JP6044762B2 - Flow field observation method and flow field observation apparatus - Google Patents

Flow field observation method and flow field observation apparatus Download PDF

Info

Publication number
JP6044762B2
JP6044762B2 JP2012187330A JP2012187330A JP6044762B2 JP 6044762 B2 JP6044762 B2 JP 6044762B2 JP 2012187330 A JP2012187330 A JP 2012187330A JP 2012187330 A JP2012187330 A JP 2012187330A JP 6044762 B2 JP6044762 B2 JP 6044762B2
Authority
JP
Japan
Prior art keywords
moving body
wall surface
flow field
field observation
water tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012187330A
Other languages
Japanese (ja)
Other versions
JP2014044142A (en
Inventor
洋 新井
洋 新井
文俊 越智
文俊 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2012187330A priority Critical patent/JP6044762B2/en
Publication of JP2014044142A publication Critical patent/JP2014044142A/en
Application granted granted Critical
Publication of JP6044762B2 publication Critical patent/JP6044762B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

本発明は、移動体の周囲の媒体の流れを観測する流場観測方法及び流場観測装置に関し、特に、移動体と壁面との隙間(狭隘部)における流れを観測する流場観測方法及び流場観測装置に関する。   The present invention relates to a flow field observation method and a flow field observation apparatus for observing a flow of a medium around a moving body, and in particular, a flow field observation method and a flow field for observing a flow in a gap (narrow part) between a moving body and a wall surface. It relates to field observation equipment.

自動車、電車、地面効果翼機等のように、地面や水面等により構成される壁面の近傍を移動する物体において、移動体と壁面との隙間(狭隘部)における流体運動は、移動体の推進性能に大きな影響を与える。したがって、この移動体と壁面との隙間(狭隘部)における流体運動を計測することは有意義である。   In an object that moves in the vicinity of a wall surface composed of the ground surface, water surface, etc., such as an automobile, a train, and a ground effect wing machine, the fluid motion in the gap (narrow part) between the moving body and the wall surface is propulsion of the moving body. The performance will be greatly affected. Therefore, it is meaningful to measure the fluid motion in the gap (narrow part) between the moving body and the wall surface.

ところで、一般に、自動車の周囲における流体運動は、風洞試験によって計測されることが多い(例えば、特許文献1及び特許文献2参照)。特許文献1に記載された試験装置は、風洞内に吊り下げられた自動車をムービングベルト上に載置し、所定の速度でムービングベルトを駆動させるとともに、風洞内に同じ速度の風を流すことによって、自動車の走行状態を模擬するようにしている。   By the way, generally, the fluid motion around the automobile is often measured by a wind tunnel test (see, for example, Patent Document 1 and Patent Document 2). The test apparatus described in Patent Document 1 is configured such that an automobile suspended in a wind tunnel is placed on a moving belt, and the moving belt is driven at a predetermined speed, and a wind of the same speed is caused to flow in the wind tunnel. , I try to simulate the driving state of the car.

また、特許文献2に記載された試験装置は、粒子画像流速測定法(PIV:Particle Image Velocimetry)を利用した風洞試験装置であり、所定の流速の空気の一様流が供給される風洞の内部に自動車の模型を載置し、上流側からトレーサ粒子を一様流中に供給するようにしたものである。PIVは、流体に追従する粒子を流場に混入させ、時間的連続撮影された可視化画像から微少時間dtにおける粒子の変位ベクトルdxを求め、速度ベクトルdx/dtを推定する方法であり、複雑な流れ場の流動を高精度かつ精密に測定することができる。   Further, the test apparatus described in Patent Document 2 is a wind tunnel test apparatus using a particle image velocity measurement method (PIV: Particle Image Velocimetry), and the inside of a wind tunnel to which a uniform flow of air having a predetermined flow velocity is supplied. The model of the car is placed on and the tracer particles are supplied into the uniform flow from the upstream side. PIV is a method in which particles following a fluid are mixed in a flow field, a particle displacement vector dx at a minute time dt is obtained from a visualized image taken continuously in time, and a velocity vector dx / dt is estimated. The flow in the flow field can be measured with high accuracy and precision.

特開平6−341920号公報JP-A-6-341920 特開2011−17603号公報JP 2011-17603 A

上述した特許文献1や特許文献2に記載された風洞試験装置では、自動車や模型等の移動体は、ムービングベルト上又は床面上に配置されており、移動体とムービングベルトや床面との隙間(狭隘部)における流体運動を移動体の下側から計測することは困難であった。かかる問題は、自動車の風洞試験に限られるものではなく、電車と地面(線路)や地面効果翼機と水面の隙間(狭隘部)における流体運動を計測しようとした場合にも、同様に生じ得る。すなわち、移動体と壁面(床面、地面、水面等)との隙間(狭隘部)における流体運動を簡単かつ精度よく計測することは困難であった。   In the wind tunnel test apparatus described in Patent Document 1 and Patent Document 2 described above, a moving body such as an automobile or a model is arranged on the moving belt or the floor surface, and the moving body and the moving belt or the floor surface are arranged. It was difficult to measure the fluid motion in the gap (narrow part) from the lower side of the moving body. Such a problem is not limited to a wind tunnel test of an automobile, and can occur in the same way when a fluid motion in a gap between a train and the ground (track) or a ground effect wing machine and a water surface (narrow part) is measured. . That is, it is difficult to easily and accurately measure the fluid motion in the gap (narrow portion) between the moving body and the wall surface (floor surface, ground, water surface, etc.).

本発明は、上述した問題点に鑑み創案されたものであり、移動体と壁面との隙間(狭隘部)における流体運動を簡単かつ精度よく計測することができる、流場観測方法及び流場観測装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and a flow field observation method and flow field observation that can easily and accurately measure fluid motion in a gap (narrow part) between a moving body and a wall surface. An object is to provide an apparatus.

本発明によれば、水槽内の液体である媒体中にトレーサ粒子を散布し、前記水槽内の媒体中に沈めた移動体を前記トレーサ粒子の散布領域内で移動させ、前記トレーサ粒子の挙動を計測することによって前記移動体の周囲の媒体の流れを観測する流場観測方法において、前記移動体の移動方向に沿って前記水槽内に透明な壁面体を配置し、前記移動体の上方の液面に波の発生を抑制する液面抑板を配置し、前記壁面体の表面に前記移動体を接近させた状態で前記移動体を前記壁面体に沿って移動させ、前記壁面体の裏面から前記トレーサ粒子の挙動を計測するようにした、ことを特徴とする流場観測方法が提供される。 According to the present invention, the tracer particles are dispersed in a medium which is a liquid in the water tank, and the moving body submerged in the medium in the water tank is moved in the spraying area of the tracer particles, and the behavior of the tracer particles is determined. In the flow field observation method for observing the flow of the medium around the moving body by measuring, a transparent wall body is disposed in the water tank along the moving direction of the moving body, and the liquid above the moving body is arranged. A liquid level suppressor that suppresses the generation of waves on the surface is disposed, and the movable body is moved along the wall surface in a state in which the movable body is brought close to the surface of the wall surface body. There is provided a flow field observation method characterized by measuring the behavior of the tracer particles.

前記トレーサ粒子の挙動を計測する計測手段は、前記移動体と同じ速度で前記壁面体に沿って移動されるように構成してもよい。   The measuring means for measuring the behavior of the tracer particles may be configured to move along the wall surface at the same speed as the moving body.

また、本発明によれば、水槽内の液体である媒体中にトレーサ粒子を散布し、前記水槽内の媒体中に沈めた移動体を前記トレーサ粒子の散布領域内で移動させ、前記トレーサ粒子の挙動を計測することによって前記移動体の周囲の媒体の流れを観測する流場観測装置において、前記移動体の移動方向に沿って前記水槽内に配置された透明な壁面体と、前記水槽の上方に配置されるとともに前記移動体を前記壁面体の表面に接近させた状態で前記壁面体に沿って移動可能に支持する走行台車と、前記壁面体の裏面に配置された前記トレーサ粒子の挙動を計測する計測手段と、を有し、前記走行台車は、前記移動体の上方の液面に配置され波の発生を抑制する平板状の液面抑板を有する、ことを特徴とする流場観測装置が提供される。 Further, according to the present invention, the tracer particles are dispersed in a medium that is a liquid in the water tank, and the moving body submerged in the medium in the water tank is moved in the spraying area of the tracer particles. In the flow field observation apparatus for observing the flow of the medium around the moving body by measuring the behavior, a transparent wall surface disposed in the water tank along the moving direction of the moving body, and an upper side of the water tank And a movement carriage that is movably supported along the wall surface in a state where the moving body is brought close to the surface of the wall surface, and the behavior of the tracer particles disposed on the back surface of the wall surface. A flow field observation characterized in that the traveling carriage has a flat liquid level suppressor that is disposed on the liquid level above the moving body and suppresses the generation of waves. An apparatus is provided.

前記計測手段は、前記走行台車に接続されており、前記移動体と同じ速度で前記壁面体に沿って移動可能に構成されていてもよい。 It said measuring means, the travel is connected to the carriage, but it may also be configured to be movable along the wall surface member at the same speed as the moving body.

上述した本発明の流場観測方法及び流場観測装置によれば、地面や水面を模擬する透明な壁面体を水槽内に配置し、壁面体の表面側に移動体を配置し、壁面体の裏面側に計測手段を配置し、壁面体を挟んで移動体と壁面体との隙間(狭隘部)における媒体の流れを計測できるようにしたことにより、移動体と壁面体との隙間(狭隘部)における流体運動を簡単かつ精度よく計測することができる。   According to the flow field observation method and flow field observation apparatus of the present invention described above, a transparent wall surface body that simulates the ground surface and the water surface is disposed in the water tank, a moving body is disposed on the surface side of the wall surface body, The measuring means is arranged on the back side, and the flow of the medium in the gap (narrow part) between the moving body and the wall surface body can be measured with the wall body interposed therebetween, so that the gap between the moving body and the wall body (narrow part) ) Can be measured easily and accurately.

本発明の第一実施形態に係る流場観測装置の全体構成図である。1 is an overall configuration diagram of a flow field observation apparatus according to a first embodiment of the present invention. 図1におけるA−A矢視断面図である。It is AA arrow sectional drawing in FIG. 図1におけるB−B矢視断面図である。It is BB arrow sectional drawing in FIG. 本発明の他の実施形態に係る流場観測装置を示す図であり、(a)は第二実施形態、(b)は第三実施形態、を示している。It is a figure which shows the flow field observation apparatus which concerns on other embodiment of this invention, (a) has shown 2nd embodiment, (b) has shown 3rd embodiment.

以下、本発明の実施形態について図1〜図4を用いて説明する。ここで、図1は、本発明の第一実施形態に係る流場観測装置の全体構成図である。図2は、図1におけるA−A矢視断面図である。図3は、図1におけるB−B矢視断面図である。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. Here, FIG. 1 is an overall configuration diagram of the flow field observation apparatus according to the first embodiment of the present invention. 2 is a cross-sectional view taken along line AA in FIG. FIG. 3 is a cross-sectional view taken along the line BB in FIG.

本発明の第一実施形態に係る流場観測装置1は、図1〜図3に示したように、水槽11内の水中にトレーサ粒子Tを散布し、水槽11内の水中に沈めた移動体12をトレーサ粒子Tの散布領域内で移動させ、トレーサ粒子Tの挙動を計測することによって移動体12の周囲の水流を観測する流場観測装置であって、移動体12の移動方向に沿って水槽11内に配置された透明な壁面体2と、水槽11の上方に配置されるとともに移動体12を壁面体2の表面に接近させた状態で壁面体2に沿って移動可能に支持する走行台車3と、壁面体2の裏面に配置されたトレーサ粒子Tの挙動を計測する計測手段4と、を有している。   As shown in FIGS. 1 to 3, the flow field observation apparatus 1 according to the first embodiment of the present invention is a moving body in which tracer particles T are dispersed in the water in the water tank 11 and submerged in the water in the water tank 11. 12 is a flow field observation device that observes the water flow around the moving body 12 by moving the movement of the tracer particles T in the spraying region of the tracer particles T and measuring the behavior of the tracer particles T, along the moving direction of the moving body 12. The transparent wall surface body 2 disposed in the water tank 11 and the travel disposed above the water tank 11 and movably supported along the wall surface body 2 with the moving body 12 approaching the surface of the wall surface body 2 A carriage 3 and a measuring means 4 for measuring the behavior of the tracer particles T arranged on the back surface of the wall surface body 2 are provided.

水槽11は、移動体12の移動方向に長く、上部が開放された箱型形状を有しており、横幅方向に一対の壁11aを有している。壁11aの上面には、例えば、走行台車3を支持するレール11bが形成されている。   The water tank 11 is long in the moving direction of the moving body 12 and has a box shape with an open top, and has a pair of walls 11a in the width direction. On the upper surface of the wall 11a, for example, a rail 11b that supports the traveling carriage 3 is formed.

移動体12は、自動車、電車、地面効果翼機等の移動する物体(以下、実機と称する)を模擬した模型である。移動体12は、水槽11内で試験可能な大きさにスケールダウン又はスケールアップされる。本実施形態では、移動体12と壁面体2との隙間(狭隘部)における流れを可視化したいことから、移動体12は壁面体12と対峙する面のみ実機を模擬した形状であってもよいし、この対峙する面とその側周面のみ実機を模擬した形状であってもよいし、実機の全体を模擬した形状であってもよい。なお、図1〜図3においては、説明の便宜上、移動体12を直方体形状に図示している。   The moving body 12 is a model that simulates a moving object (hereinafter referred to as an actual machine) such as an automobile, a train, and a ground effect wing aircraft. The moving body 12 is scaled down or scaled up to a size that can be tested in the water tank 11. In the present embodiment, since it is desired to visualize the flow in the gap (narrow part) between the moving body 12 and the wall surface body 2, the moving body 12 may have a shape that simulates an actual machine only on the surface facing the wall surface body 12. In addition, a shape simulating an actual machine may be used only for the facing surface and the side peripheral surface thereof, or a shape simulating the entire actual machine may be used. 1 to 3, the movable body 12 is illustrated in a rectangular parallelepiped shape for convenience of explanation.

また、水槽11内には、移動体12の周囲の流れを形成する媒体として、例えば、水が注入される。媒体として水を用いた場合、レイノルズ数や動粘性係数から水中の流体運動を空気中の流体運動に容易に変換することができる。また、移動体12をスケールダウンした場合に空気中で試験をしようとすれば、その分だけ移動体12の速度を速くする必要があるが、水中で試験をすることにより、移動体12の速度を遅くすることができ、試験しやすい環境を構築することができる。   Further, for example, water is injected into the water tank 11 as a medium that forms a flow around the moving body 12. When water is used as the medium, the fluid motion in water can be easily converted into fluid motion in air from the Reynolds number and the kinematic viscosity coefficient. Further, if the test is to be performed in the air when the mobile body 12 is scaled down, the speed of the mobile body 12 needs to be increased by that amount. It is possible to create an environment that is easy to test.

また、水は空気よりも密度が高いことから、流場を観測した場合に計測精度を向上させることもできる。ただし、媒体は、水に限定されるものではなく、油等の他の液体であってもよい。また、水槽11内に水等の液体を注入せずに空にした状態で、空気を媒体として使用するようにしてもよい。以下の説明では、特に断りのない限り、媒体として水を使用しているものとする。   Moreover, since water has a higher density than air, measurement accuracy can be improved when a flow field is observed. However, the medium is not limited to water and may be other liquids such as oil. Further, air may be used as a medium in a state where the water tank 11 is emptied without injecting a liquid such as water. In the following description, it is assumed that water is used as a medium unless otherwise specified.

壁面体2は、例えば、アクリル板やガラス板等により構成される透明板である。壁面体2は、自動車、電車、地面効果翼機等の実機と近接する地面や水面を模擬する板部材である。壁面体2は、図1に示したように、水槽11の底面に配置されており、支持部材21によって底面に垂直な状態に保持されている。また、図2及び図3に示したように、壁面体2は、移動体12の移動方向に沿って長く配置されている。なお、図1〜図3において、説明の便宜上、壁面体2を灰色に塗り潰して図示している。   The wall surface body 2 is a transparent plate comprised by an acrylic board, a glass plate, etc., for example. The wall surface body 2 is a plate member that simulates the ground surface and water surface that are close to an actual machine such as an automobile, a train, and a ground effect wing machine. As shown in FIG. 1, the wall surface body 2 is disposed on the bottom surface of the water tank 11, and is held by the support member 21 in a state perpendicular to the bottom surface. Further, as shown in FIGS. 2 and 3, the wall surface body 2 is arranged long along the moving direction of the moving body 12. 1 to 3, for convenience of explanation, the wall surface body 2 is illustrated in gray.

また、壁面体2の表面と裏面との間で水の移動が生じると、計測したい箇所の水流に影響を与えるおそれがあることから、壁面体2は水面より高く配置されていることが好ましい。なお、図示しないが、壁面体2は、枠部材や梁部材によって補強されていてもよいし、複数のパネルを組み合わせて形成されていてもよいし、床面や壁11aに固定されていてもよい。   Moreover, since the movement of water between the front surface and the back surface of the wall surface body 2 may affect the water flow at a location to be measured, the wall surface body 2 is preferably arranged higher than the water surface. Although not shown, the wall surface body 2 may be reinforced by a frame member or a beam member, may be formed by combining a plurality of panels, or may be fixed to the floor surface or the wall 11a. Good.

走行台車3は、移動体12を水中内で移動させる駆動手段である。走行台車3は、レール11b上に載置される車輪3aを有し、水槽11の縁に沿って移動可能に構成されている。また、走行台車3は、例えば、水槽11の端部に配置されたドラム(図示せず)に巻き取り可能に接続されたワイヤ3b(図2参照)を有しており、ワイヤ3bをドラムに巻き取ることによって牽引される。なお、走行台車3は自走式であってもよい。   The traveling carriage 3 is a drive unit that moves the moving body 12 in water. The traveling carriage 3 has wheels 3 a placed on the rails 11 b and is configured to be movable along the edge of the water tank 11. In addition, the traveling carriage 3 has, for example, a wire 3b (see FIG. 2) connected to a drum (not shown) disposed at an end of the water tank 11 so as to be able to be wound, and the wire 3b is used as a drum. Towed by winding. The traveling cart 3 may be self-propelled.

また、走行台車3は、下面に車輪3aを有する平板状の本体部31と、移動体12を支持する支持部材32と、本体部31上に配置され支持部材32を昇降させる昇降手段33と、移動体12の上方の水面に配置された平板状の液面抑板34と、液面抑板34と本体部31とを接続する支柱35と、本体部31上に配置され昇降手段33等を覆うケーシング36と、を有している。   The traveling carriage 3 includes a flat plate-like main body 31 having wheels 3a on the lower surface, a support member 32 that supports the moving body 12, and an elevating means 33 that is disposed on the main body 31 and moves the support member 32 up and down. A flat liquid level suppressor 34 disposed on the water surface above the moving body 12, a column 35 connecting the liquid level suppressor 34 and the main body 31, and an elevating means 33 disposed on the main body 31. And a casing 36 for covering.

図1及び図2に示したように、走行台車3は四つの車輪3aを有しており、本体部31は、これらの車輪3aを支持可能な大きさを有している。支持部材32は、移動体12に接続されており、本体部31を貫通して昇降手段33に接続されている。支持部材32は、移動体12を水中で移動させる際に、水面を横切ることとなるため、その抵抗を低減するために、断面が翼形状を有していてもよい。また、移動体12が前後方向に長い場合には、図2に示したように、前後方向に分岐して配置された複数の支持部材32により移動体12を支持するようにしてもよい。   As shown in FIGS. 1 and 2, the traveling carriage 3 has four wheels 3a, and the main body 31 has a size capable of supporting these wheels 3a. The support member 32 is connected to the moving body 12 and penetrates the main body 31 and is connected to the lifting means 33. Since the support member 32 crosses the water surface when moving the moving body 12 in water, the cross section may have a wing shape in order to reduce the resistance. When the moving body 12 is long in the front-rear direction, the moving body 12 may be supported by a plurality of support members 32 that are branched in the front-rear direction, as shown in FIG.

昇降手段33は、支持部材32を上下に移動させることによって移動体12の水中における高さ位置(水深)を調節することができる。移動体12と壁面体2との隙間gは、模擬する実機の種類等の条件によって適宜変更されるものである。そこで、移動体12、支持部材32及び昇降手段33は、隙間gの大きさに応じて水槽11の横幅方向に移動可能に構成されていてもよい。なお、隙間gを調節する際に、移動体12ではなく、壁面体2を移動させるようにしてもよい。   The elevating means 33 can adjust the height position (water depth) of the moving body 12 in water by moving the support member 32 up and down. The gap g between the moving body 12 and the wall surface body 2 is appropriately changed depending on conditions such as the type of actual machine to be simulated. Therefore, the movable body 12, the support member 32, and the lifting / lowering means 33 may be configured to be movable in the lateral width direction of the water tank 11 according to the size of the gap g. When adjusting the gap g, the wall surface body 2 may be moved instead of the moving body 12.

液面抑板34は、図3に示したように、移動体12の上方の水面を覆う板部材である。この液面抑板34を配置することにより、移動体12を水中で移動させた場合に生じる波を抑制することができ、水流の乱れを抑制することができる。液面抑板34は、移動時の抵抗を低減するために、前方が徐々に幅が狭くなるように形成されていてもよいし、先端に水切り部が形成されていてもよいし、入水角が小さくなるように高さ方向にテーパ面が形成されていてもよい。また、液面抑板34には、移動体12の支持部材32を挿通させる開口部34aが形成されている。   As shown in FIG. 3, the liquid level suppression plate 34 is a plate member that covers the water surface above the moving body 12. By disposing the liquid level suppression plate 34, it is possible to suppress waves generated when the moving body 12 is moved in water, and to suppress disturbance of the water flow. In order to reduce resistance during movement, the liquid level suppressor 34 may be formed so that the width is gradually narrowed at the front, a draining portion may be formed at the tip, or a water entry angle. A tapered surface may be formed in the height direction so as to decrease. In addition, an opening 34 a through which the support member 32 of the moving body 12 is inserted is formed in the liquid level suppression plate 34.

支柱35は、液面抑板34を安定して支持することができれば、本数や配置は任意に設定することができ、図示した本数及び配置に限定されるものではない。また、移動体12、支持部材32及び昇降手段33を横幅方向に移動可能に構成した場合には、支柱35及び液面抑板34も横幅方向に移動できるように構成してもよい。また、支柱35及び液面抑板34を固定したまま、移動体12、支持部材32及び昇降手段33を横幅方向に移動できるように、開口部34aを横幅方向に長く形成しておくようにしてもよい。   The number and arrangement of the support columns 35 can be arbitrarily set as long as they can stably support the liquid level suppressor 34, and are not limited to the illustrated number and arrangement. When the movable body 12, the support member 32, and the lifting / lowering means 33 are configured to be movable in the lateral width direction, the support column 35 and the liquid level suppressing plate 34 may also be configured to be movable in the lateral width direction. Further, the opening 34a is formed long in the width direction so that the movable body 12, the support member 32, and the lifting means 33 can be moved in the width direction while the support column 35 and the liquid level suppression plate 34 are fixed. Also good.

このように、液面抑板34を支柱35を介して走行台車3に接続することにより、移動体12と同じ速度で液面抑板34を移動させることができ、実機では存在しない液面抑板34を有する場合であっても、液面抑板34がない状態と実質的に同じ状態を模擬することができる。   In this way, by connecting the liquid level suppressor 34 to the traveling carriage 3 via the support column 35, the liquid level suppressor 34 can be moved at the same speed as the moving body 12, and the liquid level suppression plate that does not exist in the actual machine can be obtained. Even when the plate 34 is provided, it is possible to simulate substantially the same state as the state without the liquid level suppressor 34.

計測手段4は、図1に示したように、壁面体2を挟んで移動体12の反対側、すなわち、壁面体2の裏面側に配置される。計測手段4は、例えば、水中にレーザー光シートをパルス状に照射するレーザー光照射装置41と、トレーサ粒子Tによる反射光を撮像する撮像装置42と、レーザー光照射装置41及び撮像装置42を支持する支持部材43と、を有している。かかる計測手段4は、いわゆる粒子画像流速測定法(PIV)で一般的に使用される計測器である。なお、計測手段4は、かかる計測器に限定されるものではなく、レーザードップラー流速計(LDV:Laser Doppler Velocimeter)を使用したものであってもよいし、粒子追跡測定法(PTV:Particle Tracking Velocimetry)で使用する計測器であってもよい。   As shown in FIG. 1, the measuring means 4 is arranged on the opposite side of the moving body 12 with the wall surface body 2 interposed therebetween, that is, on the back surface side of the wall surface body 2. The measuring means 4 supports, for example, a laser light irradiation device 41 that irradiates a laser light sheet in water in a pulsed manner, an imaging device 42 that images reflected light from the tracer particles T, and the laser light irradiation device 41 and the imaging device 42. And a support member 43 to be used. The measuring means 4 is a measuring instrument generally used in so-called particle image velocimetry (PIV). The measuring means 4 is not limited to such a measuring instrument, and may be one using a laser Doppler velocimeter (LDV) or a particle tracking measurement method (PTV). ) May be used as a measuring instrument.

PIVは、流体に追従する粒子を流場に混入させ、時間的連続撮影された可視化画像から微少時間dtにおける粒子の変位ベクトルdxを求め、速度ベクトルdx/dtを推定する方法である。この可視化画像を取得するために、平膜状に展開されるレーザー光シートを水中に一定間隔で投射し、トレーサ粒子Tの反射光を撮像している。レーザー光照射装置41は、光源や反射ミラー等の光学系機器により構成される。撮像装置42は、静止画を取得するカメラや動画を撮影するビデオカメラ等により構成される。   PIV is a method in which particles following a fluid are mixed in a flow field, a particle displacement vector dx at a minute time dt is obtained from a visualized image taken continuously in time, and a velocity vector dx / dt is estimated. In order to acquire this visualized image, a laser light sheet developed in a flat film shape is projected into water at regular intervals, and the reflected light of the tracer particles T is imaged. The laser light irradiation device 41 is configured by an optical system device such as a light source or a reflection mirror. The imaging device 42 includes a camera that acquires a still image, a video camera that captures a moving image, and the like.

本実施形態では、移動体12と壁面体2との隙間(狭隘部)における水流を観測したいため、レーザー光照射装置41は、移動体12の壁面体2に近接した面に壁面体2を介してレーザー光シートを照射できる位置に配置される。   In the present embodiment, since it is desired to observe the water flow in the gap (narrow part) between the moving body 12 and the wall surface body 2, the laser light irradiation device 41 passes the wall surface body 2 through the wall body 2. It is arranged at a position where the laser light sheet can be irradiated.

また、撮像装置42も、壁面体2を介して、移動体12の壁面体2に近接した面を撮像できる位置に配置される。撮像装置42は、図2に示したように、移動体12の後方側の面を撮像する第一撮像装置42aと、移動体12の下流側の水流を撮像する第二撮像装置42bと、を有していてもよい。このように、移動体12の前後の水流を観測することにより、移動体12と壁面体2との隙間(狭隘部)における流体運動の分析精度を向上させることができる。   Further, the imaging device 42 is also arranged at a position where the surface of the moving body 12 that is close to the wall surface body 2 can be imaged via the wall surface body 2. As illustrated in FIG. 2, the imaging device 42 includes a first imaging device 42 a that images the rear surface of the moving body 12, and a second imaging device 42 b that images the downstream water flow of the moving body 12. You may have. In this way, by observing the water flow before and after the moving body 12, the analysis accuracy of the fluid motion in the gap (narrow portion) between the moving body 12 and the wall surface body 2 can be improved.

支持部材43は、レーザー光照射装置41及び撮像装置42を走行台車3に接続する部品である。支持部材43は、移動体12又は壁面体2に対するレーザー光照射装置41及び撮像装置42の位置を調整することができるように、走行台車3に移動可能に構成されていてもよい。また、レーザー光照射装置41及び撮像装置42は、個別に支持する支持部材を有し、個別に走行台車3に接続されていてもよい。このように、計測手段4を走行台車3に接続することにより、移動体12と同じ速度で壁面体2に沿って移動させることができる。   The support member 43 is a component that connects the laser light irradiation device 41 and the imaging device 42 to the traveling carriage 3. The support member 43 may be configured to be movable to the traveling carriage 3 so that the positions of the laser beam irradiation device 41 and the imaging device 42 with respect to the moving body 12 or the wall surface body 2 can be adjusted. Further, the laser light irradiation device 41 and the imaging device 42 may have support members that are individually supported, and may be individually connected to the traveling carriage 3. Thus, by connecting the measuring means 4 to the traveling carriage 3, it can be moved along the wall surface body 2 at the same speed as the moving body 12.

また、計測手段4は、レーザー光照射装置41及び撮像装置42を操作したり、撮像装置42による計測結果を記憶したり、計測結果から流場を分析したりする制御装置(図示せず)に有線又は無線により接続されている。かかる制御装置は、水槽11から離隔した場所に配置されていてもよいし、走行台車3に搭載されていてもよい。制御装置は、分析結果を表示するディスプレイ等の表示手段を有していてもよい。   In addition, the measuring unit 4 operates a control device (not shown) that operates the laser light irradiation device 41 and the imaging device 42, stores the measurement result by the imaging device 42, and analyzes the flow field from the measurement result. Connected by wire or wireless. Such a control device may be disposed at a location separated from the water tank 11 or may be mounted on the traveling carriage 3. The control device may have display means such as a display for displaying the analysis result.

上述した流場観測装置1により移動体12の周囲の水流を観測するには、まず、図3に示したように、水槽11の水中にトレーサ粒子Tを一様に散布する必要がある。トレーサ粒子Tは、媒体(例えば、水)と同じ比重を有するナイロン粒子等により構成される。なお、媒体が空気の場合には、トレーサ粒子Tとして煙を使用するようにしてもよい。   In order to observe the water flow around the moving body 12 by the flow field observation apparatus 1 described above, first, as shown in FIG. 3, it is necessary to uniformly spray the tracer particles T in the water of the water tank 11. The tracer particles T are composed of nylon particles having the same specific gravity as the medium (for example, water). When the medium is air, smoke may be used as the tracer particles T.

トレーサ粒子Tは、一般的な水槽試験に用いられる散布装置により水中に一様な分布を有するように散布される。その後、走行台車3に接続されたワイヤ3bを巻き取って走行台車3を牽引し、レール11b上を移動させる。移動体12は、壁面体2に対して所定の隙間gを有するように配置されており、壁面体2は、移動体12の移動方向に沿って配置されていることから、走行台車3の移動により、移動体12は壁面体2と一定の隙間gを保持したまま水中を移動することとなる。そして、移動体12をトレーサ粒子Tの散布領域内で移動させると、トレーサ粒子Tは水流に沿って移動し、そのトレーサ粒子Tの挙動を計測手段4によって計測する。   The tracer particles T are sprayed so as to have a uniform distribution in water by a spraying device used in a general water tank test. Thereafter, the wire 3b connected to the traveling carriage 3 is wound up and the traveling carriage 3 is pulled to move on the rail 11b. The moving body 12 is disposed so as to have a predetermined gap g with respect to the wall surface body 2, and the wall surface body 2 is disposed along the moving direction of the moving body 12. Thus, the moving body 12 moves underwater while maintaining a certain gap g with the wall surface body 2. Then, when the moving body 12 is moved within the spraying region of the tracer particles T, the tracer particles T move along the water flow, and the behavior of the tracer particles T is measured by the measuring means 4.

すなわち、上述した流場観測装置1によれば、水槽11内の水中にトレーサ粒子Tを散布し、水槽11内の水中に沈めた移動体12をトレーサ粒子Tの散布領域内で移動させ、トレーサ粒子Tの挙動を計測することによって移動体12の周囲の水流を観測する流場観測方法であって、移動体12の移動方向に沿って水槽11内に透明な壁面体2を配置し、壁面体2の表面に移動体12を接近させた状態で移動体12を壁面体2に沿って移動させ、壁面体2の裏面からトレーサ粒子Tの挙動を計測するようにした流場観測方法を実施することができる。   That is, according to the flow field observation device 1 described above, the tracer particles T are sprayed in the water in the water tank 11, and the moving body 12 submerged in the water in the water tank 11 is moved in the spraying area of the tracer particles T, thereby A flow field observation method for observing a water flow around a moving body 12 by measuring the behavior of particles T, wherein a transparent wall body 2 is arranged in a water tank 11 along the moving direction of the moving body 12, The flow field observation method is implemented in which the moving body 12 is moved along the wall surface body 2 with the moving body 12 approaching the surface of the body 2 and the behavior of the tracer particles T is measured from the back surface of the wall surface body 2. can do.

また、本実施形態に係る流場観測装置1によれば、地面や水面を模擬する透明な壁面体2を水槽11内に配置し、壁面体2の表面側に移動体12を配置し、壁面体2の裏面側に計測手段4を配置し、壁面体2を挟んで移動体12と壁面体2との隙間(狭隘部)における水流を計測できるようにしたことにより、移動体12と壁面体2との隙間(狭隘部)における流体運動を簡単かつ精度よく計測することができる。   Moreover, according to the flow field observation apparatus 1 according to the present embodiment, the transparent wall surface body 2 that simulates the ground surface and the water surface is disposed in the water tank 11, the moving body 12 is disposed on the surface side of the wall surface body 2, and the wall surface The measuring means 4 is arranged on the back side of the body 2 so that the water flow can be measured in the gap (narrow part) between the moving body 12 and the wall surface body 2 with the wall surface body 2 interposed therebetween. The fluid motion in the gap (narrow part) with 2 can be measured easily and accurately.

次に、本発明の他の実施形態に係る流場観測装置1について図4を参照しつつ説明する。ここで、図4は、本発明の他の実施形態に係る流場観測装置を示す図であり、(a)は第二実施形態、(b)は第三実施形態、を示している。なお、上述した第一実施形態に係る流場観測装置1と同じ構成部品については、同じ符号を付して重複した説明を省略する。   Next, a flow field observation apparatus 1 according to another embodiment of the present invention will be described with reference to FIG. Here, FIG. 4 is a figure which shows the flow field observation apparatus which concerns on other embodiment of this invention, (a) has shown 2nd embodiment, (b) has shown 3rd embodiment. In addition, about the same component as the flow field observation apparatus 1 which concerns on 1st embodiment mentioned above, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

図4(a)に示した第二実施形態に係る流場観測装置1は、上述した液面抑板34を省略したものである。媒体が水等の液体である場合であっても、移動体12の水深Dが十分に深い場合には、移動体12を移動させた場合であっても、水面で生じた波が移動体12と壁面体2との隙間(狭隘部)における流体運動に与える影響は少ない。したがって、そのような場合には、液面抑板34を省略するようにしてもよい。また、媒体が空気の場合には、支持部材32が横切る液面が存在しないことから、同様に、液面抑板34を省略することができる。   The flow field observation device 1 according to the second embodiment shown in FIG. 4A is obtained by omitting the liquid level suppressor 34 described above. Even when the medium is a liquid such as water, when the water depth D of the moving body 12 is sufficiently deep, even if the moving body 12 is moved, the waves generated on the water surface are moved by the moving body 12. There is little influence on the fluid motion in the gap (narrow part) between the wall surface body 2 and the wall surface body 2. Therefore, in such a case, the liquid level suppressor 34 may be omitted. When the medium is air, there is no liquid level that the support member 32 crosses, and thus the liquid level suppressor 34 can be omitted.

図4(b)に示した第三実施形態に係る流場観測装置1は、壁面体2の表面側を凹ませて湾曲形状に形成し、移動体12を球形状に形成したものである。模擬する実機と壁面との関係によっては、移動体12と壁面体2との隙間(狭隘部)を湾曲面により構成するようにしてもよい。例えば、配管と配管内を流れる物体や物質との関係、砲身と砲弾との関係、血管と白血球や赤血球との関係等を模擬する場合に、かかる第三実施形態を適用することができる。なお、移動体12は、球形状である必要はなく、移動方向に軸を有する円柱形状であってもよいし、第一実施形態と同様に直方体形状であってもよい。   The flow field observation apparatus 1 according to the third embodiment shown in FIG. 4B is configured such that the surface side of the wall surface body 2 is recessed to form a curved shape, and the moving body 12 is formed into a spherical shape. Depending on the relationship between the actual machine to be simulated and the wall surface, the gap (narrow portion) between the moving body 12 and the wall surface body 2 may be configured by a curved surface. For example, the third embodiment can be applied when simulating the relationship between a pipe and an object or substance flowing in the pipe, the relationship between a barrel and a shell, the relationship between a blood vessel, a white blood cell, or a red blood cell. In addition, the moving body 12 does not need to be a spherical shape, may be a cylindrical shape having an axis in the moving direction, and may be a rectangular parallelepiped shape as in the first embodiment.

上述した第一実施形態及び第二実施形態において、自動車や電車等のように壁面に接触して回転するタイヤや車輪を有する実機を模擬する場合には、移動体12に回転可能なタイヤや車輪を配置するようにしてもよい。   In the first embodiment and the second embodiment described above, when simulating a real machine having a tire or a wheel that rotates in contact with a wall surface, such as an automobile or a train, the tire or wheel that can rotate on the moving body 12 May be arranged.

また、上述した第一実施形態〜第三実施形態において、壁面体2を水槽11の底面に垂直な方向に立設する場合について説明したが、壁面体2は水槽11の底面に対して傾斜させて配置してもよいし、壁面体2を液面近くに水平方向に配置して壁面体2の下方に移動体12を配置するようにしてもよい。   In the first embodiment to the third embodiment described above, the case where the wall surface body 2 is erected in the direction perpendicular to the bottom surface of the water tank 11 has been described, but the wall surface body 2 is inclined with respect to the bottom surface of the water tank 11. Alternatively, the wall surface body 2 may be disposed in the horizontal direction near the liquid surface, and the moving body 12 may be disposed below the wall surface body 2.

本発明は上述した実施形態に限定されず、本発明の趣旨を逸脱しない範囲で種々変更が可能であることは勿論である。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

1 流場観測装置
2 壁面体
3 走行台車
4 計測手段
11 水槽
12 移動体
34 液面抑板
DESCRIPTION OF SYMBOLS 1 Flow field observation apparatus 2 Wall body 3 Traveling trolley 4 Measuring means 11 Water tank 12 Moving body 34 Liquid level suppression board

Claims (4)

水槽内の液体である媒体中にトレーサ粒子を散布し、前記水槽内の媒体中に沈めた移動体を前記トレーサ粒子の散布領域内で移動させ、前記トレーサ粒子の挙動を計測することによって前記移動体の周囲の媒体の流れを観測する流場観測方法において、
前記移動体の移動方向に沿って前記水槽内に透明な壁面体を配置し、前記移動体の上方の液面に波の発生を抑制する液面抑板を配置し、前記壁面体の表面に前記移動体を接近させた状態で前記移動体を前記壁面体に沿って移動させ、前記壁面体の裏面から前記トレーサ粒子の挙動を計測するようにした、ことを特徴とする流場観測方法。
The movement is carried out by spraying tracer particles in a medium that is a liquid in the water tank, moving a moving body submerged in the medium in the water tank within the spraying area of the tracer particles, and measuring the behavior of the tracer particles. In the flow field observation method that observes the flow of the medium around the body,
A transparent wall surface body is disposed in the water tank along the moving direction of the moving body, a liquid level suppressor for suppressing the generation of waves is disposed on the liquid surface above the moving body, and the surface of the wall surface body is disposed. A flow field observation method, wherein the moving body is moved along the wall surface with the moving body approached, and the behavior of the tracer particles is measured from the back surface of the wall surface.
前記トレーサ粒子の挙動を計測する計測手段は、前記移動体と同じ速度で前記壁面体に沿って移動される、ことを特徴とする請求項1に記載の流場観測方法。   The flow field observation method according to claim 1, wherein the measuring unit that measures the behavior of the tracer particles is moved along the wall surface at the same speed as the moving body. 水槽内の液体である媒体中にトレーサ粒子を散布し、前記水槽内の媒体中に沈めた移動体を前記トレーサ粒子の散布領域内で移動させ、前記トレーサ粒子の挙動を計測することによって前記移動体の周囲の媒体の流れを観測する流場観測装置において、
前記移動体の移動方向に沿って前記水槽内に配置された透明な壁面体と、
前記水槽の上方に配置されるとともに前記移動体を前記壁面体の表面に接近させた状態で前記壁面体に沿って移動可能に支持する走行台車と、
前記壁面体の裏面に配置された前記トレーサ粒子の挙動を計測する計測手段と、を有し、
前記走行台車は、前記移動体の上方の液面に配置され波の発生を抑制する平板状の液面抑板を有する、
ことを特徴とする流場観測装置。
The movement is carried out by spraying tracer particles in a medium that is a liquid in the water tank, moving a moving body submerged in the medium in the water tank within the spraying area of the tracer particles, and measuring the behavior of the tracer particles. In the flow field observation device that observes the flow of the medium around the body,
A transparent wall body disposed in the water tank along the moving direction of the moving body;
A traveling carriage disposed above the water tank and movably supported along the wall surface in a state where the moving body is brought close to the surface of the wall surface;
Measuring means for measuring the behavior of the tracer particles arranged on the back surface of the wall body ,
The traveling carriage has a flat liquid level suppressor that is disposed on the liquid level above the moving body and suppresses the generation of waves.
A flow field observation device characterized by that.
前記計測手段は、前記走行台車に接続されており、前記移動体と同じ速度で前記壁面体に沿って移動可能に構成されている、ことを特徴とする請求項3に記載の流場観測装置。   The flow field observation device according to claim 3, wherein the measuring unit is connected to the traveling carriage and configured to be movable along the wall surface at the same speed as the moving body. .
JP2012187330A 2012-08-28 2012-08-28 Flow field observation method and flow field observation apparatus Expired - Fee Related JP6044762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012187330A JP6044762B2 (en) 2012-08-28 2012-08-28 Flow field observation method and flow field observation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012187330A JP6044762B2 (en) 2012-08-28 2012-08-28 Flow field observation method and flow field observation apparatus

Publications (2)

Publication Number Publication Date
JP2014044142A JP2014044142A (en) 2014-03-13
JP6044762B2 true JP6044762B2 (en) 2016-12-14

Family

ID=50395503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012187330A Expired - Fee Related JP6044762B2 (en) 2012-08-28 2012-08-28 Flow field observation method and flow field observation apparatus

Country Status (1)

Country Link
JP (1) JP6044762B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108398236A (en) * 2018-03-29 2018-08-14 中国农业大学 Inclined tube-type settling pit information of flow and Sediment Transport characteristic measurement method and system
KR102372941B1 (en) * 2020-10-07 2022-03-08 한국해양과학기술원 Method for measuring cavitation thickness of ship rudder

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101535177B1 (en) * 2014-11-13 2015-07-10 한국과학기술원 HIGH SPEED VEHICLE AND Supercavitation OBSERVING APPARATUS INCLUDING SAME
JP6593865B2 (en) * 2015-06-25 2019-10-23 国立研究開発法人 海上・港湾・航空技術研究所 Flow field measurement method and flow field measurement system
JP2020169953A (en) * 2019-04-05 2020-10-15 株式会社Ihi Method for calibrating inertia navigation device
CN110849579B (en) * 2019-11-20 2021-03-30 哈尔滨工程大学 Automatic particle scattering device suitable for towing tank PIV system
KR102532671B1 (en) * 2022-09-15 2023-05-16 한국농어촌공사 Particle Image Velocimetry Converying Device for Multiple Experimental Channels

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147035A (en) * 1980-04-18 1981-11-14 Mitsubishi Heavy Ind Ltd Observing device for test water tank
JPS6084926U (en) * 1983-11-17 1985-06-12 三菱重工業株式会社 Flow field photography device
JPS6227642A (en) * 1985-07-29 1987-02-05 Mazda Motor Corp Testing apparatus of automobile
JPS62176759U (en) * 1986-04-10 1987-11-10

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108398236A (en) * 2018-03-29 2018-08-14 中国农业大学 Inclined tube-type settling pit information of flow and Sediment Transport characteristic measurement method and system
KR102372941B1 (en) * 2020-10-07 2022-03-08 한국해양과학기술원 Method for measuring cavitation thickness of ship rudder

Also Published As

Publication number Publication date
JP2014044142A (en) 2014-03-13

Similar Documents

Publication Publication Date Title
JP6044762B2 (en) Flow field observation method and flow field observation apparatus
Gerashchenko et al. Lagrangian measurements of inertial particle accelerations in a turbulent boundary layer
CN106124156A (en) For studying the testing equipment of droplet drift and for the processing method of this equipment
CN109709574A (en) A kind of seabed mima type microrelief laser scanning imaging system and three dimensional terrain reconstruction method
CN102954782A (en) Non-contact measuring system and non-contact measuring method for shallow water terrain in model test
Diorio et al. Resonantly forced gravity–capillary lumps on deep water. Part 1. Experiments
Barros et al. Air-filled soap bubbles for volumetric velocity measurements
CN108362473A (en) A kind of single hull model basin test method of the anti-unrestrained ability of water surface flying device
KR20180025414A (en) Structure Ultra sonic Inspection Device
CN102590054B (en) Method and device for measuring particle size distribution of discrete-state particles
JP6366172B2 (en) Flow field measurement method using microbubbles and flow field measurement device for aquarium
Wu et al. Quantifying bubble size and 3D velocity in a vortex with digital holographic particle tracking velocimetry (DHPTV)
JP2013156140A (en) Flow field observation method and flow field observation apparatus
CN107588885A (en) The pressure field measurement apparatus and method that a kind of Biomimetic Fish is wagged the tail
JP2017009527A (en) Flow field measuring method and flow field measuring system
Chavarria et al. Geometrical focusing of surface waves
CN104867178A (en) Two-dimensional intravascular photo-acoustic image modeling and simulation method
CN105483830A (en) Method and apparatus for measuring flow velocity of interdendritic fluid under convection condition
CN110006620A (en) A kind of moisture film measuring system
JP2011017601A (en) Particle image flow velocity measuring device
Groh et al. Particle dynamics of a cartoon dune
Babaei et al. Experimental simulation of stationary and traveling density-driven thunderstorm downbursts using the two-fluid model
Chen et al. A moving PIV system for ship model test in a towing tank
JP2012132848A (en) Smoke exhaustion behavior test device
Washuta et al. Near-surface boundary layer turbulence along a horizontally-moving, surface-piercing vertical wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161101

R151 Written notification of patent or utility model registration

Ref document number: 6044762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees