JP6050567B2 - Finned tube heat exchanger - Google Patents
Finned tube heat exchanger Download PDFInfo
- Publication number
- JP6050567B2 JP6050567B2 JP2011130782A JP2011130782A JP6050567B2 JP 6050567 B2 JP6050567 B2 JP 6050567B2 JP 2011130782 A JP2011130782 A JP 2011130782A JP 2011130782 A JP2011130782 A JP 2011130782A JP 6050567 B2 JP6050567 B2 JP 6050567B2
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- pair
- tubes
- finned
- tube heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/38—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being staggered to form tortuous fluid passages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
本発明は、概してフィン管式熱交換器に関し、より詳細には、圧力損失を最小にしつつ熱伝達を最大にするように長方形フィン及び渦発生片を備えた半ねじれ型配置小型フィン管式熱交換器に関する。 The present invention relates generally to finned-tube heat exchangers, and more particularly to a semi-twisted arrangement small finned-tube heat with rectangular fins and vortex generators to maximize heat transfer while minimizing pressure loss. Regarding the exchanger.
様々なフィン管式熱交換器及び同様の構造体が市販されている。フィン管式熱交換器の構造の主な設計目標の1つは、圧力損失を最小にしつつ熱伝達を最大にすることに焦点を合わせている。一般的には、圧力損失の範囲は、熱交換器とその利用の運転維持費並びに全体のエネルギー損失及び効率に直接関連すると言える。 Various finned tube heat exchangers and similar structures are commercially available. One of the main design goals of the finned tube heat exchanger structure focuses on maximizing heat transfer while minimizing pressure loss. In general, it can be said that the range of pressure loss is directly related to the operation and maintenance costs of the heat exchanger and its utilization and the overall energy loss and efficiency.
既知のフィン管式熱交換器設計の一例として、密に離間配置されて螺旋状にねじれた円形フィンを備えた管束の利用がある。しかしながら、そのような円形フィンの利用は、それを通じて全般的に減少した気流速度によって比較的大きなバイパス流、伴流領域、及び低い熱伝達係数を生じさせる。更に、バイパス流は、フィンとその間の間隔に関する汚れの問題を悪化させるだけでなく、熱伝達係数を低下させる。円形フィンもまた、フィン間隔、従って管当たりの全有効表面積を制限する。 One example of a known finned tube heat exchanger design is the utilization of a bundle of tubes with circular fins that are closely spaced and helically twisted. However, the use of such circular fins results in a relatively large bypass flow, wake region, and low heat transfer coefficient due to the generally reduced airflow velocity therethrough. Furthermore, the bypass flow not only exacerbates the fouling problem with fins and the spacing between them, but also reduces the heat transfer coefficient. Circular fins also limit the fin spacing and thus the total effective surface area per tube.
連続プレートフィン及び略正方形フィンも使用されていた。そのような連続プレートフィンは、典型的な円形フィンと比べて伝達される熱単位当たりの圧力損失が低くなる傾向がある。連続プレートフィンは、非常に小型且つ効率的な熱交換器を製造するために使用されていたが、連続プレートフィン及び正方形フィンは、一般に大きな伝熱面積、大きな直径を有する管、及び/又は鋼製のフィンを必要とする熱回収蒸気発生器又は同じようなタイプの設備等の大規模発電所用途には一般的に適していなかった。 Continuous plate fins and generally square fins were also used. Such continuous plate fins tend to have lower pressure losses per unit of heat transferred compared to typical circular fins. Continuous plate fins have been used to produce very small and efficient heat exchangers, but continuous plate fins and square fins are generally large heat transfer areas, tubes with large diameters, and / or steel. It has generally not been suitable for large-scale power plant applications such as heat recovery steam generators or similar types of equipment that require made fins.
既知の管束配置は、一般的に直列又はねじれ型配列で構成される。ねじれ型配置は一般的に、そのような配置が直列配置と比べてバイパス流が幾分減少した高い熱伝達係数を示すので特に有利である。しかしながら、そのようなねじれ型配置の圧力損失は、管によって生じる形状抗力のために比較的高くなる。直列配置は、全体の抗力を減少させるように各管を先の管に続いて配置する。長円及び楕円形状の管及びフィンもまた抗力及び圧力損失を低減するために使用されていたが、そのような管は一般的に、発電所設備で通常見られる超高圧に耐えることができない。 Known tube bundle arrangements typically consist of a series or twisted arrangement. A torsional arrangement is generally particularly advantageous because such an arrangement exhibits a high heat transfer coefficient with a somewhat reduced bypass flow compared to a series arrangement. However, the pressure loss of such a twisted arrangement is relatively high due to the shape drag caused by the tube. The series arrangement places each tube following the previous tube so as to reduce the overall drag. Oval and elliptical shaped tubes and fins have also been used to reduce drag and pressure loss, but such tubes generally cannot withstand the ultra-high pressures normally found in power plant equipment.
フィン表面上の熱伝達を高めるために、ルーバー、コルゲーション(波形)、アンジュレーション(うねり)、セレーション(鋸歯状部)、ウィングレット(小翼)渦発生片等の利用を含む、様々な技術が探求されている。これらの改良技術の大部分は連続フィン熱交換器で利用されるのに対して、ディンプル(くぼみ)やセレーションは個々の円形フィンで利用される。これらの改良技術の幾つかを、所定のフィン又は一連のフィン上で組み合わせてもよい。 Various techniques are used to enhance heat transfer on the fin surface, including the use of louvers, corrugations (undulations), undulations (swells), serrations, winglet vortex generators, etc. Being explored. Most of these improved techniques are used in continuous fin heat exchangers, whereas dimples and serrations are used in individual circular fins. Some of these improved techniques may be combined on a given fin or series of fins.
従って、ひいては、エネルギー損失が低く、全体のライフサイクルコストが低い小型且つ安価な熱交換器を提供するために、単位圧力損失当たりの熱伝達率を増加させるように改良された小型フィン管式熱交換器が望まれている。このようなフィン管式熱交換器は、好ましくは様々なガスから液体又はガスから蒸気への熱伝達用途に利用され、具体的には発電所の操業等に利用される。 Thus, in order to provide a small and inexpensive heat exchanger with low energy loss and low overall life cycle cost, the small finned tube heat system improved to increase the heat transfer rate per unit pressure loss. An exchanger is desired. Such a finned-tube heat exchanger is preferably used for heat transfer from various gases to liquids or gas to steam, and specifically used for power plant operations and the like.
従って、本発明は、フィン管式熱交換器を提供する。フィン管式熱交換器は、各々の管上に配置された複数のフィンを備えた複数の管を含む。管は、第1組の管及び第2組の管を含み、第1組の管は第2組の管と比べてオフセット位置を有する。 Accordingly, the present invention provides a finned tube heat exchanger. The finned tube heat exchanger includes a plurality of tubes with a plurality of fins disposed on each tube. The tubes include a first set of tubes and a second set of tubes, the first set of tubes having an offset position relative to the second set of tubes.
本発明は、フィン管式熱交換器を更に提供する。フィン管式熱交換器は、各々の管上に配置された複数の長方形フィンを備えた複数の管を含む。長方形フィンは、その上に1つ以上の渦発生片を含む。 The present invention further provides a finned tube heat exchanger. The finned tube heat exchanger includes a plurality of tubes with a plurality of rectangular fins disposed on each tube. The rectangular fin includes one or more vortex generating pieces thereon.
本発明は、フィン管式熱交換器を更に提供する。フィン管式熱交換器は、第2組の管と比べてオフセット位置を有する第1組の管を備えた複数の管と、各々の管上に配置された複数の長方形フィンとを含む。長方形フィンは、複数の渦発生片を含む。 The present invention further provides a finned tube heat exchanger. The finned tube heat exchanger includes a plurality of tubes with a first set of tubes having offset positions relative to the second set of tubes, and a plurality of rectangular fins disposed on each tube. The rectangular fin includes a plurality of vortex generating pieces.
本発明のこれら及びその他の特徴並びに改良点は、図面及び添付の特許請求の範囲に関連してなされる以下の詳細な説明を検討することで当業者には明らかになるであろう。 These and other features and improvements of the present invention will become apparent to those of ordinary skill in the art upon review of the following detailed description, taken in conjunction with the drawings and the appended claims.
次に、図面を通して同様の番号が同様の要素を指す図面を参照すると、図1は、本明細書に記載されるガスタービンエンジン100の概略図を示す。ガスタービンエンジン100は、圧縮機110を含む。圧縮機110は、流入する空気流120を圧縮する。圧縮機110は、圧縮された空気流120を燃焼器130に送り込む。燃焼器130は、圧縮された空気流120を圧縮された燃料流140と混合し、混合物に点火して燃焼ガス流150を生成する。単一の燃焼器130のみが示されているが、ガスタービンエンジン100は複数の燃焼器130を含んでもよい。 Referring now to the drawings wherein like numerals refer to like elements throughout, FIG. 1 shows a schematic diagram of a gas turbine engine 100 as described herein. The gas turbine engine 100 includes a compressor 110. The compressor 110 compresses the incoming air stream 120. The compressor 110 feeds the compressed air stream 120 into the combustor 130. Combustor 130 mixes compressed air stream 120 with compressed fuel stream 140 and ignites the mixture to produce combustion gas stream 150. Although only a single combustor 130 is shown, the gas turbine engine 100 may include multiple combustors 130.
次いで、燃焼ガス流150はタービン160に送り込まれる。燃焼ガス流150は、タービンロータ170の回転によって機械的作用を生成するようにタービン160を駆動する。タービン160内で生成された機械的作用は、タービンロータ170を介して、圧縮機110と、例えば発電機180等の外部負荷とを駆動する。 The combustion gas stream 150 is then fed into the turbine 160. Combustion gas stream 150 drives turbine 160 to create a mechanical action by rotation of turbine rotor 170. The mechanical action generated in the turbine 160 drives the compressor 110 and an external load such as the generator 180 via the turbine rotor 170.
その後、既に使用済みの燃焼ガス流150は、熱回収蒸気発生器190又は他のタイプの熱交換器に送り込まれる。熱回収蒸気発生器190への使用済み燃焼ガス流150は、例えば、蒸気タービン、燃料予熱器、及び/又は他のタイプの作用に用いられる蒸気流200を加熱する。その後、燃焼ガス流150は排気されるか、又は別の方法で処理される。 The spent combustion gas stream 150 is then fed into a heat recovery steam generator 190 or other type of heat exchanger. The spent combustion gas stream 150 to the heat recovery steam generator 190 heats the steam stream 200 used, for example, for steam turbines, fuel preheaters, and / or other types of operations. Thereafter, the combustion gas stream 150 is evacuated or otherwise processed.
ガスタービンエンジン100は、天然ガス、様々なタイプの合成ガス、及び他のタイプの燃料を使用することができる。ガスタービンエンジン100は、ニューヨーク州スケネクタディのゼネラル・エレクトリック社によって提供されるいかなる数の異なるタービンであっても、そうでなくてもよい。ガスタービンエンジン100は、他の構成を有してもよく、他のタイプの構成要素を使用してもよい。他のタイプのガスタービンエンジンもまた、本明細書において使用することができる。複数のガスタービンエンジン100、他のタイプのタービン、及び他のタイプの発電設備を併せて使用してもよい。 The gas turbine engine 100 may use natural gas, various types of syngas, and other types of fuel. The gas turbine engine 100 may or may not be any number of different turbines provided by General Electric Company of Schenectady, NY. The gas turbine engine 100 may have other configurations and may use other types of components. Other types of gas turbine engines can also be used herein. Multiple gas turbine engines 100, other types of turbines, and other types of power generation equipment may be used in combination.
一般的には、熱回収蒸気発生器190は、蒸気発生プロセス等のための給水を、さもなければ無駄になった使用済み燃焼ガス流150によって加熱することができる非接触熱交換器であると言える。熱回収蒸気発生器190は、その中に介装された管束を備えた大型ダクトであって、燃焼ガス流150がダクトを通過するときに水が蒸気になるまで加熱されるようになっている。その他の熱回収蒸気発生器構成及び他のタイプの熱交換装置を本明細書において使用してもよい。 Generally, the heat recovery steam generator 190 is a non-contact heat exchanger that can heat feed water for a steam generation process or the like with a spent combustion gas stream 150 that is otherwise wasted. I can say that. The heat recovery steam generator 190 is a large duct with a bundle of tubes interposed therein, and is heated until the water becomes steam when the combustion gas stream 150 passes through the duct. . Other heat recovery steam generator configurations and other types of heat exchange devices may be used herein.
図2は、本明細書に記載される半ねじれ型フィン管式熱交換器210の一部を示す。半ねじれ型フィン管式熱交換器210は、熱回収蒸気発生器190の一部として、或いは任意のタイプの熱交換装置又は熱交換目的のために使用することができる。 FIG. 2 illustrates a portion of the semi-twisted finned-tube heat exchanger 210 described herein. The semi-twisted finned-tube heat exchanger 210 can be used as part of the heat recovery steam generator 190 or for any type of heat exchange device or heat exchange purposes.
半ねじれ型フィン管式熱交換器210は、上に配置された複数のフィン230を備えた、それを通って突出する複数の管220を含む。(明確にするために、1つの突出管220のみが示されている。)任意の数の管220及びフィン230を本明細書において使用することができる。半ねじれ型フィン管式熱交換器210は、既存のフィン管式熱交換器と比べて比較的小型であるが、所望の寸法、形状、及び/又は構成を有してもよい。 Semi-twisted finned tube heat exchanger 210 includes a plurality of tubes 220 projecting therethrough with a plurality of fins 230 disposed thereon. (For clarity, only one protruding tube 220 is shown.) Any number of tubes 220 and fins 230 may be used herein. The semi-twisted finned-tube heat exchanger 210 is relatively small compared to existing finned-tube heat exchangers, but may have a desired size, shape, and / or configuration.
半ねじれ型フィン管式熱交換器210は、ねじれ関係で配置された管220を含む。具体的には、第1組240の管220は、第2組250の管220からねじれ配置又はオフセットされる。第1組240の管220は、そこを通る空気流280に対して直列位置275を有する管220を備えた第1列260及び第2列270を含む。第2組250の管220は、同様に直列位置275を有する管220をその中に備えた第3列290及び第4列300を含む。第1組240及び第2組250において対の管220が示されているが、その中に任意の数の管220を備えた任意の数の列260,270及び290,300を本明細書において使用してもよい。第1組240及び第2組250は、互いに対してオフセット位置305を有して半ねじれ関係を形成する。オフセット位置305は、フィン230の横方向間隔のおよそ半分である。他のタイプのオフセット(ズレ)、間隔、及び構成を本明細書において使用してもよい。 Semi-twisted finned tube heat exchanger 210 includes tubes 220 arranged in a twisted relationship. Specifically, the first set 240 of tubes 220 is twisted or offset from the second set 250 of tubes 220. The first set 240 of tubes 220 includes a first row 260 and a second row 270 with tubes 220 having a series position 275 relative to the air flow 280 therethrough. The second set 250 of tubes 220 includes a third row 290 and a fourth row 300 with tubes 220 also having a series position 275 therein. Although pairs of tubes 220 are shown in first set 240 and second set 250, any number of rows 260, 270 and 290,300 with any number of tubes 220 therein are shown herein. May be used. The first set 240 and the second set 250 have an offset position 305 with respect to each other to form a semi-twisted relationship. The offset position 305 is approximately half of the lateral spacing of the fins 230. Other types of offsets, gaps, and configurations may be used herein.
図2及び図3に示すように、半ねじれ型フィン管式熱交換器210のフィン230は、略長方形フィン310の形である。各長方形フィン310は、その角に配置された複数の渦発生片320を有する。この例では、渦発生片320は略三角形状330を有する。更に、渦発生片320の1つの対向対は上向き角度340を有し、渦発生片320のもう1つの対向対は下向き角度350を有する。他の寸法、構成、及び/又は角度の任意の数の渦発生片320を本明細書において使用してもよい。 As shown in FIGS. 2 and 3, the fins 230 of the semi-twisted finned-tube heat exchanger 210 are substantially rectangular fins 310. Each rectangular fin 310 has a plurality of vortex generating pieces 320 arranged at its corners. In this example, the vortex generating piece 320 has a substantially triangular shape 330. Further, one opposing pair of vortex generating pieces 320 has an upward angle 340 and another opposing pair of vortex generating pieces 320 has a downward angle 350. Any number of vortex generators 320 of other dimensions, configurations, and / or angles may be used herein.
長方形フィン310はまた、各管220の周囲に略偏心位置360を有する。その結果、各組240,250の列260,270及び290,300の間の距離は最小になる(従って、各組240,250の管220の間の距離が長くなる)。その他のタイプの配置を本明細書において使用してもよい。各長方形フィン310の間にギャップ370が存在する。ギャップ370の寸法及び形状は異なってもよい。ギャップ370は、長方形フィン310が使用時に略連続フィンとして作用するように寸法決めされる。 The rectangular fin 310 also has a generally eccentric position 360 around each tube 220. As a result, the distance between rows 260, 270 and 290, 300 of each set 240, 250 is minimized (thus the distance between the tubes 220 of each set 240, 250 is increased). Other types of arrangements may be used herein. There is a gap 370 between each rectangular fin 310. The size and shape of the gap 370 may vary. The gap 370 is dimensioned so that the rectangular fin 310 acts as a generally continuous fin when in use.
上述の通り、直列管配置は概して圧力損失が低いという利点を有する一方、ねじれ型配置は概して熱伝達が高くなる。従って、使用時、本明細書に記載の半ねじれ型フィン管式熱交換器210は、両方の配置の利点を組み合わせている。この例では具体的に、第1組240の第2列270及び第2組250の第4列300が、概してそれぞれ第1組240の第1列260及び第2組250の第3列290に続いて配置される。従って、このねじれ又はオフセット位置305は、特に列260,270及び290,300のフィン230の偏心位置360に部分的に基づいて管220の直列列260,270及び290,300の間の距離を比較的小さくすることにより、圧力損失の一部の原因である空力形状抗力を削減する。同様に、管220の第1組240及び第2組250をずらすことにより、フィン230上の熱伝達を高めるように馬蹄渦及び伴流渦を生成又は強化する。 As described above, the series tube arrangement has the advantage of generally low pressure loss, while the twisted arrangement generally provides higher heat transfer. Thus, in use, the semi-twisted finned tube heat exchanger 210 described herein combines the advantages of both arrangements. Specifically in this example, the second row 270 of the first set 240 and the fourth row 300 of the second set 250 are generally in the first row 260 of the first set 240 and the third row 290 of the second set 250, respectively. It is arranged next. Thus, this twist or offset position 305 compares the distance between the series rows 260, 270 and 290, 300 of the tube 220, in particular based in part on the eccentric position 360 of the fins 230 of the rows 260, 270 and 290, 300. To reduce the aerodynamic shape drag, which is part of the pressure loss. Similarly, shifting the first set 240 and the second set 250 of tubes 220 creates or enhances horseshoe vortices and wake vortices to enhance heat transfer on the fins 230.
半ねじれ型フィン管式熱交換器210の長方形フィン310は、流れ場を変更したり、余り又は少しもバイパス流を形成したりすることなく、狭いフィン間隔が可能になるように、主に連続プレートフィンとして作用する。長方形フィン310間のギャップ370の寸法によって、例えば、上記の円形フィン及び管束と比べてバイパス流をそれほど多くなくできると共に、個々の管220の小さな束への取り付けが可能になる。具体的には、ギャップ370は、半連続プレートフィンを形成するのに十分な小ささであるが、実質的に境界層を取り除くのに十分な大きさである。従って、ギャップ370は、熱伝達性能に良い影響をもたらすようにフィン310間の一部の混合層及び境界層破壊が可能である。 The rectangular fins 310 of the semi-twisted finned-tube heat exchanger 210 are mainly continuous so that narrow fin spacing is possible without changing the flow field or creating too much or little bypass flow. Acts as a plate fin. The size of the gap 370 between the rectangular fins 310 allows, for example, less bypass flow than the circular fins and tube bundles described above, and allows attachment of individual tubes 220 to a small bundle. Specifically, gap 370 is small enough to form a semi-continuous plate fin, but is large enough to substantially remove the boundary layer. Thus, the gap 370 can be partially mixed and boundary layer broken between the fins 310 to have a positive impact on heat transfer performance.
半ねじれ型フィン管式熱交換器210の渦発生片320の三角端330もまた、ねじれ組240,250に対して馬蹄渦及び/又は伴流渦を生成及び/又は強化する。縦渦及び他のタイプの渦も生成することができる。これらの渦は、長方形フィン310上の全体の熱伝達を高める傾向がある。交互の上向き及び下向き角度340,350の利用により、それぞれ上下のフィン310と衝突するように流れの向きを変えることができる。そのような流れもまた、縦渦を強化して更に熱伝達を増大させつつ、境界層を取り除くことができる。 The triangular end 330 of the vortex generating piece 320 of the semi-twisted finned tube heat exchanger 210 also generates and / or enhances horseshoe vortices and / or wake vortices with respect to the twist sets 240, 250. Longitudinal vortices and other types of vortices can also be generated. These vortices tend to increase the overall heat transfer on the rectangular fins 310. By using alternate upward and downward angles 340, 350, the flow direction can be changed to collide with the upper and lower fins 310, respectively. Such a flow can also remove the boundary layer while strengthening the longitudinal vortex to further increase heat transfer.
従って、半ねじれ型フィン管式熱交換器210は、オフセット位置305を有する管220のねじれ組240,250を提供する。各管220は、上に複数の渦発生片320を備えた複数の長方形フィン310を有する。フィン310は、各組240,250の列260,270及び290,300の間の距離を最小にするように偏心位置360を含むと同時に、フィン310はまたそれらの間に最小ギャップ370を有する。従って、半ねじれ型フィン管式熱交換器210は、管当たりの熱伝達が高い従来のフィン管設計と比べて低い圧力損失をもたらす。半ねじれ型フィン管式熱交換器210はまた、小型で所定の仕事に対する運転維持費が低く管列が少ない。 Thus, the semi-twisted finned tube heat exchanger 210 provides a twisted set 240,250 of tubes 220 having offset positions 305. Each tube 220 has a plurality of rectangular fins 310 with a plurality of vortex generating pieces 320 thereon. While fin 310 includes an eccentric position 360 to minimize the distance between rows 260, 270 and 290, 300 of each set 240, 250, fin 310 also has a minimum gap 370 therebetween. Thus, the semi-twisted finned tube heat exchanger 210 results in a lower pressure loss compared to conventional finned tube designs with high heat transfer per tube. The semi-twisted finned-tube heat exchanger 210 is also small and has low operation and maintenance costs for a given job and few tube rows.
従って、半ねじれ型フィン管式熱交換器210は、様々なガスから液体又はガスから蒸気への熱伝達用途に利用され、具体的には発電所の操業等に利用することができる。より小型、より良好、且つより安価な熱交換器は、概して設置面積が小さく運転維持費が少ない安価なエネルギーシステムを提供する。 Therefore, the semi-twisted finned-tube heat exchanger 210 is used for heat transfer from various gases to liquids or gas to steam, and can be used specifically for power plant operations. Smaller, better and cheaper heat exchangers generally provide an inexpensive energy system with a small footprint and low operating and maintenance costs.
上述の内容は本発明の好適な実施形態のみに関連していること、また特許請求の範囲及びその等価物によって定まる本発明の一般的な技術的思想及び技術的範囲から逸脱することなく当業者が本明細書において多くの変更及び修正を行なうことができることを理解されたい。 The above description relates only to the preferred embodiments of the present invention, and those skilled in the art without departing from the general technical idea and scope of the present invention defined by the claims and their equivalents. It should be understood that many changes and modifications can be made herein.
100 ガスタービンエンジン
110 圧縮機
120 空気流
130 燃焼器
140 燃料流
150 燃焼ガス流
160 タービン
170 ロータ
180 発電機
190 熱回収蒸気発生器
200 蒸気流
210 半ねじれ型フィン管式熱交換器
220 管
230 フィン
240 第1組
250 第2組
260 第1列
270 第2列
275 直列位置
280 空気流
290 第3列
300 第4列
305 オフセット位置
310 長方形フィン
320 渦発生片
330 三角形状
340 上向き角度
350 下向き角度
360 偏心位置
370 ギャップ
DESCRIPTION OF SYMBOLS 100 Gas turbine engine 110 Compressor 120 Air flow 130 Combustor 140 Fuel flow 150 Combustion gas flow 160 Turbine 170 Rotor 180 Generator 190 Heat recovery steam generator 200 Steam flow 210 Semi-twisted finned pipe heat exchanger 220 Pipe 230 Fin 240 1st set 250 2nd set 260 1st row 270 2nd row 275 Series position 280 Air flow 290 3rd row 300 4th row 305 Offset position 310 Rectangular fin 320 Vortex generating piece 330 Triangular shape 340 Upward angle 350 Downward angle 360 Eccentric position 370 Gap
Claims (7)
複数の管(220)を備え、
前記複数の管(220)の各々は、それらの周囲に配置された対応する複数のフィン(230)を含み、前記複数の管(220)の1つの管の対応するフィンは、該他の複数の管(220)の対応するフィンから間隔があり、
前記複数の管(220)の第1組(240)が、前記フィン管式熱交換器(210)の少なくとも1つの第1の対の列(260、270)を含み、前記複数の管(220)の第2組(250)が、前記フィン管式熱交換器(210)の少なくとも1つの第2の対の列(290、300)を含み、
前記フィン管式熱交換器(210)の前記少なくとも1つの第1の対の列(260、270)の管は、そこを通る空気の流れに対し第1の直列位置に配置され、
前記フィン管式熱交換器(210)の前記少なくとも1つの第1の対の列(260、270)が、第1の距離で離間し、
前記フィン管式熱交換器(210)の前記少なくとも1つの第2の対の列(290、300)の管は、そこを通る空気の流れに対し第2の直列位置に配置され、
前記フィン管式熱交換器(210)の前記少なくとも1つの第2の対の列(290、300)が、第2の距離で離間し、
前記少なくとも1つの第1の対の列(260、270)の管(220)と前記少なくとも1つの第2の対の列(290、300)の管(220)とは、互いに対してオフセット位置(305)を有し、
前記オフセット位置(305)は、前記空気の流れに対し垂直のフィン(230)の長さのおよそ半分であり、
前記複数のフィン(230)の各々が、該フィンの角に位置する複数の渦発生片(320)を含み、該複数の渦発生片(320)は、上向き角度(340)を有する第1の対向する対の渦発生片と、下向き角度(350)を有する第2の対向する対の渦発生片とを備える
フィン管式熱交換器(210)。 A finned tube heat exchanger (210),
Comprising a plurality of tubes (220);
Each of the plurality of tubes (220) includes a corresponding plurality of fins (230) disposed around them, and the corresponding fin of one tube of the plurality of tubes (220) is the other plurality of tubes. Are spaced from the corresponding fins of the tube (220) of
The first set (240) of the plurality of tubes (220) includes at least one first pair of rows (260, 270) of the finned tube heat exchanger (210), and the plurality of tubes (220). ) Includes at least one second pair of rows (290, 300) of the finned pipe heat exchanger (210),
The tubes of the at least one first pair of rows (260, 270) of the finned-tube heat exchanger (210) are arranged in a first series position relative to the air flow therethrough;
The at least one first pair of rows (260, 270) of the finned tube heat exchanger (210) are spaced apart by a first distance;
The tubes of the at least one second pair of rows (290, 300) of the finned-tube heat exchanger (210) are arranged in a second series position relative to the air flow therethrough;
The at least one second pair of rows (290, 300) of the finned tube heat exchanger (210) are spaced apart by a second distance;
Wherein the at least one first pair of column tubes (260, 270) (220) and the tube of the at least one second pair of columns (290, 300) (220), offset position relative to each other ( 305)
The offset position (305) is approximately half the length of the fin (230) perpendicular to the air flow;
Each of the plurality of fins (230) includes a plurality of vortex generating pieces (320) located at corners of the fin, the plurality of vortex generating pieces (320) having a first upward angle (340). A finned tube heat exchanger (210) comprising an opposing pair of vortex generating pieces and a second opposing pair of vortex generating pieces having a downward angle (350).
前記フィン管式熱交換器(210)の前記少なくとも1つの第2の対の列(290、300)は、互いに第2の距離で離間される
請求項1乃至4のいずれか1項に記載のフィン管式熱交換器(210)。 The at least one first pair of rows (260, 270) of the finned tube heat exchanger (210) are spaced apart from each other by a first distance;
The fin tube type heat exchanger (210) said at least one second pair of rows of (290, 300) is according to any one of claims 1 to 4 are spaced at a second distance from each other Finned tube heat exchanger (210).
The distance between the tubes (220) of the first pair of rows (260, 270) and the distance between the tubes (220) of the second pair of rows (290, 300) are minimal, and the first pair The finned-tube heat exchanger (1) according to any one of claims 1 to 6 , wherein a distance between a pair (220) of adjacent rows (270, 290) of the second pair is set to be long. 210).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/818,218 US20110308228A1 (en) | 2010-06-18 | 2010-06-18 | Fin and Tube Heat Exchanger |
US12/818,218 | 2010-06-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012002498A JP2012002498A (en) | 2012-01-05 |
JP6050567B2 true JP6050567B2 (en) | 2016-12-21 |
Family
ID=44357613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011130782A Expired - Fee Related JP6050567B2 (en) | 2010-06-18 | 2011-06-13 | Finned tube heat exchanger |
Country Status (5)
Country | Link |
---|---|
US (1) | US20110308228A1 (en) |
JP (1) | JP6050567B2 (en) |
KR (1) | KR101795039B1 (en) |
DE (1) | DE102011050865A1 (en) |
GB (1) | GB2481296B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014108209A1 (en) * | 2014-06-11 | 2015-12-17 | GEA Luftkühler GmbH | heat exchangers |
CN106594518B (en) * | 2016-11-28 | 2018-11-20 | 北京有色金属研究总院 | A kind of metal hydride hydrogen storage unit with high efficient heat exchanging |
US11774187B2 (en) * | 2018-04-19 | 2023-10-03 | Kyungdong Navien Co., Ltd. | Heat transfer fin of fin-tube type heat exchanger |
US11512635B2 (en) * | 2019-09-26 | 2022-11-29 | Halliburton Energy Services, Inc. | Gas turbine waste heat utilization |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB377884A (en) * | 1931-12-18 | 1932-08-04 | Georg Franz Holler | Improvements in, or relating to, economisers, heat exchangers or like assembly of pipes or tubes |
GB451028A (en) * | 1935-01-28 | 1936-07-28 | Henrik Valdemar Zander | Improvements in tubular heat exchange apparatus for fluids |
US2063736A (en) * | 1935-03-08 | 1936-12-08 | Gen Motors Corp | Heat exchanger |
GB561026A (en) * | 1942-10-29 | 1944-05-02 | Edwin James Bowman | Improvements in radiators for cooling liquids |
US2585912A (en) * | 1947-11-01 | 1952-02-19 | Hydrocarbon Research Inc | Regenerator for the recovery of the cold content of gases |
GB779600A (en) * | 1953-05-12 | 1957-07-24 | Green & Son Ltd | Improvements in heat exchangers |
BE561143A (en) * | 1956-09-28 | |||
DE1926187A1 (en) * | 1969-05-22 | 1970-11-26 | Schoell Dr Ing Guenter | Heat exchange element made of materials with low thermal conductivity and strength |
DE2442420C3 (en) * | 1974-09-05 | 1979-10-31 | Basf Ag, 6700 Ludwigshafen | Desublimator for the production of sublimation products, especially phthalic anhydride, from reaction gases |
DE2658834A1 (en) * | 1976-12-24 | 1978-07-06 | Maschf Augsburg Nuernberg Ag | Heat exchanger element - with tubes in even rows offset against odd rows and ribs of alternating width leaving air access channels |
US4567351A (en) * | 1983-08-10 | 1986-01-28 | Matsushita Electric Works, Ltd. | Electric space heater employing a vaporizable heat exchange fluid |
US5042576A (en) * | 1983-11-04 | 1991-08-27 | Heatcraft Inc. | Louvered fin heat exchanger |
US4787442A (en) * | 1987-12-04 | 1988-11-29 | Carrier Corporation | Delta wing and ramp wing enhanced plate fin |
SE8803215D0 (en) * | 1988-09-13 | 1988-09-13 | Gadelius Sunrod Ab | Surface Magnifier for VERMEVEXLARTUB |
US4984626A (en) * | 1989-11-24 | 1991-01-15 | Carrier Corporation | Embossed vortex generator enhanced plate fin |
JPH09264697A (en) * | 1996-03-28 | 1997-10-07 | Matsushita Electric Works Ltd | Heat exchanger |
JP3292077B2 (en) * | 1997-01-30 | 2002-06-17 | 株式会社日立製作所 | Heat exchangers and air conditioners |
JP3778225B2 (en) * | 1997-02-18 | 2006-05-24 | 石川島播磨重工業株式会社 | Gas turbine power generator |
US6364008B1 (en) * | 1999-01-22 | 2002-04-02 | E. I. Du Pont De Nemours And Company | Heat exchanger with tube plates |
JP3854423B2 (en) * | 1999-04-15 | 2006-12-06 | 株式会社日立製作所 | Heat exchanger, its manufacturing method and refrigerator equipped with the same |
US6302197B1 (en) * | 1999-12-22 | 2001-10-16 | Isteon Global Technologies, Inc. | Louvered plastic heat exchanger |
KR100363201B1 (en) * | 2000-03-08 | 2002-12-05 | 주식회사 엘지이아이 | Heat Exchange Fin |
JP2002350078A (en) * | 2001-05-24 | 2002-12-04 | Sharp Corp | Heat exchanger |
US6705391B1 (en) * | 2001-10-19 | 2004-03-16 | Scott Jay Lewin | Heat exchanger |
US6578627B1 (en) * | 2001-12-28 | 2003-06-17 | Industrial Technology Research Institute | Pattern with ribbed vortex generator |
US6789317B1 (en) * | 2003-06-17 | 2004-09-14 | Bechtel Bwxt Idaho, Llc | Finned tube with vortex generators for a heat exchanger |
US6907919B2 (en) * | 2003-07-11 | 2005-06-21 | Visteon Global Technologies, Inc. | Heat exchanger louver fin |
KR20100052290A (en) * | 2008-11-10 | 2010-05-19 | 주식회사비에스금속 | Finned tube for heat exchanger |
-
2010
- 2010-06-18 US US12/818,218 patent/US20110308228A1/en not_active Abandoned
-
2011
- 2011-06-06 DE DE102011050865A patent/DE102011050865A1/en not_active Ceased
- 2011-06-13 GB GB1109855.5A patent/GB2481296B/en not_active Expired - Fee Related
- 2011-06-13 JP JP2011130782A patent/JP6050567B2/en not_active Expired - Fee Related
- 2011-06-16 KR KR1020110058726A patent/KR101795039B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
GB2481296B (en) | 2017-01-11 |
DE102011050865A8 (en) | 2012-08-23 |
JP2012002498A (en) | 2012-01-05 |
KR20110138179A (en) | 2011-12-26 |
KR101795039B1 (en) | 2017-11-07 |
DE102011050865A1 (en) | 2011-12-22 |
US20110308228A1 (en) | 2011-12-22 |
GB2481296A (en) | 2011-12-21 |
GB201109855D0 (en) | 2011-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kumar et al. | Convective heat transfer enhancement in solar air channels | |
JP5010635B2 (en) | Heat exchanger | |
CN101509427A (en) | Exhaust stacks and power generation systems for increasing gas turbine power output | |
JP6050567B2 (en) | Finned tube heat exchanger | |
JP7514866B2 (en) | Heat transfer elements for rotary heat exchangers | |
US8281564B2 (en) | Heat transfer tubes having dimples arranged between adjacent fins | |
US10502493B2 (en) | Single pass cross-flow heat exchanger | |
JP2010048546A (en) | Dimple and serrated molded finned tube structure | |
EP2530420A2 (en) | Fin and tube heat exchanger | |
US11879691B2 (en) | Counter-flow heat exchanger | |
JP2012154615A (en) | Boiler pipe configuration of heat recovery steam generator | |
JP2005140370A (en) | Exhaust heat recovery boiler | |
CN214250700U (en) | Module combined heat exchanger for steam generating device | |
JP2006010110A (en) | Heat exchanger | |
EP0947793A2 (en) | Finned-tube heat exchanger | |
WO2024157091A1 (en) | Partially finned tube for a heat exchanger | |
JP2000146101A (en) | Waste heat recovery boiler apparatus | |
JP2011122740A (en) | Air-cooled condenser | |
JPH085077A (en) | Gas turbine device having air-cooled tube nest combustion device | |
JP2015021649A (en) | Heat transfer tube structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140602 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150324 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150623 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151201 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20160226 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20160425 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160531 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161101 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161125 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6050567 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |