JP2014036193A/en
Application granted granted Critical
Publication of JP6055232B2 publication Critical patent/JP6055232B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、内部を冷却流体が流通する半導体素子の冷却装置に用いられる冷却プレートおよび冷却装置に関するものである。   The present invention relates to a cooling plate and a cooling device used in a cooling device for a semiconductor element in which a cooling fluid flows.

近年、半導体素子が様々な用途で使われるようになってきている。半導体素子は通電される電流によって熱が発生するが、発生する熱による半導体素子の温度上昇によって特性の低下を招いてしまう。このため、特性が低下しない温度以下になるよう冷却される必要がある。特に大容量の半導体素子では発生する熱も大きいため、冷却流体に水を使った冷却能力の高い水冷プレートが使われる。   In recent years, semiconductor elements have been used for various purposes. A semiconductor element generates heat due to an energized current. However, the characteristics of the semiconductor element are degraded due to an increase in temperature of the semiconductor element due to the generated heat. For this reason, it is necessary to cool the temperature so that the temperature does not deteriorate. In particular, a large-capacity semiconductor device generates a large amount of heat, so a water-cooling plate that uses water as a cooling fluid and has a high cooling capacity is used.

水冷プレートは、素子取り付け面の内側に冷却流体が流れる流路が形成されていて、入口から流入した冷却流体はその流路部分を通って最後に出口から流出するようになっている。流路や出入口の形状や配置が冷却性能に影響するため、その設計は重要である。   The water cooling plate is formed with a flow path through which the cooling fluid flows inside the element mounting surface, and the cooling fluid that has flowed from the inlet passes through the flow path portion and finally flows out from the outlet. The design is important because the shape and arrangement of the flow path and the inlet / outlet affect the cooling performance.

冷却流体は、入口から流入した後に流路部分を通過する際、半導体素子からの熱によって徐々に温度上昇していき、出口から出るときには最も温度が高くなる。このため、通常、水冷プレート表面の半導体素子を冷却する面の温度は、入口近傍で最も低く、出口近傍が最も高くなることになる。つまり、入口近傍の半導体素子は良く冷やされていても、出口近傍の半導体素子は十分冷やされない。このように、半導体素子の温度が最も高い出口近傍の温度を所定の温度以下にする必要があるので、出口近傍の温度が水冷プレート全体の冷却性能を左右することになる。   The cooling fluid gradually rises in temperature due to heat from the semiconductor element when passing through the flow path portion after flowing in from the inlet, and becomes the highest when exiting from the outlet. For this reason, normally, the temperature of the surface which cools the semiconductor element on the surface of the water cooling plate is the lowest in the vicinity of the inlet and the highest in the vicinity of the outlet. That is, even if the semiconductor element near the entrance is well cooled, the semiconductor element near the exit is not sufficiently cooled. As described above, the temperature in the vicinity of the outlet where the temperature of the semiconductor element is the highest needs to be equal to or lower than the predetermined temperature. Therefore, the temperature in the vicinity of the outlet determines the cooling performance of the entire water cooling plate.

これに対し、入口と出口の中間位置で流路が折り返しになるようにして、水冷プレートの全面にわたって、中間位置より入口側の往路と中間位置より出口側の復路とが並んで配置されている水冷プレートが提案されている。このようにすると、水冷プレートのどの部分を取り出してみても、冷たい冷却流体と温かい冷却流体とがそろって並んで流通することになる。こうすることで、相対的に温度の高い復路近傍の水冷プレート表面も、すぐ隣り合っていて相対的に温度の低い往路による影響で温度上昇が抑えられる。復路のうち最も温度の高い出口近傍は、往路のうち最も温度の低い入口近傍と隣り合っているため、相殺されて両者の中間的な温度となる。このように、水冷プレート全体で表面の温度が均一となり、最高温度が下がることになるので、冷却性能は向上することになる。   On the other hand, the flow path is folded at an intermediate position between the inlet and the outlet, and the forward path from the intermediate position to the inlet side and the return path from the intermediate position to the outlet side are arranged along the entire surface of the water cooling plate. A water-cooled plate has been proposed. If it does in this way, even if it will take out any part of a water cooling plate, a cold cooling fluid and a warm cooling fluid will circulate along with it. By doing so, the temperature rise of the water-cooled plate surface in the vicinity of the return path having a relatively high temperature can be suppressed due to the influence of the outbound path that is immediately adjacent and relatively low in temperature. Since the vicinity of the outlet having the highest temperature in the return path is adjacent to the vicinity of the inlet having the lowest temperature in the outward path, the temperature is canceled and becomes an intermediate temperature. In this way, the surface temperature is uniform throughout the water-cooled plate, and the maximum temperature is lowered, so that the cooling performance is improved.

特許文献1〜3には、上述の往路と復路とが並んで配置されている水冷プレートであって、さらに流路の内面に何らかの形状を付与することで冷却性能を向上させた水冷プレートが提案されている。特許文献1には、対向面に断面形状で円弧とした凹部が形成された水冷プレートが記載されており、特許文献2には、具体的には玉形状の転写によるパイプの内表面に形成された凹凸が表面積を増加させることによって、冷却効率を向上させた水冷プレートが記載されている。特許文献3には、各流路内にフィンなどを取り付け、熱伝達率を向上させる手段が追加されていても同様の効果を奏する旨が記載されている。上記特許文献1〜3においては、上述した水冷プレート表面温度の均一化の効果に加えて、流路内部の工夫によって冷却性能を向上させている。   Patent Documents 1 to 3 propose a water-cooled plate in which the above-described forward path and return path are arranged side by side, and further, a water-cooled plate with improved cooling performance by providing some shape on the inner surface of the flow path is proposed. Has been. Patent Document 1 describes a water-cooled plate in which a concave portion having a cross-sectional arc shape is formed on an opposing surface. Patent Document 2 specifically describes a ball-shaped transfer formed on the inner surface of a pipe. A water-cooled plate in which the cooling efficiency is improved by increasing the surface area due to the unevenness is described. Patent Document 3 describes that a similar effect can be achieved even if fins or the like are attached in each flow path and a means for improving the heat transfer coefficient is added. In Patent Documents 1 to 3, in addition to the above-described effect of uniforming the surface temperature of the water-cooled plate, the cooling performance is improved by devising the inside of the flow path.

特開平6−268127号公報JP-A-6-268127 特開平11−204710号公報JP-A-11-204710 特開2005−197454号公報JP 2005-197454 A

しかしながら、特許文献1〜3のいずれも、冷却性能向上のために流路内面に付与する形状の配置については詳細に言及していない。その中でも、特許文献1に記載された対向面という用語から、特許文献1においては、凹凸は流路の両側の壁で位置がそろっていると推察される。特許文献2においては、凹凸形状の付与の方法がショット玉形状の転写とあるので、やはり流路の両側の壁で位置がそろっていると推察される。このように流路内面の凹凸形状がそろっているような場合、伝熱が促進されて熱伝達率が高い壁面周辺の相対的に温度が下がる領域と、伝熱が促進されず熱伝達率が低い壁面周辺の相対的に温度が下がらない領域とが、冷却流体の流通方向に沿って、そろって現れることになる。すなわち、相対的に温度の低い部分と相対的に高い部分とがそろって現れ、結果的に温度差が生じることになる。なお、特許文献3においては、流路内面にあるとされるフィンの位置については記載されていない。   However, none of Patent Documents 1 to 3 mentions in detail the arrangement of the shape to be applied to the inner surface of the flow path for improving the cooling performance. Among them, from the term “opposing surface” described in Patent Document 1, it is inferred that, in Patent Document 1, the unevenness is aligned on the walls on both sides of the flow path. In Patent Document 2, since the method of imparting the uneven shape is a shot ball shape transfer, it is presumed that the positions are aligned on the walls on both sides of the flow path. In this way, when the uneven shape on the inner surface of the flow path is uniform, heat transfer is promoted and the heat transfer rate is not promoted because the heat transfer is not promoted. A region where the temperature does not decrease relatively around the low wall surface appears along the flow direction of the cooling fluid. That is, a relatively low temperature portion and a relatively high portion appear together, resulting in a temperature difference. Note that Patent Document 3 does not describe the position of the fin that is supposed to be on the inner surface of the flow path.

特許文献1〜3に記載された往路と復路とが並んで配置されている水冷プレートは、表面温度を均一にして最高温度を下げることが主要な目的であったが、流路内面に付与する伝熱促進部の形状の配置についての記載はなく、水冷プレート表面の温度の均一化には不十分であった。   The main purpose of the water-cooled plate in which the forward path and the backward path described in Patent Documents 1 to 3 are arranged side by side is to make the surface temperature uniform and lower the maximum temperature, but is applied to the inner surface of the flow path. There was no description about the arrangement of the shape of the heat transfer promoting portion, and this was insufficient for making the temperature of the water-cooled plate surface uniform.

本発明は、上記事情を鑑みなされたものであって、内部を冷却流体が流通する半導体素子の冷却装置に適用され、その表面の温度をより一層均一にすることで最高温度を下げることが可能な冷却性能の高い冷却プレートおよび冷却装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is applied to a cooling device for a semiconductor element in which a cooling fluid flows, and the maximum temperature can be lowered by making the surface temperature more uniform. An object of the present invention is to provide a cooling plate and a cooling device with high cooling performance.

本発明の第1の観点に係る冷却プレートは、
内部に冷却流体を流通させる流路が設けられた冷却プレートであって、
第1の隔壁と、第2の隔壁と、第3の隔壁と、を備え、
前記流路は、少なくとも一組の往路および復路を備え、
前記往路と前記復路とは、前記第1の隔壁を介して隣接して配置され、
前記第1の隔壁の前記往路側の隔壁面に第1の伝熱促進部が設けられ、
前記第1の隔壁の前記復路側の隔壁面に第2の伝熱促進部が設けられ、
前記第2の隔壁の前記往路側の隔壁面に第3の伝熱促進部が設けられ、
前記第3の隔壁の前記復路側の隔壁面に第4の伝熱促進部が設けられ、
前記第1の伝熱促進部と前記第2の伝熱促進部とが、前記冷却流体の流通方向と平行な方向を基準として交互に配置され
前記第1の伝熱促進部と前記第3の伝熱促進部とが、前記冷却流体の流通方向と平行な方向を基準として交互に配置され、
前記第2の伝熱促進部と前記第4の伝熱促進部とが、前記冷却流体の流通方向と平行な方向を基準として交互に配置され、
前記第1の伝熱促進部と前記第1の隔壁との間にフィレットが設けられ、
前記第2の伝熱促進部と前記第1の隔壁との間にフィレットが設けられ、
前記第3の伝熱促進部と前記第2の隔壁との間にフィレットが設けられ、
前記第4の伝熱促進部と前記第3の隔壁との間にフィレットが設けられ、
前記流路の中心を通る平面で切断した前記伝熱促進部の断面形状は、四角形状であり、
前記フィレットは、前記流路の中心を通る平面で切断した平面視で、前記伝熱促進部と前記隔壁を結ぶ円弧状の形状を有する
ことを特徴とする。
The cooling plate according to the first aspect of the present invention is:
A cooling plate provided with a flow path for circulating a cooling fluid therein,
A first partition, a second partition, and a third partition;
The flow path comprises at least one set of forward and return paths,
The forward path and the return path are disposed adjacent to each other via the first partition wall,
A first heat transfer promoting portion is provided on a partition wall surface on the forward path side of the first partition;
A second heat transfer promoting part is provided on the return wall side partition surface of the first partition;
A third heat transfer promoting portion is provided on a partition wall surface on the forward path side of the second partition;
A fourth heat transfer promoting portion is provided on the return wall side partition surface of the third partition wall;
Said first heat transfer enhancing portion and the front Stories second heat transfer enhancing portion is disposed in alternating direction parallel to the flow direction of the cooling fluid as a reference,
The first heat transfer promotion part and the third heat transfer promotion part are alternately arranged with reference to a direction parallel to the flow direction of the cooling fluid,
The second heat transfer promotion part and the fourth heat transfer promotion part are alternately arranged on the basis of the direction parallel to the flow direction of the cooling fluid,
A fillet is provided between the first heat transfer promoting portion and the first partition;
A fillet is provided between the second heat transfer promoting portion and the first partition;
A fillet is provided between the third heat transfer promoting portion and the second partition;
A fillet is provided between the fourth heat transfer promoting portion and the third partition;
The cross-sectional shape of the heat transfer promoting part cut by a plane passing through the center of the flow path is a quadrangular shape,
The fillet has a circular arc shape connecting the heat transfer promoting portion and the partition wall in a plan view cut by a plane passing through the center of the flow path .
It is characterized by that.

前記流路は、少なくとも二組の往路および復路を備え、
前記往路および前記復路は、それぞれ、略直線部と、円弧形状部と、を備え、
前記往路の前記略直線部と、前記復路の前記略直線部とが、前記冷却プレートの端部近傍において前記円弧形状部を介して接続され、
前記円弧形状部は滑らかな表面形状を備えてもよい。
The flow path comprises at least two sets of forward and return paths;
Each of the forward path and the return path includes a substantially straight part and an arcuate part,
The substantially straight portion of the forward path and the substantially straight portion of the return path are connected via the arc-shaped portion in the vicinity of the end of the cooling plate,
The arc-shaped portion may have a smooth surface shape.

前記略直線部と前記円弧形状部との接続部近傍の領域が滑らかな表面形状を備え、
前記冷却流体の進行方向と平行な方向を基準として、前記領域の長さが、前記第1の伝熱促進部のピッチの長さ未満であってもよい。
A region in the vicinity of the connection portion between the substantially straight portion and the arc-shaped portion has a smooth surface shape,
The length of the region may be less than the length of the pitch of the first heat transfer promoting portion with reference to a direction parallel to the traveling direction of the cooling fluid.

本発明の第2の観点に係る冷却装置は、
上記冷却プレートを備えることを特徴とする。
The cooling device according to the second aspect of the present invention is:
The cooling plate is provided.

本発明によれば、内部を冷却流体が流通する半導体素子の冷却装置に適用され、その表面の温度をより一層均一にすることで最高温度を下げることが可能な冷却性能の高い冷却プレートおよび冷却装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it applies to the cooling device of the semiconductor element with which a cooling fluid distribute | circulates the inside, the cooling plate with high cooling performance and cooling which can lower the maximum temperature by making the surface temperature more uniform An apparatus can be provided.

本発明の実施形態に係る冷却プレートおよび冷却装置の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the cooling plate and cooling device which concern on embodiment of this invention. 本発明の実施形態に係る冷却プレートの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the cooling plate which concerns on embodiment of this invention. 本発明の実施形態に係る冷却プレートの伝熱促進部近傍における冷却流体の流れを模式的に示す断面図である。It is sectional drawing which shows typically the flow of the cooling fluid in the heat-transfer promotion part vicinity of the cooling plate which concerns on embodiment of this invention. 本発明の実施形態に係る冷却プレートの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the cooling plate which concerns on embodiment of this invention. 本発明の実施形態に係る冷却プレートの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the cooling plate which concerns on embodiment of this invention. 本発明の実施形態に係る冷却プレートの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the cooling plate which concerns on embodiment of this invention. 本発明の実施形態に係る冷却プレートの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the cooling plate which concerns on embodiment of this invention. 本発明の実施形態に係る冷却プレートの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the cooling plate which concerns on embodiment of this invention. 本発明の実施形態に係る冷却プレートの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the cooling plate which concerns on embodiment of this invention. 本発明の実施形態に係る冷却プレートの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the cooling plate which concerns on embodiment of this invention. 本発明の実施形態に係る冷却プレートの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the cooling plate which concerns on embodiment of this invention. 本発明の実施形態に係る冷却プレートの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the cooling plate which concerns on embodiment of this invention. 本発明の実施形態に係る冷却プレートの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the cooling plate which concerns on embodiment of this invention. 本発明の実施形態に係る冷却プレートの端部近傍の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the edge part vicinity of the cooling plate which concerns on embodiment of this invention. 関連技術に係る冷却プレートの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the cooling plate which concerns on related technology. 関連技術に係る冷却プレートの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the cooling plate which concerns on related technology.

以下、本発明の実施形態に係る水冷プレート100(冷却プレート)および冷却装置200について図を用いて説明する。本発明の実施形態に係る冷却装置200は、水冷プレート100を備える(図1)。なお、本明細書においては、図面の簡略化と明瞭化のため、図1においてのみ冷却装置200が水冷プレート100を備える形態が図示されているが、本発明の実施形態に係る冷却装置200は、図2〜図14に示す本発明の実施形態に係る水冷プレートのいずれをも備え得る。   Hereinafter, a water cooling plate 100 (cooling plate) and a cooling device 200 according to an embodiment of the present invention will be described with reference to the drawings. The cooling device 200 according to the embodiment of the present invention includes a water cooling plate 100 (FIG. 1). In the present specification, for simplification and clarification of the drawing, the cooling apparatus 200 includes the water cooling plate 100 only in FIG. 1, but the cooling apparatus 200 according to the embodiment of the present invention is illustrated in FIG. Any of the water-cooling plates according to the embodiment of the present invention shown in FIGS.

本発明の実施形態においては、内部に冷却流体である水を流通させる流路(往路110および復路112)を設けた水冷プレート100において、その流路は少なくとも一組の往路110と復路112とが隔壁106を介して隣接して配置されている。このため、図1、図2、図4〜図14の水冷プレート100に描かれている流路は、水冷プレート100全体で往路110と復路112とが隣り合っている中で、その一部分について、流路の中心を通って水冷プレート100表面と平行な面で見た断面図としている。   In the embodiment of the present invention, in the water cooling plate 100 provided with flow paths (outward path 110 and return path 112) through which water as a cooling fluid is circulated, the flow path includes at least one pair of forward path 110 and return path 112. It arranges adjacent via the partition 106. FIG. For this reason, the flow path depicted in the water cooling plate 100 of FIGS. 1, 2, and 4 to 14 is part of the water cooling plate 100, while the forward path 110 and the return path 112 are adjacent to each other. It is a cross-sectional view seen through a plane parallel to the surface of the water cooling plate 100 through the center of the flow path.

図1に示すように、水冷プレート100は、往路110外側の隔壁102(第2の隔壁)と、復路112外側の隔壁104(第3の隔壁)と、往路110と復路112との間にある隔壁106(第1の隔壁)と、を備え、隔壁102と隔壁106との間に冷却流体が流通する往路110を備え、隔壁104と隔壁106との間に冷却流体が流通する復路112を備える。図1においては、一組の往路110および復路112からなる形態について説明したが、水冷プレート100は少なくとも一組の往路110および復路112を備えていればよく、以下に限定されるものではないが、たとえば、二組の往路110および復路112を備えてもよいし、五組の往路110および復路112を備えてもよいし、十組の往路110および復路112を備えてもよい。   As shown in FIG. 1, the water cooling plate 100 is located between the outer partition wall 102 (second partition wall) on the outward path 110, the outer partition wall 104 (third partition wall) on the outer path 112, and the forward path 110 and the return path 112. A partition wall 106 (first partition wall), a forward path 110 through which cooling fluid flows between the partition wall 102 and the partition wall 106, and a return path 112 through which cooling fluid flows between the partition wall 104 and the partition wall 106. . In FIG. 1, the configuration including the pair of forward paths 110 and the return path 112 has been described. However, the water-cooling plate 100 only needs to include at least one pair of the forward path 110 and the return path 112, but is not limited to the following. For example, two sets of forward paths 110 and return paths 112 may be provided, five sets of forward paths 110 and return paths 112 may be provided, or ten sets of forward paths 110 and return paths 112 may be provided.

水冷プレート100の材質は熱伝導性の高い材料であることが好ましく、たとえば、アルミニウムや銅およびそれらの合金が好適に用いられる。とりわけアルミニウム合金は軽量なので、たとえば自動車用や車両用に使われる半導体素子の冷却用途としては、燃費向上につながるので、より好ましい。水冷プレート100を製造する際には、内部に流路となる内部空間を形成するとともに、冷却流体の入口および出口を設ける必要がある。水冷プレート100の製造方法としては、たとえば、切削加工、プレス成形、押し出し成形などの方法を用いて、複数の部品に分割して製造し、それらを接合する方法等が用いられる。水冷プレート100を複数の部品に分割する方法は様々考えられるが、その接合方法としては、アルミニウム合金の場合、たとえば、ロウ付け加熱等によって各部品同士を接合する方法が量産性に優れ、好適に用いられる。なお、本発明の効果は水冷プレート100の材質や製造方法によらず、水冷プレート100の材質および製造方法は適宜選択され得る。   The material of the water cooling plate 100 is preferably a material having high thermal conductivity, and for example, aluminum, copper, and alloys thereof are preferably used. In particular, the aluminum alloy is lighter, so it is more preferable for cooling the semiconductor element used for automobiles and vehicles because it leads to improved fuel consumption. When the water cooling plate 100 is manufactured, it is necessary to form an internal space serving as a flow path inside and provide an inlet and an outlet for the cooling fluid. As a manufacturing method of the water-cooled plate 100, for example, a method of dividing and manufacturing a plurality of parts using a method such as cutting, press molding, or extrusion molding, and joining them is used. Various methods for dividing the water-cooled plate 100 into a plurality of parts are conceivable, but as a joining method, in the case of an aluminum alloy, for example, a method of joining parts by brazing heating or the like is excellent in mass productivity and is preferably used. Used. Note that the effect of the present invention is not dependent on the material and manufacturing method of the water cooling plate 100, and the material and manufacturing method of the water cooling plate 100 can be selected as appropriate.

また、隣り合う往路110と復路112との間の隔壁106の往路110側の隔壁面114および復路112側の隔壁面116の両方に設けられた伝熱促進部108(第1の伝熱促進部および第2の伝熱促進部)をハッチングで図1に示す。伝熱促進部108は冷却流体の主流の流通方向(往路110における流通方向をD1、復路112における流通方向をD2とする)と平行な方向に沿って、往路110側および復路112側に交互に配置される(図1)。伝熱促進部108は、伝熱が促進されて熱伝達率が高くなる壁面をその表面に有し、冷却流体から隔壁106への伝熱を促進する機能を有する。伝熱促進部108が、往路110側および復路112側に交互に配置されることにより、熱伝達率が高い伝熱促進部108の壁面周辺の相対的に温度が下がる水冷プレート100表面の領域が、均等に、ばらけて配置され、特定の位置に集中しないため、水冷プレート100において温度がより一層均一化することになり、より好ましい。伝熱促進部108と、隔壁106とは、たとえば、それぞれ別部材のものがロウ付けやハンダ付けによって接合されて一体になっていてもよいし、もともと一体の部材から流路(往路110および/または復路112)の部分の素材が、たとえば切削加工などの方法により除去されることによって形成されてもよい。   Further, the heat transfer promotion part 108 (first heat transfer promotion part) provided on both the partition wall surface 114 on the forward path 110 side and the partition wall surface 116 on the return path 112 side of the partition wall 106 between the adjacent forward path 110 and the return path 112. And the second heat transfer promoting part) is shown in FIG. 1 by hatching. The heat transfer facilitating unit 108 alternately turns to the forward path 110 side and the backward path 112 side along a direction parallel to the flow direction of the main flow of the cooling fluid (the flow direction in the forward path 110 is D1, and the flow direction in the return path 112 is D2). Arranged (FIG. 1). The heat transfer promoting unit 108 has a wall surface on the surface thereof where heat transfer is promoted to increase the heat transfer coefficient, and has a function of promoting heat transfer from the cooling fluid to the partition wall 106. By arranging the heat transfer promotion unit 108 alternately on the forward path 110 side and the return path 112 side, a region on the surface of the water-cooled plate 100 where the temperature around the wall surface of the heat transfer promotion unit 108 having a high heat transfer rate is relatively lowered is obtained. It is more preferable that the temperature is more uniform in the water-cooling plate 100 because it is evenly distributed and does not concentrate at a specific position. For example, the heat transfer promoting part 108 and the partition wall 106 may be integrated by joining different members from each other by brazing or soldering, or the flow path (outward path 110 and / or / Alternatively, the material of the portion of the return path 112) may be formed by being removed by a method such as cutting.

一方、図15に、関連技術として、水冷プレート1において伝熱促進部8の配置がそろっている場合を示す。水冷プレート1は、往路外側の隔壁2と、復路外側の隔壁4と、往路と復路との間にある隔壁6と、を備え、隔壁2と隔壁6との間に冷却流体が流通する往路10を備え、隔壁4と隔壁6との間に冷却流体が流通する復路12を備える。図15の水冷プレート1のように、伝熱促進部8の配置が、往路10側の隔壁面14と復路12側の隔壁面16とで交互ではなく揃っていると、熱伝達率が高い壁面周辺の相対的に温度が下がる水冷プレート1表面の領域が、冷却流体の流通方向(d1およびd2)に沿って断続的に現れることになる。つまり、相対的に温度の下がる部分と相対的に温度が高いままの部分とが断続的に現れるので、水冷プレート1の温度の均一化は不十分となってしまう。   On the other hand, in FIG. 15, the case where arrangement | positioning of the heat-transfer acceleration | stimulation part 8 is prepared in the water cooling plate 1 is shown as related technology. The water cooling plate 1 includes a partition 2 outside the outward path, a partition 4 outside the return path, and a partition 6 between the outbound path and the return path, and an outbound path 10 in which a cooling fluid flows between the partition 2 and the partition 6. And a return path 12 through which a cooling fluid flows between the partition wall 4 and the partition wall 6. As shown in the water-cooled plate 1 in FIG. 15, when the arrangement of the heat transfer promotion portions 8 is not alternately arranged on the partition wall surface 14 on the forward path 10 side and the partition wall surface 16 on the return path 12 side, the wall surface having a high heat transfer coefficient The area of the surface of the water cooling plate 1 where the temperature is relatively lowered appears intermittently along the flow direction (d1 and d2) of the cooling fluid. That is, since the portion where the temperature is relatively lowered and the portion where the temperature is relatively high appear intermittently, the temperature of the water-cooled plate 1 is not sufficiently uniformized.

なお、本発明の実施形態において、伝熱促進部108の具体的な形状としては、後述する凸形状の他に、フィン状であったり、流れを攪拌するような形状であったり、それらが別部品で接合されていたり、また微細な表面形状や表面の特性を変えることで伝熱を促進するようなものであったり、いずれの形状および/または手段でもよい。   In the embodiment of the present invention, the specific shape of the heat transfer promoting unit 108 is not limited to the convex shape described later, but may be a fin shape or a shape that stirs the flow. Any shape and / or means may be used, such as joining by parts, or promoting heat transfer by changing a fine surface shape or surface characteristics.

伝熱促進部108の具体的な形状として、たとえば、冷却流体の流れの主流に向かって突き出た格好の凸形状、すなわち、冷却プレート100の表面に平行な流路(往路110および復路112)の断面における伝熱促進部108の形状が凸形状、が挙げられる。こうすることによって、冷却流体の流れは伝熱促進部108の凸形状の部分で蛇行して方向を変えるとともに流速が急激に大きくなる。そして、流速が大きくなった壁面(たとえば図2における高熱伝達率壁面118)では熱伝達率が大きくなる。また、冷却流体の流れの方向が変わる時に冷却流体を十分攪拌することが可能となり、壁面近傍で熱をもらって温度が上昇した冷却流体と、壁面から離れて流路の中心近くを流れている冷却流体(比較的温度が低い冷却流体)とが入れ替わるようになる。そうすると、壁面には比較的温度の低い冷却流体が入れ替わって接触するようになるので、伝熱を促進する作用が大きくなる。伝熱促進部108の形状が、凸形状であることによって、冷却流体の流れの澱みなどが発生しにくくなり、冷却流体を攪拌する効果をより大きく得ることができる。以上のように、冷却流体の流速が大きくなることと、冷却流体の流れの向きが変わること、などにより、伝熱促進部108における熱伝達率が大きくなって水冷プレート100の伝熱が促進される。   As a specific shape of the heat transfer promoting unit 108, for example, a good convex shape protruding toward the main flow of the cooling fluid flow, that is, a flow path (outward path 110 and return path 112) parallel to the surface of the cooling plate 100 is used. The shape of the heat transfer promoting part 108 in the cross section is a convex shape. By doing so, the flow of the cooling fluid meanders at the convex portion of the heat transfer promoting portion 108 and changes its direction, and the flow velocity increases rapidly. The heat transfer coefficient increases on the wall surface where the flow velocity is increased (for example, the high heat transfer coefficient wall surface 118 in FIG. 2). In addition, it becomes possible to sufficiently stir the cooling fluid when the flow direction of the cooling fluid changes, and the cooling fluid that has risen in temperature near the wall surface and the cooling fluid that flows near the center of the flow path away from the wall surface The fluid (cooling fluid having a relatively low temperature) is exchanged. If it does so, since the cooling fluid with comparatively low temperature will replace and come into contact with a wall surface, the effect | action which accelerates | stimulates heat transfer will become large. When the shape of the heat transfer promoting portion 108 is a convex shape, it becomes difficult for the cooling fluid flow to stagnate, and the effect of stirring the cooling fluid can be further increased. As described above, the heat transfer rate in the heat transfer accelerating portion 108 is increased and the heat transfer of the water cooling plate 100 is promoted due to an increase in the flow velocity of the cooling fluid and a change in the flow direction of the cooling fluid. The

図2は、凸形状の伝熱促進部108について、さらに具体的な形状として四角形状のものを示している。冷却流体の流れの主流に向かって突き出た格好の四角形状は、冷却流体の流速を大きくするとともに、冷却流体の流れを攪拌して伝熱を促進し、熱伝達率を高める作用が大きくなるので、より好ましい。伝熱促進部108の形状を四角形状にすることによって、図3に示すように、冷却流体の流れD3は伝熱促進部108の凸形状の部分で、流路が狭くなるところに向けて蛇行して方向を変えるとともに、流路の狭いところの近傍では流速が急激に大きくなる。そして、流速が大きくなった四角形の凸形状の壁面および反対側の壁面で熱伝達率が大きくなる。また、四角形の凸形状を避けるように流れの方向が変わる時に、冷却流体を十分攪拌することができて、壁面近傍で熱をもらって温度上昇した冷却流体と、壁面から離れて流路の中心近くを流れている冷却流体とが入れ替わるようになる。そうすると、壁面には比較的温度の低い冷却流体が入れ替わって接触するようになるので、伝熱を促進する作用が大きくなる。こうすることによって、図4に示すように、隔壁中に温度の低い部分(低温部分120)が連続するようになり、温度がより均一になるので、より好ましい。   FIG. 2 shows a quadrangular shape as a more specific shape of the convex heat transfer promoting portion 108. The cool quadrilateral shape that protrudes toward the main flow of the cooling fluid increases the flow rate of the cooling fluid and also increases the heat transfer rate by stirring the flow of the cooling fluid to increase the heat transfer rate. More preferable. By making the shape of the heat transfer promoting portion 108 into a quadrangular shape, as shown in FIG. 3, the flow D3 of the cooling fluid is a convex portion of the heat transfer promoting portion 108, meandering toward a place where the flow path becomes narrower. As the direction is changed, the flow velocity increases rapidly in the vicinity of the narrow channel. The heat transfer coefficient increases on the rectangular convex wall surface and the opposite wall surface where the flow velocity is increased. Also, when the flow direction is changed so as to avoid the quadrangular convex shape, the cooling fluid can be sufficiently stirred, the cooling fluid that has received heat near the wall surface and the temperature has risen, and the center of the flow path away from the wall surface The cooling fluid flowing through the gas is replaced. If it does so, since the cooling fluid with comparatively low temperature will replace and come into contact with a wall surface, the effect | action which accelerates | stimulates heat transfer will become large. By doing so, as shown in FIG. 4, a low temperature portion (low temperature portion 120) continues in the partition wall, and the temperature becomes more uniform, which is more preferable.

一方、図16に、関連技術として、四角形の凸形状の配置がそろっている形態を示す。四角形の凸形状が往路側と復路側で配置が交互ではなくそろっている場合、熱伝達率が高くなる壁面周辺の相対的に温度が下がる水冷プレート表面の領域が、冷却流体の流通方向に沿って断続的に現れることになる。つまり、相対的に温度の下がる部分と相対的に温度が高いままの部分が断続的に現れるので、温度の均一化が不十分となってしまう。   On the other hand, FIG. 16 shows a form in which rectangular convex shapes are arranged as a related technique. When the quadrangular convex shapes are not arranged alternately on the forward and return sides, the area of the surface of the water-cooled plate where the temperature decreases around the wall surface where the heat transfer coefficient is high is along the flow direction of the cooling fluid. Will appear intermittently. That is, since the temperature decreasing portion and the relatively high temperature portion appear intermittently, the temperature becomes insufficiently uniform.

図5〜図7は、伝熱促進部108の凸形状が、それぞれ、台形状、三角形状、円弧形状である形態を示す。伝熱促進部108の凸形状が、台形状、三角形状、円弧形状であることによる効果は、上述した四角形状の場合の効果と同様である。どのような凸形状の伝熱促進部108を用いるかによって、伝熱促進部108を水冷プレート100の各隔壁に設ける方法に違いはあるが、冷却流体の攪拌の効果や圧力損失の増加の程度、および製造容易性等を考慮して、適宜、伝熱促進部108の形状を選ぶことが可能である。また、本明細書において図示された伝熱促進部108の形状はあくまで一例であり、他の形状であってもよく、また、凸形状の縦横等の比率は図示したものに限られるものではない。   5 to 7 show forms in which the convex shape of the heat transfer promoting unit 108 is a trapezoidal shape, a triangular shape, and an arc shape, respectively. The effect of the convex shape of the heat transfer promoting part 108 being a trapezoidal shape, a triangular shape, or an arc shape is the same as the effect in the case of the quadrangular shape described above. Although there is a difference in the method of providing the heat transfer promotion part 108 on each partition wall of the water cooling plate 100 depending on what convex heat transfer promotion part 108 is used, the effect of stirring the cooling fluid and the degree of increase in pressure loss In consideration of the ease of manufacture and the like, it is possible to appropriately select the shape of the heat transfer promoting portion 108. In addition, the shape of the heat transfer promotion unit 108 illustrated in the present specification is merely an example, and may be another shape, and the ratio of the height and width of the convex shape is not limited to that illustrated. .

図8〜図11は、それぞれ、図2、図5〜図7に示した四角形状、台形状、三角形状、円弧形状からなる凸形状の伝熱促進部108と隔壁106との境目の部分にフィレット122が設けられて、伝熱促進部108と隔壁106とが滑らかに繋げられた形態を示す。フィレット122を設けることにより、冷却流体の流れが変わる凸形状の伝熱促進部108の根元付近における冷却流体の澱みの部分が少なくなるので、往路110および復路112における圧力損失の増加が抑えられる。なお、フィレット122の形状については、図8〜図11に図示するように直線的であってもよいし、曲線状になっていてもよい。フィレット122は、たとえば、別部材のものがロウ付けやハンダ付けによって接合されて一体になっていてもよいし、もともと一体の部材から流路(往路110および復路112)の部分の素材がたとえば切削加工などの方法によって除去されて残った素材がフィレットを形成してもよい。   8 to 11 are respectively shown at the boundary between the convex heat transfer promoting portion 108 and the partition wall 106 having a quadrangular shape, a trapezoidal shape, a triangular shape, or an arc shape shown in FIGS. 2 and 5 to 7. The form by which the fillet 122 was provided and the heat-transfer promotion part 108 and the partition 106 were connected smoothly is shown. Providing the fillet 122 reduces the amount of stagnation of the cooling fluid in the vicinity of the root of the convex heat transfer promoting portion 108 where the flow of the cooling fluid changes, so that an increase in pressure loss in the forward path 110 and the return path 112 can be suppressed. The shape of the fillet 122 may be linear as shown in FIGS. 8 to 11 or may be curved. As for the fillet 122, for example, another member may be joined together by brazing or soldering, or the material of the flow path (outward path 110 and return path 112) is originally cut from the integral member, for example. The remaining material removed by a method such as processing may form a fillet.

図12に、往路110と復路112との間の隔壁106だけでなく、その反対側の壁面(往路110側の壁面124および復路112側の壁面126)にも凸形状の伝熱促進部108(第3の伝熱促進部および第4の伝熱促進部)が設けられた形態を示す。図12に示す水冷プレート100においては、往路110と復路112との間の隔壁106の凸形状を有する伝熱促進部108と、その反対側の壁面(壁面124および壁面126)の凸形状を有する伝熱促進部108とが、冷却流体の主流の流通方向と平行な方向に沿って交互に配置されている。図12に示すように伝熱促進部108を交互に配置することによって、往路110と復路112のそれぞれで考えると、冷却流体の流路に沿って流れが蛇行はするものの、流路幅の拡大・縮小が緩和されるので、流速の変化が小さくなることになる。このため、圧力損失の増加を抑えることができる。また、図12に示す形態においては、凸形状を有する伝熱促進部108が、往路110の壁面と復路112の壁面とを合わせて、合計4つの壁面において交互に配置されている。このため、水冷プレート100の温度が下がる部分が、さらに均等に、ばらけて配置され、特定の位置に集中しないので、温度がより一層均一化することになり、より一層好ましい。   In FIG. 12, not only the partition wall 106 between the forward path 110 and the return path 112 but also the opposite wall surfaces (the wall surface 124 on the forward path 110 side and the wall surface 126 on the return path 112 side) have a convex heat transfer promoting portion 108 ( The form with which the 3rd heat transfer promotion part and the 4th heat transfer promotion part) were provided is shown. The water cooling plate 100 shown in FIG. 12 has the heat transfer promoting part 108 having the convex shape of the partition wall 106 between the forward path 110 and the return path 112 and the convex shape of the opposite wall surfaces (the wall surface 124 and the wall surface 126). The heat transfer promoting portions 108 are alternately arranged along a direction parallel to the flow direction of the main flow of the cooling fluid. As shown in FIG. 12, by arranging the heat transfer promoting portions 108 alternately, considering the forward path 110 and the return path 112, the flow snakes along the cooling fluid flow path, but the flow path width increases. -Since the reduction is alleviated, the change in flow velocity will be small. For this reason, an increase in pressure loss can be suppressed. In the form shown in FIG. 12, the heat transfer promoting portions 108 having a convex shape are alternately arranged on a total of four wall surfaces including the wall surface of the forward path 110 and the wall surface of the return path 112. For this reason, the portion where the temperature of the water cooling plate 100 is lowered is more evenly distributed and is not concentrated at a specific position, so that the temperature becomes more uniform, which is more preferable.

図13に、伝熱促進部108の凸形状が四角形状で、その根元にフィレット122が設けられ、往路110と復路112との間の隔壁106だけでなく、その反対側の壁面(往路110側の壁面124および復路112側の壁面126)にも凸形状を有する伝熱促進部108およびその根元にフィレット122が設けられた形態を示す。図13に示すような流路形状とすることによって、往路110と復路112のそれぞれで考えた場合、流路に沿って冷却流体の流れが蛇行はするものの、流路幅の拡大・縮小がより一層緩和されるので、冷却流体の流速の変化がより一層小さくなる。このため、水冷プレート100内の流路(往路110および復路112)における圧力損失の増加を最小限に抑えることができ、より一層好ましい。また、流路(往路110および復路112)が、縦横の直線および円弧の組合せだけで構成されるので、製造容易性をより一層高めることができる。たとえば、切削加工によって流路を形成する場合に、工具のエンドミルのRと、伝熱促進部108の凸形状の根元に設けられるフィレット122のRと、を同じに合わせておけば、直線的な工具の動きだけで流路を形成することができるので、水冷プレート100を製造する際の加工時間を短縮することができる。図13においては、伝熱促進部108の凸形状が四角形状である水冷プレート100にフィレット122が設けられた形態について説明したが、伝熱促進部108は他の形状であってもよく、以下に限定されるものではないが、たとえば、台形状、三角形状、円弧形状などの形状である伝熱促進部108を備える水冷プレート100にフィレット122が設けられてもよい。   In FIG. 13, the convex shape of the heat transfer promoting portion 108 is a quadrangular shape, and a fillet 122 is provided at the root thereof, and not only the partition wall 106 between the forward path 110 and the return path 112 but also the opposite wall surface (the forward path 110 side). The wall surface 124 and the wall surface 126 on the return path 112 side are shown with a heat transfer promoting portion 108 having a convex shape and a fillet 122 provided at the base thereof. By considering the flow path shape as shown in FIG. 13, when considering the forward path 110 and the return path 112, the flow of the cooling fluid meanders along the flow path, but the flow path width is further expanded or reduced. Since it is further relaxed, the change in the flow rate of the cooling fluid becomes even smaller. For this reason, the increase in the pressure loss in the flow path (outward path 110 and return path 112) in the water-cooling plate 100 can be suppressed to the minimum, which is even more preferable. Further, since the flow path (the forward path 110 and the return path 112) is configured only by a combination of vertical and horizontal straight lines and arcs, the ease of manufacturing can be further enhanced. For example, when the flow path is formed by cutting, if the R of the tool end mill and the R of the fillet 122 provided at the base of the convex shape of the heat transfer promoting unit 108 are matched to each other, a linear shape is obtained. Since the flow path can be formed only by the movement of the tool, the processing time when manufacturing the water-cooled plate 100 can be shortened. In FIG. 13, the form in which the fillet 122 is provided on the water-cooling plate 100 in which the convex shape of the heat transfer promotion unit 108 is a quadrangular shape has been described, but the heat transfer promotion unit 108 may have other shapes. Although not limited to this, the fillet 122 may be provided in the water cooling plate 100 provided with the heat-transfer promotion part 108 which is shapes, such as trapezoid shape, a triangle shape, and circular arc shape, for example.

図14に、水冷プレート100の端部近傍における往路110および復路112の折り返しの流路形状を示す。図14において、水冷プレート100は、往路110と復路112の組を二組備え、往路110および復路112は、それぞれ、略直線状の部分と、円弧形状の部分と、を備え、往路110の略直線状の部分と復路112の略直線状の部分とが円弧形状の部分を介して折り返すように接続され、水冷プレート100の端部近傍に円弧状流路128が形成される。図14に示すように、水冷プレート100の端部における円弧状流路128およびその近傍には凸形状からなる伝熱促進部108が設けられておらず、滑らかな表面形状を有している。すなわち、凸形状を有する伝熱促進部108は冷却流体を攪拌して伝熱を促進するために水冷プレート100に設けられるものであるが、冷却流体の方向が180度変わる折り返し部分(円弧状流路128およびその近傍の領域)においては、冷却流体が自然に攪拌されるので、凸形状を有する伝熱促進部108をさらに設けることによって冷却流体を攪拌しなくてもよく、水冷プレート100の端部において凸形状を有する伝熱促進部108が設けられないことによって(すなわち、滑らかな表面形状を有することによって)、圧力損失の増大を抑制することができる。このため、本発明の実施形態において、水冷プレート100の円弧状流路128だけでなく、その近傍にも凸形状を有する伝熱促進部108が無い領域を設けている。なお、円弧状流路128の端部から、最も円弧状流路128に近い伝熱促進部108(図14中、最も右側に設けられた伝熱促進部108)までの距離W’が、略直線状の部分にある凸形状を有する伝熱促進部108のピッチWよりも小さければ、該領域に凸形状を有する伝熱促進部108を設けなくてもよい。円弧状流路128を形成する部分の隔壁も、上述の水冷プレート100の隔壁と同様、たとえば、切削加工、プレス成形や押し出し成形等によって製造される。なお、図14においては、二組の往路110および復路112を備える形態について説明したが、四組の往路110および復路112を備えてもよいし、六組の往路110および復路112を備えてもよい。   FIG. 14 shows the shape of the folded flow path of the forward path 110 and the return path 112 in the vicinity of the end of the water cooling plate 100. In FIG. 14, the water cooling plate 100 includes two sets of an outward path 110 and an inbound path 112, and each of the outbound path 110 and the inbound path 112 includes a substantially linear portion and an arc-shaped portion. The straight portion and the substantially straight portion of the return path 112 are connected so as to be folded back via an arc-shaped portion, and an arc-shaped flow path 128 is formed in the vicinity of the end of the water cooling plate 100. As shown in FIG. 14, the heat transfer promoting part 108 having a convex shape is not provided in the arc-shaped flow path 128 at the end of the water-cooling plate 100 and the vicinity thereof, and has a smooth surface shape. In other words, the heat transfer promoting portion 108 having a convex shape is provided on the water cooling plate 100 to stir the cooling fluid and promote heat transfer, but the folded portion (arc-shaped flow where the direction of the cooling fluid changes 180 degrees. Since the cooling fluid is naturally agitated in the path 128 and the area in the vicinity thereof, it is not necessary to agitate the cooling fluid by further providing the heat transfer promoting part 108 having a convex shape. By not providing the heat transfer promoting part 108 having a convex shape in the part (that is, by having a smooth surface shape), an increase in pressure loss can be suppressed. For this reason, in the embodiment of the present invention, not only the arc-shaped flow path 128 of the water cooling plate 100 but also the vicinity thereof is provided with a region without the heat transfer promoting portion 108 having a convex shape. Note that the distance W ′ from the end of the arcuate flow path 128 to the heat transfer promotion part 108 closest to the arcuate flow path 128 (the heat transfer promotion part 108 provided on the rightmost side in FIG. 14) is approximately If it is smaller than the pitch W of the heat transfer promotion part 108 having a convex shape in the linear part, the heat transfer promotion part 108 having a convex shape may not be provided in the region. Similarly to the partition wall of the water-cooled plate 100 described above, the partition wall that forms the arc-shaped channel 128 is also manufactured by, for example, cutting, press molding, extrusion molding, or the like. In FIG. 14, the configuration including two sets of forward paths 110 and return paths 112 has been described. However, four sets of forward paths 110 and return paths 112 may be provided, or six sets of forward paths 110 and return paths 112 may be provided. Good.

上述のように、本発明の実施形態に係る水冷プレート100においては、水冷プレート100表面の温度をより一層均一にして、水冷プレート100の最高温度を下げることができ、それゆえに、水冷プレート100を、半導体素子の内部を冷却流体が流通する半導体素子の冷却装置200に適用することによって、冷却性能の高い冷却装置200を得ることができる。とりわけ、大容量の半導体素子のように発生する熱量が大きい場合に、本発明の実施形態に係る水冷プレート100およびそれを備える冷却装置200を用いることがより好ましい。   As described above, in the water cooling plate 100 according to the embodiment of the present invention, the surface temperature of the water cooling plate 100 can be made more uniform, and the maximum temperature of the water cooling plate 100 can be lowered. By applying the semiconductor device to the semiconductor device cooling device 200 in which the cooling fluid flows, the cooling device 200 with high cooling performance can be obtained. In particular, when the amount of heat generated is large as in a large-capacity semiconductor element, it is more preferable to use the water-cooling plate 100 and the cooling device 200 including the water-cooling plate 100 according to the embodiment of the present invention.

また、上述のように、伝熱促進部108の凸形状の根元近傍にフィレット122を設けるとともに、往路110と復路112との間の隔壁106だけでなく、その反対側の壁面114および壁面116にも凸形状からなる伝熱促進部108を設けることによって、往路110および復路112における圧力損失の増加を最小限に抑えることができるとともに、製造容易性がより高められた水冷プレート100とすることも、より一層好ましい。   Further, as described above, the fillet 122 is provided in the vicinity of the convex root of the heat transfer promoting portion 108, and not only on the partition wall 106 between the forward path 110 and the return path 112, but also on the opposite wall surface 114 and wall surface 116. Further, by providing the heat transfer promoting part 108 having a convex shape, it is possible to minimize the increase in pressure loss in the forward path 110 and the return path 112, and to make the water-cooled plate 100 with improved manufacturability. Is even more preferable.

なお、本発明は上記実施の形態に限定されず、種々の変形及び応用が可能である。たとえば、本実施形態においては、冷却流体として水を用いる形態について説明したが、LLC(ロングライフクーラント)やオイルを冷却流体として用いてもよい。また、空気などの気体を冷却流体として用いてもよく、伝熱促進部108等の寸法を変える必要はあるものの、水冷プレート100と同様の理由で、同様の作用・効果を発揮できる。すなわち、本発明の実施形態に係る冷却プレートは、水冷プレート100であってもよいし、ロングライフクーラントやオイルを冷却流体として用いる冷却プレートであってもよいし、空気などの気体を冷却流体として用いる冷却プレートであってもよい。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation and application are possible. For example, in this embodiment, although the form which uses water as a cooling fluid was demonstrated, you may use LLC (long life coolant) and oil as a cooling fluid. Further, a gas such as air may be used as the cooling fluid, and although it is necessary to change the dimensions of the heat transfer promoting portion 108 and the like, the same action and effect can be exhibited for the same reason as the water cooling plate 100. That is, the cooling plate according to the embodiment of the present invention may be the water cooling plate 100, a cooling plate using a long life coolant or oil as a cooling fluid, or a gas such as air as a cooling fluid. It may be a cooling plate to be used.

また、本発明の実施形態においては、往路110と復路112との組からなる流路の一部分のみを説明したが、水冷プレート100全体の構造としては、往路110および復路112の組がどのように配置されていてもよく、以下に限定されるものではないが、たとえば、つづら折りのように往路110および復路112を配置してもよい。   Further, in the embodiment of the present invention, only a part of the flow path including the set of the forward path 110 and the return path 112 has been described. However, as the entire structure of the water cooling plate 100, how the set of the forward path 110 and the return path 112 is determined. Although it may be arrange | positioned and it is not limited to the following, for example, the outward path 110 and the return path 112 may be arrange | positioned like a zigzag folding.

また、冷却流体が入口から入ってきたところで往路110が複数に分岐していて、それぞれが往路110および復路112の組になって上述のような伝熱促進部108が形成され、最後に収束して出口までつながるような流路構造であってもよい。   Further, when the cooling fluid enters from the inlet, the forward path 110 is branched into a plurality of parts, each of which forms a set of the forward path 110 and the backward path 112 to form the heat transfer promoting portion 108 as described above, and finally converges. It may be a flow channel structure that leads to the outlet.

1 水冷プレート
2 隔壁
4 隔壁
6 隔壁
8 伝熱促進部
10 往路
12 復路
14 隔壁面
16 隔壁面
100 水冷プレート
102 隔壁
104 隔壁
106 隔壁
108 伝熱促進部
110 往路
112 復路
114 隔壁面
116 隔壁面
118 高熱伝達率壁面
120 低温部分
122 フィレット
124 壁面
126 壁面
128 円弧状流路
200 冷却装置
DESCRIPTION OF SYMBOLS 1 Water cooling plate 2 Partition 4 Partition 6 Partition 8 Heat transfer promotion part 10 Outward path 12 Return path 14 Partition surface 16 Partition surface 100 Water cooling plate 102 Partition 104 Partition 106 Partition 108 Heat transfer promotion part 110 Outward path 112 Return path 114 Partition surface 116 Partition surface 118 High heat Transmittance wall surface 120 Low temperature portion 122 Fillet 124 Wall surface 126 Wall surface 128 Arc-shaped channel 200 Cooling device

Claims (4)

内部に冷却流体を流通させる流路が設けられた冷却プレートであって、
第1の隔壁と、第2の隔壁と、第3の隔壁と、を備え、
前記流路は、少なくとも一組の往路および復路を備え、
前記往路と前記復路とは、前記第1の隔壁を介して隣接して配置され、
前記第1の隔壁の前記往路側の隔壁面に第1の伝熱促進部が設けられ、
前記第1の隔壁の前記復路側の隔壁面に第2の伝熱促進部が設けられ、
前記第2の隔壁の前記往路側の隔壁面に第3の伝熱促進部が設けられ、
前記第3の隔壁の前記復路側の隔壁面に第4の伝熱促進部が設けられ、
前記第1の伝熱促進部と前記第2の伝熱促進部とが、前記冷却流体の流通方向と平行な方向を基準として交互に配置され
前記第1の伝熱促進部と前記第3の伝熱促進部とが、前記冷却流体の流通方向と平行な方向を基準として交互に配置され、
前記第2の伝熱促進部と前記第4の伝熱促進部とが、前記冷却流体の流通方向と平行な方向を基準として交互に配置され、
前記第1の伝熱促進部と前記第1の隔壁との間にフィレットが設けられ、
前記第2の伝熱促進部と前記第1の隔壁との間にフィレットが設けられ、
前記第3の伝熱促進部と前記第2の隔壁との間にフィレットが設けられ、
前記第4の伝熱促進部と前記第3の隔壁との間にフィレットが設けられ、
前記流路の中心を通る平面で切断した前記伝熱促進部の断面形状は、四角形状であり、
前記フィレットは、前記流路の中心を通る平面で切断した平面視で、前記伝熱促進部と前記隔壁を結ぶ円弧状の形状を有する
ことを特徴とする冷却プレート。
A cooling plate provided with a flow path for circulating a cooling fluid therein,
A first partition, a second partition, and a third partition;
The flow path comprises at least one set of forward and return paths,
The forward path and the return path are disposed adjacent to each other via the first partition wall,
A first heat transfer promoting portion is provided on a partition wall surface on the forward path side of the first partition;
A second heat transfer promoting part is provided on the return wall side partition surface of the first partition;
A third heat transfer promoting portion is provided on a partition wall surface on the forward path side of the second partition;
A fourth heat transfer promoting portion is provided on the return wall side partition surface of the third partition wall;
Said first heat transfer enhancing portion and the front Stories second heat transfer enhancing portion is disposed in alternating direction parallel to the flow direction of the cooling fluid as a reference,
The first heat transfer promotion part and the third heat transfer promotion part are alternately arranged with reference to a direction parallel to the flow direction of the cooling fluid,
The second heat transfer promotion part and the fourth heat transfer promotion part are alternately arranged on the basis of the direction parallel to the flow direction of the cooling fluid,
A fillet is provided between the first heat transfer promoting portion and the first partition;
A fillet is provided between the second heat transfer promoting portion and the first partition;
A fillet is provided between the third heat transfer promoting portion and the second partition;
A fillet is provided between the fourth heat transfer promoting portion and the third partition;
The cross-sectional shape of the heat transfer promoting part cut by a plane passing through the center of the flow path is a quadrangular shape,
The fillet has a circular arc shape connecting the heat transfer promoting portion and the partition wall in a plan view cut by a plane passing through the center of the flow path .
A cooling plate characterized by that.
前記流路は、少なくとも二組の往路および復路を備え、
前記往路および前記復路は、それぞれ、略直線部と、円弧形状部と、を備え、
前記往路の前記略直線部と、前記復路の前記略直線部とが、前記冷却プレートの端部近傍において前記円弧形状部を介して接続され、
前記円弧形状部は滑らかな表面形状を備える、
ことを特徴とする請求項1に記載の冷却プレート。
The flow path comprises at least two sets of forward and return paths;
Each of the forward path and the return path includes a substantially straight part and an arcuate part,
The substantially straight portion of the forward path and the substantially straight portion of the return path are connected via the arc-shaped portion in the vicinity of the end of the cooling plate,
The arc-shaped portion has a smooth surface shape,
The cooling plate according to claim 1 .
前記略直線部と前記円弧形状部との接続部近傍の領域が滑らかな表面形状を備え、
前記冷却流体の進行方向と平行な方向を基準として、前記領域の長さが、前記第1の伝熱促進部のピッチの長さ未満である、
ことを特徴とする請求項に記載の冷却プレート。
A region in the vicinity of the connection portion between the substantially straight portion and the arc-shaped portion has a smooth surface shape,
Based on a direction parallel to the traveling direction of the cooling fluid, the length of the region is less than the length of the pitch of the first heat transfer promoting portion.
The cooling plate according to claim 2 .
請求項1乃至のいずれか1項に記載の冷却プレートを備える、
ことを特徴とする冷却装置。
The cooling plate according to any one of claims 1 to 3 ,
A cooling device characterized by that.
JP2012178117A 2012-08-10 2012-08-10 Cooling plate and cooling device Active JP6055232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012178117A JP6055232B2 (en) 2012-08-10 2012-08-10 Cooling plate and cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012178117A JP6055232B2 (en) 2012-08-10 2012-08-10 Cooling plate and cooling device

Publications (2)

Publication Number Publication Date
JP2014036193A JP2014036193A (en) 2014-02-24
JP6055232B2 true JP6055232B2 (en) 2016-12-27

Family

ID=50284971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012178117A Active JP6055232B2 (en) 2012-08-10 2012-08-10 Cooling plate and cooling device

Country Status (1)

Country Link
JP (1) JP6055232B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101870312B1 (en) * 2015-11-16 2018-06-22 주식회사 한국열기술 Melting furnace
JP6632879B2 (en) * 2015-12-11 2020-01-22 昭和電工株式会社 Liquid cooling system
JP7221737B2 (en) * 2019-03-04 2023-02-14 日本碍子株式会社 Wafer placement device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3543893A1 (en) * 1985-12-12 1987-06-25 Mtu Muenchen Gmbh HEAT EXCHANGER
JPH06268127A (en) * 1993-03-15 1994-09-22 Toshiba Corp Cooling body of power semiconductor element
JP4822238B2 (en) * 2001-07-24 2011-11-24 株式会社日本製鋼所 Heat transfer tube with internal groove for liquid medium and heat exchanger using the heat transfer tube
EP1605220B1 (en) * 2003-02-27 2009-11-11 Laserfront Technologies, Inc. Heat sunk, laser module, laser device, and laser-processing device
JP4333587B2 (en) * 2005-01-14 2009-09-16 三菱電機株式会社 Heat sink and cooling unit
JP2007035901A (en) * 2005-07-27 2007-02-08 Matsushita Electric Ind Co Ltd Heat receiver and cooling device equipped with it
JP2007299809A (en) * 2006-04-27 2007-11-15 Olympus Corp Cooling jacket, light source equipment utilizing the same, and display device
US20090321046A1 (en) * 2008-06-30 2009-12-31 Alcatel-Lucent Technologies Inc. Flow diverters to enhance heat sink performance
JP4989574B2 (en) * 2008-07-10 2012-08-01 株式会社日本自動車部品総合研究所 Heat sink for semiconductor element cooling
JP5712697B2 (en) * 2010-03-24 2015-05-07 三菱エンジニアリングプラスチックス株式会社 Heat dissipation structure of heat dissipation member and heating element
JP5713578B2 (en) * 2010-04-06 2015-05-07 株式会社アテクト Substrate manufacturing method
JP2012064732A (en) * 2010-09-16 2012-03-29 Meidensha Corp Water cooling heat sink

Also Published As

Publication number Publication date
JP2014036193A (en) 2014-02-24

Similar Documents

Publication Publication Date Title
JP5343007B2 (en) Liquid cooling system
JP2010203694A (en) Liquid cooling type cooling device
JP5061065B2 (en) Liquid cooling system
JP2008186820A (en) Heat generation body cooling structure and drive
JP2007333254A (en) Tube for heat-exchanger
JP2008205421A (en) Heat exchanger
JP2010114174A (en) Core structure for heat sink
JP6026772B2 (en) heatsink
JP6055232B2 (en) Cooling plate and cooling device
JP6494384B2 (en) Transformer for vehicle
KR102413374B1 (en) Fin enhancement for low Reynolds number airflow
JP5715352B2 (en) heatsink
KR20090049989A (en) Oilcooler
JP2010118497A (en) Heat exchanger equipped with fin with louvers
JP2015023044A (en) Cooler
JP5839386B2 (en) heatsink
JP2005257205A (en) Heat exchanger
JP2010210202A (en) Heat exchange body
JP2017069522A (en) Cold plate
JP2021097134A (en) Cooling device
JP2006278735A (en) Cooling device
JP2015174519A (en) Vehicle lower part structure
JP2019079908A (en) Cooling device and semiconductor module including the same
JP2013229461A (en) Servo amplifier including heat sink with fins having wall thickness and pitch dependent on distance from heat source
JP5378782B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161202

R150 Certificate of patent or registration of utility model

Ref document number: 6055232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150