JP6050228B2 - 非接触給電システム、非接触給電装置、非接触給電プログラム、及び非接触給電方法 - Google Patents
非接触給電システム、非接触給電装置、非接触給電プログラム、及び非接触給電方法 Download PDFInfo
- Publication number
- JP6050228B2 JP6050228B2 JP2013519527A JP2013519527A JP6050228B2 JP 6050228 B2 JP6050228 B2 JP 6050228B2 JP 2013519527 A JP2013519527 A JP 2013519527A JP 2013519527 A JP2013519527 A JP 2013519527A JP 6050228 B2 JP6050228 B2 JP 6050228B2
- Authority
- JP
- Japan
- Prior art keywords
- unit
- matrix
- current
- power
- power transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 48
- 239000011159 matrix material Substances 0.000 claims description 285
- 230000005540 biological transmission Effects 0.000 claims description 193
- 239000013598 vector Substances 0.000 claims description 154
- 239000003990 capacitor Substances 0.000 claims description 86
- 230000006870 function Effects 0.000 claims description 15
- 230000021715 photosynthesis, light harvesting Effects 0.000 claims description 12
- 238000005265 energy consumption Methods 0.000 claims description 11
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 43
- 230000008569 process Effects 0.000 description 22
- 230000014509 gene expression Effects 0.000 description 21
- 238000001514 detection method Methods 0.000 description 15
- 230000004048 modification Effects 0.000 description 14
- 238000012986 modification Methods 0.000 description 14
- 238000004088 simulation Methods 0.000 description 12
- 238000004364 calculation method Methods 0.000 description 9
- 230000001360 synchronised effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 230000003014 reinforcing effect Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 239000013256 coordination polymer Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00304—Overcurrent protection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/14—Inductive couplings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/005—Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/70—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
- H04B5/79—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Secondary Cells (AREA)
Description
また、特許文献2では、フロアーにコイル共鳴素子を敷き詰め、子機の位置までこのコイル共振素子の電力伝送経路を設けることで、子機に電力を伝送する。
しかしながら、特許文献2では、電力伝送経路上のコイル共鳴素子に電流を流しているのでオーム損失が大きいため、高効率のエネルギーを伝送できない。
また特許文献3では、複数の親機から主コイルに電流を流し、その他のコイルのうち、少なくとも1つのコイルへ逆向きの電流を流して漂流磁界を減らして親機と子機との結合を強めることが開示されている。
しかしながら、特許文献3では、正方格子状に4つのコイルを配置したベースユニット(親機のコイル群)の格子の中心に子機のコイルがきた場合、4つのコイルには同じ方向の電流を流した方が効率が良いが、反対方向に電流を流すと、効率が低下する。また、子機のコイルと親機のコイルとの距離は、親機のコイルの直径の1/4以下にする必要があるので、遠距離のエネルギー伝送ができない。また、特許文献3では、コイルに流す電流を決定するユニバーサルなアルゴリズムが開示されていないため、コイルに流す電流を効率よく決定できない。また、特許文献3では、1ビットのオン状態とオフ状態の制御を行っているため、効率の向上には限界がある。
(1)本発明は上記の課題を解決するためになされたものであり、本発明の一態様は、N個(Nは2以上の整数)の親機電力送信部と、少なくとも一つの子機電力受信部と、前記N個の親機電力送信部に供給する電気信号を決定する配分決定部を具備する非接触給電システムにおいて、前記電気信号は、電流又は電圧あるいはその線形結合量を成分に有し、前記配分決定部は、前記各親機電力送信部に供給する電気信号を成分に持つN行×1列のN次元のベクトルXとするとき、行列AをN行×N列の正則なエルミート行列として、式(1)(〜は転置行列であり*は複素共役であり)のスカラーが非負であり、
以下、図面を参照しながら本発明の実施形態について詳しく説明する。
図1は、本発明の第1の実施形態に係るワイヤレス給電システムを示す概略図である。
この図において、ワイヤレス給電システムは、親機送電制御部1、N個の親機2−1〜2−N(各々を親機2−nとも称す)、及び、M個の子機3−1〜3−M(各々を子機3−mとも称す)を具備する。
親機送電制御部1は、複数の親機2−nに供給する電流を制御する。ここで、親機送電制御部1は、子機存在下での親機間のインピーダンス(抵抗に関する値)マトリクスの実部が作る行列の実部からなる実インピーダンスマトリクスZの‘0’又は ‘略0’でない固有値に対応する固有ベクトルに基づいて電流を制御する。例えば、親機送電制御部1は、実インピーダンスマトリクスZの固有値のうち、固有値の絶対値が、最大の固有値の絶対値(最大固有値と呼ぶ)の5%以上である固有ベクトルに基づいて電流を制御する。
これにより、ワイヤレス給電システムでは、複数の親機2−n間の相互インダクタンスの影響も含めて給電することができ、複数の親機2−nから子機3−mへの電力の伝送効率を向上できる。
親機2−nは、親機送電制御部1の制御に従って、電力(電流)を磁界に変換し、空間に向けて磁界を発生する。子機3−mは、複数の親機2−nから放射された磁界のエネルギーを電力に変換して受電する。子機3−mは、受電した電力を利用して、様々な動作を行う。
図2は、本実施形態に係る親機2−n及び子機3−mの構成を示す概略ブロック図である。この図において、親機2−nは、電源部21−n、電流計24−n、電圧計25−n、スイッチ26−n、及び電力送信部28−nを含んで構成される。電力送信部28−nは、キャパシタ22−n、コイル23−nを含んで構成される。なお、図2では、信号線は親機送電制御部1と親機2−1の接続のみを表記しているが、親機送電制御部1と他の親機2−nについても信号線は同様に接続されており、同期が取れている。
電流計24−nは、たとえば、A/Dコンバータのように、電流の実時間波形を出力できるものであればよい。すなわち、電流計24−nは、複素電流を測定する計器であり、その電流振幅および位相を同時に測定できるものである。電圧計25−nは、たとえば、A/Dコンバータのように、電圧の実時間波形を出力できるものであればそれでもよい。スイッチ26−nは、電気回路の開閉を行う。すなわち、電圧計25−nは、複素電圧を測定する計器であり、その電圧振幅および位相を同時に測定できるものである。ただし、負の電流は、位相が等しく振幅が負であると考えられる。
電源部21−nの他端は、キャパシタ22−nの他端、電圧計25−nの他端、及びコイル23−nの他端に接続されている。キャパシタ22−nの他端は、電源部21−nの他端、及びコイル23−nの他端に接続されている。電圧計25−nの他端は、コイル23−nの他端に接続されている。
電流計24−nの一端は、電源部21−nの一端、及びキャパシタ22−nの一端に接続されている。電流計24−nの他端は、スイッチ26−nを介して、電圧計25−nの一端及びコイル23−nの一端に接続されている。
また、電流計24−nは、コイル23−nに流れる電流を測定する。電圧計25−nは、コイル23−nに印加される電圧を測定する。スイッチ26−nは、開いた場合に、コイル23−nと電圧計25−nを、電源部21−nやキャパシタ22−n、電流計24−nから切り離す。これにより、電圧計25−nは、電源部21−nやキャパシタ22−nの影響を受けることなくコイル23−nに発生した電圧(例えば、後述する電圧の大きさVij)を測定できる。
コイル31−mは、流れる電流によって形成される磁界によって、エネルギーを蓄えたり、放出したりする受動電気部品である。キャパシタ32−mは、静電容量により電荷を蓄えたり、放出したりする受動素子である。スイッチ33−mは、電気回路の開閉を行う。整流器34−mは、交流電力を直流電流に変換する。蓄電デバイス35−mは、充電によって繰り返し使用できる蓄電素子であり、蓄電池やキャパシタを用いることができる。
なお、各子機3−mに含まれる蓄電デバイス(蓄電池ともいう)35−mは、それぞれ異なる蓄電容量(静電容量)であってもよい。電圧計36−mは、電圧を測定する計器である。負荷37−mは、電気エネルギーを消費するものである。
スイッチ制御部38−mは、電圧計36−mが測定した電圧に基づいて、スイッチの開閉を行う。具体的には、スイッチ制御部38−mは、電圧計36−mが測定した電圧が予め定められた閾値以上であるときは、スイッチ33−mを開く。一方、スイッチ制御部38−mは、電圧計36−mが測定した電圧が予め定められた閾値未満であるときは、スイッチ33−mを閉じさせる。
コイル31−mの他端は、キャパシタ32−mの他端及び整流器34の入力側の他端と接続されている。キャパシタ32−mの他端は、コイル31−mの他端に接続され、また、整流器34−mの入力側の他端に接続されている。
整流器34−mの出力側の他の一端は、蓄電池35−mの他の一端、電圧計36−mの他の一端、負荷37−mの他の一端と接続されている。蓄電池35−mの他の一端は、整流器の出力側の他の一端、電圧計36−mの他の一端、負荷37−mの他の一端と接続されている。電圧計36−mの他の一端は、整流器34−mの出力側の他の一端、蓄電池35−mの他の一端、負荷37−mの他の一端と接続されている。負荷37−mの他の一端は、整流器34−mの出力側の他の一端、蓄電池35−mの他の一端、電圧計36−mの他の一端と接続されている。
図3は、本実施形態に係る親機送電制御部1の構成を示すブロック図である。この図において、親機送電制御部1は、複素電圧検出部11、複素電流検出部12、電流配分決定部(配分決定部)13、電流振幅制御部15、記憶部16及び制御部17を含んで構成される。
電流配分決定部13は、スイッチ切替信号に基づいてスイッチ26−jが閉じられたときに、親機2−i(i=1〜N)で測定された情報を記憶部16に書き込む。具体的には、電流配分決定部13は、スイッチ切替信号に基づいてスイッチ26−jが閉じられたときに、複素電圧検出部11から入力された複素電圧情報(電圧計25−iが測定した電圧の大きさをVijで表す)及び複素電流検出部12から入力された複素電流情報(電流計24−iが測定した電流の大きさIijで表す。本実施形態では、Iii=I0)を記憶部16に書き込む。
制御部17は、ワイヤレス給電システムの起動時又は定期的に、更新命令を電流配分決定部13へ出力する。
電圧、電流入力部133は、通電親機選択部131が選択した親機2−iについて、複素電圧検出部11から入力された複素電圧情報(電圧の大きさVij)、及び、複素電流検出部12から入力された複素電流情報(電流の大きさIij)を記憶部16に書き込む。
具体的には、電流ベクトル生成部135は、次式(18)で表される電流ベクトルIを算出する。なお、電流ベクトルIは実ベクトルである。
電流ベクトル生成部135は、選択した電流ベクトルIをIの絶対値|I|で除算し、除算後のi成分であるIi/|I|を親機2−iに供給する電流の割合(電流比)として決定する。つまり、電流ベクトル生成部135は、複数の親機2−n各々に供給する電流比を決定する。なお、電流比には、−(マイナス)値も含まれる。
電流ベクトル生成部135は、決定した電流比を示す情報を電流振幅制御部15へ出力する。電流ベクトル生成部135は、スイッチ26−nのすべてを閉じさせるスイッチ切替信号を、スイッチ26−nへ出力する。なお、式(18)中のRe(Z)は実対称であるので、固有値λも実数となる。また、それに対応する固有ベクトルの成分も全て実数となるため、電流比は、電流と電圧を同相で駆動するための駆動制御信号となる。(なお、この時、電源部21−nから出る電流の位相同士は同相とはならない。)
以下、電流ベクトル生成部135が決定した電流比の電流を、親機2−nに供給した場合の作用効果について説明をする。
親機2−1〜2−Nには全部でN個のコイル23−1〜23−Nが、子機3−1〜3−Mには全部でM個のコイル31−1〜31−Mがある。各コイル23−1〜23−N、31−1〜31−Mは、それぞれ自己インダクタンスを持つとともに、各コイル間に相互インダクタンスが存在する。これを(N+M)×(N+M)次のインダクタンスマトリクスLの形で書くと式(19)のようになる。
次に、親機2−nのコイル23−nで消費されるエネルギーを、電流とインピーダンスマトリクスを用いた式で表す。親機2−nのコイル23−nで消費されるエネルギーは、コイル23−nを流れる電流によって生ずる磁界によって子機に伝送されるエネルギーと、コイル23−nの抵抗によるオーム損失の和となる。オーム損失は、磁界によって子機に伝送されるエネルギーに比べて小さいため、インピーダンスマトリクスZに摂動として取り入れられる。コイル23−1〜23−N全体で伝送されるエネルギーPは、式(22)となる。
なお、親機2−nに供給する電気信号が電圧の場合、規格化条件は、|V|2=一定である。
図4Bに示すように、コイル23―nが浮遊容量を有する場合、コイル23−nに流れる電流Iに代わって、アンテナの等価回路に流れる電流Iと電圧Vとの線形結合は次式(23)のように表される。
|I|2=一定の条件下で、式(22)を最大化する電流ベクトルIを求めることは、次に示す永年方程式(24)の最大固有値を持つ電流ベクトルIを求めることと数学的に等価である。
これらの固有値、電流ベクトルの中で最大の固有値に対応する電流ベクトルが、最大の電力転送効率を与える電流ベクトルである。
ここで、式(21)の第2項に現れるm番目の子機3−mの各親機2−1〜2−Nとの相互インダクタンス同士の直積は、(25)のようにN×N次元の行列となる。
固有値が0に対応する電流ベクトルは、すべての子機3−mに電力を送ることができず、コイル23−1〜23−Nでのオーム損失の原因となるだけであるため、このような電流ベクトルが示す電流の線形結合で表される電流を、コイル23−1〜23−Nに流しても無駄となる。
図5は、本実施形態に係る電流配分決定部13の動作の一例を示すフローチャートである。
(ステップS501)通電親機選択部131は、更新命令を入力されると、電流ベクトルの記憶部16の親機選択カウンタjに0を代入する。その後ステップS502に進む。
(ステップS502)通電親機選択部131は、記憶部16の親機選択カウンタjを1増加させる。その後ステップS503に進む。
(ステップS504)電流配分決定部13は、親機2−jのコイル23−jに電流を供給する。複素電圧検出部11は、親機2−iの電圧計25−i各々から、電圧計25−iが測定した電圧(Vij)を示す電圧情報を入力される。複素電流検出部12は、電流計24−i各々から、電流計24−iが測定した電流(Iij)を示す電流情報を入力される。ここで、i≠jのときIij=0である。その後ステップS505に進む。
(ステップS506)インピーダンスマトリクス生成部134は、ステップS504で求められたVijを成分とする行列を行列Vとして算出する。インピーダンスマトリクス生成部134は、ステップS504で求められたIijを成分とする行列を行列Iとして算出する。インピーダンスマトリクス生成部134は、次式(26)を用いて、インピーダンスマトリクスZの成分Zijを算出する。
電流ベクトル生成部135は、選択した電流ベクトルIをIの絶対値|I|で除算し、除算後のIi/|I|のi成分を親機2−iに供給する電流比として決定する。
(ステップS508)
電流ベクトル生成部135は、決定した電流比を示す情報を電流振幅制御部15に出力する。電流振幅制御部15は、入力された情報が示す電流比の電流を、各親機2−nに供給する。具体的には、Ii/|I|に比例する電流を、親機2−iのコイル23−iに供給する。
また、本実施形態によれば、ワイヤレス給電システムでは、複数のコイル23−nを流れる電流の大きさIの2乗の和が一定になるように、複数のコイル23−nに供給する電力を決定する。これにより、ワイヤレス給電システムでは、コイル23−nでのエネルギー損失(電流の大きさIの2乗の和に比例)を一定のもとで、最大のエネルギー効率で複数の親機2−nから子機3−mへ電力を供給できる。
また、本実施形態によれば、ワイヤレス給電システムでは、電流ベクトルIに対する固有値が最大のものになるように、複数のコイル23−nに供給する電力を決定する。これにより、ワイヤレス給電システムでは、複数の親機2−nが供給する電力が最大にでき、複数の親機2−nから子機3−mへの電力の伝送効率を向上できる。
この点、建物等には、鉄筋構造のものがある。この建物の部屋では、最大固有値は鉄筋に対する給電に対応するものになる場合がある。電流ベクトル生成部135が第二固有値を選択することで、ワイヤレス給電システムでは、鉄筋構造の建物の部屋でも、鉄筋に電力を供給してしまうことを防止できる。つまり、ワイヤレス給電システムでは、種々の固有値に対応する電流ベクトルIを選択することで、子機3−m以外の伝導体に電力を供給してしまうことを防止でき、親機2−nから子機3−mへの電力の伝送効率を向上できる。
なお、3番目以上の固有値に対応する固有ベクトルを選択してもよい。
図6A及び図6Bは、本実施形態に係るシミュレーションの結果を示す図である。この図において、x軸とy軸は空間座標を表し、xy平面は床面と平行の面である。z軸は、電力の大きさを表す。図6A及び図6Bのシミュレーションでは、10×10個(450mm間隔)のコイル23−nを床に付設し、床から1mと0.5mの位置にある子機アンテナに電力を送信する場合の電流パターンを示す。図6A及び図6Bのシミュレーションでは、コイル23−n、31−mの大きさは、親機2−n、子機3−m共に同一であり、コイルの直径が十分小さいという仮定の下で計算を行った。
図6A及び図6Bにおいて、符号601を付した点601と符号611を付した点611には、床からの距離が0.5mの高さに子機3−1が設置されている。符号602を付した点602と符号612を付した点612には、床からの距離が1mの高さに子機3−2が設置されている。
図6Bは、電流ベクトル生成部135が第二固有値に対応する場合の電流ベクトルIを選択した場合の図である。図6Bにおいて、子機3−2での電力は、任意スケールで7.37623であった。
このように、電流ベクトル生成部135が各々の固有値に対応する電流ベクトルIを選択することで、電力を供給する子機3−mを選択できる。
(ステップS801)通電親機選択部131aは、更新命令を入力されると、電流ベクトルの記憶部16の親機選択カウンタjに0を代入する。その後ステップS802に進む。
(ステップS802)通電親機選択部131aは、記憶部16の親機選択カウンタjを1増加させる。その後ステップS803に進む。
(ステップS804)複素電圧検出部11は、親機2−iの電圧計25−i各々から、電圧計25−iが測定した電圧(Vij)を示す電圧情報を入力される。複素電流検出部12は、電流計24−i各々から、電流計24−iが測定した電流(Iij)を示す電流情報を入力される。その後ステップS805に進む。
(ステップS806)インピーダンスマトリクス生成部134aは、次式(27)を用いて、インピーダンスマトリクスZの成分Zik(kは1からNまでの整数)を算出する。
インピーダンスマトリクス生成部134aは、この連立方程式(27)解くことによりインピーダンスマトリクスZの成分Zikを得る。なお、Zikは、対象行列であるので、独立な成分はN×(N−1)/2である。しかし、ここではそのことを無視して連立方程式を解く。この場合、複素の範囲でZik=Zkiとなる。その後、ステップS807へ進む。
電流ベクトル生成部135は、選択した電流ベクトルIに基づいてIi/|I|を算出し、算出したIi/|I|を親機2−iに供給する電流比として決定する。
(ステップS808)
電流ベクトル生成部135は、決定した電流比を示す情報を電流振幅制御部15に出力する。電流振幅制御部15は、入力された情報が示す電流比の電流を、各親機2−nに供給する。具体的には、Ii/|I|に比例する電流を、親機2−iのコイル23−iに供給する。
このように、子機3−mのスイッチ33−mを開閉することにより、ワイヤレス給電システムでは、大きな電力を給電する子機3−mを順次選択できる。
図9は、本実施形態の変形例2に係る親機及び子機の構成を示す概略ブロック図である。この図は、子機3−mにスイッチがない場合を示した図である。図9において、不図示の親機送電制御部1と親機20−nの信号線は接続されており、同期が取れている。図9において、電流計24−1は、複素電流を測定する計器であり、その電流振幅および位相を同時に測定できるものである。電圧計25−1は、複素電圧を測定する計器であり、その電圧振幅および位相を同時に測定できるものである。なお、電源部21−nは、親機送電制御部1から入力された電流を受け入れるコネクタであってもよい。
この場合、蓄電池35−mの充電は続けられる。キャパシタ32−mから負荷を見たインピーダンスの実部はチャージ状態が上がるにつれて大きくなり、親機から見た固有値は低下するものと考える。つまり、ワイヤレス給電システムでは、自然に給電の優先順位が下がり、給電されなくなる(受電拒否モード)。また、この場合には、ワイヤレス給電システムでは、スイッチ33−mを導入するコストを低減できる。なお、子機3−mには、スイッチ33−mを有するものと有しないものが混在してもよい。
以下、本発明の第2の実施形態について説明する。本実施形態に係るワイヤレス給電システムでは、インピーダンスマトリクスZの最大固有値に対応する固有ベクトルに収束するように、複数の親機のコイルに供給する電力を決定する。本実施形態に係る親機2−n及び子機3−mは、第1の実施形態のものと同じである。親機送電制御部1は、電流配分決定部13に代えて、別種の電流配分決定部13bを備える点が異なる。しかし、親機送電制御部1における他の構成は、第1の実施形態と同じであるので、説明は省略する。
初期電流ベクトル生成部136は、制御部17から更新命令が入力された場合に、べき乗法の初期値として、すべてのコイル23−nに同じ振幅I(0)、同位相の電流を供給させる。具体的には、初期電流ベクトル生成部136は、比が同一のとなる電流比を示す情報を電流振幅制御部15に出力する。ただし、初期電流は同じ振幅、同じ位相でなくてもよい。
電流ベクトル生成部137は、複素電圧検出部11から入力された複素電圧情報及び複素電流検出部12から入力された複素電流情報に基づいて、各親機の複素電圧の、複素電流と同相の成分を抽出し、その成分に比例した電流比を決定する(電流決定処理という)。電流ベクトル生成部137は、決定した電流比を示す情報を電流振幅制御部15に出力する。その後、電流ベクトル生成部137は、電流決定処理を繰り返す。
(ステップS1001)初期電流ベクトル生成部136は、更新命令を入力されると、繰り返し回数を示すカウンタkに0を代入する。その後、ステップS1002に進む。
(ステップS1002)初期電流ベクトル生成部136は、比が同一のとなる電流比を示す情報を電流振幅制御部15に出力する。これにより、電流振幅制御部15は、同じ振幅で同位相の電流Ii(0)を、親機2−iへ供給する。その後、ステップS1003に進む。
(ステップS1004)電流ベクトル生成部137は、複素電圧検出部11から入力された複素電圧情報を、記憶部16に書き込む。ここで、繰り返し回数がkのときに、親機2−iの電流計24−iが測定した電圧で、複素電流検出部12で測定された電流と同相の成分をVi(k)で表す。その後、ステップS1005へ進む。
その後、ステップS1003へ戻る。
以下、電流ベクトル生成部137が決定した電流比の電流を、親機2−nに供給した場合の作用効果について説明をする。
固有値は正の値をとるため、子機が最低1つあるとその固有値λ0は、λ0>0を満たす。
まず、全コイルに同振幅、同位相の電流をベクトル表示でI(0)を流したときn番目のコイルに観測される流した電流と同位相の電圧成分をベクトル表示でV(0)とすると式(31)の関係が成り立つ。
以上のように、電流配分決定部13bは、電流決定処理を繰り返すことにより、I(k)を最大固有値の固有ベクトルに収束させる。すなわち、電流配分決定部13bは、インピーダンスマトリクスZの固有ベクトルに収束するように、親機2−nはコイル23−nに供給する電力を決定する。換言すれば、電流配分決定部13bは、インピーダンスマトリクスZの実成分が最大固有値を持つように、親機2−nはコイル23−nに供給する。
図12A、図12B、及び図12Cにおいて、符号1101を付した点1101と符号1111を付した点1111と符号1121を付した点1121には、床からの距離が0.5mの高さに子機3−1が設置されている。符号1102を付した点1102と符号1112を付した点1112と符号1122を付した点1122には、床からの距離が1mの高さに子機3−2が設置されている。
図12Bは、電流ベクトル生成部137が第1回目の繰り返し計算を行った後の電流パターンを示す。点1111のみならず点1112にも電力が送信されていることを示している。
図12Cは、電流ベクトル生成部137が第2回目の繰り返し計算を行った後の電流パターンを示す。点1121のみに電力が送信されていることを示している。図12Cにおいて、子機3−1での電力は任意スケールで124.236であった。これは、図6Aで示した子機3−1での電力とほぼ等しく、繰り返し計算は収束していることを示している。
以下、本発明の第3の実施形態について説明する。本実施形態に係るワイヤレス給電システムでは、1台の高周波電源をN台の親機で共有する。つまり、親機に供給される電流は、親機の数より少数の高周波電源から供給される。親機は、高周波電源から供給される電流を制限することにより、親機のコイルに供給される電流を制御する。
電流受入部21b−nは、高周波電源4bから入力された高周波電流を電流制御部26b−nに供給する。
親機送電制御部1bは、電流計24−nが測定した電流、及び、電圧計25−nが測定した電圧に基づいて、セレクタ切替信号を生成する。また、親機送電制御部1bは、電流計24−nが測定した電流、及び電圧計25−nが測定した電圧に基づいて電流を設定し、設定した電流の正負に応じて電流方向切替信号を生成する。
電流制御部26b−nは、親機送電制御部1bが生成したセレクタ切替信号に基づいて、電流受入部21b−nから入力された電流を制限することにより、コイル23−nに流れる電流を制御する。
電流方向切替部27−nは、親機送電制御部1bが生成した電流方向切替信号に基づき、コイル23−nに流れる電流の向きを切り替える。
電流計24−1は、複素電流を測定する計器であり、その電流振幅および位相を同時に測定できるものである。電圧計25−1は、複素電圧を測定する計器であり、その電圧振幅および位相を同時に測定できるものである。
図13Bに示すように、セレクタSb1n、Sb2nは、3つのポートを有している。セレクタSb1nは、入力端子が電圧計25−nの一端に接続され、出力端子の一方がコイル23−nの一端に接続され、出力端子の他方がコイル23−nの他端に接続されている。セレクタSb2nは、入力端子が電圧計25−nの他端に接続され、出力端子の一方がコイル23−nの他端に接続され、出力端子の他方がコイル23−nの一端に接続されている。
B個のコンデンサC1〜CBの一端は電流計24−nに接続される。B個のコンデンサC1〜CBの他の一端は符合S1〜SBを付した端子S1〜SBに接続される。ここで、端子とは、セレクタ(切替部)262b−nの端子である。なお、符合S0を付した端子S0は開放とする。これは、機能しないスイッチであるが、これのみがオン状態になるときは、電流を遮断することを表し、ソフトウェアを簡略できる。セレクタ262b−nの他の一端は、コイル23−n及び電圧計25−nの一端と接続される。電流制御部26b−nは、電流配分決定部13bから入力されたセレクタ切替信号に応じてセレクタ262b−nの接続を切り替える。ここで、電流制御部26b−nは、端子S1〜SBのうちの1つとセレクタ262b−nを接続させる。つまり、スイッチ切替信号は、どのコンデンサC1〜CBとコイル23−nとを接続させるかを示す信号である。ただし、本発明はこれに限られず、セレクタ262b−nは、2つ以上の端子S1〜SBと接続させてもよい。また、負の電流に対しては、電流方向切替部27−nが電流の向きを反転させる。
電流配分決定部13bは、セレクタ切替信号に基づいてセレクタ262b−jが端子SBに接続されたときに、親機2b−j(j=1〜N)で測定された情報を記憶部16に書き込む。具体的には、電流配分決定部13bは、セレクタ切替信号に基づいてセレクタ262b−jが端子SBに接続されたときに、複素電圧検出部11から入力された複素電圧情報(電圧計25−iが測定した電圧の大きさをVijで表す)及び複素電流検出部12から入力された複素電流情報(電流計24−iが測定した電流の大きさをIijで表す。本実施形態では、Iii=I0)を記憶部16に書き込む。
電流振幅制御部15bは、生成したセレクタ切替信号を電流制御部26b−nに出力する。電流振幅制御部15bは、振幅を制御するセレクタ切替信号を出力するが、位相を制御する信号は出力しない。これは、本実施形態では、電流位相は制御できる上に、Cbが十分小さければ電流受入部21b−nに供給した電流とほぼ同位相の電流がコイル23−nに流れるからである。
図16は、選択テーブル記憶部18bに記憶される選択テーブルの一例を示す概略図である。図16に示した例では、図14において、B=10の例を説明する図である。図示するように選択テーブルは、電流比γ及びセレクタ端子の各項目の列を有している。選択テーブルは、電流比毎にセレクタ選択情報が格納される行と列からなる2次元の表形式のデータである。
符合P1を付したデータは、電流比γが0のとき、セレクタ262b−nが端子S0を選択することを示している。符合P2を付したデータは、電流比γが0より大きく〜0.1以下のときにセレクタ262b−nが端子S1を選択することを示している。符合P10を付したデータは、電流比γが0.9より大きく1以下のときにセレクタ262b−nが端子S10を選択することを示している。
ここで、伝送効率とは、全ての親機から全ての子機へ伝送されたエネルギーの総和を、親機のコイル23−nに流した電流の二乗和(コイルで消費されるジュール熱)で除した値である。つまり、伝送効率とは、全ての親機から全ての子機へ伝送されたエネルギーの総和を、コイルのオーム損失の総和で除した値である。
伝送効率は、コンデンサの数Bが増加するに従って増加し、ほぼB=8程度で飽和する。つまり、コンデンサは8個程度あれば十分であることを示している。
この図のように、親機2a−nにおいて、キャパシタは、電流計を介してコイルに直列に接続されている。
この図のように、キャパシタ32a−mは、一端がコイル31−mの一端に直列に接続され、他端が整流器34−mの入力側の一端に接続されている。
この図のように、キャパシタ32b−mは、スイッチ33−mを介してコイル31−mと直列に接続されている。キャパシタ32b−mは、一端がスイッチ33−mの他端に接続され、他端が整流器34−mの入力側の一端に接続されている。
電流配分決定部13は、複数の親機2−nに供給する電気信号の決定を、例えば以下のように行う。
Z0を子機3−nが無いときのインピーダンス行列、Zを子機3−nがあるときのインピーダンス行列とすると、伝送損失Lossは次式(36)のように表され、伝送パワーPowerは次式(37)のように表される。
まず、子機3−nが無いときのインピーダンス行列をZ0とする。なお、Z0の実部Re(Z0)は、エルミート行列である。このため、Re(Z0)の固有値ρ1・・・ρNは実数であり、0以上の値を取る。多くの場合、ρn=0は抵抗0を表すために、事実上はρnは0より大きい。従って、Re(Z0)を正則とみなすことができる。Z0の実部Re(Z0)の固有値をρ1・・・ρN(ただしρ1・・・ρNは0以上の値)のように表し、規格化された固有値ベクトルを次式(39)のように表す。Nは、親機2−nの個数である。行列Jは、N×Nのユニタリ行列である。
ここで、伝送損失Lossが、近似的に次式(44)のように表せる場合、この伝送損失Lossを一定値としたとき、次式(45)のように表される伝送パワーPowerを最大にすることは、固有ベクトルaを用いて表した次式(46)の伝送Lossを一定の条件下で、固有ベクトルaとエネルギーTを用いて表した次式(47)の伝送パワーPowerを最大にすることに対応する。
また、ある特定空間(ただし全空間ではない)に蓄えられる磁界のエネルギーE’を次式(53)のように表すと、特定空間に蓄えられる磁界エネルギーを一定にしたときの最大伝達パワー問題を解くこととなる。
このエネルギーE’は、ここでLを子機がないときのインダクタンス行列とすれば親機2−nのみの誘導する磁界のエネルギーである。また、このエネルギーE’は、Lを子機があるときのインダクタンス行列とすれば親機2−nと子機3−mが誘導する磁界のエネルギーである。
以下、本発明の第4の実施形態について説明する。本実施形態に係るワイヤレス給電システムでは、第3実施形態と同様に1台の高周波電源をN台の親機で共有する。本実施形態では、電流制御部が共振回路を有する例を説明する。
電流制御部26c−nは、親機送電制御部1bが生成したセレクタ切替信号に基づいて、電流受入部21b−nから入力された電流を制限することにより、コイル23−nに流れる電流を制御する。
電流方向切替部27−nは、親機送電制御部1bが生成した電流方向切替信号に基づいて、コイル23−nに流れる電流の向きを切り替える。
セレクタSa0〜Sa(B−1)は、各々2つの入力端子(第1のポート、第2のポート)a(a0、a1、…、a(B−1))とb(b0、b1、…、b(B−1))、1つの出力端子(第3のポート)c(c0、c1、…、c(B−1))、及び入力端子の一方を出力端子と接続するように切り替えるポート切替スイッチを有している。セレクタSa0〜Sa(B−1)は、親機送電制御部1bの電流振幅制御部15bが生成したセレクタ切替信号に応じて、一方の入力端子a又はbが出力端子に接続される。セレクタSa0は、一方の入力端子a0が電流受入部21b−nの一端に接続され、他方の入力端子b0が電流受入部21b−nの他端に接続され且つ接地され、出力端子c0がコンデンサCa0の一端に接続されている。以下同様に、セレクタSak(kは1からB−1までの整数)は、一方の入力端子akが電流受入部21b−nの一端に接続され、他方の入力端子bkが電流受入部21b−nの他端に接続され且つ接地され、出力端子ckがコイルCakの一端に接続されている。セレクタSa0〜Sa(B−1)は、例えばリレーである。
コンデンサCa0〜Ca(B−1)の他端同士は接続され、この接続点は電流計24−nに接続されている。
電流方向切替部27−nは、セレクタSb1n、Sb2nを備えている。セレクタSb1n、Sb2nの切り替えは、連動して、親機送電制御部1bが生成した電流方向切替信号に基づいて、電流方向切替部27−nがコイル23−nに流れる電流の向きを切り替える。セレクタSb1n、Sb2nは、例えばリレーである。
可変コンデンサCa1nは、一端が高周波電源4b’(含む電流受入部)の一端に接続され、他端が可変コンデンサCa2nの一端とコイルLnの一端とに接続されている等価回路で表すことができる。
図23に示すように、親機2c−1’の共振周波数ω1は1/(√(L1(Ca11+Ca21)))である。同様に、親機2c−2’の共振周波数ω2は1/(√(L2(Ca12+Ca22)))であり、親機2c−N’の共振周波数ωNは1/(√(LN(Ca1N+Ca2N)))であり、各共振周波数ωnを等しくするのが望ましい。また、親機2c−n間の相互インダクタンスは、親機2c−nと子機3−mとの間の相互インダクタンスより小さいことが望ましい。
すなわち、図22において、各親機2c−nの電流制御部26c−nが備えるコンデンサCa0〜Ca(B−1)の合計容量が互いに等しく、コイルL0〜L(B−1)のインダクタンスが互いに等しく、コンデンサCa0〜Ca(B−1)の一端に接続される電流受入部21b−nの出力部のインピーダンスを略0とみなせる場合、セレクタSa0〜Sa(B−1)を切り替えても各親機2c−nの共振周波数ωは等しくなる。各親機2c−nの共振周波数ωnの2乗(ωn 2)は、次式(55)のように表される。また、各親機2c−nの各コイル23−nにかかる電圧Vlは、高周波電源4bの電圧がV0の場合、次式(56)のように表される。
また、図23に示した等価回路の2つの可変コンデンサCa1nとCa2nとを用いて制御するようにしてもよい。この場合、親機送電制御部1bは、可変コンデンサCa1nとCa2nとの合計容量が一定になるように制御する。
以下、本発明の第5の実施形態について説明する。図24は、本実施形態に係る親機2d−n及び子機3−mの構成を示す概略ブロック図である。本実施形態における親機2d−n以外の構成は、第3の実施形態と同様であるため説明を省略する。また、子機3−mの構成は、図20と同様である。なお、電流受入部21b−nは、親機送電制御部1bから入力された電流を受け入れるコネクタであってもよい。
図24において、信号線は親機送電制御部1bと親機2d−1の接続のみを表記しているが、親機送電制御部1bと他の親機2d−nについても信号線は同様に接続されており、同期が取れている。また、電流計24−1は、複素電流を測定する計器であり、その電流振幅および位相を同時に測定できるものである。電圧計25−1は、複素電圧を測定する計器であり、その電圧振幅および位相を同時に測定できるものである。
また、図24において、電流制御部26c−nの構成は、第4の実施形態の図22と同様の構成である。電流方向切替部27−nの構成は、第4の実施形態の図23と同様である。
まず、親機送電制御部1bは、電流計24−nによりコイル23−nに流れる電流を測定する。次に、親機送電制御部1bは、測定した電流に基づいて電流制御部26c−nのセレクタSa0〜Sa(B−1)(図22参照)を切り替えて電流値が所望の値となるようにする。次に、親機送電制御部1bは、そのときのコイル23−nにかかる同相の電圧を測定し、第2の実施形態で説明した繰り返し方を用いる。
しかしながら、電流値を所望の値に制御するには、電流制御部26c−nのセレクタを素早く切り替える必要があるため、セレクタがメカニカルなリレーでは、実現がやや困難である。
主な手順は以下である。
手順(1)親機送電制御部1bは、電流制御部26c−n内のセレクタSa0〜Sa(B−1)の出力端子c0〜c(B−1)を全て電源側に接続されるように制御する。
手順(2)次に、親機送電制御部1bは、電流制御部26c−nのコンデンサCa0〜Ca(B−1)の接続点に流れる次回の電流が、次式(57)になるようにV(k+1)を決める。なお、kは0以上の整数である。
図24において、親機2d−n、子機3−mともに整合がとれていて、親機2d−n間と子機3−m間の磁界結合が小さい場合、次式(58)のように(N×M)×(N×M)行列を用いて表すことができる。
式(61)のように、Re(Y)は実数なので、電圧VPが実数であれば、電流IPも実数となる。このため、式(57)のα(k)及びβも実数である。ここで、IP=I(k)とすると、V(k+1)は、次式(62)のように表される。
図25のように、次式(65)が最大値をとる固有ベクトルに収束する。この結果、アドミタンスYの最小固有値(P11)で式(65)が最大になるようにβを決定すれば、収束するベクトルは、コイル23−nのインピーダンスZAの最大固有値に収束する。
なお、電流制御部26b−nは、同時に複数の端子S1〜SBとコイル23−nとを接続させてもよい。
なお、電流制御部26b−nでは、コンデンサの代わりにトランジスタやFET(Field Effect Transitor)などの素子を用いて電流の制御を行ってもよい。これらの素子を用いれば、電流制御部26b−nにおけるエネルギー散逸が、コイルに供給する電力に比べて無視しうる。
なお、上記の実施形態では、1台の高周波電源4bを用いた例を示したが、電源の数は1台でなくてもよい。そのとき、複数の電源は同一の電流量を出力できるものが望ましいが、必ずしもそれに限られない。
なお、上記の実施形態では、子機3−mに入力された電力は、蓄電池35に蓄電され、直流電源として負荷に供給されたが、DC−ACコンバータを更に備えることにより、交流の電力を負荷に供給するようにしてもよい。
また、上記各実施形態において、親機2−nはコイル23−nに代えて、子機3−mはコイル31−mに代えて、アンテナを備えてもよい。
また、本発明において、各親機(2−n、2b−n、20−n、2a−n)が備える電力送信部28−nのキャパシタンスと、各子機(3−m、30−m、30a−m、3a−m)が備える電力受信部39−mのキャパシタンスとに基づいく共振によって、静電結合していてもよい。
また、上述した実施形態における親機送電制御部1、1a、1bの一部、または全部を、LSI(Large Scale Integration)等の集積回路として実現しても良い。親機送電制御部1、1a、1bの各機能ブロックは個別にプロセッサ化してもよいし、一部、または全部を集積してプロセッサ化しても良い。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いても良い。
また、上記の各実施形態において、インピーダンスをアドミッタンスと、電圧を電流と、電流を電圧とすることによっても同様な制御をすることが可能である。
Claims (25)
- N個(Nは2以上の整数)の親機電力送信部と、少なくとも一つの子機電力受信部と、前記N個の親機電力送信部に供給する電気信号を決定する配分決定部を具備する非接触給電システムにおいて、
前記電気信号は、電流又は電圧あるいはその線形結合量を成分に有し、
前記配分決定部は、前記各親機電力送信部に供給する電気信号を成分に持つN次元のベクトルXとするとき、行列AをN行×N列の正則なエルミート行列として、式(1)(〜は転置行列であり*は複素共役であり)のスカラーが非負であり、
- 前記行列Bは、前記子機電力受信部が機能するときの前記親機電力送信部それぞれの端子に関するインピーダンス行列の実部又はアドミタンス行列の実部の行列であり、
前記配分決定部は、前記電気信号の2次形式を表す正値確定なエルミート行列である基準行列と、当該行列Bに基づいて、前記N個の親機電力送信部に供給する電気信号を決定することを特徴とする請求項1に記載の非接触給電システム。 - 前記配分決定部は、前記行列Dの最大固有値に対する固有ベクトルYに基づいて算出されるベクトルC −1 Yの成分に比例するように、又は前記行列Dの最小固有値に対する固有ベクトルYに基づいて算出されるベクトルC −1 Yの成分に比例するように、前記N個の親機電力送信部に供給する電気信号を決定することを特徴とする請求項2に記載の非接触給電システム。
- 前記行列Aは、単位行列であることを特徴とする請求項1に記載の非接触給電システム。
- 前記行列Aは、前記子機電力受信部が存在しないときのインピーダンス行列の実部又はアドミタンス行列の実部であることを特徴とする請求項1または請求項4に記載の非接触給電システム。
- 前記行列Aは、前記親機電力送信部それぞれのインピーダンス行列の虚部、キャパシタンス行列の実部、及びインダクタンス行列の実部のいずれかであることを特徴とする請求項1または請求項4に記載の非接触給電システム。
- 前記式(1)のスカラーがある特定領域の空間に蓄えられる場のエネルギーの総和であることを特徴とする請求項1から請求項3のいずれか1項に記載の非接触給電システム。
- 前記配分決定部は、前記固有ベクトルYの成分のうち絶対値が最大となる成分に対応する電流が電流定格となるように、又は前記固有ベクトルYの成分のうち絶対値が最大となる成分に対応する電圧が電圧定格となるように、前記N個の親機電力送信部に供給する前記電気信号を決定することを特徴とする請求項1から請求項7のいずれか1項に記載の非接触給電システム。
- 前記基準行列は、前記子機電力受信部が存在しないときのインピーダンス行列の実部又はアドミタンス行列の実部であり、あるいは前記N個の親機電力送信部間のインダクタンス行列の実部であり、あるいは前記親機電力送信部間のインピーダンス行列の虚部又は前記親機電力送信部間のアドミタンス行列の虚部が空間中の特定領域に誘導されるエネルギーが前記電気信号の2次形式で表されるときのエルミートな係数マトリクスであることを特徴とする請求項2または請求項3に記載の非接触給電システム。
- 前記配分決定部において前記固有ベクトルYが、前記行列Dの固有ベクトルに収束するように、前記N個の親機電力送信部に供給する電気信号を決定することを特徴とする請求項1から請求項9のいずれか1項に記載の非接触給電システム。
- 前記子機電力受信部は、前記N個の親機電力送信部からの給電を制限する受電拒否モードを有することを特徴とする請求項1から請求項10のいずれか1項に記載の非接触給電システム。
- 供給される前記電気信号を制限して、前記親機電力送信部へ出力する制御部を備えることを特徴とする請求項1から請求項11のいずれか1項に記載の非接触給電システム。
- 前記制御部は、エネルギー散逸が、前記電気信号のエネルギーに比べて無視できる素子によって前記電気信号を制限することを特徴とする請求項12に記載の非接触給電システム。
- 前記親機電力送信部は、電力送信部を備え、
前記子機電力受信部は、電力受信部を備え、
前記電力送信部及び前記電力受信部は、各々インダクタを備え、
前記電力送信部のインダクタと前記電力受信部のインダクタとに基づく共振により磁界結合していることを特徴とする請求項1から請求項13のいずれか1項に記載の非接触給電システム。 - 前記親機電力送信部は、電力送信部を備え、
前記子機電力受信部は、電力受信部を備え、
前記電力送信部及び前記電力受信部は、キャパシタを備え、
前記電力送信部のキャパシタと前記電力受信部のキャパシタとに基づく共振により静電結合していることを特徴とする請求項1から請求項13のいずれか1項に記載の非接触給電システム。 - 前記制御部は、複数のキャパシタと複数の切替部とを備え、
前記複数のキャパシタは、一端が互いに接続され、他端が各々、各切替部の入力端に接続され、
前記複数の切替部の出力端は、互いに接続され、該接続された点がコイルと接続され、
前記配分決定部は、前記切替部を順次、切り替えたときに前記コイルかかる電圧を示す情報及び前記キャパシタに流れる電流を示す情報に基づいて、前記N個の親機電力送信部に供給する電気信号の配分を決定することを特徴とする請求項12または請求項13に記載の非接触給電システム。 - 前記制御部は、
複数のキャパシタと、
第1〜第3のポートを有し、前記第1〜第3のポートの内、前記第1又は前記第2のポートと前記第3のポートとの接続を切り替えるポート切替スイッチを有する複数の切替部と、
を備え、
前記複数の切替部は、前記第1のポートが互いに接続され、該接続された第1の接続点が電源部に接続され、前記第2のポートが互いに接続され、該第2のポートそれぞれが接地され、前記第3のポートが前記複数のキャパシタのうちの1つのキャパシタの一端に接続され、
前記複数のキャパシタは、他端が互いに接続され、該接続された第2の接続点がコイルと接続され、
前記切替部は、該切替部を順次、切り替えたときに前記第2の接続点に流れる電流を示す情報及びコイルにかかる電圧を示す情報に基づいて、前記N個の親機電力送信部に供給する電気信号の配分を決定することを特徴とする請求項12または13に記載の非接触給電システム。 - 前記電気信号は、前記親機電力送信部の数より少数の電源から供給されることを特徴とする請求項1から請求項17のいずれか1項に記載の非接触給電システム。
- N個(Nは2以上の整数)の親機電力送信部と、少なくとも一つの子機電力受信部と、前記N個の親機電力送信部に供給する電気信号を決定する配分決定部を具備する非接触給電システムにおいて、
前記電気信号は、電流又は電圧あるいはその線形結合量を成分に有し、
前記配分決定部が、前記子機電力受信部が存在するときのインピーダンス行列の実部又はアドミタンス行列の実部の行列Bの非0の固有値に対する固有値ベクトルの成分に比例するように前記N個の親機電力送信部に供給する前記電気信号を決定することを特徴とする非接触給電システム。 - N個(Nは2以上の整数)の親機電力送信部と、少なくとも一つの子機電力受信部と、前記N個の親機電力送信部に供給する電気信号を決定する配分決定部を具備する非接触給電装置において、
前記電気信号は、電流又は電圧あるいはその線形結合量を成分に有し、
前記配分決定部は、前記各親機電力送信部に供給する電気信号を成分に持つN行×1列のN次元のベクトルXとするとき、行列AをN行×N列の正則なエルミート行列として、式(5)(〜は転置行列であり*は複素共役であり)のスカラーが非負であり、
- N個(Nは2以上の整数)の親機電力送信部と、少なくとも一つの子機電力受信部と、前記N個の親機電力送信部に供給する電気信号を決定する配分決定部を具備する非接触給電装置において、
前記電気信号は、電流又は電圧あるいはその線形結合量を成分に有し、
前記配分決定部が、前記子機電力受信部が存在するときのインピーダンス行列の実部又はアドミタンス行列の実部の行列Bの非0の固有値に対する固有値ベクトルの成分に比例するように前記N個の親機電力送信部に供給する前記電気信号を決定することを特徴とする非接触給電装置。 - 電気信号は電流又は電圧あるいはその線形結合量を成分に有し、N個(Nは2以上の整数)の親機電力送信部と、少なくとも一つの子機電力受信部と、前記N個の親機電力送信部に供給する前記電気信号を決定する配分決定部を具備する非接触給電システムの非接触給電装置のコンピュータに、
前記配分決定部が、前記各親機電力送信部に供給する電気信号を成分に持つN行×1列のN次元のベクトルXとするとき、行列AをN行×N列の正則なエルミート行列として、式(9)(〜は転置行列であり*は複素共役であり)のスカラーが非負であり、
- 電気信号は電流又は電圧あるいはその線形結合量を成分に有し、N個(Nは2以上の整数)の親機電力送信部と、少なくとも一つの子機電力受信部と、前記N個の親機電力送信部に供給する前記電気信号を決定する配分決定部を具備する非接触給電システムの非接触給電装置のコンピュータに、
前記配分決定部が、前記子機電力受信部が存在するときのインピーダンス行列の実部又はアドミタンス行列の実部の行列Bの非0の固有値に対する固有値ベクトルの成分に比例するように前記N個の親機電力送信部に供給する前記電気信号を決定する手順を実行させるための非接触給電プログラム。 - 電気信号は電流又は電圧あるいはその線形結合量を成分に有し、N個(Nは2以上の整数)の親機電力送信部と、少なくとも一つの子機電力受信部と、前記N個の親機電力送信部に供給する前記電気信号を決定する配分決定部を具備する非接触給電システムの非接触給電装置において、
前記配分決定部が、前記各親機電力送信部に供給する電気信号を成分に持つN行×1列のN次元のベクトルXとするとき、行列AをN行×N列の正則なエルミート行列として、式(13)(〜は転置行列であり*は複素共役であり)のスカラーが非負であり、
- 電気信号は電流又は電圧あるいはその線形結合量を成分に有し、N個(Nは2以上の整数)の親機電力送信部と、少なくとも一つの子機電力受信部と、前記N個の親機電力送信部に供給する前記電気信号を決定する配分決定部を具備する非接触給電システムの非接触給電装置において、
前記配分決定部が、前記子機電力受信部が存在するときのインピーダンス行列の実部又はアドミタンス行列の実部の行列Bの非0の固有値に対する固有値ベクトルの成分に比例するように前記N個の親機電力送信部に供給する前記電気信号を決定する手順を有する非接触給電方法。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011127257 | 2011-06-07 | ||
JP2011127257 | 2011-06-07 | ||
JP2011191694 | 2011-09-02 | ||
JP2011191694 | 2011-09-02 | ||
PCT/JP2012/064683 WO2012169584A1 (ja) | 2011-06-07 | 2012-06-07 | 非接触給電システム、非接触給電装置、非接触給電プログラム、及び非接触給電方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2012169584A1 JPWO2012169584A1 (ja) | 2015-02-23 |
JP6050228B2 true JP6050228B2 (ja) | 2016-12-21 |
Family
ID=47296139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013519527A Expired - Fee Related JP6050228B2 (ja) | 2011-06-07 | 2012-06-07 | 非接触給電システム、非接触給電装置、非接触給電プログラム、及び非接触給電方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9640316B2 (ja) |
EP (1) | EP2720349A4 (ja) |
JP (1) | JP6050228B2 (ja) |
KR (1) | KR20140036197A (ja) |
CN (1) | CN103582991B (ja) |
WO (1) | WO2012169584A1 (ja) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6010399B2 (ja) * | 2012-08-31 | 2016-10-19 | 積水化学工業株式会社 | 非接触給電システム |
US9722448B2 (en) | 2012-09-07 | 2017-08-01 | Qualcomm Incorporated | Protection device and method for power transmitter |
US9391442B2 (en) | 2012-09-07 | 2016-07-12 | Qualcomm Incorporated | Protection device and method for power transmitter |
US9368975B2 (en) * | 2012-11-30 | 2016-06-14 | Qualcomm Incorporated | High power RF field effect transistor switching using DC biases |
JP6114541B2 (ja) * | 2012-12-07 | 2017-04-12 | 積水化学工業株式会社 | 非接触給電システム、送電システム、受電システム、送電方法、受電方法及びプログラム |
KR102123829B1 (ko) | 2013-01-22 | 2020-06-18 | 삼성전자주식회사 | 무선 전력 전송 장치 및 무선 전력 전송 방법 |
EP3031129B1 (en) * | 2013-08-06 | 2021-02-17 | The University of Hong Kong | Method for parameters identification, load monitoring and output power control in wireless power transfer systems |
JP6141171B2 (ja) * | 2013-11-08 | 2017-06-07 | 京セラ株式会社 | 送電装置及び無線電力伝送システム |
US9800076B2 (en) * | 2014-02-14 | 2017-10-24 | Massachusetts Institute Of Technology | Wireless power transfer |
US20150249343A1 (en) | 2014-03-03 | 2015-09-03 | The Wiremold Company | Wireless power stations |
JP6187384B2 (ja) * | 2014-05-22 | 2017-08-30 | 株式会社デンソー | 送電装置 |
JP6269375B2 (ja) * | 2014-07-30 | 2018-01-31 | 船井電機株式会社 | 非接触給電装置および非接触給電システム |
US11984731B2 (en) * | 2014-12-22 | 2024-05-14 | The Wiremold Company | Ecosystem for surface-based wireless charging system |
WO2016108949A1 (en) | 2014-12-31 | 2016-07-07 | Massachusetts Institute Of Technology | Adaptive control of wireless power transfer |
US9733061B2 (en) * | 2015-07-29 | 2017-08-15 | Texas Instruments Incorporated | Distance determination based on reflected admittance |
FR3040572B1 (fr) * | 2015-08-26 | 2020-10-30 | Tekcem | Procede pour regler automatiquement une unite d'accord, et systeme d'accord automatique utilisant ce procede |
JP6515015B2 (ja) * | 2015-11-11 | 2019-05-15 | 株式会社ダイヘン | 非接触電力伝送システム |
KR102543298B1 (ko) | 2015-11-17 | 2023-06-14 | 삼성전자주식회사 | 무선 전력 전송 장치 및 방법 |
US10283952B2 (en) | 2017-06-22 | 2019-05-07 | Bretford Manufacturing, Inc. | Rapidly deployable floor power system |
JP2021083141A (ja) * | 2018-03-14 | 2021-05-27 | 日立Astemo株式会社 | 送電装置、無線給電システム |
KR102155807B1 (ko) * | 2019-07-01 | 2020-09-14 | 인천대학교 산학협력단 | 복수의 무선 전력 전송 장치들을 이용한 무선 충전 시스템에서의 전력 전송 효율을 개선하기 위한 입력 전원 제어 장치 및 그 동작 방법 |
KR102252469B1 (ko) * | 2020-06-10 | 2021-05-14 | 삼성전자주식회사 | 무선 전력 전송 장치 및 무선 전력 전송 방법 |
CN115997328A (zh) * | 2020-11-04 | 2023-04-21 | 三星电子株式会社 | 无线电力系统、无线电力发射设备和控制无线电力发射设备的方法 |
JP2023030273A (ja) * | 2021-08-23 | 2023-03-08 | 東芝テック株式会社 | 非接触給電装置 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5734254A (en) * | 1996-12-06 | 1998-03-31 | Hewlett-Packard Company | Battery pack and charging system for a portable electronic device |
US20030095115A1 (en) * | 2001-11-22 | 2003-05-22 | Taylor Brian | Stylus input device utilizing a permanent magnet |
US6774624B2 (en) * | 2002-03-27 | 2004-08-10 | Ge Medical Systems Global Technology Company, Llc | Magnetic tracking system |
EP2479866B1 (en) | 2002-06-10 | 2018-07-18 | City University of Hong Kong | Planar inductive battery charger |
ES2638765T3 (es) | 2005-01-21 | 2017-10-24 | Abb Research Ltd | Procedimiento y dispositivo para caracterizar las propiedades lineales de un componente eléctrico |
US7825543B2 (en) | 2005-07-12 | 2010-11-02 | Massachusetts Institute Of Technology | Wireless energy transfer |
WO2008030165A1 (en) * | 2006-09-05 | 2008-03-13 | Buon Kiong Lau | Antenna system and method for operating an antenna system |
JP4885788B2 (ja) * | 2007-05-10 | 2012-02-29 | オリンパス株式会社 | 無線給電システム |
JP4600453B2 (ja) | 2007-09-26 | 2010-12-15 | セイコーエプソン株式会社 | 送電制御装置、送電装置、受電装置、無接点電力伝送システム、電子機器、2次コイル位置検出方法および1次コイルの位置決め方法 |
ES2556269T3 (es) | 2008-04-03 | 2016-01-14 | Koninklijke Philips N.V. | Sistema inalámbrico de transmisión de energía |
KR101478269B1 (ko) * | 2008-05-14 | 2014-12-31 | 메사추세츠 인스티튜트 오브 테크놀로지 | 간섭 강화를 포함하는 무선 에너지 전달 |
WO2010039967A1 (en) * | 2008-10-01 | 2010-04-08 | Massachusetts Institute Of Technology | Efficient near-field wireless energy transfer using adiabatic system variations |
US8285502B2 (en) * | 2008-11-21 | 2012-10-09 | L&L Engineering, Llc | Digital compensator for power supply applications |
JP5425539B2 (ja) * | 2009-01-27 | 2014-02-26 | パナソニック株式会社 | 非接触電力伝送システム |
EP2256895A1 (en) | 2009-05-28 | 2010-12-01 | Koninklijke Philips Electronics N.V. | Inductive power system and method |
EP2453583B1 (en) * | 2009-06-29 | 2016-08-24 | Sigma Designs Israel S.D.I Ltd. | Power line communication method and apparatus |
US8410637B2 (en) | 2009-11-30 | 2013-04-02 | Broadcom Corporation | Wireless power system with selectable control channel protocols |
KR20130016247A (ko) * | 2010-03-04 | 2013-02-14 | 예다 리서치 앤드 디벨럽먼트 캄파니 리미티드 | 효율적이고 튼튼한 무선 에너지 전송 |
JP5717068B2 (ja) | 2010-08-30 | 2015-05-13 | 国立大学法人 東京大学 | 無線電力伝送装置 |
-
2012
- 2012-06-07 JP JP2013519527A patent/JP6050228B2/ja not_active Expired - Fee Related
- 2012-06-07 EP EP12797581.1A patent/EP2720349A4/en not_active Withdrawn
- 2012-06-07 CN CN201280026238.0A patent/CN103582991B/zh not_active Expired - Fee Related
- 2012-06-07 US US14/123,867 patent/US9640316B2/en active Active
- 2012-06-07 KR KR1020137031138A patent/KR20140036197A/ko not_active Application Discontinuation
- 2012-06-07 WO PCT/JP2012/064683 patent/WO2012169584A1/ja active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN103582991A (zh) | 2014-02-12 |
KR20140036197A (ko) | 2014-03-25 |
US9640316B2 (en) | 2017-05-02 |
EP2720349A1 (en) | 2014-04-16 |
CN103582991B (zh) | 2016-04-20 |
WO2012169584A1 (ja) | 2012-12-13 |
JPWO2012169584A1 (ja) | 2015-02-23 |
US20140175895A1 (en) | 2014-06-26 |
EP2720349A4 (en) | 2015-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6050228B2 (ja) | 非接触給電システム、非接触給電装置、非接触給電プログラム、及び非接触給電方法 | |
JP6010399B2 (ja) | 非接触給電システム | |
Jadidian et al. | Magnetic MIMO: How to charge your phone in your pocket | |
KR101586135B1 (ko) | 공진 자기 전력 시스템 내의 복수의 공진 자기 수신기로부터의 전력 결합 | |
Nguyen et al. | Multiple-inputs and multiple-outputs wireless power combining and delivering systems | |
CN104054229A (zh) | 无线电力接收机系统 | |
US20170063167A1 (en) | Wireless power transfer control method and wireless power transfer system | |
US10305333B2 (en) | Power receiver, wireless power transfer system, and kQ-value calculation method | |
Yang et al. | Magnetic beamforming for wireless power transfer | |
Bertolini et al. | Optimizing power transfer in selective wireless charging systems: A genetic algorithm-based approach | |
Zhang et al. | Efficiency optimization method of inductive coupling wireless power transfer system with multiple transmitters and single receiver | |
CN112290694A (zh) | 一种基于磁谐振和dqn的mimo中继充电方法 | |
US10291067B2 (en) | Computer modeling for resonant power transfer systems | |
Zhou et al. | Joint power routing and current scheduling in multi-relay magnetic mimo wpt system | |
Mirbozorgi et al. | Multi‐resonator arrays for smart wireless power distribution: comparison with experimental assessment | |
CN113612321A (zh) | 无线充电的控制方法及无线充电发射装置 | |
JP6114541B2 (ja) | 非接触給電システム、送電システム、受電システム、送電方法、受電方法及びプログラム | |
CN112235027A (zh) | 一种基于磁谐振的mimo充电并行通信方法 | |
Park et al. | Transmitter current control and receiver coil selection in magnetic MIMO power transfer systems | |
Goguri et al. | Optimizing wireless power transfer with multiple transmitters | |
Shi | Orientation-indepedent wireless charging of multiple mobile devices at a distance | |
Yamaguchi et al. | Efficient Wireless Power Transfer-Resonance Does Not Imply High Efficiency | |
Zhao et al. | Optimal node placement for magnetic relay and MIMO wireless power transfer network | |
Mao et al. | New concept of wireless power grid for industrial and home application | |
Mollà Garcia | Design and implementation of a modular wireless charging platform using magnetic resonance and beamforming? |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160607 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160804 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161101 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161124 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6050228 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |