JP3778225B2 - Gas turbine power generator - Google Patents

Gas turbine power generator Download PDF

Info

Publication number
JP3778225B2
JP3778225B2 JP03348097A JP3348097A JP3778225B2 JP 3778225 B2 JP3778225 B2 JP 3778225B2 JP 03348097 A JP03348097 A JP 03348097A JP 3348097 A JP3348097 A JP 3348097A JP 3778225 B2 JP3778225 B2 JP 3778225B2
Authority
JP
Japan
Prior art keywords
steam
gas
heat exchanger
turbine
liquid heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03348097A
Other languages
Japanese (ja)
Other versions
JPH10231710A (en
Inventor
紘一 千葉
紀昭 岩元
幸宏 芳村
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP03348097A priority Critical patent/JP3778225B2/en
Publication of JPH10231710A publication Critical patent/JPH10231710A/en
Application granted granted Critical
Publication of JP3778225B2 publication Critical patent/JP3778225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガスタービン発電装置に係わり、更に詳しくは、中間冷却と蒸気噴射を行うガスタービン発電装置に関する。
【0002】
【従来の技術】
ガスタービンを用いた発電装置において、空気又は燃焼ガスに水蒸気を噴射して性能を向上させる蒸気噴射型ガスタービンサイクル(Steam-Injected Gas Turbine:STIG サイクル又はCHENサイクル) 、及び更に中間冷却器を備え中間冷却と蒸気噴射を行うガスタービンサイクル(Intercooled and Steam-Injected Gas Turbine:ISTIGサイクル) が知られている(例えば、“An Assessment of the Thermodynamic Performance of Mixed Gas-Steam Cycles:Part A-Intercooled and Steam-Injected Cycles", Journal of Engineering for Gas Turbine, Vol. 117, July 1995) 。
【0003】
図3は、中間冷却器を用いた再燃式のCHATサイクルの一例であり、空気Aが圧縮機1a,1b,1c,1dで圧縮され、サチュレータ2で水分を含み、排熱回収装置3で予熱されて燃焼器4a,4bに供給され、別途予熱された燃料Fを燃焼させて高温ガスEを発生させ、この高温ガスEにより高圧タービン5aと低圧タービン5bを回転駆動して発電し、更に排熱回収装置3で排熱を回収するようになっている。このサイクルでは、圧縮機1b,1c,1dの間に中間冷却器6を備え、低圧ガスタービンの入口温度が1394℃の場合で54.7%の熱効率を達成している。なお、この図で9は、発電機である。
【0004】
また図4は、上述した文献に報告されているISTIGサイクルの一例である。図4(A)に示すように、このサイクルは中間冷却器6の他に蒸気タービン7を備えたコンバインドサイクルであり、混合器8で水蒸気を混合した空気を燃焼器4に供給して熱効率を改善するようになっている。その他の基本構成は、サチュレータおよび低圧燃焼器がない点を除き、図3のCHATサイクルとほぼ同様である。このISTIGサイクルでは、図4(B)に示すように、ガスタービン入口温度が1500℃の場合で約53%の熱効率を達成している。
【0005】
更に図5は、中間冷却を行う次世代コンバインドサイクルの一例であり、図4と同様に中間冷却器6と蒸気タービン7を備え、ガスタービン5bと蒸気タービン7の両方でそれぞれ発電するようになっている。なお、図3〜図5の他に、中間冷却器を用いずに圧縮空気に水を直接噴射する場合もある。
【0006】
【発明が解決しようとする課題】
上述したCHATサイクル、ISTIGサイクル及び次世代コンバインドサイクルは、既存のガスタービン発電装置に比較して高い熱効率(ガスタービン入口温度1500℃で約53%)を達成している。しかし、これらの中間冷却器では圧縮空気が冷却水(補給水や外部冷却水)によって冷却され、補給水はタービンへの噴射蒸気として用いられ、タービンで仕事を終えた後、大気放出される。この量は通常吸入空気量の10〜15wt%程度であり、低圧圧縮機の出口温度が100℃以下であれば、この量で燃焼器に供給する空気を約40〜50℃まで冷却することができる。しかし、サイクル効率を改善するために低圧圧縮機の圧縮率を高めると出口温度が150℃以上となり、その分、外部冷却水の量を増して出口空気温度を下げる必要があり、大気放出量が増して熱損失量が増大する。また、補給水をそのままで使用すると出口温度が高くなって中間冷却の効果を十分に得られない。更に、水を直接噴射注入する手段では冷却はできるが水蒸気が加わるため高圧圧縮機の駆動動力が増大する問題が生じる。
【0007】
本発明は、上述した問題点を解決するために創案されたものである。すなわち本発明の目的は、冷却水量(補給水量)を増大することなく、大量の熱量を中間冷却することができ、これにより従来以上の高い熱効率を達成することができるガスタービン発電装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明によれば、複数の圧縮機の中間に気液熱交換器と蒸気発生器からなる中間冷却器を備え、前記気液熱交換器と前記蒸気発生器は、低圧側圧縮機による圧縮空気を当該蒸気発生器、当該気液熱交換器の順で冷却するように配置されており、前記気液熱交換器で冷却水(補給水)を予熱し、前記気液熱交換器により予熱した前記冷却水のうち少なくともその一部を前記蒸気発生器で蒸発させ、発生した蒸気をタービンに供給するように構成した、ことを特徴とするガスタービン発電装置が提供される。
【0009】
本発明は、補給水(冷却水)での顕熱冷却に加えて、その一部を蒸気発生器に導き空気側の冷却効果を高めかつ発生蒸気をタービンに導入し出力を増加させることを特徴とするものである。
すなわち、中間冷却器を蒸気発生器と気液熱交換器で構成し、低圧圧縮機を出た圧縮空気を先ず蒸気発生器に導入し、蒸気発生器を出た圧縮空気は気液熱交換器に入り、補給水で更に冷却されて、高圧圧縮機に入る。この構成により、少ない冷却水(補給水)の顕熱だけで冷却し切れない分を水の潜熱(蒸発熱)を利用して更に冷却することができる。
【0010】
一方、供給された冷却水(補給水)は気液熱交換器で予熱され、気液熱交換器を出た補給水の一部が蒸気発生器で蒸発し、タービンに導入されるので、圧縮空気の冷却により発生した蒸気から動力回収ができ、これにより、プラントの効率を更に向上することが可能となる。
【0011】
本発明の好ましい実施形態によれば、前記気液熱交換器で加熱した前記冷却水(補給水)の一部をボイラー給水として脱気給水加熱器に送り、前記蒸気発生器で発生した蒸気の一部を前記脱気給水加熱器に送り、これにより前記のボイラー給水を飽和温度まで加熱して脱気し、前記蒸気発生器を出た残りの蒸気を前記タービンに供給する。すなわち、気液熱交換器で加熱した冷却水(補給水)の大部分を脱気給水加熱器に送り、更に蒸気発生器で発生した蒸気の一部を脱気給水加熱器に送ることにより、この蒸気によりボイラー給水を飽和温度まで加熱してボイラー給水を脱気することができ、圧縮空気の冷却により発生した蒸気を、動力回収のみならず、脱気器の加熱にも用いることができ、従来必要であった蒸気を節約し、プラントの効率を更に向上させることができる。
【0012】
蒸気を供給する前記タービンは、ガスタービン又は蒸気タービンである。すなわち、発生蒸気を導入し出力を増加させるタービンをガスタービンとすることにより、蒸気タービンのないガスタービン発電装置の効率を高めることができ、或いは蒸気タービンに供給することによりコンバインドサイクルの効率を高めることもできる。
【0013】
【発明の実施の形態】
以下に本発明の好ましい実施形態を図面を参照して説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。
図1は、本発明によるガスタービン発電装置の構成図である。この図において、本発明のガスタービン発電装置10は、複数の圧縮機(低圧圧縮機1aと高圧圧縮機1b)の中間に気液熱交換器12と蒸気発生器13からなる中間冷却器14を備えている。この図に示すように、気液熱交換器12と蒸気発生器13は、圧縮空気の流れに対して向流になるように配置されており、低圧側圧縮機1aによる圧縮空気を蒸気発生器13、気液熱交換器12の順で冷却し、気液熱交換器12で冷却水を予熱し、次いで少なくともその一部を蒸気発生器13で蒸発させるようになっている。気液熱交換器12と蒸気発生器13は、プレートフィン熱交換器であるのがよいが、通常のシェルアンドチューブ型熱交換器であってもよい。
【0014】
図1において、15はディアレータ(脱気給水加熱器)、15aはベントコンデンサ、16a,16bは熱交換器、17a,17bは予熱された給水ライン、18a,18bは蒸気ライン、19はスタック(煙突)である。この実施形態では、気液熱交換器12で加熱した冷却水(補給水)の一部を給水ライン17aを介してボイラー給水として脱気給水加熱器15に送り、蒸気発生器13で発生した蒸気の一部を蒸気ライン18bを介して同じく脱気給水加熱器15に送り、これにより前記のボイラー給水を飽和温度まで加熱して脱気し、蒸気発生器13を出た残りの蒸気を蒸気ライン18aを介して低圧タービン5bに供給するようになっている。
【0015】
図1に示したガスタービン発電装置10のヒートバランスを試算した結果、高圧タービン入口温度が約1500℃の場合に、発電出力179MW、熱効率55.3%を達成できることが確認された。すなわち、図3〜図5に示した従来のガスタービン発電装置に比較して、同一のガスタービン入口温度1500℃で約0.6〜2%以上の高い熱効率を達成することができる。
【0016】
なおこの場合に、補給水145トンのうち、129トンが給水ライン17aを介して脱気給水加熱器15に送られ、残りのうち15トンが蒸気ライン18aを介して低圧タービン5bに供給され、残りの約0.6トンを脱気給水加熱器15に供給した。
【0017】
図2は、本発明による別のガスタービン発電装置の構成図である。この実施形態では、ガスタービン発電装置10は、蒸気タービン7を備えたコンバインドサイクルであり、蒸気発生器13を出た蒸気の一部が蒸気ライン18aを介して蒸気タービン7に供給するようになっている。その他の構成は、図1と同様である。この構成により、図1と同様に高い熱効率を達成することができる共に、蒸気タービンに供給することによりコンバインドサイクルの効率を高めることもできる。
【0018】
上述したように、本発明は、補給水(冷却水)での顕熱冷却に加えて、その一部を蒸気発生器に導き空気側の冷却効果を高めかつ発生蒸気をタービンに導入し出力を増加させるものである。すなわち、中間冷却器14を蒸気発生器12と気液熱交換器13で構成し、低圧圧縮機1aを出た圧縮空気を先ず蒸気発生器13に導入し、蒸気発生器13を出た圧縮空気は気液熱交換器12に入り、補給水で更に冷却されて、高圧圧縮機に入る。この構成により、少ない冷却水(補給水)の顕熱だけで冷却し切れない分を水の潜熱(蒸発熱)を利用して更に冷却することができる。
【0019】
一方、供給された冷却水(補給水)は気液熱交換器12で予熱され、気液熱交換器12を出た補給水の一部(ライン17b)が蒸気発生器13で蒸発し、タービン(ガスタービン5b又は蒸気タービン7)に導入されるので、圧縮空気の冷却により発生した蒸気から動力回収ができ、これにより、プラントの効率を更に向上することが可能となる。
【0020】
また、気液熱交換器12で加熱した冷却水(補給水)の大部分をボイラー給水として脱気給水加熱器15に送り、更に蒸気発生器13で発生した蒸気の一部を脱気給水加熱器15に送ることにより、この蒸気によりボイラー給水を飽和温度まで加熱してボイラー給水を脱気することができ、圧縮空気の冷却により発生した蒸気を、動力回収のみならず、脱気器の加熱にも用いることができ、従来必要であった蒸気を節約し、プラントの効率を更に向上させることができる。
【0021】
なお、本発明は上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。
【0022】
【発明の効果】
上述したように、本発明のガスタービン発電装置は、冷却水量を補給水量以上に増大することなく、大量の熱量を中間冷却することができ、これにより従来以上の高い熱効率を達成することができる等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明によるガスタービン発電装置の構成図である。
【図2】本発明による別のガスタービン発電装置の構成図である。
【図3】中間冷却器を用いたCHATサイクルの構成図である。
【図4】ISTIGサイクルの構成図である。
【図5】中間冷却を行う次世代コンバインドサイクルの構成図である。
【符号の説明】
1a,1b,1c,1d 圧縮機
2 サチュレータ
3 排熱回収装置
4,4a,4b 燃焼器
5,5a,5b タービン
6 中間冷却器
7 蒸気タービン
8 混合器
9 発電機
10 ガスタービン発電装置
12 気液熱交換器
13 蒸気発生器
14 中間冷却器
15 ディアレータ(脱気給水加熱器)
15a ディアレータの冷却器
16a,16b 熱交換器
17a,17b 予熱された給水ライン
18a,18b 蒸気ライン
19 スタック(煙突)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas turbine power generator, and more particularly to a gas turbine power generator that performs intermediate cooling and steam injection.
[0002]
[Prior art]
In a power generator using a gas turbine, a steam-injected gas turbine cycle (STIG cycle or CHEN cycle) that improves performance by injecting water vapor into air or combustion gas, and an intercooler Intercooled and Steam-Injected Gas Turbine (ISTIG cycle) is known (eg “An Assessment of the Thermodynamic Performance of Mixed Gas-Steam Cycles: Part A-Intercooled and Steam”) -Injected Cycles ", Journal of Engineering for Gas Turbine, Vol. 117, July 1995).
[0003]
FIG. 3 is an example of a reburning type CHAT cycle using an intercooler, in which air A is compressed by compressors 1a, 1b, 1c, and 1d, contains moisture by saturator 2, and is preheated by exhaust heat recovery device 3. Then, the fuel F supplied to the combustors 4a and 4b and separately preheated fuel F is combusted to generate a high temperature gas E. The high temperature gas E rotates the high pressure turbine 5a and the low pressure turbine 5b to generate electric power, and further discharges. The heat recovery device 3 recovers the exhaust heat. In this cycle, the intercooler 6 is provided between the compressors 1b, 1c, and 1d, and a thermal efficiency of 54.7% is achieved when the inlet temperature of the low-pressure gas turbine is 1394 ° C. In addition, 9 is a generator in this figure.
[0004]
FIG. 4 is an example of the ISTIG cycle reported in the above-mentioned literature. As shown in FIG. 4 (A), this cycle is a combined cycle provided with a steam turbine 7 in addition to the intercooler 6, and air mixed with water vapor in the mixer 8 is supplied to the combustor 4 to improve thermal efficiency. It comes to improve. The other basic configuration is substantially the same as the CHAT cycle of FIG. 3 except that there is no saturator and low-pressure combustor. In this ISTIG cycle, as shown in FIG. 4B, a thermal efficiency of about 53% is achieved when the gas turbine inlet temperature is 1500 ° C.
[0005]
Further, FIG. 5 shows an example of a next generation combined cycle for performing intermediate cooling, and an intermediate cooler 6 and a steam turbine 7 are provided in the same manner as in FIG. 4, and both the gas turbine 5b and the steam turbine 7 generate electric power. ing. In addition to FIGS. 3 to 5, water may be directly injected into the compressed air without using an intercooler.
[0006]
[Problems to be solved by the invention]
The above-described CHAT cycle, ISTIG cycle, and next-generation combined cycle achieve high thermal efficiency (about 53% at a gas turbine inlet temperature of 1500 ° C.) as compared with existing gas turbine power generation devices. However, in these intermediate coolers, the compressed air is cooled by cooling water (make-up water or external cooling water), and the make-up water is used as jet steam to the turbine, and is discharged into the atmosphere after finishing the work in the turbine. This amount is normally about 10 to 15 wt% of the intake air amount, and if the outlet temperature of the low-pressure compressor is 100 ° C. or less, this amount can cool the air supplied to the combustor to about 40 to 50 ° C. it can. However, if the compression ratio of the low-pressure compressor is increased to improve the cycle efficiency, the outlet temperature becomes 150 ° C. or higher, and it is necessary to increase the amount of external cooling water and lower the outlet air temperature accordingly. In addition, the amount of heat loss increases. Further, if makeup water is used as it is, the outlet temperature becomes high and the effect of intermediate cooling cannot be obtained sufficiently. Furthermore, the means for directly injecting and injecting water can cool, but since steam is added, there is a problem that the driving power of the high-pressure compressor increases.
[0007]
The present invention has been developed to solve the above-described problems. That is, an object of the present invention is to provide a gas turbine power generator capable of intercooling a large amount of heat without increasing the amount of cooling water (amount of makeup water), thereby achieving higher thermal efficiency than before. There is.
[0008]
[Means for Solving the Problems]
According to the present invention, an intermediate cooler including a gas-liquid heat exchanger and a steam generator is provided between a plurality of compressors, and the gas-liquid heat exchanger and the steam generator are compressed air by a low-pressure side compressor. the steam generator is arranged to cool in the order of the gas-liquid heat exchanger, to preheat the cooling water (makeup water) in the gas-liquid heat exchanger and preheated by the gas-liquid heat exchanger wherein at least a portion of the coolant is evaporated in the steam generator, the generated steam is configured for supplying the turbine, the gas turbine power plant is provided, characterized in that.
[0009]
The present invention is characterized in that, in addition to sensible heat cooling with makeup water (cooling water), a part thereof is led to a steam generator to enhance the cooling effect on the air side and the generated steam is introduced into the turbine to increase the output. It is what.
That is, the intercooler is composed of a steam generator and a gas-liquid heat exchanger, the compressed air that has exited the low-pressure compressor is first introduced into the steam generator, and the compressed air that exits the steam generator is the gas-liquid heat exchanger Enters, is further cooled with makeup water, and enters the high pressure compressor. With this configuration, the amount that cannot be cooled by only sensible heat of a small amount of cooling water (makeup water) can be further cooled using the latent heat of water (evaporation heat).
[0010]
On the other hand, the supplied cooling water (make-up water) is preheated by the gas-liquid heat exchanger, and part of the make-up water leaving the gas-liquid heat exchanger is evaporated by the steam generator and introduced into the turbine. Power can be recovered from the steam generated by cooling the air, which can further improve the efficiency of the plant.
[0011]
According to a preferred embodiment of the present invention, a portion of the cooling water heated in the gas-liquid heat exchanger (makeup water) sent to the deaerator feed water heater as boiler feed water, the steam generated by the steam generator sending part in said deaerator feed water heater, thereby degassed by heating the boiler feed water to the saturation temperature, and supplies the remaining steam leaving the steam generator to the turbine. That is, by sending most of the cooling water (makeup water) heated by the gas-liquid heat exchanger to the degassing feed water heater, and further sending a part of the steam generated by the steam generator to the degassing feed water heater, The boiler feed water can be heated to the saturation temperature by this steam to degas the boiler feed water, and the steam generated by cooling the compressed air can be used not only for power recovery but also for heating the deaerator, Steam that has been necessary in the past can be saved and the efficiency of the plant can be further improved.
[0012]
The turbine for supplying steam is a gas turbine or a steam turbine. That is, the efficiency of a gas turbine power generation apparatus without a steam turbine can be increased by introducing the generated steam into the gas turbine to increase the output, or the combined cycle efficiency can be increased by supplying the steam turbine. You can also.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.
FIG. 1 is a configuration diagram of a gas turbine power generator according to the present invention. In this figure, the gas turbine power generator 10 of the present invention includes an intermediate cooler 14 comprising a gas-liquid heat exchanger 12 and a steam generator 13 between a plurality of compressors (low pressure compressor 1a and high pressure compressor 1b). I have. As shown in this figure, the gas-liquid heat exchanger 12 and the steam generator 13 are arranged so as to be countercurrent to the flow of compressed air, and the compressed air generated by the low-pressure compressor 1a is used as the steam generator. 13. The gas-liquid heat exchanger 12 is cooled in this order, the cooling water is preheated by the gas-liquid heat exchanger 12, and then at least a part thereof is evaporated by the steam generator 13. The gas-liquid heat exchanger 12 and the steam generator 13 may be plate fin heat exchangers, but may be ordinary shell and tube heat exchangers.
[0014]
In FIG. 1, 15 is a dilator (deaeration feed water heater), 15a is a vent condenser, 16a and 16b are heat exchangers, 17a and 17b are preheated water supply lines, 18a and 18b are steam lines, and 19 is a stack (chimney). ). In this embodiment, a part of the cooling water (make-up water) heated by the gas-liquid heat exchanger 12 is sent to the degassing feed water heater 15 as boiler feed water via the feed water line 17 a, and steam generated by the steam generator 13 is sent. Is sent to the degassing feed water heater 15 through the steam line 18b, whereby the boiler feed water is heated to the saturation temperature and degassed, and the remaining steam from the steam generator 13 is sent to the steam line. The low pressure turbine 5b is supplied via 18a.
[0015]
As a result of trial calculation of the heat balance of the gas turbine power generation device 10 shown in FIG. 1, it was confirmed that when the high-pressure turbine inlet temperature is about 1500 ° C., a power generation output of 179 MW and a thermal efficiency of 55.3% can be achieved. That is, compared with the conventional gas turbine power generator shown in FIGS. 3 to 5, a high thermal efficiency of about 0.6 to 2% or more can be achieved at the same gas turbine inlet temperature 1500 ° C.
[0016]
In this case, of 145 tons of makeup water, 129 tons are sent to the degassing feed water heater 15 via the feed water line 17a, and 15 tons of the remaining are supplied to the low pressure turbine 5b via the steam line 18a. The remaining about 0.6 ton was supplied to the degassing feed water heater 15.
[0017]
FIG. 2 is a configuration diagram of another gas turbine power generator according to the present invention. In this embodiment, the gas turbine power generation device 10 is a combined cycle including the steam turbine 7, and a part of the steam that has exited the steam generator 13 is supplied to the steam turbine 7 through the steam line 18a. ing. Other configurations are the same as those in FIG. With this configuration, high thermal efficiency can be achieved in the same manner as in FIG. 1, and the efficiency of the combined cycle can be increased by supplying the steam turbine.
[0018]
As described above, in the present invention, in addition to sensible heat cooling with makeup water (cooling water), a part of the sensible heat is led to a steam generator to enhance the cooling effect on the air side, and the generated steam is introduced into the turbine for output. To increase. That is, the intermediate cooler 14 is composed of the steam generator 12 and the gas-liquid heat exchanger 13, and the compressed air that has exited the low-pressure compressor 1 a is first introduced into the steam generator 13, and the compressed air that exits the steam generator 13. Enters the gas-liquid heat exchanger 12, is further cooled with makeup water, and enters the high-pressure compressor. With this configuration, the amount that cannot be cooled by only sensible heat of a small amount of cooling water (makeup water) can be further cooled using the latent heat of water (evaporation heat).
[0019]
On the other hand, the supplied cooling water (make-up water) is preheated by the gas-liquid heat exchanger 12, and a part of the make-up water (line 17b) exiting the gas-liquid heat exchanger 12 is evaporated by the steam generator 13, and the turbine Since it is introduced into (gas turbine 5b or steam turbine 7), power can be recovered from the steam generated by cooling of the compressed air, thereby further improving the efficiency of the plant.
[0020]
Further, most of the cooling water (makeup water) heated by the gas-liquid heat exchanger 12 is sent to the degassing water heater 15 as boiler feed water, and a part of the steam generated by the steam generator 13 is heated by degassing water supply. The boiler feed water can be heated to the saturation temperature by this steam by sending it to the vessel 15, and the boiler feed water can be deaerated. The steam generated by the cooling of the compressed air can be used not only for power recovery but also for heating the deaerator. This can also be used for saving the steam that has been required in the past and further improving the efficiency of the plant.
[0021]
In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.
[0022]
【The invention's effect】
As described above, the gas turbine power generation device of the present invention can intermediately cool a large amount of heat without increasing the amount of cooling water beyond the amount of makeup water, thereby achieving higher thermal efficiency than before. And so on.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a gas turbine power generator according to the present invention.
FIG. 2 is a configuration diagram of another gas turbine power generator according to the present invention.
FIG. 3 is a configuration diagram of a CHAT cycle using an intercooler.
FIG. 4 is a configuration diagram of an ISTIG cycle.
FIG. 5 is a configuration diagram of a next generation combined cycle in which intermediate cooling is performed.
[Explanation of symbols]
1a, 1b, 1c, 1d Compressor 2 Saturator 3 Exhaust heat recovery devices 4, 4a, 4b Combustors 5, 5a, 5b Turbine 6 Intermediate cooler 7 Steam turbine 8 Mixer 9 Generator 10 Gas turbine power generator 12 Gas-liquid Heat exchanger 13 Steam generator 14 Intermediate cooler 15 Dearator (deaerated feed water heater)
15a chiller 16a, 16b heat exchanger 17a, 17b preheated water supply line 18a, 18b steam line 19 stack (chimney)

Claims (3)

複数の圧縮機の中間に気液熱交換器と蒸気発生器からなる中間冷却器を備え、
前記気液熱交換器と前記蒸気発生器は、低圧側圧縮機による圧縮空気を当該蒸気発生器、当該気液熱交換器の順で冷却するように配置されており、
前記気液熱交換器で冷却水(補給水)を予熱し、前記気液熱交換器により予熱した前記冷却水のうち少なくともその一部を前記蒸気発生器で蒸発させ、発生した蒸気をタービンに供給するように構成した
ことを特徴とするガスタービン発電装置。
An intermediate cooler comprising a gas-liquid heat exchanger and a steam generator is provided between the compressors,
The steam generator and the gas-liquid heat exchanger, the steam generator of compressed air by the low-pressure side compressor is disposed to cool in the order of the gas-liquid heat exchanger,
Preheated cooling water (makeup water) in the gas-liquid heat exchanger, at least a portion of said cooling water preheated by the gas-liquid heat exchanger is evaporated in the steam generator, the generated steam to a turbine Configured to supply,
A gas turbine power generator characterized by that.
前記気液熱交換器で加熱した前記冷却水(補給水)の一部をボイラー給水として脱気給水加熱器に送り、前記蒸気発生器で発生した蒸気の一部を前記脱気給水加熱器に送り、これにより前記のボイラー給水を飽和温度まで加熱して脱気し、前記蒸気発生器を出た残りの蒸気を前記タービンに供給する、ことを特徴とする請求項1に記載のガスタービン発電装置。A portion of the cooling water heated in the gas-liquid heat exchanger (makeup water) sent to the deaerator feed water heater as boiler feed water, the portion of the steam generated in the steam generator to the deaerator feed water heater feed, thereby heating said boiler feed water to the saturation temperature is degassed, the supplies the remaining steam leaving the steam generator to the turbine, it gas turbine power generation according to claim 1, wherein apparatus. 蒸気を供給する前記タービンは、ガスタービン又は蒸気タービンである、ことを特徴とする請求項1又は2に記載のガスタービン発電装置。  The gas turbine power generator according to claim 1 or 2, wherein the turbine for supplying steam is a gas turbine or a steam turbine.
JP03348097A 1997-02-18 1997-02-18 Gas turbine power generator Expired - Fee Related JP3778225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03348097A JP3778225B2 (en) 1997-02-18 1997-02-18 Gas turbine power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03348097A JP3778225B2 (en) 1997-02-18 1997-02-18 Gas turbine power generator

Publications (2)

Publication Number Publication Date
JPH10231710A JPH10231710A (en) 1998-09-02
JP3778225B2 true JP3778225B2 (en) 2006-05-24

Family

ID=12387723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03348097A Expired - Fee Related JP3778225B2 (en) 1997-02-18 1997-02-18 Gas turbine power generator

Country Status (1)

Country Link
JP (1) JP3778225B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0301585D0 (en) * 2003-05-30 2003-05-30 Euroturbine Ab Procedure for operating a gas turbine group
US7007484B2 (en) * 2003-06-06 2006-03-07 General Electric Company Methods and apparatus for operating gas turbine engines
AT503533B1 (en) * 2006-04-24 2009-02-15 Falkinger Walter Ing INCREASE IN USE BY HUMIDITY GAS FLOWS IN GAS TURBINES
US20110308228A1 (en) * 2010-06-18 2011-12-22 General Electric Company Fin and Tube Heat Exchanger
CN102606237B (en) * 2012-03-06 2014-07-30 广东电网公司电力科学研究院 Open forward and inverse cycle coupling triple supply system of electricity, heat and cold based on combustion gas turbine
JP5555276B2 (en) * 2012-04-05 2014-07-23 川崎重工業株式会社 Gas turbine engine device equipped with Rankine cycle engine

Also Published As

Publication number Publication date
JPH10231710A (en) 1998-09-02

Similar Documents

Publication Publication Date Title
US5513488A (en) Power process utilizing humidified combusted air to gas turbine
US6684643B2 (en) Process for the operation of a gas turbine plant
US5609029A (en) Thermal power engine and its operating method
US5687560A (en) Steam raising apparatus for performance enhanced gas turbine powerplants
US5491971A (en) Closed circuit air cooled gas turbine combined cycle
JP4153662B2 (en) Gas / steam combined turbine equipment and its operation method
JPH08510311A (en) High efficiency multi-axis reheat turbine using intercooling and recuperation
JPH04228832A (en) Gas turbine and operation method therefor
US8833080B2 (en) Arrangement with a steam turbine and a condenser
JPH0586898A (en) Halfopen cycle operation type natural gas steam turbine system
JP2015514179A (en) Combined cycle power plant and method for operating a combined cycle power plant
WO2011082949A2 (en) Combined cycle power plant and method of operating such power plant
JPH094510A (en) Combustion engine plant, supercharging combustion engine device for combustion engine plant and improving method of efficiency of combustion engine plant
WO2004033872A1 (en) Atmospheric pressure combustion turbine system
JP3778225B2 (en) Gas turbine power generator
JP2002056865A (en) Compressed air supply device for fuel cell
JPS61201831A (en) Power generation method
KR20180056148A (en) Combined cycle power generation system
JP2004169696A (en) Composite power generation facility
JP2000291445A (en) Gas turbine plant and operating method for the same
CN114790923B (en) Feed liquid separation power circulation system combined with humidifying and dehumidifying technology and working method
JPS63215841A (en) Gas turbine generating system
JP3095680B2 (en) Hydrogen-oxygen combustion turbine plant
JP7423552B2 (en) Expanded gas turbine process with expander
KR940004338B1 (en) Process for producing power

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060221

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees