JP6042467B2 - 軸受状態監視方法及び軸受状態監視装置 - Google Patents

軸受状態監視方法及び軸受状態監視装置 Download PDF

Info

Publication number
JP6042467B2
JP6042467B2 JP2015022499A JP2015022499A JP6042467B2 JP 6042467 B2 JP6042467 B2 JP 6042467B2 JP 2015022499 A JP2015022499 A JP 2015022499A JP 2015022499 A JP2015022499 A JP 2015022499A JP 6042467 B2 JP6042467 B2 JP 6042467B2
Authority
JP
Japan
Prior art keywords
amplitude
distribution
frequency
bearing
logarithmic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015022499A
Other languages
English (en)
Other versions
JP2016145739A (ja
Inventor
小田 将広
将広 小田
謙 岡本
謙 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Advantech Co Ltd
Original Assignee
JFE Steel Corp
JFE Advantech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Advantech Co Ltd filed Critical JFE Steel Corp
Priority to JP2015022499A priority Critical patent/JP6042467B2/ja
Publication of JP2016145739A publication Critical patent/JP2016145739A/ja
Application granted granted Critical
Publication of JP6042467B2 publication Critical patent/JP6042467B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

本発明は、軸受状態監視方法及び軸受状態監視装置に関する。
軸受等の回転機械設備管理の観点から、設備の状態を把握して保全活動を行うことで、効率的かつ有効な設備管理が可能である。このとき、早期に状態異常を検知することは重要である。
軸受の状態を診断し、早期に状態異常を検知する方法としてAE(Acoustic Emission)を利用する方法がある。例えば特許文献1では、AEを利用して測定した信号の振幅分布とそれから得られる基準分布との比較により軸受の状態を判定する方法が開示されている。
しかし、特許文献1では、損傷を検知することを目的としており、その段階に至るまでに摩耗速度を利用して軸受状態監視活動を効率化することについては言及されていない。
AEと摩耗に関連があることは知られている。例えば、特許文献2では、メカニカルシール部において測定した高周波振動の実効値の経時的な平均値の積算値がメカニカルシールの摩耗量と比例関係にあり、平均値から摩耗速度を推定できることが開示されている。
しかし、特許文献2では、摩耗速度を利用して、損傷が発生する前の運転状態において、監視周期を変更して保全に生かすことに関しては言及されていない。
特許5143863号公報 特開平7−11466号公報
本発明は、摩耗速度に基づいて軸受状態監視活動を効率化し、保全に生かすことができる軸受状態監視方法を提供することを課題とする。
本発明の第1の態様は、回転軸を保持する軸受において前記回転軸の回転により発生するAE信号に基づいて前記軸受の摩耗速度の推定値を推定し、前記推定値に基づいて前記軸受の状態の監視周期を決定する、軸受状態監視方法を提供する。
この方法は、摩耗速度に基づいて軸受状態監視活動を効率化し、保全に生かすことができる。軸受に損傷が発生するまでには、軸受摺動面に金属接触が生じ、摩耗が進行する。摩耗速度が速ければそれだけ軸受の使用状態は劣悪であり、より早期に損傷が発生すると推測される。従って、運転中の摩耗速度を把握することで、損傷が発生する前の運転状態においても、対象部位をどの程度の頻度で状態監視を行う必要があるかを判断でき、状態監視活動を効率よく行うことができる。
前記推定値が所定の値を超えた場合、前記軸受に損傷が発生していると判断することが好ましい。
この方法によれば、摩耗速度に基づいて状態監視活動を効率化するだけでなく、軸受に損傷が発生していると判断することもできる。
前記AE信号と前記摩耗速度の前記推定値の関係を1次式で近似することが好ましい。
この方法によれば、AE信号と推定値の関係を1次式で近似することで、簡単な方法で摩耗速度を推定できる。特に、発明者の行った実験結果から、1次式での近似は大きな誤差を有していないことが確認できており、有効である。
前記AE信号の時間波形に検波処理を行って検波波形を算出し、前記検波波形の振幅を対数化し、前記振幅を対数化した前記検波波形から振幅分布を算出し、前記振幅分布の頻度を対数化した対数化振幅分布を求め、前記振幅分布の最頻値の振幅を求め、前記振幅分布の前記最頻値の振幅よりも低振幅のデータを正規分布で近似した低振幅側分布と、前記低振幅側分布を前記最頻値の振幅よりも高振幅側に適用した高振幅側分布とにより構成される推定正規分布を求め、前記推定正規分布の頻度を対数化した対数化推定正規分布を求め、前記対数化推定正規分布に余裕度を加算して基準分布を求め、前記対数化振幅分布の頻度が、同一振幅における前記基準分布の頻度を上回るものについて、以下の式で計算される指標面積を、前記対数化振幅分布と前記基準分布の差異を示す指標として、前記摩耗速度の前記推定値の推定に使用することが好ましい。
Figure 0006042467
E_area:指標面積
lni:対数化振幅分布の頻度が基準分布の頻度より大きいときのi番目の対数化振幅分布の頻度
ref:基準頻度
ΔAM:Flniに対応するi番目の対数化振幅の刻み幅
この方法によれば、振幅分布とそれから得られる基準分布との比較により軸受の状態を判定するので、測定部位や運転条件毎のデータ蓄積による基準値を設定することなく、検波波形の処理で軸受の状態の判定が可能である。また、対数化推定正規分布に対して余裕度を加えた基準分布を使用することで判定の信頼性を向上できる。
本発明の第2の態様は、回転軸を保持する軸受において前記回転軸の回転により発生するAE信号を検出するAEセンサ部と、前記AEセンサ部が測定した前記AE信号の時間波形に検波処理を行って検波波形を算出する検波処理部と、前記検波波形の振幅を対数化し、前記振幅を対数化した前記検波波形から振幅分布を算出し、前記振幅分布の頻度を対数化した対数化振幅分布を求める対数化振幅分布算出部と、前記振幅分布の最頻値の振幅を求め、前記振幅分布の前記最頻値の振幅よりも低振幅のデータを正規分布で近似した低振幅側分布と、前記低振幅側分布を前記最頻値の振幅よりも高振幅側に適用した高振幅側分布とにより構成される推定正規分布を求め、前記推定正規分布の頻度を対数化した対数化推定正規分布を求め、前記対数化推定正規分布に余裕度を加算して基準分布を求める基準分布生成部と、前記対数化振幅分布の頻度が、同一振幅における前記基準分布の頻度を上回るものについて、以下の式で計算される指標面積を算出する指標面積算出部と、予め求められた前記指標面積と前記軸受の摩耗速度との関係を記憶する記憶部と、前記記憶部で記憶された関係に基づいて、前記指標面積算出部で算出された前記指標面積から相当する前記摩耗速度を算出する摩耗速度算出部と前記摩耗速度算出部で算出された前記摩耗速度に基づいて前記軸受の監視周期を決定する判定部とを備える軸受状態監視装置を提供する。
Figure 0006042467
E_area:指標面積
lni:対数化振幅分布の頻度が基準分布の頻度より大きいときのi番目の対数化振幅分布の頻度
ref:基準頻度
ΔAM:Flniに対応するi番目の対数化振幅の刻み幅
前記記憶部は、前記摩耗速度の前記推定値の上限値を記憶し、前記判定部は、前記指標面積と前記摩耗速度の関係から求めた前記摩耗速度と前記上限値を比較し、前記上限値を超えていれば前記軸受に損傷が発生していると判定することが好ましい。
この構成によれば、監視周期を決定できるだけでなく、軸受の状態異常も同時に判定できる。
本発明によれば、軸受状態監視方法において、摩耗速度に基づいて軸受状態監視活動を効率化し、保全に生かすことができる。
本発明の実施形態に係る軸受状態装置の模式図。 AEの測定波形と検波波形を示すグラフ。 対数化振幅分布と対数化推定正規分布を示すグラフ。 対数化振幅分布と基準分布を示すグラフ。 対数化振幅分布、基準分布、基準頻度、及び指標面積を示すグラフ。 軸受摩耗量を評価したグラフ。 本発明の第1実施形態に係る判定部の詳細を示す模式図。 本発明の第2実施形態に係る判定部の詳細を示す模式図。
以下、添付図面を参照して本発明の実施形態を説明する。
回転機械設備の軸受において、損傷が発生するまでには、軸受摺動面に金属接触が生じ、摩耗が進行する。摩耗速度が速ければそれだけ軸受の使用状態は劣悪であり、より早期に損傷が発生すると推測される。したがって、運転中の摩耗速度を把握することができれば、損傷が発生する前の健全に運転されている状態においても、対象部位をどの程度の頻度で状態監視を行う必要があるかを判断でき、状態監視活動を効率的に行うことができる。
発明者らは軸受においてAE測定を実施するとともに、剥離損傷の発生していない軸受の摩耗量と使用期間を調査した結果、後述のAE信号に基づくパラメータと軸受摩耗量を使用期間で除した摩耗速度との間に相関関係があることを見出した。後述のAE信号に基づくパラメータと摩耗速度の関係をあらかじめ求めておけば、対象設備において測定したAE信号により、損傷の発生以前の状態を高い信頼性をもって把握でき、かつ、摩耗速度により定量的に評価することができる。摩耗速度が速ければそれだけ異常が早期に顕在化し、剥離損傷が発生する時点が速くなるため、これにより、多数の設備に対して、摩耗速度に基づいて状態監視頻度を決定することにより、必要かつ十分なタイミングでの状態監視が可能となり、監視の効率化を図ることができる。本発明は、これらの知見を軸受の状態監視周期の決定に利用したものである。
(第1実施形態)
図1は、本発明の第1実施形態に係る軸受状態監視装置(監視装置)2を示す。監視装置2は、監視対象4に設置されたAEセンサ(AEセンサ部)6を備え、AEセンサ6から得られるAE信号に基づいて監視対象4の摩耗速度を推定し、これに基づいて監視周期を決定する。本実施形態における監視対象4は回転機械設備の軸受4である。軸受4は回転機械設備の回転軸8を支持している。
監視装置2は、フィルタ10、アンプ12、及び各種演算処理を行う信号処理部14を備える。また、監視装置2は、信号処理部14での処理結果に基づいて軸受4の監視周期を判定する判定部16と、判定部16の判定結果を表示するための例えばモニタ装置である表示部18を備える。さらにまた、監視装置2は、信号処理部14及び判定部16と協働して各種データ、演算結果等を記憶する記憶部20を備える。信号処理部14は、検波処理部22、サンプリング回路24、振幅分布算出部(対数化振幅分布算出部)26、基準分布生成部28、指標面積算出部30、及び摩耗速度算出部32を備える。監視装置2は、プロセッシングユニット、RAM、ROMのような記憶装置を含むハードウェアと、それに実装されたソフトウェアとにより構築されている。
以下、監視装置2により実行される信号処理方法を説明する。
AEセンサ6は、軸受4において回転軸8の回転により発生するAE信号を検出する。AEセンサ6からの測定波形(AEの時間波形)は、図示しないプリアンプ、フィルタ10、及びアンプ12を介して信号処理部14に入力される。AEセンサ6からの微弱な出力信号は、まずプリアンプで増幅される。プリアンプはAEセンサ6内に設けてもよいし、AEセンサ6とフィルタ10の間に設けてもよい。フィルタ10はプリアンプの信号からノイズを除去して適切な周波数帯域のみを通過させる。フィルタ10を通過した信号はアンプ12により信号処理部14での処理に適した強度に増幅される。
検波処理部22は、測定波形(アンプ12からに入力されるAEの時間波形)に検波処理を施して検波波形を算出する(図2参照)。この検波波形の時間長さは、少なくとも回転軸8の1回転分を有する。例えば、回転軸8の10回転分程度の測定波形を得る。回転軸8の1回転分の時間長さは、回転軸8の設定回転数により決定してもよいし、実際に測定してもよい。
サンプリング回路24は検波処理部22からの検波波形に対してサンプリングを実行する。
振幅分布算出部26は、サンプリング後の検波波形に対して以下の処理を行って振幅分布を算出する。まず、サンプリング後の検波波形の振幅を対数化する。この振幅を対数化した検波波形を使用して振幅分布(検波波形中である振幅が出現する頻度の分布)を算出する(図3参照)。AEは振幅変化の範囲が広いため、対数化して低振幅側の情報の重みを相対的に増すことで、低振幅の変化も感度良く検知できるようにする。
本実施形態では、振幅分布の頻度を規格化している。この場合、サンプリング回路24が測定波形をサンプリングするサンプリング周波数を回転軸8の回転数(間欠動作の場合には単位時間あたりの動作数)に応じて変化させ、それによって回転軸8の1回転の1周期当たりのサンプリング点数Nを回転数の速度にかかわらず一定値とする。そして、振幅分布の頻度をサンプリング点数N(一定値)で除算することで規格化する。図3〜5のグラフの縦軸は規格化された頻度である。振幅分布の頻度等の規格化は必ずしも行う必要はない。
基準分布生成部28は、軸受4の監視周期を決定するために使用する基準分布を求める。基準分布は軸受4が正常である場合の振幅分布を推定したものである推定正規分布をもとに求められる。軸受4に損傷が発生している場合、最頻値の振幅より高振幅側の振幅分布は正規分布から乖離するが、最頻値の振幅より低振幅側の振幅分布は正規分布で近似可能であり、この低振幅側の振幅分布は軸受4が正常な場合の正規分布とほぼ同一である。また、基準分布の最頻値の振幅より低振幅側の振幅分布を正規分布で近似したものを、最頻値の振幅を境に折り返すことにより、軸受4が正常な場合の最頻値の振幅よりも高振幅側の振幅分布も推定できる。基準分布生成部28はこの原理によって軸受4が正常である場合の振幅分布を推定する。
以下、図3を参照して基準分布生成部33が基準分布を求める具体的な手順を説明する。まず、振幅分布(前述の規格化を行う場合には頻度を規格化した後の振幅分布)の最頻値Fmaxを求める。次に、振幅分布に含まれるデータのうち最頻値Fmaxの振幅よりも低振幅のものを正規分布で近似した低振幅側分布を求める。また、この低振幅側分布を最頻値Fmaxの振幅で折り返すことにより、最頻値Fmaxの振幅よりも高振幅側の分布を推定したものである高振幅側分布を求める。低振幅側分布と高振幅側分布とを併せたものが前述の推定正規分布である。次に、推定正規分布を対数化(自然対数化)した対数化推定正規分布を求める。対数化推定正規分布の頻度に、誤判定防止による判定信頼性向上ための余裕度αを加算する。対数化推定正規分布に余裕度αを加算して得られる分布が基準分布である(図4参照)。余裕度αは、例えば対数化前の推定正規分布に含まれるデータの頻度の2倍に相当する値(α=ln(2))に設定される。
一方、振幅分布算出部26は、前述のように振幅を対数化した検波波形を使用して求めた振幅分布(規格化した後の振幅分布)に対し、さらに振幅分布の頻度を対数化(自然対数化)して対数化振幅分布を算出する(図3参照)。異常起因のAEの頻度は背景ノイズのAEに比べはるかに少ないため、頻度を線形で見ると正常と異常の差が小さい。振幅分布を対数化することで、頻度の少ない異常起因AEの重みを相対的に増すことができ、異常に対する感度を向上させることができる。
指標面積算出部30は、振幅分布算出部26が算出した対数化振幅分布と基準分布生成部28が生成した基準分布との比較による指標面積E_areaを算出する。指標面積E_areaは、対数化振幅分布に含まれるデータ(最頻値Fmaxの振幅よりも高振幅側)のうち対数化頻度が基準波形の同一振幅の頻度を上回るもの、つまり対数化振幅分布のうち頻度が基準波形を上回っている領域を評価することで行う。図5を参照すると、対数化振幅分布に含まれるデータのうち対数化頻度が基準分布の同一振幅の頻度を上回るものと基準頻度Frefとにより囲まれた領域の面積(指標面積)を以下の式により計算する。
Figure 0006042467
E_area:指標面積
lni:対数化振幅分布の頻度が基準分布の頻度より大きいときのi番目の対数化振幅分布の頻度
ref:基準頻度
ΔAM:Flniに対応するi番目の対数化振幅の刻み幅
指標面積E_areaの算出に使用する基準頻度Frefはある振幅が出現する頻度が検波波形内で1回である状況に相当する頻度よりも小さく、かつ余り小さ過ぎないことが好ましい。例えば、前述した頻度のサンプリング点数Nによる規格化を行わない場合、検波波形内で1回だけある波形が出現する場合の頻度は1であるので、基準頻度Frefはln(1)=0未満で余り小さ過ぎない値(例えば−1)に設定される。また、頻度のサンプリング点数Nによる規格化を行う場合、検波波形内で1回だけある波形が出現する場合の頻度は1/Nであるので、基準頻度Frefはln(1/N)未満で余り小さ過ぎない値(例えばln(1/N)未満の最も大きい整数)に設定される。規格化に使用するサンプリング点数Nが10,000の場合、ln(1/N)=−9.2であるので基準頻度Frefは例えば−10に設定される。
摩耗速度算出部32は、指標面積算出部30において算出した指標面積E_areaに基づいて摩耗速度を算出する。図6に示すように、摩耗速度の算出は、AE信号と摩耗速度の推定値の関係を例えば1次式で近似することにより行う。記憶部20において過去に測定した指標面積E_areaと摩耗速度の関係は記憶されており、この関係データに基づいて摩耗速度の推定は行われる。また、このとき近似線から乖離したものがあれば軸受4に剥離損傷ありと判断してもよい。なお、近似は1次式に限らず、高次の式、べき乗式、又は指数関数で行ってもよい。
ここで、図6の横軸は摩耗速度相当量である。摩耗速度ではなく摩耗速度相当量となっているのは、ある時刻における摩耗速度を直接表しているわけではないからである。ある時刻における摩耗量は直接測定することが困難であるため、実用上、ある時刻までの摩耗量の合計をそれまでの使用期間で除算した摩耗速度相当量を本実施形態では摩耗速度としている。
判定部16は、摩耗速度算出部32において算出した摩耗速度の値に基づいて監視周期を決定する。本実施形態では、決定する監視周期として3パターンあり、1ヶ月、3ヶ月、又は6ヶ月である。摩耗速度の値が閾値THよりも大きい場合、判定部16は監視周期を1ヶ月と決定する。摩耗速度の値が閾値THよりも大きくTH以下である場合、判定部16は監視周期を3ヶ月と決定する。摩耗速度の値が閾値TH以下である場合、判定部16は監視周期を6ヶ月と決定する。これらの閾値TH及びTHは、過去のデータに基づいて適切な値が設定され、記憶部20に記憶されている。本実施形態では、監視周期の決定を3パターンとしたが、これに限定されず、摩耗速度に応じてより多くのパターンに分類してもよい。
判定部16により決定された周期は表示部18に表示される。従って、ユーザは、表示部18を確認することで摩耗速度に基づいた適切な監視周期を認識できる。
(第2実施形態)
図8は、第2実施形態の監視装置2の判定部の詳細を示している。本実施形態の監視装置2は、判定部16以外の構成は図1及び図7の第1実施形態と同様である。従って、図1及び図7に示した構成と同様の部分については同様の符号を付して説明を省略する。
判定部16は、摩耗速度算出部32において算出した摩耗速度の値に基づいて監視周期を決定する。本実施形態では、決定する監視周期として3パターンと、さらに軸受4の損傷判定も同時に行う。決定する監視周期は、第1実施形態と同様、1ヶ月、3ヶ月、又は6ヶ月である。摩耗速度の値が閾値THよりも大きい場合、判定部16は軸受4に損傷有りと判定する。この場合、整備が必要であるため監視周期は決定されない。摩耗速度の値が閾値THよりも大きく閾値TH以下である場合、判定部16は監視周期を1ヶ月と決定する。摩耗速度の値が閾値THよりも大きくTH以下である場合、判定部16は監視周期を3ヶ月と決定する。摩耗速度の値が閾値TH以下である場合、判定部16は監視周期を6ヶ月と決定する。
このように、監視装置2は、摩耗速度に基づいて監視周期を決定するだけなく、軸受4の損傷に伴う状態異常を検知してもよい。
2 軸受状態監視装置(監視装置)
4 監視対象(軸受)
6 AEセンサ(AEセンサ部)
8 回転軸
10 フィルタ
12 アンプ
14 信号処理部
16 判定部
18 表示部
20 記憶部
22 検波処理部
24 サンプリング回路
26 振幅分布算出部(対数化振幅分布算出部)
28 基準分布生成部
30 指標面積算出部
32 摩耗速度算出部

Claims (6)

  1. 回転軸を保持する軸受において前記回転軸の回転により発生するAE信号に基づいて前記軸受の摩耗速度の推定値を推定し、
    前記推定値に基づいて前記軸受の状態の監視周期を決定する、軸受状態監視方法。
  2. 前記推定値が所定の値を超えた場合、前記軸受に損傷が発生していると判断する、請求項1に記載の軸受状態監視方法。
  3. 前記AE信号と前記摩耗速度の前記推定値の関係を1次式で近似する、請求項1又は請求項2に記載の軸受状態監視方法。
  4. 前記AE信号の時間波形に検波処理を行って検波波形を算出し、
    前記検波波形の振幅を対数化し、
    前記振幅を対数化した前記検波波形から振幅分布を算出し、
    前記振幅分布の頻度を対数化した対数化振幅分布を求め、
    前記振幅分布の最頻値の振幅を求め、前記振幅分布の前記最頻値の振幅よりも低振幅のデータを正規分布で近似した低振幅側分布と、前記低振幅側分布を前記最頻値の振幅よりも高振幅側に適用した高振幅側分布とにより構成される推定正規分布を求め、前記推定正規分布の頻度を対数化した対数化推定正規分布を求め、前記対数化推定正規分布に余裕度を加算して基準分布を求め、
    前記対数化振幅分布の頻度が、同一振幅における前記基準分布の頻度を上回るものについて、以下の式で計算される指標面積を、前記対数化振幅分布と前記基準分布の差異を示す指標として、前記摩耗速度の前記推定値の推定に使用する、請求項1から3のいずれか1項に記載の軸受状態監視方法。
    Figure 0006042467
    E_area:指標面積
    lni:対数化振幅分布の頻度が基準分布の頻度より大きいときのi番目の対数化振幅分布の頻度
    ref:基準頻度
    ΔAM:Flniに対応するi番目の対数化振幅の刻み幅
  5. 回転軸を保持する軸受において前記回転軸の回転により発生するAE信号を検出するAEセンサ部と、
    前記AEセンサ部が測定した前記AE信号の時間波形に検波処理を行って検波波形を算出する検波処理部と、
    前記検波波形の振幅を対数化し、前記振幅を対数化した前記検波波形から振幅分布を算出し、前記振幅分布の頻度を対数化した対数化振幅分布を求める対数化振幅分布算出部と、
    前記振幅分布の最頻値の振幅を求め、前記振幅分布の前記最頻値の振幅よりも低振幅のデータを正規分布で近似した低振幅側分布と、前記低振幅側分布を前記最頻値の振幅よりも高振幅側に適用した高振幅側分布とにより構成される推定正規分布を求め、前記推定正規分布の頻度を対数化した対数化推定正規分布を求め、前記対数化推定正規分布に余裕度を加算して基準分布を求める基準分布生成部と、
    前記対数化振幅分布の頻度が、同一振幅における前記基準分布の頻度を上回るものについて、以下の式で計算される指標面積を算出する指標面積算出部と、
    予め求められた前記指標面積と前記軸受の摩耗速度との関係を記憶する記憶部と、
    前記記憶部で記憶された関係に基づいて、前記指標面積算出部で算出された前記指標面積から前記摩耗速度の推定値を算出する摩耗速度算出部と
    前記摩耗速度算出部で算出された前記摩耗速度の前記推定値に基づいて前記軸受の監視周期を決定する判定部と
    を備える軸受状態監視装置。
    Figure 0006042467
    E_area:指標面積
    lni:対数化振幅分布の頻度が基準分布の頻度より大きいときのi番目の対数化振幅分布の頻度
    ref:基準頻度
    ΔAM:Flniに対応するi番目の対数化振幅の刻み幅
  6. 前記記憶部は、前記摩耗速度の前記推定値の上限値を記憶し、
    前記判定部は、前記指標面積と前記摩耗速度の関係から求めた前記摩耗速度と前記上限値を比較し、前記上限値を超えていれば前記軸受に損傷が発生していると判定する、請求項5の装置。
JP2015022499A 2015-02-06 2015-02-06 軸受状態監視方法及び軸受状態監視装置 Active JP6042467B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015022499A JP6042467B2 (ja) 2015-02-06 2015-02-06 軸受状態監視方法及び軸受状態監視装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015022499A JP6042467B2 (ja) 2015-02-06 2015-02-06 軸受状態監視方法及び軸受状態監視装置

Publications (2)

Publication Number Publication Date
JP2016145739A JP2016145739A (ja) 2016-08-12
JP6042467B2 true JP6042467B2 (ja) 2016-12-14

Family

ID=56686230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015022499A Active JP6042467B2 (ja) 2015-02-06 2015-02-06 軸受状態監視方法及び軸受状態監視装置

Country Status (1)

Country Link
JP (1) JP6042467B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022120875A (ja) * 2021-02-08 2022-08-19 Ntn株式会社 振動分析装置および振動分析システム
CN114004539B (zh) * 2021-11-19 2024-05-14 四川启睿克科技有限公司 一种基于振动数据的各方向磨损量评估方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711466B2 (ja) * 1987-04-28 1995-02-08 株式会社荏原製作所 メカニカルシールの運転状態監視方法
JPH0748070B2 (ja) * 1989-03-15 1995-05-24 株式会社日立製作所 摺動運動部の信頼性評価システム
JP2005172685A (ja) * 2003-12-12 2005-06-30 Nsk Ltd 機械設備の監視システム
JP4542918B2 (ja) * 2005-02-15 2010-09-15 住友金属工業株式会社 軸受の異常検出装置
JP5419472B2 (ja) * 2009-01-09 2014-02-19 Ntn株式会社 風力発電装置の主軸軸受の監視装置
US8478548B2 (en) * 2010-01-15 2013-07-02 Fluke Corporation User interface system and method for diagnosing a rotating machine condition not based upon prior measurement history
JP5143863B2 (ja) * 2010-06-01 2013-02-13 Jfeアドバンテック株式会社 軸受状態監視方法及び軸受状態監視装置
JP6029888B2 (ja) * 2012-08-10 2016-11-24 株式会社東芝 モータ診断装置、方法及びプログラム

Also Published As

Publication number Publication date
JP2016145739A (ja) 2016-08-12

Similar Documents

Publication Publication Date Title
CA1203883A (en) Method and apparatus for monitoring cracks of a rotatable body
KR101178962B1 (ko) 극저속 회전 기계의 이상 진단 방법 및 장치
US7505852B2 (en) Probabilistic stress wave analysis system and method
He et al. Health monitoring of cooling fan bearings based on wavelet filter
US8171796B2 (en) Acoustic emission detector and controller
JP4373350B2 (ja) 軸振動監視システム
CN103134679B (zh) 轴承状态监视方法以及轴承状态监视装置
JP3997528B2 (ja) 転がり軸受の診断方法及び診断装置
JP6899109B2 (ja) 回転駆動装置における診断対象部の異常診断方法と、それに用いる異常診断装置
US10975849B2 (en) Condition monitoring system and wind turbine including the same
Klausen et al. Multi-band identification for enhancing bearing fault detection in variable speed conditions
CN110864902B (zh) 一种基于分数阶散布熵的滚动轴承早期故障检测方法
EP2944822B1 (en) Rotating stall detection through ratiometric measure of the sub-synchronous band spectrum
JP5143863B2 (ja) 軸受状態監視方法及び軸受状態監視装置
JP6042467B2 (ja) 軸受状態監視方法及び軸受状態監視装置
JP3829924B2 (ja) 評価装置
JP4617168B2 (ja) 軸受損傷評価装置および軸受損傷評価方法
JP4071161B2 (ja) 回転機械の劣化診断方法
JP6815489B2 (ja) 振動検出装置および異常判定システム
JP2017181500A (ja) 状態監視システムおよび風力発電装置
JP2020144111A (ja) 異常検出装置、回転機械、異常検出方法、及びプログラム
JP2010203929A (ja) 機械設備における異常診断システム
JP6460030B2 (ja) 回転軸受の状態判定装置および状態判定方法
JP2006153760A (ja) 周期運動体の状態監視方法、監視装置、監視システム、コンピュータプログラム及び記録媒体
JP2019086349A (ja) 軸受の状態監視装置及び異常診断方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161109

R150 Certificate of patent or registration of utility model

Ref document number: 6042467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150