JP2012002498A - Fin and tube heat exchanger - Google Patents

Fin and tube heat exchanger Download PDF

Info

Publication number
JP2012002498A
JP2012002498A JP2011130782A JP2011130782A JP2012002498A JP 2012002498 A JP2012002498 A JP 2012002498A JP 2011130782 A JP2011130782 A JP 2011130782A JP 2011130782 A JP2011130782 A JP 2011130782A JP 2012002498 A JP2012002498 A JP 2012002498A
Authority
JP
Japan
Prior art keywords
tubes
heat exchanger
tube heat
fins
finned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011130782A
Other languages
Japanese (ja)
Other versions
JP6050567B2 (en
Inventor
Sebastian W Freund
セバスティアン・ダブリュー・フロウント
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2012002498A publication Critical patent/JP2012002498A/en
Application granted granted Critical
Publication of JP6050567B2 publication Critical patent/JP6050567B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/38Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being staggered to form tortuous fluid passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a smaller and inexpensive heat exchanger with lower energy loss and lower overall life cycle costs.SOLUTION: The fin and tube heat exchanger 210 includes: a plurality of tubes 220 with a plurality of fins 230 positioned on each of the tubes 220. The tubes 220 include a first set of tubes 240 and a second set of tubes 250, the first set of tubes 240 having an offset position 305 as compared to the second set of tubes 250. The first set of tubes 240 may include a first row of tubes 260 and a second row of tubes 270.

Description

本発明は、概してフィン管式熱交換器に関し、より詳細には、圧力損失を最小にしつつ熱伝達を最大にするように長方形フィン及び渦発生片を備えた半ねじれ型配置小型フィン管式熱交換器に関する。   The present invention relates generally to finned-tube heat exchangers, and more particularly to a semi-twisted arrangement small finned-tube heat with rectangular fins and vortex generators to maximize heat transfer while minimizing pressure loss. Regarding the exchanger.

様々なフィン管式熱交換器及び同様の構造体が市販されている。フィン管式熱交換器の構造の主な設計目標の1つは、圧力損失を最小にしつつ熱伝達を最大にすることに焦点を合わせている。一般的には、圧力損失の範囲は、熱交換器とその利用の運転維持費並びに全体のエネルギー損失及び効率に直接関連すると言える。   Various finned tube heat exchangers and similar structures are commercially available. One of the main design goals of the finned tube heat exchanger structure focuses on maximizing heat transfer while minimizing pressure loss. In general, it can be said that the range of pressure loss is directly related to the operation and maintenance costs of the heat exchanger and its utilization and the overall energy loss and efficiency.

既知のフィン管式熱交換器設計の一例として、密に離間配置されて螺旋状にねじれた円形フィンを備えた管束の利用がある。しかしながら、そのような円形フィンの利用は、それを通じて全般的に減少した気流速度によって比較的大きなバイパス流、伴流領域、及び低い熱伝達係数を生じさせる。更に、バイパス流は、フィンとその間の間隔に関する汚れの問題を悪化させるだけでなく、熱伝達係数を低下させる。円形フィンもまた、フィン間隔、従って管当たりの全有効表面積を制限する。   One example of a known finned tube heat exchanger design is the utilization of a bundle of tubes with circular fins that are closely spaced and helically twisted. However, the use of such circular fins results in a relatively large bypass flow, wake region, and low heat transfer coefficient due to the generally reduced airflow velocity therethrough. Furthermore, the bypass flow not only exacerbates the fouling problem with fins and the spacing between them, but also reduces the heat transfer coefficient. Circular fins also limit the fin spacing and thus the total effective surface area per tube.

連続プレートフィン及び略正方形フィンも使用されていた。そのような連続プレートフィンは、典型的な円形フィンと比べて伝達される熱単位当たりの圧力損失が低くなる傾向がある。連続プレートフィンは、非常に小型且つ効率的な熱交換器を製造するために使用されていたが、連続プレートフィン及び正方形フィンは、一般に大きな伝熱面積、大きな直径を有する管、及び/又は鋼製のフィンを必要とする熱回収蒸気発生器又は同じようなタイプの設備等の大規模発電所用途には一般的に適していなかった。   Continuous plate fins and generally square fins were also used. Such continuous plate fins tend to have lower pressure losses per unit of heat transferred compared to typical circular fins. Continuous plate fins have been used to produce very small and efficient heat exchangers, but continuous plate fins and square fins are generally large heat transfer areas, tubes with large diameters, and / or steel. It has generally not been suitable for large-scale power plant applications such as heat recovery steam generators or similar types of equipment that require made fins.

既知の管束配置は、一般的に直列又はねじれ型配列で構成される。ねじれ型配置は一般的に、そのような配置が直列配置と比べてバイパス流が幾分減少した高い熱伝達係数を示すので特に有利である。しかしながら、そのようなねじれ型配置の圧力損失は、管によって生じる形状抗力のために比較的高くなる。直列配置は、全体の抗力を減少させるように各管を先の管に続いて配置する。長円及び楕円形状の管及びフィンもまた抗力及び圧力損失を低減するために使用されていたが、そのような管は一般的に、発電所設備で通常見られる超高圧に耐えることができない。   Known tube bundle arrangements typically consist of a series or twisted arrangement. A torsional arrangement is generally particularly advantageous because such an arrangement exhibits a high heat transfer coefficient with a somewhat reduced bypass flow compared to a series arrangement. However, the pressure loss of such a twisted arrangement is relatively high due to the shape drag caused by the tube. The series arrangement places each tube following the previous tube so as to reduce the overall drag. Oval and elliptical shaped tubes and fins have also been used to reduce drag and pressure loss, but such tubes generally cannot withstand the ultra-high pressures normally found in power plant equipment.

フィン表面上の熱伝達を高めるために、ルーバー、コルゲーション(波形)、アンジュレーション(うねり)、セレーション(鋸歯状部)、ウィングレット(小翼)渦発生片等の利用を含む、様々な技術が探求されている。これらの改良技術の大部分は連続フィン熱交換器で利用されるのに対して、ディンプル(くぼみ)やセレーションは個々の円形フィンで利用される。これらの改良技術の幾つかを、所定のフィン又は一連のフィン上で組み合わせてもよい。   Various techniques are used to enhance heat transfer on the fin surface, including the use of louvers, corrugations (undulations), undulations (swells), serrations, winglet vortex generators, etc. Being explored. Most of these improved techniques are used in continuous fin heat exchangers, whereas dimples and serrations are used in individual circular fins. Some of these improved techniques may be combined on a given fin or series of fins.

米国特許第6578627B1号US Pat. No. 6,578,627 B1

従って、ひいては、エネルギー損失が低く、全体のライフサイクルコストが低い小型且つ安価な熱交換器を提供するために、単位圧力損失当たりの熱伝達率を増加させるように改良された小型フィン管式熱交換器が望まれている。このようなフィン管式熱交換器は、好ましくは様々なガスから液体又はガスから蒸気への熱伝達用途に利用され、具体的には発電所の操業等に利用される。   Thus, in order to provide a small and inexpensive heat exchanger with low energy loss and low overall life cycle cost, the small finned tube heat system improved to increase the heat transfer rate per unit pressure loss. An exchanger is desired. Such a finned-tube heat exchanger is preferably used for heat transfer from various gases to liquids or gas to steam, and specifically used for power plant operations and the like.

従って、本発明は、フィン管式熱交換器を提供する。フィン管式熱交換器は、各々の管上に配置された複数のフィンを備えた複数の管を含む。管は、第1組の管及び第2組の管を含み、第1組の管は第2組の管と比べてオフセット位置を有する。   Accordingly, the present invention provides a finned tube heat exchanger. The finned tube heat exchanger includes a plurality of tubes with a plurality of fins disposed on each tube. The tubes include a first set of tubes and a second set of tubes, the first set of tubes having an offset position relative to the second set of tubes.

本発明は、フィン管式熱交換器を更に提供する。フィン管式熱交換器は、各々の管上に配置された複数の長方形フィンを備えた複数の管を含む。長方形フィンは、その上に1つ以上の渦発生片を含む。   The present invention further provides a finned tube heat exchanger. The finned tube heat exchanger includes a plurality of tubes with a plurality of rectangular fins disposed on each tube. The rectangular fin includes one or more vortex generating pieces thereon.

本発明は、フィン管式熱交換器を更に提供する。フィン管式熱交換器は、第2組の管と比べてオフセット位置を有する第1組の管を備えた複数の管と、各々の管上に配置された複数の長方形フィンとを含む。長方形フィンは、複数の渦発生片を含む。   The present invention further provides a finned tube heat exchanger. The finned tube heat exchanger includes a plurality of tubes with a first set of tubes having offset positions relative to the second set of tubes, and a plurality of rectangular fins disposed on each tube. The rectangular fin includes a plurality of vortex generating pieces.

本発明のこれら及びその他の特徴並びに改良点は、図面及び添付の特許請求の範囲に関連してなされる以下の詳細な説明を検討することで当業者には明らかになるであろう。   These and other features and improvements of the present invention will become apparent to those of ordinary skill in the art upon review of the following detailed description, taken in conjunction with the drawings and the appended claims.

ガスタービンエンジンの概略図である。1 is a schematic view of a gas turbine engine. 本明細書に記載される半ねじれ型フィン管式熱交換器の一部の斜視図である。1 is a perspective view of a portion of a semi-twisted finned-tube heat exchanger described herein. FIG. 図2の半ねじれ型フィン管式熱交換器で使用される渦発生片を備えた個別長方形プレートフィンの斜視図である。FIG. 3 is a perspective view of individual rectangular plate fins with vortex generating pieces used in the semi-twisted finned tube heat exchanger of FIG. 2.

次に、図面を通して同様の番号が同様の要素を指す図面を参照すると、図1は、本明細書に記載されるガスタービンエンジン100の概略図を示す。ガスタービンエンジン100は、圧縮機110を含む。圧縮機110は、流入する空気流120を圧縮する。圧縮機110は、圧縮された空気流120を燃焼器130に送り込む。燃焼器130は、圧縮された空気流120を圧縮された燃料流140と混合し、混合物に点火して燃焼ガス流150を生成する。単一の燃焼器130のみが示されているが、ガスタービンエンジン100は複数の燃焼器130を含んでもよい。   Referring now to the drawings wherein like numerals refer to like elements throughout, FIG. 1 shows a schematic diagram of a gas turbine engine 100 as described herein. The gas turbine engine 100 includes a compressor 110. The compressor 110 compresses the incoming air stream 120. The compressor 110 feeds the compressed air stream 120 into the combustor 130. Combustor 130 mixes compressed air stream 120 with compressed fuel stream 140 and ignites the mixture to produce combustion gas stream 150. Although only a single combustor 130 is shown, the gas turbine engine 100 may include multiple combustors 130.

次いで、燃焼ガス流150はタービン160に送り込まれる。燃焼ガス流150は、タービンロータ170の回転によって機械的作用を生成するようにタービン160を駆動する。タービン160内で生成された機械的作用は、タービンロータ170を介して、圧縮機110と、例えば発電機180等の外部負荷とを駆動する。   The combustion gas stream 150 is then fed into the turbine 160. Combustion gas stream 150 drives turbine 160 to create a mechanical action by rotation of turbine rotor 170. The mechanical action generated in the turbine 160 drives the compressor 110 and an external load such as the generator 180 via the turbine rotor 170.

その後、既に使用済みの燃焼ガス流150は、熱回収蒸気発生器190又は他のタイプの熱交換器に送り込まれる。熱回収蒸気発生器190への使用済み燃焼ガス流150は、例えば、蒸気タービン、燃料予熱器、及び/又は他のタイプの作用に用いられる蒸気流200を加熱する。その後、燃焼ガス流150は排気されるか、又は別の方法で処理される。   The spent combustion gas stream 150 is then fed into a heat recovery steam generator 190 or other type of heat exchanger. The spent combustion gas stream 150 to the heat recovery steam generator 190 heats the steam stream 200 used, for example, for steam turbines, fuel preheaters, and / or other types of operations. Thereafter, the combustion gas stream 150 is evacuated or otherwise processed.

ガスタービンエンジン100は、天然ガス、様々なタイプの合成ガス、及び他のタイプの燃料を使用することができる。ガスタービンエンジン100は、ニューヨーク州スケネクタディのゼネラル・エレクトリック社によって提供されるいかなる数の異なるタービンであっても、そうでなくてもよい。ガスタービンエンジン100は、他の構成を有してもよく、他のタイプの構成要素を使用してもよい。他のタイプのガスタービンエンジンもまた、本明細書において使用することができる。複数のガスタービンエンジン100、他のタイプのタービン、及び他のタイプの発電設備を併せて使用してもよい。   The gas turbine engine 100 may use natural gas, various types of syngas, and other types of fuel. The gas turbine engine 100 may or may not be any number of different turbines provided by General Electric Company of Schenectady, NY. The gas turbine engine 100 may have other configurations and may use other types of components. Other types of gas turbine engines can also be used herein. Multiple gas turbine engines 100, other types of turbines, and other types of power generation equipment may be used in combination.

一般的には、熱回収蒸気発生器190は、蒸気発生プロセス等のための給水を、さもなければ無駄になった使用済み燃焼ガス流150によって加熱することができる非接触熱交換器であると言える。熱回収蒸気発生器190は、その中に介装された管束を備えた大型ダクトであって、燃焼ガス流150がダクトを通過するときに水が蒸気になるまで加熱されるようになっている。その他の熱回収蒸気発生器構成及び他のタイプの熱交換装置を本明細書において使用してもよい。   Generally, the heat recovery steam generator 190 is a non-contact heat exchanger that can heat feed water for a steam generation process or the like with a spent combustion gas stream 150 that is otherwise wasted. I can say that. The heat recovery steam generator 190 is a large duct with a bundle of tubes interposed therein, and is heated until the water becomes steam when the combustion gas stream 150 passes through the duct. . Other heat recovery steam generator configurations and other types of heat exchange devices may be used herein.

図2は、本明細書に記載される半ねじれ型フィン管式熱交換器210の一部を示す。半ねじれ型フィン管式熱交換器210は、熱回収蒸気発生器190の一部として、或いは任意のタイプの熱交換装置又は熱交換目的のために使用することができる。   FIG. 2 illustrates a portion of the semi-twisted finned-tube heat exchanger 210 described herein. The semi-twisted finned-tube heat exchanger 210 can be used as part of the heat recovery steam generator 190 or for any type of heat exchange device or heat exchange purposes.

半ねじれ型フィン管式熱交換器210は、上に配置された複数のフィン230を備えた、それを通って突出する複数の管220を含む。(明確にするために、1つの突出管220のみが示されている。)任意の数の管220及びフィン230を本明細書において使用することができる。半ねじれ型フィン管式熱交換器210は、既存のフィン管式熱交換器と比べて比較的小型であるが、所望の寸法、形状、及び/又は構成を有してもよい。   Semi-twisted finned tube heat exchanger 210 includes a plurality of tubes 220 projecting therethrough with a plurality of fins 230 disposed thereon. (For clarity, only one protruding tube 220 is shown.) Any number of tubes 220 and fins 230 may be used herein. The semi-twisted finned-tube heat exchanger 210 is relatively small compared to existing finned-tube heat exchangers, but may have a desired size, shape, and / or configuration.

半ねじれ型フィン管式熱交換器210は、ねじれ関係で配置された管220を含む。具体的には、第1組240の管220は、第2組250の管220からねじれ配置又はオフセットされる。第1組240の管220は、そこを通る空気流280に対して直列位置275を有する管220を備えた第1列260及び第2列270を含む。第2組250の管220は、同様に直列位置275を有する管220をその中に備えた第3列290及び第4列300を含む。第1組240及び第2組250において対の管220が示されているが、その中に任意の数の管220を備えた任意の数の列260,270及び290,300を本明細書において使用してもよい。第1組240及び第2組250は、互いに対してオフセット位置305を有して半ねじれ関係を形成する。オフセット位置305は、フィン230の横方向間隔のおよそ半分である。他のタイプのオフセット(ズレ)、間隔、及び構成を本明細書において使用してもよい。   Semi-twisted finned tube heat exchanger 210 includes tubes 220 arranged in a twisted relationship. Specifically, the first set 240 of tubes 220 is twisted or offset from the second set 250 of tubes 220. The first set 240 of tubes 220 includes a first row 260 and a second row 270 with tubes 220 having a series position 275 relative to the air flow 280 therethrough. The second set 250 of tubes 220 includes a third row 290 and a fourth row 300 with tubes 220 also having a series position 275 therein. Although pairs of tubes 220 are shown in first set 240 and second set 250, any number of rows 260, 270 and 290,300 with any number of tubes 220 therein are shown herein. May be used. The first set 240 and the second set 250 have an offset position 305 with respect to each other to form a semi-twisted relationship. The offset position 305 is approximately half of the lateral spacing of the fins 230. Other types of offsets, gaps, and configurations may be used herein.

図2及び図3に示すように、半ねじれ型フィン管式熱交換器210のフィン230は、略長方形フィン310の形である。各長方形フィン310は、その角に配置された複数の渦発生片320を有する。この例では、渦発生片320は略三角形状330を有する。更に、渦発生片320の1つの対向対は上向き角度340を有し、渦発生片320のもう1つの対向対は下向き角度350を有する。他の寸法、構成、及び/又は角度の任意の数の渦発生片320を本明細書において使用してもよい。   As shown in FIGS. 2 and 3, the fins 230 of the semi-twisted finned-tube heat exchanger 210 are substantially rectangular fins 310. Each rectangular fin 310 has a plurality of vortex generating pieces 320 arranged at its corners. In this example, the vortex generating piece 320 has a substantially triangular shape 330. Further, one opposing pair of vortex generating pieces 320 has an upward angle 340 and another opposing pair of vortex generating pieces 320 has a downward angle 350. Any number of vortex generators 320 of other dimensions, configurations, and / or angles may be used herein.

長方形フィン310はまた、各管220の周囲に略偏心位置360を有する。その結果、各組240,250の列260,270及び290,300の間の距離は最小になる(従って、各組240,250の管220の間の距離が長くなる)。その他のタイプの配置を本明細書において使用してもよい。各長方形フィン310の間にギャップ370が存在する。ギャップ370の寸法及び形状は異なってもよい。ギャップ370は、長方形フィン310が使用時に略連続フィンとして作用するように寸法決めされる。   The rectangular fin 310 also has a generally eccentric position 360 around each tube 220. As a result, the distance between rows 260, 270 and 290, 300 of each set 240, 250 is minimized (thus the distance between the tubes 220 of each set 240, 250 is increased). Other types of arrangements may be used herein. There is a gap 370 between each rectangular fin 310. The size and shape of the gap 370 may vary. The gap 370 is dimensioned so that the rectangular fin 310 acts as a generally continuous fin when in use.

上述の通り、直列管配置は概して圧力損失が低いという利点を有する一方、ねじれ型配置は概して熱伝達が高くなる。従って、使用時、本明細書に記載の半ねじれ型フィン管式熱交換器210は、両方の配置の利点を組み合わせている。この例では具体的に、第1組240の第2列270及び第2組250の第4列300が、概してそれぞれ第1組240の第1列260及び第2組250の第3列290に続いて配置される。従って、このねじれ又はオフセット位置305は、特に列260,270及び290,300のフィン230の偏心位置360に部分的に基づいて管220の直列列260,270及び290,300の間の距離を比較的小さくすることにより、圧力損失の一部の原因である空力形状抗力を削減する。同様に、管220の第1組240及び第2組250をずらすことにより、フィン230上の熱伝達を高めるように馬蹄渦及び伴流渦を生成又は強化する。   As described above, the series tube arrangement has the advantage of generally low pressure loss, while the twisted arrangement generally provides higher heat transfer. Thus, in use, the semi-twisted finned tube heat exchanger 210 described herein combines the advantages of both arrangements. Specifically in this example, the second row 270 of the first set 240 and the fourth row 300 of the second set 250 are generally in the first row 260 of the first set 240 and the third row 290 of the second set 250, respectively. It is arranged next. Thus, this twist or offset position 305 compares the distance between the series rows 260, 270 and 290, 300 of the tube 220, in particular based in part on the eccentric position 360 of the fins 230 of the rows 260, 270 and 290, 300. To reduce the aerodynamic shape drag, which is part of the pressure loss. Similarly, shifting the first set 240 and the second set 250 of tubes 220 creates or enhances horseshoe vortices and wake vortices to enhance heat transfer on the fins 230.

半ねじれ型フィン管式熱交換器210の長方形フィン310は、流れ場を変更したり、余り又は少しもバイパス流を形成したりすることなく、狭いフィン間隔が可能になるように、主に連続プレートフィンとして作用する。長方形フィン310間のギャップ370の寸法によって、例えば、上記の円形フィン及び管束と比べてバイパス流をそれほど多くなくできると共に、個々の管220の小さな束への取り付けが可能になる。具体的には、ギャップ370は、半連続プレートフィンを形成するのに十分な小ささであるが、実質的に境界層を取り除くのに十分な大きさである。従って、ギャップ370は、熱伝達性能に良い影響をもたらすようにフィン310間の一部の混合層及び境界層破壊が可能である。   The rectangular fins 310 of the semi-twisted finned-tube heat exchanger 210 are mainly continuous so that narrow fin spacing is possible without changing the flow field or creating too much or little bypass flow. Acts as a plate fin. The size of the gap 370 between the rectangular fins 310 allows, for example, less bypass flow than the circular fins and tube bundles described above, and allows attachment of individual tubes 220 to a small bundle. Specifically, gap 370 is small enough to form a semi-continuous plate fin, but is large enough to substantially remove the boundary layer. Thus, the gap 370 can be partially mixed and boundary layer broken between the fins 310 to have a positive impact on heat transfer performance.

半ねじれ型フィン管式熱交換器210の渦発生片320の三角端330もまた、ねじれ組240,250に対して馬蹄渦及び/又は伴流渦を生成及び/又は強化する。縦渦及び他のタイプの渦も生成することができる。これらの渦は、長方形フィン310上の全体の熱伝達を高める傾向がある。交互の上向き及び下向き角度340,350の利用により、それぞれ上下のフィン310と衝突するように流れの向きを変えることができる。そのような流れもまた、縦渦を強化して更に熱伝達を増大させつつ、境界層を取り除くことができる。   The triangular end 330 of the vortex generating piece 320 of the semi-twisted finned-tube heat exchanger 210 also generates and / or enhances horseshoe vortices and / or wake vortices for the twist sets 240,250. Longitudinal vortices and other types of vortices can also be generated. These vortices tend to increase the overall heat transfer on the rectangular fins 310. By using alternate upward and downward angles 340, 350, the flow direction can be changed to collide with the upper and lower fins 310, respectively. Such a flow can also remove the boundary layer while strengthening the longitudinal vortex to further increase heat transfer.

従って、半ねじれ型フィン管式熱交換器210は、オフセット位置305を有する管220のねじれ組240,250を提供する。各管220は、上に複数の渦発生片320を備えた複数の長方形フィン310を有する。フィン310は、各組240,250の列260,270及び290,300の間の距離を最小にするように偏心位置360を含むと同時に、フィン310はまたそれらの間に最小ギャップ370を有する。従って、半ねじれ型フィン管式熱交換器210は、管当たりの熱伝達が高い従来のフィン管設計と比べて低い圧力損失をもたらす。半ねじれ型フィン管式熱交換器210はまた、小型で所定の仕事に対する運転維持費が低く管列が少ない。   Thus, the semi-twisted finned tube heat exchanger 210 provides a twisted set 240,250 of tubes 220 having offset positions 305. Each tube 220 has a plurality of rectangular fins 310 with a plurality of vortex generating pieces 320 thereon. While fin 310 includes an eccentric position 360 to minimize the distance between rows 260, 270 and 290, 300 of each set 240, 250, fin 310 also has a minimum gap 370 therebetween. Thus, the semi-twisted finned tube heat exchanger 210 results in a lower pressure loss compared to conventional finned tube designs with high heat transfer per tube. The semi-twisted finned-tube heat exchanger 210 is also small and has low operation and maintenance costs for a given job and few tube rows.

従って、半ねじれ型フィン管式熱交換器210は、様々なガスから液体又はガスから蒸気への熱伝達用途に利用され、具体的には発電所の操業等に利用することができる。より小型、より良好、且つより安価な熱交換器は、概して設置面積が小さく運転維持費が少ない安価なエネルギーシステムを提供する。   Therefore, the semi-twisted finned-tube heat exchanger 210 is used for heat transfer from various gases to liquids or gas to steam, and can be used specifically for power plant operations. Smaller, better and cheaper heat exchangers generally provide an inexpensive energy system with a small footprint and low operating and maintenance costs.

上述の内容は本発明の好適な実施形態のみに関連していること、また特許請求の範囲及びその等価物によって定まる本発明の一般的な技術的思想及び技術的範囲から逸脱することなく当業者が本明細書において多くの変更及び修正を行なうことができることを理解されたい。   The above description relates only to the preferred embodiments of the present invention, and those skilled in the art without departing from the general technical idea and scope of the present invention defined by the claims and their equivalents. It should be understood that many changes and modifications can be made herein.

100 ガスタービンエンジン
110 圧縮機
120 空気流
130 燃焼器
140 燃料流
150 燃焼ガス流
160 タービン
170 ロータ
180 発電機
190 熱回収蒸気発生器
200 蒸気流
210 半ねじれ型フィン管式熱交換器
220 管
230 フィン
240 第1組
250 第2組
260 第1列
270 第2列
275 直列位置
280 空気流
290 第3列
300 第4列
305 オフセット位置
310 長方形フィン
320 渦発生片
330 三角形状
340 上向き角度
350 下向き角度
360 偏心位置
370 ギャップ
DESCRIPTION OF SYMBOLS 100 Gas turbine engine 110 Compressor 120 Air flow 130 Combustor 140 Fuel flow 150 Combustion gas flow 160 Turbine 170 Rotor 180 Generator 190 Heat recovery steam generator 200 Steam flow 210 Semi-twisted finned pipe heat exchanger 220 Pipe 230 Fin 240 1st set 250 2nd set 260 1st row 270 2nd row 275 Series position 280 Air flow 290 3rd row 300 4th row 305 Offset position 310 Rectangular fin 320 Vortex generating piece 330 Triangular shape 340 Upward angle 350 Downward angle 360 Eccentric position 370 Gap

Claims (12)

複数の管(220)であって、第1組の管(240)及び第2組の管(250)を含む前記複数の管(220)と、
前記複数の管(220)の各々の上に配置された複数のフィン(230)とを含み、
前記第1組の管(240)は前記第2組の管(250)と比べてオフセット位置(305)を有する、フィン管式熱交換器(210)。
A plurality of tubes (220), said plurality of tubes (220) including a first set of tubes (240) and a second set of tubes (250);
A plurality of fins (230) disposed on each of the plurality of tubes (220);
The finned tube heat exchanger (210), wherein the first set of tubes (240) has an offset position (305) relative to the second set of tubes (250).
前記第1組の管(240)は、第1列の管(260)及び第2列の管(270)を含む、請求項1に記載のフィン管式熱交換器(210)。   The finned tube heat exchanger (210) of claim 1, wherein the first set of tubes (240) comprises a first row of tubes (260) and a second row of tubes (270). 前記第1列の管(260)及び前記第2列の管(270)は、前記第1列の管(260)及び前記第2列の管(270)を横切る流れ(280)に対して直列位置(275)を有する、請求項2に記載のフィン管式熱交換器(210)。   The first row of tubes (260) and the second row of tubes (270) are in series with the flow (280) across the first row of tubes (260) and the second row of tubes (270). The finned tube heat exchanger (210) of claim 2 having a position (275). 前記第2組(250)の管は、第3列の管(290)及び第4列の管(300)を含む、請求項2に記載のフィン管式熱交換器(210)。   The finned tube heat exchanger (210) of claim 2, wherein the second set (250) of tubes comprises a third row of tubes (290) and a fourth row of tubes (300). 前記オフセット位置(305)はフィン(230)の長さのおよそ半分である、請求項1に記載のフィン管式熱交換器(210)。   The finned tube heat exchanger (210) of claim 1, wherein the offset position (305) is approximately half the length of the fin (230). 前記複数のフィン(230)は複数の長方形フィン(310)を含む、請求項1に記載のフィン管式熱交換器(210)。   The finned tube heat exchanger (210) of claim 1, wherein the plurality of fins (230) comprises a plurality of rectangular fins (310). 前記複数のフィン(230)はその上に複数の渦発生片(320)を含む、請求項1に記載のフィン管式熱交換器(210)。   The finned tube heat exchanger (210) of claim 1, wherein the plurality of fins (230) includes a plurality of vortex generating pieces (320) thereon. 前記複数の渦発生片(320)は略三角形状(330)を有する、請求項7に記載のフィン管式熱交換器(210)。   The finned tube heat exchanger (210) according to claim 7, wherein the plurality of vortex generating pieces (320) have a substantially triangular shape (330). 前記複数の渦発生片(320)は、1つ以上の上向き角度(340)及び1つ以上の下向き角度(350)を有する、請求項7に記載のフィン管式熱交換器(210)。   The finned tube heat exchanger (210) of claim 7, wherein the plurality of vortex generating pieces (320) have one or more upward angles (340) and one or more downward angles (350). 前記複数のフィン(230)は各管(220)の周囲に略偏心位置(360)を有する、請求項1に記載のフィン管式熱交換器(210)。   The finned tube heat exchanger (210) of claim 1, wherein the plurality of fins (230) have a substantially eccentric position (360) around each tube (220). 第1の管(220)上に配置された第1の複数のフィン(230)及び第2の管(220)上に配置された第2の複数のフィン(230)は、それらの間にギャップ(370)を有する、請求項1に記載のフィン管式熱交換器(210)。   A first plurality of fins (230) disposed on the first tube (220) and a second plurality of fins (230) disposed on the second tube (220) have a gap therebetween. The finned-tube heat exchanger (210) of claim 1 having (370). 熱回収蒸気発生器(190)を構成する、請求項1に記載のフィン管式熱交換器(210)。   The finned-tube heat exchanger (210) of claim 1, comprising a heat recovery steam generator (190).
JP2011130782A 2010-06-18 2011-06-13 Finned tube heat exchanger Expired - Fee Related JP6050567B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/818,218 US20110308228A1 (en) 2010-06-18 2010-06-18 Fin and Tube Heat Exchanger
US12/818,218 2010-06-18

Publications (2)

Publication Number Publication Date
JP2012002498A true JP2012002498A (en) 2012-01-05
JP6050567B2 JP6050567B2 (en) 2016-12-21

Family

ID=44357613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011130782A Expired - Fee Related JP6050567B2 (en) 2010-06-18 2011-06-13 Finned tube heat exchanger

Country Status (5)

Country Link
US (1) US20110308228A1 (en)
JP (1) JP6050567B2 (en)
KR (1) KR101795039B1 (en)
DE (1) DE102011050865A1 (en)
GB (1) GB2481296B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014108209A1 (en) * 2014-06-11 2015-12-17 GEA Luftkühler GmbH heat exchangers
CN106594518B (en) * 2016-11-28 2018-11-20 北京有色金属研究总院 A kind of metal hydride hydrogen storage unit with high efficient heat exchanging
US11774187B2 (en) * 2018-04-19 2023-10-03 Kyungdong Navien Co., Ltd. Heat transfer fin of fin-tube type heat exchanger
US11512635B2 (en) * 2019-09-26 2022-11-29 Halliburton Energy Services, Inc. Gas turbine waste heat utilization

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930180B1 (en) * 1969-05-22 1974-08-10
JPS5150879A (en) * 1974-09-05 1976-05-04 Basf Ag Hannogasukarashokaseiseibutsu tokunimusuifutaarusanokaishusurutamenoshokakitoshiteno fuinkannetsukokanki
US4567351A (en) * 1983-08-10 1986-01-28 Matsushita Electric Works, Ltd. Electric space heater employing a vaporizable heat exchange fluid
JPH04500717A (en) * 1988-09-13 1992-02-06 ガデリウス スンロッド アーベー Heat-Exchanger Tube Surface Enlargement Element
JPH09264697A (en) * 1996-03-28 1997-10-07 Matsushita Electric Works Ltd Heat exchanger
JPH10231710A (en) * 1997-02-18 1998-09-02 Ishikawajima Harima Heavy Ind Co Ltd Gas turbine generating device
JP2000304484A (en) * 1999-04-15 2000-11-02 Hitachi Ltd Heat exchanger, its manufacture, and refrigerator equipped therewith
US6302197B1 (en) * 1999-12-22 2001-10-16 Isteon Global Technologies, Inc. Louvered plastic heat exchanger
JP2002535600A (en) * 1999-01-22 2002-10-22 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Heat exchanger with tube sheet
JP2002350078A (en) * 2001-05-24 2002-12-04 Sharp Corp Heat exchanger
KR20100052290A (en) * 2008-11-10 2010-05-19 주식회사비에스금속 Finned tube for heat exchanger

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB377884A (en) * 1931-12-18 1932-08-04 Georg Franz Holler Improvements in, or relating to, economisers, heat exchangers or like assembly of pipes or tubes
GB451028A (en) * 1935-01-28 1936-07-28 Henrik Valdemar Zander Improvements in tubular heat exchange apparatus for fluids
US2063736A (en) * 1935-03-08 1936-12-08 Gen Motors Corp Heat exchanger
GB561026A (en) * 1942-10-29 1944-05-02 Edwin James Bowman Improvements in radiators for cooling liquids
US2585912A (en) * 1947-11-01 1952-02-19 Hydrocarbon Research Inc Regenerator for the recovery of the cold content of gases
GB779600A (en) * 1953-05-12 1957-07-24 Green & Son Ltd Improvements in heat exchangers
BE561143A (en) * 1956-09-28
DE2658834A1 (en) * 1976-12-24 1978-07-06 Maschf Augsburg Nuernberg Ag Heat exchanger element - with tubes in even rows offset against odd rows and ribs of alternating width leaving air access channels
US5042576A (en) * 1983-11-04 1991-08-27 Heatcraft Inc. Louvered fin heat exchanger
US4787442A (en) * 1987-12-04 1988-11-29 Carrier Corporation Delta wing and ramp wing enhanced plate fin
US4984626A (en) * 1989-11-24 1991-01-15 Carrier Corporation Embossed vortex generator enhanced plate fin
JP3292077B2 (en) * 1997-01-30 2002-06-17 株式会社日立製作所 Heat exchangers and air conditioners
KR100363201B1 (en) * 2000-03-08 2002-12-05 주식회사 엘지이아이 Heat Exchange Fin
US6705391B1 (en) * 2001-10-19 2004-03-16 Scott Jay Lewin Heat exchanger
US6578627B1 (en) * 2001-12-28 2003-06-17 Industrial Technology Research Institute Pattern with ribbed vortex generator
US6789317B1 (en) * 2003-06-17 2004-09-14 Bechtel Bwxt Idaho, Llc Finned tube with vortex generators for a heat exchanger
US6907919B2 (en) * 2003-07-11 2005-06-21 Visteon Global Technologies, Inc. Heat exchanger louver fin

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930180B1 (en) * 1969-05-22 1974-08-10
JPS5150879A (en) * 1974-09-05 1976-05-04 Basf Ag Hannogasukarashokaseiseibutsu tokunimusuifutaarusanokaishusurutamenoshokakitoshiteno fuinkannetsukokanki
US4567351A (en) * 1983-08-10 1986-01-28 Matsushita Electric Works, Ltd. Electric space heater employing a vaporizable heat exchange fluid
JPH04500717A (en) * 1988-09-13 1992-02-06 ガデリウス スンロッド アーベー Heat-Exchanger Tube Surface Enlargement Element
JPH09264697A (en) * 1996-03-28 1997-10-07 Matsushita Electric Works Ltd Heat exchanger
JPH10231710A (en) * 1997-02-18 1998-09-02 Ishikawajima Harima Heavy Ind Co Ltd Gas turbine generating device
JP2002535600A (en) * 1999-01-22 2002-10-22 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Heat exchanger with tube sheet
JP2000304484A (en) * 1999-04-15 2000-11-02 Hitachi Ltd Heat exchanger, its manufacture, and refrigerator equipped therewith
US6302197B1 (en) * 1999-12-22 2001-10-16 Isteon Global Technologies, Inc. Louvered plastic heat exchanger
JP2002350078A (en) * 2001-05-24 2002-12-04 Sharp Corp Heat exchanger
KR20100052290A (en) * 2008-11-10 2010-05-19 주식회사비에스금속 Finned tube for heat exchanger

Also Published As

Publication number Publication date
GB2481296A (en) 2011-12-21
DE102011050865A8 (en) 2012-08-23
KR101795039B1 (en) 2017-11-07
JP6050567B2 (en) 2016-12-21
GB2481296B (en) 2017-01-11
US20110308228A1 (en) 2011-12-22
KR20110138179A (en) 2011-12-26
GB201109855D0 (en) 2011-07-27
DE102011050865A1 (en) 2011-12-22

Similar Documents

Publication Publication Date Title
Kumar et al. Convective heat transfer enhancement in solar air channels
JP5010635B2 (en) Heat exchanger
CN101509427A (en) Exhaust stacks and power generation systems for increasing gas turbine power output
JP6050567B2 (en) Finned tube heat exchanger
US8281564B2 (en) Heat transfer tubes having dimples arranged between adjacent fins
US10502493B2 (en) Single pass cross-flow heat exchanger
JP2010048546A (en) Dimple and serrated molded finned tube structure
EP2530420A2 (en) Fin and tube heat exchanger
EP3645954B1 (en) Heat transfer elements for rotary heat exchangers
JP2012154615A (en) Boiler pipe configuration of heat recovery steam generator
KR20130021551A (en) Gas turbine for recuperator heat exchanger
JPH10122501A (en) Waste heat recovery boiler
KR20110022044A (en) Improved heat exchanger tube and air-to-air intercooler
RU2584749C1 (en) Turbo compressor power plant
US20200103178A1 (en) Counter-flow heat exchanger
JP2006010110A (en) Heat exchanger
EP0947793A2 (en) Finned-tube heat exchanger
JPH085077A (en) Gas turbine device having air-cooled tube nest combustion device
RU2265127C2 (en) Single-rim turbine with pressure stages
JP2015021649A (en) Heat transfer tube structure
JP2011122740A (en) Air-cooled condenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160226

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161125

R150 Certificate of patent or registration of utility model

Ref document number: 6050567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees