JP6041627B2 - Method for conveying steelmaking raw material and method for producing solidified ironmaking raw material - Google Patents

Method for conveying steelmaking raw material and method for producing solidified ironmaking raw material Download PDF

Info

Publication number
JP6041627B2
JP6041627B2 JP2012244728A JP2012244728A JP6041627B2 JP 6041627 B2 JP6041627 B2 JP 6041627B2 JP 2012244728 A JP2012244728 A JP 2012244728A JP 2012244728 A JP2012244728 A JP 2012244728A JP 6041627 B2 JP6041627 B2 JP 6041627B2
Authority
JP
Japan
Prior art keywords
raw material
iron
making raw
making
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012244728A
Other languages
Japanese (ja)
Other versions
JP2013256710A (en
Inventor
たかし 吉川
たかし 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2012244728A priority Critical patent/JP6041627B2/en
Priority to KR1020130047181A priority patent/KR20130128318A/en
Priority to CN2013101752665A priority patent/CN103421947A/en
Priority to TW102116802A priority patent/TWI591185B/en
Publication of JP2013256710A publication Critical patent/JP2013256710A/en
Application granted granted Critical
Publication of JP6041627B2 publication Critical patent/JP6041627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、スラリー化した製鉄原料の取り扱いを改善する製鉄原料の搬送方法及び製鉄原料固化体の製造方法に関する。   The present invention relates to a method for transporting a steelmaking raw material and a method for producing a solidified ironmaking raw material to improve the handling of a slurryed steelmaking raw material.

製鉄原料はバラ積み貨物船に集積され製鉄所に輸送されているが、その輸送中に製鉄原料の含有水がその船倉の床に溜まり、集積されている製鉄原料がスラリー化し、製鉄原料スラリーを形成する。また、ヤード内に野積みされた製鉄原料は雨や粉塵防止用の散水等でスラリー化し製鉄原料スラリーを形成する。その結果、船倉やヤードから、製鉄原料スラリーの搬出が困難となる場合がある。また、製鉄所の水処理ピット内に堆積したスラッジは鉄鉱石、石炭、コークス、鉄を主体としたものであるため製鉄原料として利用される場合があるが、このようなスラッジはスラリー化しており、ピットからの搬出が困難な場合がある。スラリー化した製鉄原料は、ベルトコンベア等を用いて搬出するのが困難なため、製鉄原料スラリー中の製鉄原料は水切りをしながらバケット等で搬出していた。   Steelmaking materials are collected on bulk carriers and transported to steelworks. During the transportation, the water contained in the steelmaking materials is collected on the floor of the hold, and the accumulated steelmaking materials are slurried, and the ironmaking material slurry is Form. The steelmaking raw material stacked in the yard is slurried with water for preventing rain or dust to form a steelmaking raw material slurry. As a result, it may be difficult to carry out the steelmaking raw material slurry from the hold or yard. In addition, sludge accumulated in the water treatment pit of an ironworks is mainly composed of iron ore, coal, coke, and iron, so it may be used as an ironmaking raw material. Such sludge is slurried. , It may be difficult to carry out from the pit. Since it is difficult to carry out the slurry-made iron-making raw material using a belt conveyor or the like, the iron-making raw material in the iron-making raw material slurry is carried out by a bucket or the like while draining.

なお、この製鉄原料には、粒径約5mm未満の粉鉄鉱石や、粒径約5mm超の塊鉄鉱石等がある(特許文献1参照)。   Examples of the iron-making raw material include fine iron ore having a particle size of less than about 5 mm and massive iron ore having a particle size of more than about 5 mm (see Patent Document 1).

特開2009−280849号公報JP 2009-280849 A

しかしながら、バケット等で水切りをしながら搬出するのは手間及び時間がかかるという問題があった。また、天日乾燥では時間がかかるため、雨が降ると再度スラリー化する等の問題があった。   However, carrying out while draining with a bucket or the like has a problem that it takes time and effort. In addition, since it takes time in the sun drying, there is a problem that it is slurried again when it rains.

本発明は、以上の実情に鑑みてなされたものであり、製鉄原料スラリーの取り扱いを改善する製鉄原料の搬送方法を提供することを目的とする。   This invention is made | formed in view of the above situation, and it aims at providing the conveyance method of the iron-making raw material which improves the handling of an iron-making raw material slurry.

本発明者らは、製鉄原料スラリーと高分子吸水剤との混合物が固化することを見出し、本発明を完成するに至った。具体的には、本発明は以下の製鉄原料の搬送方法を提供する。   The present inventors have found that the mixture of the iron-making raw material slurry and the polymer water-absorbing agent is solidified, and have completed the present invention. Specifically, the present invention provides the following method for conveying an iron making raw material.

(1)製鉄原料収容体において形成された、製鉄原料と水とを含む製鉄原料スラリーに対し、高分子吸水剤を接触させることで、前記製鉄原料スラリーを固化して製鉄原料固化体とする工程と、該製鉄原料固化体を、製鉄原料収容体外へ搬送する工程とを含む、製鉄原料の搬送方法。   (1) The process of solidifying the said iron-making raw material slurry by making a polymeric water-absorbing agent contact with the iron-making raw material slurry containing the iron-making raw material and water formed in the iron-making raw material container. And a method of transporting the iron-making raw material solidified body to the outside of the iron-making raw material container.

(2)少なくとも一部の工程を屋外暴露の状態で行う(1)記載の製鉄原料の搬送方法。   (2) The method for transporting a steelmaking raw material according to (1), wherein at least some of the steps are performed outdoors.

(3)前記搬送にベルトコンベアを用いる(1)又は(2)記載の製鉄原料の搬送方法。   (3) The method for conveying an iron-making raw material according to (1) or (2), wherein a belt conveyor is used for the conveyance.

(4)前記高分子吸水剤が前記製鉄原料スラリー100質量部に対し、0.001質量部以上2質量部以下で含まれる(1)〜(3)いずれか1つ記載の製鉄原料の搬送方法。   (4) The method for conveying an iron-making raw material according to any one of (1) to (3), wherein the polymer water-absorbing agent is contained in an amount of 0.001 to 2 parts by weight with respect to 100 parts by weight of the iron-making raw material slurry. .

(5)前記高分子吸水剤がポリアクリル酸ナトリウム塩である(1)〜(4)いずれか1つ記載の製鉄原料の搬送方法。   (5) The method for conveying an iron-making raw material according to any one of (1) to (4), wherein the polymer water-absorbing agent is sodium polyacrylate.

(6)前記製鉄原料収容体が船倉に位置する(1)〜(5)いずれか1つ記載の製鉄原料の搬送方法。   (6) The method for transporting a steelmaking raw material according to any one of (1) to (5), wherein the steelmaking raw material container is located in a hold.

(7)所定量の製鉄原料を含む製鉄原料スラリーを製鉄原料収容体の空間に形成する工程と、製鉄原料スラリーと高分子吸水剤とを混合して製鉄原料固化体を調製する工程とを含む製鉄原料固化体の製造方法。   (7) including a step of forming an iron-making raw material slurry containing a predetermined amount of iron-making raw material in a space of the iron-making raw material container, and a step of preparing an iron-making raw material solidified body by mixing the iron making raw material slurry and the polymer water-absorbing agent. A method for producing a solidified steelmaking material

本発明で提供される製鉄原料の搬送方法によれば、製鉄原料スラリーの取り扱いが改善される。   According to the method for conveying a steelmaking raw material provided in the present invention, the handling of the steelmaking raw material slurry is improved.

以下、本発明の製鉄原料の搬送方法について説明する。   Hereinafter, the conveyance method of the iron-making raw material of this invention is demonstrated.

本発明の製鉄原料の搬送方法は、製鉄原料収容体において形成された、製鉄原料と水とを含む製鉄原料スラリーに対し、高分子吸水剤を接触させることで、前記製鉄原料スラリーを固化して製鉄原料固化体とする工程と、該製鉄原料固化体を、製鉄原料収容体外へ搬送する工程とを含む。   The method for conveying an iron making raw material of the present invention comprises solidifying the iron making raw material slurry by bringing a polymer water absorbent into contact with the iron making raw material slurry containing the iron making raw material and water formed in the iron making raw material container. A step of making the iron-making raw material solidified body and a step of transporting the iron-making raw material solidified body to the outside of the iron-making raw material container.

(製鉄原料収容体)
製鉄原料収容体は、所定量の製鉄原料スラリーを収容可能な空間を有し、その底部に製鉄原料スラリーを備える。
(Steel material container)
The iron-making raw material container has a space that can store a predetermined amount of iron-making raw material slurry, and is provided with the iron-making raw material slurry at the bottom.

製鉄原料収容体は、特に制限されないが、例えば、製鉄原料を野積みして保管するためのヤード、製鉄原料の輸送船の船倉、輸送車のコンテナや荷台、倉庫のような大量の製鉄原料を収容可能な空間を有するものであってもよく、少量の製鉄原料を収容する小型容器であってもよい。また、製鉄所の水処理設備の沈殿池や水槽であってもよい。好ましくは、大量の製鉄原料を収容する必要のあるヤード、輸送船の船倉、輸送車のコンテナ、倉庫等であり、特に好ましくは輸送船の船倉であるが、製鉄原料収容体の空間の大きさは、特に制限されない。   The steel making material container is not particularly limited.For example, a large amount of iron making materials such as a yard for storing and storing iron making materials, a ship holding ship for steel making materials, a container or loading platform for transport vehicles, and a warehouse can be used. It may have a space that can be accommodated, or may be a small container that accommodates a small amount of iron-making material. Moreover, it may be a sedimentation basin or a water tank of a water treatment facility in an ironworks. Preferably, it is a yard that needs to accommodate a large amount of iron-making raw material, a ship's hold, a container of a transport vehicle, a warehouse, etc., and particularly preferably a ship's hold, but the size of the space for the iron-making raw material container Is not particularly limited.

(製鉄原料固化体)
製鉄原料固化体は、製鉄原料及び高分子吸水剤を含み、製鉄原料は製鉄原料スラリーに由来するものを含み、ゲル状又は固体状であって、例えば、塊状、粒状、粉状に固化した形態を有する。なお、製鉄原料スラリーは製鉄原料及び高分子吸水剤以外の物質を含んでいてもよい。
(Steel making material solidified)
The iron-making raw material solidified body includes an iron-making raw material and a polymer water-absorbing agent, and the iron-making raw material includes those derived from the iron-making raw material slurry, and is in a gel or solid state, for example, solidified into a lump, granule, or powder Have In addition, the iron-making raw material slurry may contain substances other than the iron-making raw material and the polymer water-absorbing agent.

製鉄原料固化体は、製鉄原料スラリーと高分子吸水剤とが固化したものであり、製鉄原料スラリーのような取り扱いの困難さはなく、製鉄原料を搬出する際、水切り等の手間が省ける。   The iron-making raw material solidified body is obtained by solidifying the iron-making raw material slurry and the polymer water-absorbing agent, and there is no difficulty in handling as in the case of the iron-making raw material slurry.

製鉄原料固化体に含まれる製鉄原料は、全てが1の製鉄原料スラリーに含まれていたもの、2以上の製鉄原料スラリーに含まれていたものを混合したもの、一部の製鉄原料は製鉄原料スラリーに含まれ、他の部分は製鉄原料スラリーに含まれていなかったもの等が挙げられる。製鉄原料固化体の品質の点で取り扱いが容易であるため、製鉄原料固化体に含まれる製鉄原料の全てが、1の製鉄原料スラリーに含まれていたものであるのが好ましいが、他の製鉄原料であってもよい。   The iron-making raw materials contained in the solidified iron-making raw material are all contained in one iron-making raw material slurry, a mixture of two or more iron-making raw material slurries, and some iron-making raw materials are iron-making raw materials. What was contained in the slurry and other parts were not contained in the iron-making raw material slurry can be used. Since it is easy to handle in terms of the quality of the iron-making raw material solidified body, it is preferable that all of the iron-making raw materials contained in the iron-making raw material solidified body are contained in one iron-making raw material slurry. It may be a raw material.

本発明の製鉄原料固化体は、製銑工程においてそのまま処理してもよいし、焼成・乾留してもよい。本発明により得られる製鉄原料固化体は、スラリー状の製鉄原料と比較して大気との接触面積が大きいため、水分の蒸発が速い。このため、後工程での省エネルギー効果が得られる。   The iron-making raw material solidified body of the present invention may be processed as it is in the iron making process, or may be fired and dry-distilled. Since the solidified iron-making material obtained by the present invention has a large contact area with the atmosphere as compared with the slurry-like iron-making material, evaporation of moisture is fast. For this reason, the energy saving effect in a post process is acquired.

(製鉄原料)
製鉄原料は、特に制限されず、鉄鉱石、石炭、ダスト、コークス又は石灰石等であり、また、製鉄原料の形状等は特に制限されない。製鉄原料固化体の保持や取扱いが容易となるため、鉄鉱石が好ましく、鉄鉱石は粉鉄鉱石が特に好ましいが塊鉄鉱石等であってもよいし、それらの混合物であってもよい。
(Raw material)
The iron making raw material is not particularly limited, and is iron ore, coal, dust, coke, limestone, or the like, and the shape of the iron making raw material is not particularly limited. Iron ore is preferable because the iron-making raw material solidified body can be easily held and handled, and iron ore is particularly preferably powdered iron ore, but may be massive iron ore or a mixture thereof.

製鉄原料固化体に含まれる製鉄原料の量は、製鉄原料や高分子吸水剤の種類等によって変更しうるため、特に制限されず、製鉄原料スラリーを高分子吸水剤で固化できる量であればよい。   The amount of the iron-making raw material contained in the iron-making raw material solidified body can be changed depending on the type of the iron-making raw material and the polymer water-absorbing agent, and is not particularly limited as long as the iron-making raw material slurry can be solidified with the polymer water-absorbing agent. .

(製鉄原料スラリー)
製鉄原料スラリーは、製鉄原料と水とを含み、製鉄原料は上述の通りであり、水は、特に制限されないが、製鉄原料由来の水であってもよく、雨若しくは粉塵防止用に散布した水であってもよい。
(Steel making raw material slurry)
The iron-making raw material slurry includes an iron-making raw material and water. The iron-making raw material is as described above, and the water is not particularly limited, but may be water derived from the iron-making raw material, and water sprayed to prevent rain or dust. It may be.

(高分子吸水剤)
高分子吸水剤は、吸水速度が早く、また吸水後に分子構造内に水分を捕獲し放水しない又は放水しにくい材料である。本発明において、高分子吸水剤は単独であってもよいが、シリカゲル、ゼオライト、活性炭等他の吸水材や他の物質を含んでいてもよい。
(Polymer water absorbent)
The polymeric water-absorbing agent is a material that has a high water absorption rate and that captures moisture in the molecular structure after water absorption and does not discharge or is difficult to discharge. In the present invention, the polymer water-absorbing agent may be used alone, but may contain other water-absorbing materials such as silica gel, zeolite, activated carbon and other substances.

高分子吸水剤は、特に制限されないが、例えば、ポリアクリル酸(塩)、ポリアクリル酸エステル、ポリアクリルアミド、ポリメタクリル酸(塩)、ポリメタクリル酸エステル、ポリアルキレンイミン、ポリオキシアルキレン、ポリマレイン酸、これらの単量体同士又はこれらの単量体と他の単量体との共重合体等である。   The polymer water-absorbing agent is not particularly limited. For example, polyacrylic acid (salt), polyacrylic acid ester, polyacrylamide, polymethacrylic acid (salt), polymethacrylic acid ester, polyalkyleneimine, polyoxyalkylene, polymaleic acid These monomers or copolymers of these monomers with other monomers.

ポリアクリル酸(塩)の単量体は、アクリル酸、アクリル酸ナトリウム、アクリル酸カリウム、アクリル酸アンモニウム等;ポリアクリル酸エステルの単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸ヒドロキシエチル、アクリル酸−2−エチルヘキシル等;ポリメタクリル酸(塩)の単量体としては、メタクリル酸、メタクリル酸ナトリウム等;ポリメタクリル酸エステルの単量体としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸ヒドロキシエチル、メタクリル酸−2−エチルヘキシル等;ポリアルキレンイミンの単量体としては、エチレンイミン、メチルエチレンイミン等;ポリオキシアルキレンの単量体としては、エチレンオキシド等;他の単量体としては、ビニルスルホン酸、スチレンスルホン酸、アクリルアミド、メタアクリルアミド、N−エチル(メタ)アクリルアミド、ビニルピリジン等である。   Polyacrylic acid (salt) monomers are acrylic acid, sodium acrylate, potassium acrylate, ammonium acrylate, etc .; polyacrylic acid ester monomers are methyl acrylate, ethyl acrylate, acrylic acid n -Propyl, n-butyl acrylate, isobutyl acrylate, hydroxyethyl acrylate, -2-ethylhexyl acrylate, etc .; polymethacrylic acid (salt) monomers include methacrylic acid, sodium methacrylate, etc .; polymethacrylic acid Examples of the ester monomer include methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, hydroxyethyl methacrylate, 2-ethylhexyl methacrylate, and the like; monomers of polyalkyleneimine As an ethylene Polyoxyalkylene monomers such as ethylene oxide; and other monomers such as vinyl sulfonic acid, styrene sulfonic acid, acrylamide, methacrylamide, N-ethyl (meth) acrylamide, vinyl pyridine Etc.

高分子吸水剤は、入手しやすさ、吸水能力の高さからポリアクリル酸又はポリアクリル酸ナトリウム塩が好ましく、ポリアクリル酸ナトリウム塩が特に好ましい。   The polymer water-absorbing agent is preferably polyacrylic acid or polyacrylic acid sodium salt, and polyacrylic acid sodium salt is particularly preferred because of its availability and high water-absorbing ability.

製鉄原料固化体に含まれる高分子吸水剤の量は、製鉄原料や高分子吸水剤の種類等によって変更しうるため、特に制限されないが、例えば、製鉄原料スラリー100質量部に対して、約0.001質量部以上約2質量部以下で含まれるのが好ましく、約0.01質量部以上約1質量部以下で含まれるのが特に好ましい。高分子吸水剤の量が、製鉄原料スラリー100質量部に対し約0.001質量部以下の場合は製鉄原料に起因する水分を吸水しきれず、製鉄原料のスラリー化を抑制できない場合があり、製鉄原料スラリー100質量部に対し約2質量部以上の場合は、過剰に高分子吸水剤が存在することとなり、後の製銑工程(焼結、コークス、高炉)における熱効率の低下及び環境の面から好ましくない。なお、高分子吸水剤の使用量は、製鉄原料の一部を試料として用い、製鉄原料全体の含水量を推測し、その推測値に基づき、決定してもよい。   The amount of the polymer water-absorbing agent contained in the iron-making raw material solidified body is not particularly limited because it can be changed depending on the type of the iron-making raw material and the polymer water-absorbing agent, but is, for example, about 0 with respect to 100 parts by mass of the iron-making material slurry. It is preferably contained in an amount of not less than 0.001 part by mass and not more than about 2 parts by mass, and particularly preferably not less than 0.01 part by mass and not more than about 1 part by mass. When the amount of the polymeric water-absorbing agent is about 0.001 part by mass or less with respect to 100 parts by mass of the iron-making raw material slurry, water due to the iron-making raw material cannot be completely absorbed, and the slurrying of the iron-making raw material may not be suppressed. In the case of about 2 parts by mass or more with respect to 100 parts by mass of the raw material slurry, the polymer water-absorbing agent is excessively present, from the viewpoint of the decrease in thermal efficiency and the environment in the subsequent iron making process (sintering, coke, blast furnace). It is not preferable. Note that the amount of the polymeric water-absorbing agent used may be determined based on the estimated value by using a part of the iron-making raw material as a sample, estimating the water content of the entire iron-making raw material.

<製鉄原料固化体の製造方法>
製鉄原料固化体の製造方法は、所定量の製鉄原料を含む製鉄原料スラリーを製鉄原料収容体の空間に形成する工程と、製鉄原料スラリーと高分子吸水剤とを混合する工程とを含む。
<Manufacturing method of solid steelmaking material>
The method for producing an iron-making raw material solidified body includes a step of forming an iron-making raw material slurry containing a predetermined amount of iron-making raw material in the space of the iron-making raw material container, and a step of mixing the iron-making raw material slurry and the polymer water-absorbing agent.

通常、高分子吸水剤は、吸水後に紫外線に暴露されることで、その分子構造内に捕獲した水分を放水する。しかし、本発明の製鉄原料固化体は、吸水後に紫外線に暴露されても分子構造内に捕獲した水分を放水しにくい。よって、本発明によれば、製鉄原料の搬送の際に紫外線に暴露されても、捕獲している水分が放水され製鉄原料が泥状又はスラリーになることなく製鉄原料固化体として製鉄原料を取扱うことが可能となり、製鉄原料の取り扱いが容易になる。   Usually, the polymer water-absorbing agent discharges moisture trapped in its molecular structure by being exposed to ultraviolet rays after water absorption. However, the solidified iron-making material of the present invention does not easily release water trapped in the molecular structure even if it is exposed to ultraviolet rays after water absorption. Therefore, according to the present invention, even if the steelmaking raw material is transported, even if it is exposed to ultraviolet rays, the captured water is discharged and the ironmaking raw material is handled as a solidified ironmaking raw material without causing the steelmaking raw material to become mud or slurry. This makes it easier to handle the steelmaking raw material.

(製鉄原料スラリーの形成態様)
製鉄原料スラリーが製鉄原料収容体において形成される態様は特に制限されないが、例えば、製鉄原料収容体に配置された製鉄原料から該製鉄原料の含有水が滲出し、製鉄原料収容体に自然に滞留することによりスラリーが形成される態様、製鉄原料収容体に製鉄原料が配置された状態で降雨があり、この雨水により製鉄原料がスラリー化する態様、製鉄原料収容体に製鉄原料を配置し、粉塵防止のために水分を添加した結果、スラリー化する態様、製鉄所の水処理設備(製鉄原料収容体)の上澄みを除いた結果、製鉄原料を含む沈殿物がスラリー化する態様等が挙げられる。
(Formation of steelmaking raw material slurry)
The aspect in which the iron-making raw material slurry is formed in the iron-making raw material container is not particularly limited. For example, the water contained in the iron-making raw material exudes from the iron-making raw material placed in the iron-making raw material container, and naturally stays in the iron-making raw material container. A mode in which a slurry is formed, a mode in which there is rainfall in a state in which the steelmaking raw material is disposed in the ironmaking raw material container, a mode in which the ironmaking raw material is slurried by this rainwater, a steelmaking raw material is disposed in the ironmaking raw material container, As a result of adding moisture for prevention, there are exemplified a mode of slurrying, a mode of removing a supernatant of a water treatment facility (steel making raw material container) of a steel mill, and a mode in which a precipitate containing the iron making raw material is slurried.

(製鉄原料固化体の調製方法)
製鉄原料スラリーと高分子吸水剤とを含む製鉄原料固化体を調製する方法は、特に制限されないが、例えば、製鉄原料スラリーが形成された後に空間の上部から高分子吸水剤を散布する方法や、下部に散布する方法が挙げられる。混合する方法は、特に制限されないが、例えば、撹拌機等を用いて機械的に混合する方法や、ショベル等を用いて人為的に混合する方法が挙げられる。
(Preparation method for solidified iron raw material)
The method of preparing the iron-making raw material solidified body containing the iron-making raw material slurry and the polymer water-absorbing agent is not particularly limited.For example, after the iron-making raw material slurry is formed, a method of spraying the polymer water-absorbing agent from the upper part of the space, A method of spraying at the bottom is mentioned. The mixing method is not particularly limited, and examples thereof include a method of mechanically mixing using a stirrer and the like, and a method of artificially mixing using an excavator and the like.

製鉄原料固化体は、製鉄原料スラリーと高分子吸水剤とが接触していれば形成され、接触する状態は特に制限されない。そのため、製鉄原料固化体を形成する方法は、特に制限されないが、例えば、製鉄原料スラリーと高分子吸水剤とが接触した状態で静置しておいてもよく、撹拌して混合をしてもよい。また、混合物を撹拌及び静置を交互に行ってもよい。迅速に製鉄原料スラリーを固化するため、混合物を撹拌するのが好ましいが、特に制限されない。   The iron-making raw material solidified body is formed as long as the iron-making raw material slurry is in contact with the polymer water-absorbing agent, and the state of contact is not particularly limited. Therefore, the method for forming the iron-making raw material solidified body is not particularly limited. For example, the iron-making raw material slurry and the polymer water-absorbing agent may be left in contact with each other, or may be stirred and mixed. Good. Further, the mixture may be alternately stirred and allowed to stand. In order to rapidly solidify the steelmaking raw material slurry, it is preferable to stir the mixture, but there is no particular limitation.

なお、本発明において「固化」は、スラリー状から、ベルトコンベアやトラック等で搬送可能な程度まで塊状、粒状、粉状に固化した状態であり、この状態であれば水を含んでいても構わない。   In the present invention, “solidification” refers to a state in which the slurry is solidified into a lump, granule, or powder to the extent that it can be conveyed by a belt conveyor or a truck. In this state, water may be included. Absent.

(製鉄原料の搬送方法)
製鉄原料の搬送方法は、機械的であっても、人力で行ってもよい。ここで機械的に搬送する方法は、例えば、ベルトコンベアやトラック等を用いて行う方法が挙げられる。一度に大量に長距離搬送できるため、機械的に搬送するのが好ましく、ベルトコンベアを用いて搬送するのが特に好ましい。
(Conveying method of steelmaking raw materials)
The method for transporting the iron-making raw material may be mechanical or manual. Examples of the method of mechanically transporting include a method of using a belt conveyor, a truck, or the like. Since it can be transported in a large amount at a time for a long distance, it is preferably transported mechanically, particularly preferably transported using a belt conveyor.

従来、高分子吸水剤が屋外で用いられた時、高分子吸水剤が紫外線の影響を受けやすく、数分から数時間で吸収した水分を分離してしまう問題があったが、製鉄原料固化体は屋外で紫外線に暴露していても、捕獲した水分を放水することなく安定に取り扱うことができる。
これは、酸化鉄が紫外線を遮蔽又は散乱することで、高分子吸水剤への紫外線の影響が軽減されているものと考えられる。
Conventionally, when a polymer water-absorbing agent is used outdoors, the polymer water-absorbing agent is easily affected by ultraviolet rays, and there has been a problem of separating moisture absorbed in a few minutes to hours. Even if it is exposed to ultraviolet rays outdoors, it can be handled stably without releasing the captured water.
This is considered because the influence of the ultraviolet rays on the polymer water-absorbing agent is reduced by the iron oxide shielding or scattering the ultraviolet rays.

以下、実施例を用いて本発明を説明するが、本発明は実施例に制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated using an Example, this invention is not restrict | limited to an Example.

(固化効果の確認)
[実施例1〜3、比較例1〜4]
含水率7質量%の鉄鉱石1140gが入っているステンレス製のパレットに、水120gを加え、含水率16%の鉄鉱石スラリー1260gを作製した。
該鉄鉱石スラリーをモルタルミキサー(容量3L)に投入し、所定量の各種薬剤と鉄鉱石スラリーとを3秒間撹拌して混合した。
撹拌混合後、ステンレス製のパレットに鉄鉱石スラリーと高分子吸水剤との混合物を移し、15分経過後、更に10秒間固化したスラリーを撹拌した。
パレットから固化体を取り出し、JIS R−5201に準拠して、テーブルフロー値(落下衝撃回数:0回)を計測した。具体的には、フローテーブル上の中央に正しく置いたフローコーンにサンプルを詰め、その後直ちにフローコーンを正しく上方に取り去り、フロー値を計測した。
ハンドルを回しテーブルを所定回数落下させた後のフロー値を計測した。
JIS R 5201によるセメントの物理性状試験を参考に、鉄鉱石固化体の流動性を評価した。
(Confirmation of solidification effect)
[Examples 1 to 3, Comparative Examples 1 to 4]
120 g of water was added to a stainless steel pallet containing 1140 g of iron ore having a moisture content of 7% by mass to produce 1260 g of iron ore slurry having a moisture content of 16%.
The iron ore slurry was put into a mortar mixer (capacity 3 L), and predetermined amounts of various chemicals and the iron ore slurry were stirred and mixed for 3 seconds.
After stirring and mixing, the mixture of the iron ore slurry and the polymer water-absorbing agent was transferred to a stainless steel pallet, and after 15 minutes, the solidified slurry was further stirred for 10 seconds.
The solidified body was taken out from the pallet, and the table flow value (the number of drop impacts: 0) was measured according to JIS R-5201. Specifically, the sample was packed in a flow cone correctly placed in the center on the flow table, and immediately after that, the flow cone was correctly removed upward to measure the flow value.
The flow value after turning the handle and dropping the table a predetermined number of times was measured.
With reference to the physical property test of cement according to JIS R 5201, the fluidity of the iron ore solidified body was evaluated.

鉄鉱石に含まれる水分量を以下の方法により決定した。
まず、約20gの鉄鉱石の乾燥前の質量を測定し、該鉄鉱石を、105℃の乾燥器で2時間乾燥した。2時間後、該鉄鉱石の質量を測定し、「含水率=(乾燥前の質量−乾燥後の質量)÷乾燥前の質量×100」の計算方法にて含水率を算出した。
高分子吸水剤としてはポリアクリル酸重合体であるクリラインS−200(栗田工業製)を用いた。他の薬剤としてはシリカゲル(株式会社東海化学工業所製)、グアーガム(平均分子量 約30万)、カルボキシルメチルセルロース(平均分子量 約3万)を用いた。結果を表1に添付する。
The amount of water contained in the iron ore was determined by the following method.
First, the mass of about 20 g of iron ore before drying was measured, and the iron ore was dried in a dryer at 105 ° C. for 2 hours. Two hours later, the mass of the iron ore was measured, and the moisture content was calculated by the calculation method of “moisture content = (mass before drying−mass after drying) ÷ mass before drying × 100”.
As the polymer water-absorbing agent, CLILINE S-200 (manufactured by Kurita Kogyo), which is a polyacrylic acid polymer, was used. As other drugs, silica gel (manufactured by Tokai Chemical Industry Co., Ltd.), guar gum (average molecular weight of about 300,000), and carboxymethyl cellulose (average molecular weight of about 30,000) were used. The results are attached in Table 1.

Figure 0006041627
Figure 0006041627

クリラインS−200は、今回のように薬剤とスラリーの混合時間が短くても、水と接していれば吸水効果を発揮し、固化する。結果として、落下衝撃回数0回のフロー値が小さく、スラリーの流動性が低下しており、固化効果が認められた。比較例においては、固化効果は、薬剤添加無し(ブランク)と同様の結果であった。
更に落下衝撃回数15回、50回実施した際に、フロー値が110mm以下となったものは、特に鉄鉱石の固化が十分に行われており、団粒状の形態となり安定している状態であった。
Even if the mixing time of the chemical | medical agent and a slurry is short like this time, if Kuriline S-200 is in contact with water, it will exhibit a water absorption effect and will solidify. As a result, the flow value when the number of drop impacts was 0 was small, the fluidity of the slurry was lowered, and a solidification effect was observed. In the comparative example, the solidification effect was the same result as no drug addition (blank).
Furthermore, when the number of drop impacts was 15 and 50 times, the one with a flow value of 110 mm or less was particularly solidified in iron ore, and was in a stable state in the form of aggregates. It was.

(紫外線の影響の確認)
鉄鉱石スラリーの固化効果を確認した実施例2に係る固化体と、純水を吸水させた高分子吸水剤とをパレット上に置き、屋外で紫外線に曝露し外観の変化を観察し、評価した。比較例2の純水を吸水させた高分子吸水剤は、鉄鉱石スラリーの固化効果の確認に用いた水・クリラインS−200と同量の水及びクリラインS−200を用いて作製した。
鉄鉱石スラリーの固化体及び純水を吸水させた高分子吸水剤をパレット上に塊となるように手で整え紫外線に曝露した。暴露開始後30分後、1時間後、1日後の外観の評価結果を表2に示す。
(Confirmation of the influence of ultraviolet rays)
The solidified body according to Example 2 in which the solidification effect of the iron ore slurry was confirmed and the polymer water-absorbing agent having absorbed pure water were placed on a pallet, exposed to ultraviolet rays outdoors, and the appearance change was observed and evaluated. . The polymer water-absorbing agent in which the pure water of Comparative Example 2 was absorbed was prepared using the same amount of water and criline S-200 as water / criline S-200 used for confirming the solidification effect of the iron ore slurry.
The solidified iron ore slurry and the polymer water-absorbing agent having absorbed pure water were prepared by hand so as to form a lump on the pallet and exposed to ultraviolet rays. Table 2 shows the evaluation results of the appearance after 30 minutes, 1 hour and 1 day after the start of exposure.

Figure 0006041627
Figure 0006041627

実施例の鉄鉱石固化体は、紫外線に暴露開始時と同様の形状を維持していた。単に水を吸水させた高分子吸水剤は、30分後には水を放出しており、1時間後には水と同様の外観となっていた。鉄鉱石の紫外線遮蔽効果又は紫外線散乱効果が発揮されたものと考えられる。   The iron ore solidified body of the example maintained the same shape as that at the start of exposure to ultraviolet rays. The polymer water-absorbing agent that simply absorbed water released water after 30 minutes and had an appearance similar to water after 1 hour. It is considered that the ultraviolet shielding effect or ultraviolet scattering effect of iron ore was exhibited.

Claims (6)

製鉄原料収容体において形成された、製鉄原料と水とを含む製鉄原料スラリーに対し、高分子吸水剤を接触させることで、前記製鉄原料スラリーを固化して製鉄原料固化体とする工程と、
該製鉄原料固化体を、製鉄原料収容体外へ搬送する工程とを含み、
前記搬送にベルトコンベアを用いる、製鉄原料の搬送方法。
A step of solidifying the iron-making raw material slurry into an iron-making raw material solidified body by bringing a polymer water absorbent into contact with the iron-making raw material slurry containing the iron-making raw material and water formed in the iron-making raw material container;
The formulation of iron material solidified body, and a step of conveying the steel material accommodating extracorporeal seen including,
A method for conveying an iron making raw material using a belt conveyor for the conveyance.
製鉄原料収容体において形成された、製鉄原料と水とを含む製鉄原料スラリーに対し、高分子吸水剤を接触させることで、前記製鉄原料スラリーを固化して製鉄原料固化体とする工程と、A step of solidifying the iron-making raw material slurry into an iron-making raw material solidified body by bringing a polymer water absorbent into contact with the iron-making raw material slurry containing the iron-making raw material and water formed in the iron-making raw material container;
該製鉄原料固化体を、製鉄原料収容体外へ搬送する工程とを含み、Transporting the iron-making raw material solidified body out of the iron-making raw material container,
前記搬送にトラックを用いる、製鉄原料の搬送方法。A method for transporting an iron making raw material using a truck for the transport.
少なくとも一部の工程を屋外暴露の状態で行う請求項1又は2記載の製鉄原料の搬送方法。 The method for conveying a steelmaking raw material according to claim 1 or 2 , wherein at least a part of the steps is performed in an outdoor exposure state. 前記高分子吸水剤が前記製鉄原料スラリー100質量部に対し、0.001質量部以上2質量部以下で含まれる請求項1〜3いずれか1項記載の製鉄原料の搬送方法。   The method for conveying an iron-making raw material according to any one of claims 1 to 3, wherein the polymer water-absorbing agent is contained in an amount of 0.001 to 2 parts by mass with respect to 100 parts by mass of the iron-making raw material slurry. 前記高分子吸水剤がポリアクリル酸ナトリウム塩である請求項1〜4いずれか1項記載の製鉄原料の搬送方法。   The method for conveying an iron-making raw material according to any one of claims 1 to 4, wherein the polymer water-absorbing agent is polyacrylic acid sodium salt. 前記製鉄原料収容体が船倉に位置する請求項1〜5いずれか1項記載の製鉄原料の搬送方法。
The method for conveying an iron-making raw material according to any one of claims 1 to 5, wherein the iron-making raw material container is located in a hold.
JP2012244728A 2012-05-16 2012-11-06 Method for conveying steelmaking raw material and method for producing solidified ironmaking raw material Active JP6041627B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012244728A JP6041627B2 (en) 2012-05-16 2012-11-06 Method for conveying steelmaking raw material and method for producing solidified ironmaking raw material
KR1020130047181A KR20130128318A (en) 2012-05-16 2013-04-29 Method of conveying stell raw material and method of manufacturing solidified substrate of steel raw material
CN2013101752665A CN103421947A (en) 2012-05-16 2013-05-13 Method of conveying steel raw materials and method of manufacturing solidified substrate of steel raw materials
TW102116802A TWI591185B (en) 2012-05-16 2013-05-13 Method for transporting iron making raw material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012112733 2012-05-16
JP2012112733 2012-05-16
JP2012244728A JP6041627B2 (en) 2012-05-16 2012-11-06 Method for conveying steelmaking raw material and method for producing solidified ironmaking raw material

Publications (2)

Publication Number Publication Date
JP2013256710A JP2013256710A (en) 2013-12-26
JP6041627B2 true JP6041627B2 (en) 2016-12-14

Family

ID=49953378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012244728A Active JP6041627B2 (en) 2012-05-16 2012-11-06 Method for conveying steelmaking raw material and method for producing solidified ironmaking raw material

Country Status (2)

Country Link
JP (1) JP6041627B2 (en)
TW (1) TWI591185B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3005063B1 (en) * 2013-04-26 2015-04-24 Snf Sas PROCESS FOR LOADING IRON ORE IN BULK TREATED PARTIALLY BY SUPERABSORBENTS
AU2015241974B2 (en) * 2014-04-01 2017-09-14 Jfe Steel Corporation Method of processing water-containing bulk material and apparatus for adding flocculant to water-containing bulk material
JP2018058017A (en) 2016-10-04 2018-04-12 栗田工業株式会社 Adhesion and jamming prevention method of mineral material
JP6780526B2 (en) * 2017-02-10 2020-11-04 栗田工業株式会社 Leakage prevention method for water and / or mineral raw materials
JP7150271B2 (en) * 2018-02-06 2022-10-11 株式会社片山化学工業研究所 Method for reforming solid fuel and/or steel raw material
JP6825738B1 (en) 2020-04-09 2021-02-03 栗田工業株式会社 How to prevent adhesion and clogging of mineral raw materials
WO2023120230A1 (en) * 2021-12-20 2023-06-29 三洋化成工業株式会社 Fluidity improving agent for solid fuel or for steel raw material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204526A (en) * 1984-03-29 1985-10-16 Nisshin Steel Co Ltd Method of removing moisture from ship hold during landing of ore
JPS6160784A (en) * 1984-09-03 1986-03-28 Kawasaki Steel Corp Reduction method of moisture content of outdoor deposit
GB8505632D0 (en) * 1985-03-05 1985-04-03 Allied Colloids Ltd Water absorbing polymers
JPH07308700A (en) * 1994-05-19 1995-11-28 Nippon Kayaku Co Ltd Flocculant and method for dehydrating sludge
WO1996005146A1 (en) * 1994-08-12 1996-02-22 Cytec Technology Corp. A method of stabilizing slurries
JPH11169900A (en) * 1997-12-10 1999-06-29 Taiyo Koko Co Ltd Treatment of hydrated cake
GB0310419D0 (en) * 2003-05-07 2003-06-11 Ciba Spec Chem Water Treat Ltd Treatment of aqueous suspensions
JP2010227745A (en) * 2009-03-26 2010-10-14 Nippon Paper Industries Co Ltd Method of dehydrating incineration ash
EP2531625A4 (en) * 2010-02-04 2014-12-31 Smidth As F L Method for treating tailings
JP5817974B2 (en) * 2011-07-25 2015-11-18 Jfeスチール株式会社 Unloading method of water-containing roses

Also Published As

Publication number Publication date
TWI591185B (en) 2017-07-11
TW201348454A (en) 2013-12-01
JP2013256710A (en) 2013-12-26

Similar Documents

Publication Publication Date Title
JP6041627B2 (en) Method for conveying steelmaking raw material and method for producing solidified ironmaking raw material
JP5927807B2 (en) Method for modifying coal and / or iron ore slurry
JP5817974B2 (en) Unloading method of water-containing roses
WO2014058074A1 (en) Method for unloading water-containing bulk material
EP3524551A1 (en) Method for preventing adhesion and clogging of mineral raw material
JP2015093977A (en) Method of forming friction-reducing coat, formation agent and method of treating water-containing particle/muddy matter
KR20130128318A (en) Method of conveying stell raw material and method of manufacturing solidified substrate of steel raw material
KR101773271B1 (en) Method for unloading water-containing bulk material
JP7150271B2 (en) Method for reforming solid fuel and/or steel raw material
JP7299027B2 (en) Method of piling up raw materials for ironmaking
JP6041109B2 (en) Unloading method of water-containing roses
CN102333894A (en) Method for treating sintering granules
JP5245340B2 (en) How to use recovered dust from converter exhaust gas in steelmaking process
JP6825738B1 (en) How to prevent adhesion and clogging of mineral raw materials
WO2021205836A1 (en) Method for modifying mineral raw material
JP7207153B2 (en) agglomerates
RU2219261C1 (en) Method of treating galvanic slime before utilization and processing
TWI558640B (en) Discharge method of watery bulk cargo
PL243215B1 (en) Method of waste agglomeration after blasting of metal surfaces
AU2010321691B2 (en) Method of processing metallurgical waste powder
RU2333264C2 (en) Production line for metallurgical charge material preparation
JP3716658B2 (en) Air transport pretreatment method for dust collection dust
JP2019090095A (en) Method for producing iron-making dust agglomerate, and agglomeration assistant
JPH0794291B2 (en) Transfer method of powder and granular material
CZ19613U1 (en) Metallurgy additive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140806

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150324

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161108

R150 Certificate of patent or registration of utility model

Ref document number: 6041627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250