JP6041352B2 - Manufacturing method of bogie frame for railway vehicles - Google Patents

Manufacturing method of bogie frame for railway vehicles Download PDF

Info

Publication number
JP6041352B2
JP6041352B2 JP2013162612A JP2013162612A JP6041352B2 JP 6041352 B2 JP6041352 B2 JP 6041352B2 JP 2013162612 A JP2013162612 A JP 2013162612A JP 2013162612 A JP2013162612 A JP 2013162612A JP 6041352 B2 JP6041352 B2 JP 6041352B2
Authority
JP
Japan
Prior art keywords
plate
bogie frame
vertical
rotary tool
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013162612A
Other languages
Japanese (ja)
Other versions
JP2015030410A (en
Inventor
龍一 中野
龍一 中野
昌邦 江角
昌邦 江角
英夫 高井
英夫 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013162612A priority Critical patent/JP6041352B2/en
Publication of JP2015030410A publication Critical patent/JP2015030410A/en
Application granted granted Critical
Publication of JP6041352B2 publication Critical patent/JP6041352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、鉄道車両用台車の製造方法に係り、特に、アルミニウム合金から構成された台車枠の応力腐食割れを抑制できる製造方法に関する。   The present invention relates to a method for manufacturing a railcar bogie, and more particularly, to a manufacturing method that can suppress stress corrosion cracking of a bogie frame made of an aluminum alloy.

アルミニウム合金は添加物の種類によって2000系から7000系に至る多くの種類がある。特に、マグネシウム(Mg)、ケイ素(Si)、亜鉛(Zn)を添加した7000系アルミニウム合金は鉄鋼材料をもしのぐ非常に高い比強度を有している。また、7000系の中でも7N01合金は、溶融溶接が可能であるとともに、溶接部の強度が母材に比して大幅に低下することの多い他のアルミニウム合金と異なり、溶接後自然時効により溶接部強度が大きく向上する特徴を有している。   There are many types of aluminum alloys ranging from 2000 series to 7000 series depending on the kind of additive. In particular, a 7000 series aluminum alloy to which magnesium (Mg), silicon (Si), and zinc (Zn) is added has a very high specific strength that surpasses steel materials. In addition, the 7N01 alloy among the 7000 series is capable of fusion welding and, unlike other aluminum alloys, in which the strength of the weld is often significantly lower than that of the base metal, It has the characteristic that the strength is greatly improved.

しかしながら、これら7000系アルミニウム合金は、腐食環境下において引張り残留応力が存在する状態で使用すると結晶粒界に沿って応力腐食割れSCC(Stressed Corrosion Cracking)が生じることがある。   However, when these 7000 series aluminum alloys are used in a state where tensile residual stress exists in a corrosive environment, stress corrosion cracking SCC (Stressed Corrosion Cracking) may occur along the grain boundary.

このような問題に関して、特許文献1には、短パルス高ピーク出力のレーザで高圧力のプラズマを発生させ、その衝撃波で、溶接部および鋳造材などの材料表面をピーニングして微細変形させ、圧縮残留応力を得ることにより溶接継手や鋳造材の強度を高め、疲労強度や耐食性などを改善する方法が開示されている。   Regarding such a problem, Patent Document 1 discloses that a high-pressure plasma is generated by a laser having a short pulse and high peak output, and the surface of the material such as a welded part and a cast material is peened and finely deformed by the shock wave. A method for improving the fatigue strength, corrosion resistance, and the like by increasing the strength of a welded joint or cast material by obtaining residual stress is disclosed.

また、特許文献2には、各配管の突合せ面にそれぞれ肉盛層を形成し、各肉盛層にそれぞれ開先を形成し、各開先を対向させて配管と配管の突合せ溶接を行い、各配管の開先間に溶接金属部を形成し、各配管の肉盛層内に、配管の母材と肉盛層の境界部から、肉盛層の溶接線に直交する方向に伸びるデンドライトを形成することにより、溶接する構造部材の肉厚方向における応力腐食割れの発生を抑制する方法が開示されている。   Further, in Patent Document 2, a build-up layer is formed on each butt surface of each pipe, a groove is formed in each build-up layer, and each groove is opposed to perform butt welding of the pipe and the pipe. A weld metal part is formed between the groove of each pipe, and a dendrite extending in a direction perpendicular to the weld line of the build-up layer from the boundary between the base material of the pipe and the build-up layer is formed in the build-up layer of each pipe. A method for suppressing the occurrence of stress corrosion cracking in the thickness direction of a structural member to be welded by forming the structure is disclosed.

特開2006−122969号公報JP 2006-122969 A 特開2012−030237号公報JP2012-030237A

しかし、従来技術では、アルミニウム合金を溶接によって組み立てる際に、圧延によって成型された板材には、溶接ビードの冷却に伴って、アルミニウム合金の結晶粒界に沿って割れる応力腐食割れを抑制することについては配慮されていない。   However, in the prior art, when assembling an aluminum alloy by welding, the plate material formed by rolling suppresses stress corrosion cracking that breaks along the crystal grain boundary of the aluminum alloy as the weld bead cools. Is not considered.

本発明は、これらの課題に鑑みてなされたもので、アルミニウム合金を溶接によって組み立てる鉄道車両用台車枠に係り、応力腐食割れが生じにくい鉄道車両用台車枠の製造方法を提供することを目的としている。   The present invention has been made in view of these problems, and relates to a bogie frame for a railway vehicle in which an aluminum alloy is assembled by welding. Yes.

本発明は上記課題を解決するため、次のような手段を採用した。レール方向に沿って離置されたアルミニウム合金製の側梁と、前記側梁の長手方向の中央部同士を接続するアルミニウム合金製の横梁と、を有する鉄道車両用台車枠の製造方法において、長手方向の断面形状が逆U字状に成型された上部側梁の垂直片の先端部を、前記上部側梁の幅方向寸法より大きい幅方向寸法を有す下部側梁の幅方向の端部に突き合わせて溶接した後、前記側梁の材質より硬い材質からなる円柱状の回転工具をその軸周りに回転させながら、前記回転工具の長手方向の端面を前記下部側梁の幅方向の垂直面に押圧しながら前記垂直面に沿って移動させることを特徴とする。   In order to solve the above problems, the present invention employs the following means. In the manufacturing method of a bogie frame for a railway vehicle having a side beam made of aluminum alloy that is spaced along the rail direction and a side beam made of aluminum alloy that connects the central portions in the longitudinal direction of the side beam, The top end of the vertical piece of the upper side beam whose cross-sectional shape in the direction is formed in an inverted U shape is the end in the width direction of the lower side beam having a width direction dimension larger than the width direction dimension of the upper side beam. After butting and welding, while rotating a cylindrical rotary tool made of a material harder than the material of the side beam around its axis, the longitudinal end surface of the rotary tool is set to a vertical surface in the width direction of the lower side beam. It is characterized by moving along the vertical plane while pressing.

また、本発明は、前記側梁の長手方向の中央部に形成された開口部に差し込まれた、円筒状の横梁の先端部と前記開口部の周縁とを溶接によって接合し、前記円筒状の横梁の先端部をその長手方向に交差する断面で切断した切断面の近傍と、前記円筒状の横梁の先端部を覆う塞ぎ板とを突き合わせて溶接した後、前記回転工具をその軸周りに回転させながら、前記回転工具の長手方向の端面を前記切断面の表面に押圧しながら前記切断面に沿って移動させることを特徴とする。   In the present invention, the end of the cylindrical transverse beam inserted into the opening formed in the center in the longitudinal direction of the side beam and the peripheral edge of the opening are joined by welding, and the cylindrical After rotating the rotary tool around its axis after welding the end of the cross beam in the vicinity of the cut surface cut by a cross section that intersects the longitudinal direction and the closing plate that covers the tip of the cylindrical cross beam And moving along the cutting surface while pressing the end face in the longitudinal direction of the rotary tool against the surface of the cutting surface.

本発明は、以上の構成を備えるため、応力腐食割れが生じにくい鉄道車両用台車枠を製造することができる。   Since this invention is provided with the above structure, it can manufacture the bogie frame for rail vehicles which a stress corrosion crack does not produce easily.

図1は、鉄道車両用台車の側面図である。FIG. 1 is a side view of a railway vehicle carriage. 図2は、図1に示した鉄道車両用台車のA部を拡大した斜視図である。FIG. 2 is an enlarged perspective view of a portion A of the railway vehicle carriage shown in FIG. 図3は、図1に示した鉄道車両用台車のB部を拡大した斜視図である。FIG. 3 is an enlarged perspective view of a portion B of the railcar bogie shown in FIG. 図4は、台車枠をなす横梁と側梁との接合部の斜視図である。FIG. 4 is a perspective view of a joint portion between a side beam and a side beam forming a carriage frame. 図5は、台車枠の斜視図である。FIG. 5 is a perspective view of the bogie frame. 図6は、図5に示した台車枠のA−A断面の斜視図である。6 is a perspective view of an AA cross section of the bogie frame shown in FIG. 図7は、図5に示した台車枠のB−B断面の斜視図である。FIG. 7 is a perspective view of the BB cross section of the bogie frame shown in FIG. 図8は、図5に示した台車枠のC−C断面の斜視図である。FIG. 8 is a perspective view of a cross section CC of the bogie frame shown in FIG. 図9は、端梁を備える台車枠の斜視図である。FIG. 9 is a perspective view of a bogie frame including end beams.

以下、本発明の実施例を図1〜図9を用いて説明する。   Embodiments of the present invention will be described below with reference to FIGS.

図1は、鉄道車両用台車の側面図である。図1において、鉄道車両用台車1は、レール方向に沿って離置される側梁10と、側梁10の長手方向(レール方向)の中央部同士を接続する横梁20と、横梁20の上方に横梁20の長手方向(枕木方向)に沿って備えられる枕梁5と、車輪と車軸とから構成される輪軸80などから構成されている。側梁10と横梁20は、それぞれ複数個備えられ、レール方向に沿って互いに離れて配置される各側梁10が、枕木方向に沿って互いに離れて配置される各横梁20を介して互いに接続され、アルミニウム合金製の台車枠として構成される。枕梁5の長手方向(枕木方向)の両端部の上面には空気ばね60が備えられており、空気ばね60の上面には車体(二点鎖線)が載置される。   FIG. 1 is a side view of a railway vehicle carriage. In FIG. 1, a railcar bogie 1 includes a side beam 10 that is spaced along the rail direction, a horizontal beam 20 that connects the central portions of the side beams 10 in the longitudinal direction (rail direction), and an upper side of the horizontal beam 20. The cross beam 5 is provided along the longitudinal direction of the cross beam 20 (the sleeper direction), and a wheel shaft 80 including a wheel and an axle. A plurality of side beams 10 and cross beams 20 are provided, and the side beams 10 arranged apart from each other along the rail direction are connected to each other via the cross beams 20 arranged apart from each other along the sleeper direction. And configured as a bogie frame made of aluminum alloy. Air springs 60 are provided on the upper surfaces of both ends in the longitudinal direction (sleeper direction) of the pillow beam 5, and a vehicle body (two-dot chain line) is placed on the upper surfaces of the air springs 60.

図2は、図1に示した鉄道車両用台車のA部を拡大した斜視図である。図2において、側梁10は、長手方向(レール方向)100の垂直断面形状が逆U字状に成型された上部側梁10aと、上部側梁10aの垂直片10a1の下端部に突き合わせて溶接される底板10bと、から構成された角パイプ状の形態をなしている。上部側梁10aと下部下板10bはアルミニウム合金製の板材からなり、これら板材は圧延方向200の方向に圧延されて板状に成形されている。上部側梁10aは、圧延によって板厚が調整された後、曲げ加工が施されて逆U字状の断面形状を備える形態に成型されている。下板10bの幅方向110の寸法は、上部側梁10aの幅方向110寸法より大きく設定されている。側梁10は、下板10bの上面に上部側梁10aを載置した後、下板10bの幅方向110の端部と、上部側梁10aの垂直片10a1の下端部と、の突き合わせ部を側梁10の長手方向100の方向に沿って連続溶接して組み立てられている。したがって、基本的に溶接ビード74は下板10bの上面にのみ形成され、下板10bの側面(端面)aには形成されない。   FIG. 2 is an enlarged perspective view of a portion A of the railway vehicle carriage shown in FIG. In FIG. 2, the side beam 10 is welded to the upper side beam 10 a whose vertical cross-sectional shape in the longitudinal direction (rail direction) 100 is formed in an inverted U shape, and to the lower end portion of the vertical piece 10 a 1 of the upper side beam 10 a. The bottom plate 10b is formed in the shape of a square pipe. The upper side beam 10a and the lower lower plate 10b are made of aluminum alloy plates, and these plates are rolled in the rolling direction 200 and formed into a plate shape. After the plate thickness is adjusted by rolling, the upper side beam 10a is subjected to bending processing and formed into a shape having an inverted U-shaped cross-sectional shape. The dimension in the width direction 110 of the lower plate 10b is set larger than the dimension in the width direction 110 of the upper side beam 10a. After placing the upper side beam 10a on the upper surface of the lower plate 10b, the side beam 10 has a butt portion between the end portion of the lower plate 10b in the width direction 110 and the lower end portion of the vertical piece 10a1 of the upper side beam 10a. The side beams 10 are assembled by continuous welding along the longitudinal direction 100. Therefore, the weld bead 74 is basically formed only on the upper surface of the lower plate 10b and is not formed on the side surface (end surface) a of the lower plate 10b.

連続溶接によって組み立てられた側梁10をなす下板10bの幅方向110の端部の側面aの近傍に溶接ビード74が形成させること、さらに、側面aが圧延方向200に交差する面であるため、溶接ビード74の冷却に伴い側面aの表面(垂直面)には側梁10の高さ方向120の方向に引っ張られる引張り残留応力が生じやすい。このため、圧延によって成型された下板10bの側面(端面)aには、アルミニウム合金の結晶粒界に沿って割れる応力腐食割れ(SCC:Stress Corrosion Cracking)が生じる場合がある。   Because the weld bead 74 is formed in the vicinity of the side surface a of the end portion in the width direction 110 of the lower plate 10b forming the side beam 10 assembled by continuous welding, and the side surface a intersects the rolling direction 200. As the weld bead 74 is cooled, a tensile residual stress that is pulled in the height direction 120 of the side beam 10 is likely to be generated on the surface (vertical surface) of the side surface a. For this reason, stress corrosion cracking (SCC: Stress Corrosion Cracking) may occur on the side surface (end surface) a of the lower plate 10b formed by rolling along the crystal grain boundary of the aluminum alloy.

そこで、この応力腐食割れを防止するために、アルミニウム合金のより硬質の素材から製作された円筒形状の回転工具70を準備し、この回転工具70を軸周りに回転させながら、回転工具70の長手方向の端面を下板10bの側面(端面)aの表面(垂直面)に押圧しながら側面(端面)aに沿って矢印72の方向に移動させる。このプロセスによって、回転工具70の端面と、下板10bの側面(端面)aとの間に高温の摩擦熱と高い圧力が生じるので、下板10bの側面(端面)aの結晶粒界を微細化するとともに残留引張り応力が解放される改質面76を得ることができる。この結果、下板10bの側面(端面)aに生じる応力腐食割れの発生を抑制することができる。   Therefore, in order to prevent this stress corrosion cracking, a cylindrical rotary tool 70 made of a harder material of an aluminum alloy is prepared, and while the rotary tool 70 is rotated around its axis, the length of the rotary tool 70 is increased. The direction end surface is moved in the direction of the arrow 72 along the side surface (end surface) a while pressing the end surface of the lower plate 10 b against the surface (vertical surface) of the side surface (end surface) a. This process generates high-temperature frictional heat and high pressure between the end surface of the rotary tool 70 and the side surface (end surface) a of the lower plate 10b. As a result, it is possible to obtain the modified surface 76 that releases the residual tensile stress. As a result, it is possible to suppress the occurrence of stress corrosion cracking that occurs on the side surface (end surface) a of the lower plate 10b.

この際、回転工具70としては、その外径が、下板10bの板厚よりも大きいものを用いることが望ましい。   At this time, it is desirable to use a rotary tool 70 whose outer diameter is larger than the thickness of the lower plate 10b.

図3は、図1に示した鉄道車両用台車のB部を拡大した斜視図である。図3において、枕梁5は、押出方向300の方向に押出成型されたアルミニウム合金製の複数の中空押出形材6を接合して構成されている。中空押出形材6の押出し方向300の端面の近傍には塞ぎ板7が溶接によって接合されている。   FIG. 3 is an enlarged perspective view of a portion B of the railcar bogie shown in FIG. In FIG. 3, the pillow beam 5 is configured by joining a plurality of hollow extruded shapes 6 made of an aluminum alloy extruded in the direction of the extrusion direction 300. In the vicinity of the end face of the hollow extruded member 6 in the extrusion direction 300, a closing plate 7 is joined by welding.

中空押出形材6をその押出方向300に交差する断面で切断した切断面cには押出しの過程で生じる応力が残留する場合があるため、切断面cに応力腐食割れが生じる可能性がある。さらに、図3に示すように切断面cの近傍に塞ぎ板7が溶接される場合は、溶接ビード74が冷却されて収縮するため、切断面cの面内に引張り残留応力が残存しやすく、応力腐食割れの原因となる場合がある。   Since stress generated in the process of extrusion may remain on the cut surface c obtained by cutting the hollow extruded member 6 with a cross section intersecting the extrusion direction 300, stress corrosion cracking may occur on the cut surface c. Further, when the closing plate 7 is welded in the vicinity of the cut surface c as shown in FIG. 3, the weld bead 74 is cooled and contracts, so that tensile residual stress tends to remain in the surface of the cut surface c. It may cause stress corrosion cracking.

そこで、この応力腐食割れを防止するために、アルミニウム合金のより硬質の素材から製作された円筒形状の回転工具70を準備し、この回転工具70を軸周りに回転させながら長手方向の端面を切断面cの表面(垂直面)に押圧しながら切断面cに沿って移動させる。このプロセスによって、回転工具70の端面と切断面cとの間に高温の摩擦熱と高い圧力が生じるので、切断面cの結晶粒界を微細化するとともに残留引張り応力が解放される改質面76を得ることができる。この結果、切断面cに生じる応力腐食割れの発生を抑制することができる。   Therefore, in order to prevent this stress corrosion cracking, a cylindrical rotary tool 70 made of a harder material of an aluminum alloy is prepared, and the end face in the longitudinal direction is cut while rotating the rotary tool 70 around its axis. It moves along the cut surface c while pressing the surface (vertical surface) of the surface c. Due to this process, high-temperature frictional heat and high pressure are generated between the end face of the rotary tool 70 and the cut surface c, so that the grain boundary of the cut surface c is refined and the residual tensile stress is released. 76 can be obtained. As a result, it is possible to suppress the occurrence of stress corrosion cracks generated on the cut surface c.

図4は、台車枠をなす横梁20と側梁10との接合部の斜視図である。図1から図3において詳述した記載に準じる構成に係る記載を省略して、図4で特有の構成について詳述する。図4において、側梁10は、長手方向の垂直断面が逆U字状に成型された上部側梁10aと、上部側梁10aの垂直片の下端部に突き合わせて溶接される底板10bと、から構成された角パイプ状をなしている。   FIG. 4 is a perspective view of a joint portion between the lateral beam 20 and the side beam 10 forming the carriage frame. Descriptions relating to configurations similar to those described in detail with reference to FIGS. 1 to 3 are omitted, and specific configurations in FIG. 4 are described in detail. In FIG. 4, the side beam 10 includes an upper side beam 10 a whose vertical cross section in the longitudinal direction is formed in an inverted U shape, and a bottom plate 10 b that is welded to the lower end of the vertical piece of the upper side beam 10 a. It has a square pipe shape.

一方、横梁20はアルミニウム合金製の丸パイプであり、押出方向300に押出し成型された中空押出形材を所定の長さに切断したものである。側梁10の長手方向100の中央部の側面(図2の垂直片10a1相当部)には、横梁20が貫通する開口部が加工されており、横梁20は、この開口部に差し込まれるとともに開口部の周縁と横梁20とは溶接によって接合されている。さらに、側梁10を貫通する態様で突出した横梁20の端面には塞ぎ板7が溶接されており、丸パイプ状の横梁20の長手方向の両端面を閉鎖している。横梁20の端面を塞ぎ板7で塞いだ後、側梁10の中央部に備えられた開口部に横梁20を固定した後、側梁10と横梁20とを溶接してもよいし、円筒状の横梁20を側梁10の中央部に備えられた開口部に横梁20を固定して側梁10と横梁20とを溶接した後、円筒状の横梁20の長手方向の端部を塞ぎ板7で溶接して塞いでもよい。   On the other hand, the cross beam 20 is a round pipe made of an aluminum alloy, and is obtained by cutting a hollow extruded shape extruded in the extrusion direction 300 into a predetermined length. The side beam 10 has a side surface (corresponding to the vertical piece 10a1 in FIG. 2) at the center in the longitudinal direction, and an opening through which the horizontal beam 20 passes is processed. The horizontal beam 20 is inserted into the opening and opened. The peripheral edge of the part and the cross beam 20 are joined by welding. Further, a closing plate 7 is welded to the end face of the horizontal beam 20 protruding in a manner penetrating the side beam 10, and both longitudinal end faces of the round pipe-shaped horizontal beam 20 are closed. After the end face of the cross beam 20 is closed with the closing plate 7, the cross beam 20 may be welded to the opening provided in the central portion of the side beam 10, and then the side beam 10 and the cross beam 20 may be welded. The lateral beam 20 is fixed to an opening provided at the center of the side beam 10 and the side beam 10 and the lateral beam 20 are welded to each other, and then the longitudinal end of the cylindrical lateral beam 20 is closed. It may be sealed by welding.

枕梁5を構成する中空押出形材6と同様に、横梁20をなす中空押出形材をその押出方向に交差する断面で切断した切断面cには、押出成型の過程で生じる応力が残留する場合があり、これら残留応力が原因となって切断面cに応力腐食割れが生じる可能性がある。さらに、図4に示すように切断面cの近傍に塞ぎ板7が溶接される場合は、側梁10と横梁20との溶接ビード74が冷却されて収縮するため、切断面cの面内に引張り残留応力が残存しやすく、応力腐食割れの原因となる可能性がある。   In the same manner as the hollow extruded shape 6 constituting the pillow beam 5, the stress generated during the extrusion process remains on the cut surface c obtained by cutting the hollow extruded shape forming the cross beam 20 at a cross section intersecting the extrusion direction. In some cases, the residual stress may cause stress corrosion cracking in the cut surface c. Further, as shown in FIG. 4, when the closing plate 7 is welded in the vicinity of the cut surface c, the weld bead 74 of the side beam 10 and the lateral beam 20 is cooled and contracts, so that it is within the plane of the cut surface c. Tensile residual stress tends to remain and may cause stress corrosion cracking.

そこで、この応力腐食割れを防止するために、アルミニウム合金のより硬質の素材から製作された円筒形状の回転工具70を準備し、この回転工具70を軸周りに回転させながら、長手方向の端面を切断面cの表面に押圧しながら切断面cに沿って移動させる。このプロセスによって、回転工具70の端面と切断面cとの間に高温の摩擦熱と高い圧力が生じるので、切断面cの結晶粒界を微細化するとともに残留引張り応力が解放される改質面76を得ることができる。この結果、切断面cに生じる応力腐食割れの発生を抑制することができる。   Therefore, in order to prevent this stress corrosion cracking, a cylindrical rotary tool 70 made of a harder material of aluminum alloy is prepared, and the end face in the longitudinal direction is set while rotating the rotary tool 70 about the axis. It moves along the cut surface c while pressing the surface of the cut surface c. Due to this process, high-temperature frictional heat and high pressure are generated between the end face of the rotary tool 70 and the cut surface c, so that the grain boundary of the cut surface c is refined and the residual tensile stress is released. 76 can be obtained. As a result, it is possible to suppress the occurrence of stress corrosion cracks generated on the cut surface c.

図5は、鉄道車両用台車の台車枠斜視図である。図5において、鉄道車両用台車の台車枠は、レール方向に沿って離置される2本の側梁10と、各側梁10の長手方向(レール方向)100の中央部同士を接続する2本の横梁20及び横梁20の長手方向(枕木方向)110の中央部同士を接続する2本のつなぎ梁30などから構成されている。   FIG. 5 is a perspective view of a bogie frame of a bogie for a railway vehicle. In FIG. 5, the bogie frame of the bogie for a railway vehicle connects two side beams 10 spaced apart along the rail direction, and the central portions 2 in the longitudinal direction (rail direction) 100 of each side beam 10. It is comprised from the two connecting beams 30 etc. which connect the center part of the longitudinal direction (sleeper direction) 110 of the horizontal beam 20 and the horizontal beam 20 of each book.

図6は、図5に示した台車枠のA−A断面を拡大した斜視図である。図6において、側梁10は、長手方向の垂直断面が逆U字状に成型された上部側梁10aと、上部側梁10aの垂直片の下端部に突き合わせて溶接される底板10bとから構成されている。図2に関する説明で詳述したように、下板10bの側面(端面)aに応力腐食割れが生じる可能性がある。   6 is an enlarged perspective view of the AA cross section of the bogie frame shown in FIG. In FIG. 6, the side beam 10 is composed of an upper side beam 10a whose vertical cross section in the longitudinal direction is formed in an inverted U shape, and a bottom plate 10b which is welded against the lower end of the vertical piece of the upper side beam 10a. Has been. As described in detail with reference to FIG. 2, stress corrosion cracking may occur on the side surface (end surface) a of the lower plate 10 b.

そこで、この応力腐食割れを防止するために、アルミニウム合金のより硬質の素材から製作された円筒形状の回転工具70を準備し、この回転工具70を軸周りに回転させながら長手方向の端面を下板10bの側面(端面)aの表面に押圧しながら側面(端面)aに沿って矢印72の方向に移動させる。このプロセスによって、回転工具70の端面と、下板10bの側面(端面)aとの間に高温の摩擦熱と高い圧力が生じるので、下板10bの側面(端面)aの結晶粒界を微細化するとともに残留引張り応力が解放される改質面76を得ることができる。この結果、下板10bの側面aに生じる応力腐食割れの発生を抑制することができる。   Therefore, in order to prevent this stress corrosion cracking, a cylindrical rotary tool 70 made of a harder material of an aluminum alloy is prepared, and the longitudinal end face is lowered while rotating the rotary tool 70 about the axis. The plate 10b is moved in the direction of the arrow 72 along the side surface (end surface) a while being pressed against the surface of the side surface (end surface) a. This process generates high-temperature frictional heat and high pressure between the end surface of the rotary tool 70 and the side surface (end surface) a of the lower plate 10b, so that the grain boundaries on the side surface (end surface) a of the lower plate 10b are finely defined. As a result, it is possible to obtain the modified surface 76 that releases the residual tensile stress. As a result, it is possible to suppress the occurrence of stress corrosion cracking that occurs on the side surface a of the lower plate 10b.

図7は、図5に示した台車枠のB−B断面を拡大した斜視図である。図7において、横梁20は、横梁20の長手方向(枕木方向)110の垂直断面が4枚の板で構成された井桁構造で、水平高に配設される上部板20aおよび下部板20bと、垂直方向に配設される2枚の縦板20cと、から構成されている。上部板20a、下部板20bおよび縦板20cはアルミニウム合金製の板材からなり、これら板材は圧延によって板状に成形されている。上部板20aと下部板20bの幅方向100の寸法は、2枚の縦板20cの幅方向100寸法より少し大きく設定されている。   FIG. 7 is an enlarged perspective view of the cross section BB of the bogie frame shown in FIG. In FIG. 7, the cross beam 20 is a cross-girder structure in which a vertical section in the longitudinal direction (sleeper direction) 110 of the cross beam 20 is configured by four plates, and an upper plate 20 a and a lower plate 20 b disposed at a horizontal height, And two vertical plates 20c arranged in the vertical direction. The upper plate 20a, the lower plate 20b and the vertical plate 20c are made of aluminum alloy plates, and these plates are formed into a plate shape by rolling. The dimensions in the width direction 100 of the upper plate 20a and the lower plate 20b are set slightly larger than the dimensions in the width direction 100 of the two vertical plates 20c.

横梁20は、上部板20aと下部板20bとの間に2枚の縦板20cを配設し、縦板20cの高さ方向の両端部を、上部板20aおよび下部板20b部の幅方向100の端部に突き合わせるとともに、この突き合わせ部を横梁20の長手方向110の方向に沿って溶接して組み立てられている。溶接ビード74は上部板20aと下部板20bの側面aには形成されず、縦板20cの高さ方向の両端部の側面に形成される。溶接部の近傍には、上述した理由によって、上部板20aおよび下部板20bの側面(端面)aには応力腐食割れが生じる場合がある。   In the cross beam 20, two vertical plates 20c are disposed between the upper plate 20a and the lower plate 20b, and both ends in the height direction of the vertical plate 20c are arranged in the width direction 100 of the upper plate 20a and the lower plate 20b. And is assembled by welding the butted portion along the longitudinal direction 110 of the cross beam 20. The weld beads 74 are not formed on the side surfaces a of the upper plate 20a and the lower plate 20b, but are formed on the side surfaces of both ends in the height direction of the vertical plate 20c. In the vicinity of the welded portion, stress corrosion cracking may occur on the side surfaces (end surfaces) a of the upper plate 20a and the lower plate 20b for the reasons described above.

そこで、この応力腐食割れを防止するために、アルミニウム合金のより硬質の素材から製作された円筒形状の回転工具70を準備し、この回転工具70を軸周りに回転させながら、長手方向の端面を上部板20aおよび下部板20bの側面(端面)aの表面に押圧しながら側面(端面)aに沿って矢印72の方向に移動させる。このプロセスによって、回転工具70の端面と、上部板20aおよび下部板20bの側面(端面)aとの間に高温の摩擦熱と高い圧力が生じるので、上部板20aおよび下部板20bの側面(端面)aの結晶粒界を微細化するとともに残留引張り応力が解放される改質面76を得ることができる。この結果、上部板20aおよび下部板20bの側面(端面)aに生じる応力腐食割れの発生を抑制することができる。   Therefore, in order to prevent this stress corrosion cracking, a cylindrical rotary tool 70 made of a harder material of aluminum alloy is prepared, and the end face in the longitudinal direction is set while rotating the rotary tool 70 about the axis. The upper plate 20a and the lower plate 20b are moved in the direction of the arrow 72 along the side surface (end surface) a while being pressed against the surface of the side surface (end surface) a. By this process, high-temperature frictional heat and high pressure are generated between the end surface of the rotary tool 70 and the side surfaces (end surfaces) a of the upper plate 20a and the lower plate 20b, and therefore the side surfaces (end surfaces) of the upper plate 20a and the lower plate 20b. ) It is possible to obtain a modified surface 76 in which the grain boundary of a is refined and the residual tensile stress is released. As a result, it is possible to suppress the occurrence of stress corrosion cracks generated on the side surfaces (end surfaces) a of the upper plate 20a and the lower plate 20b.

また、横梁20を、井桁構造の板材を用いて構成した場合、図4に示される丸パイプの横梁20を用いた場合と同様に、横梁20を構成する板材をその押出方向に交差する断面で切断した切断面c(図示せず)には、押出成型の過程で生じる応力が残留する場合があり、これら残留応力が原因となって切断面cに応力腐食割れが生じる可能性がある。さらに、切断面cの近傍に塞ぎ板(図示せず)が溶接される場合は、側梁10と横梁20との溶接ビード74が冷却されて収縮するため、切断面cの面内に引張り残留応力が残存しやすく、応力腐食割れの原因となる可能性がある。   Further, when the cross beam 20 is configured using a plate material having a cross-girder structure, similarly to the case of using the round pipe cross beam 20 shown in FIG. In the cut surface c (not shown), stress generated in the process of extrusion molding may remain, and stress corrosion cracking may occur in the cut surface c due to these residual stresses. Further, when a closing plate (not shown) is welded in the vicinity of the cut surface c, the weld bead 74 between the side beam 10 and the lateral beam 20 is cooled and contracts, so that there is a tensile residual in the plane of the cut surface c. Stress tends to remain and may cause stress corrosion cracking.

そこで、この応力腐食割れを防止するために、アルミニウム合金のより硬質の素材から製作された円筒形状の回転工具70を準備し、この回転工具70を軸周りに回転させながら、その長手方向の端面を切断面cの表面に押圧しながら切断面cに沿って移動させる。このプロセスによって、回転工具70の端面と切断面cとの間に高温の摩擦熱と高い圧力が生じるので、切断面cの結晶粒界を微細化するとともに残留引張り応力が解放される改質面を得ることができる。この結果、切断面cに生じる応力腐食割れの発生を抑制することができる。   Therefore, in order to prevent this stress corrosion cracking, a cylindrical rotary tool 70 made of a harder material of an aluminum alloy is prepared, and the longitudinal end face of the rotary tool 70 is rotated while rotating about the axis. Is moved along the cut surface c while being pressed against the surface of the cut surface c. Due to this process, high-temperature frictional heat and high pressure are generated between the end face of the rotary tool 70 and the cut surface c, so that the grain boundary of the cut surface c is refined and the residual tensile stress is released. Can be obtained. As a result, it is possible to suppress the occurrence of stress corrosion cracks generated on the cut surface c.

図8は、図5に示した台車枠のC−C断面を拡大した斜視図である。図8において、つなぎ梁30は、水平方向に上下に離間して配設される上部板30aおよび下部板30bと、垂直方向に離間して配設される2枚の縦板と、から構成されており、その長手方向110の垂直断面形状が角パイプ状である。上部板30aと下部板30bおよび縦板30cはアルミニウム合金製の板材からなり、これら板材は圧延によって板状に成形された後、所定の寸法に加工されている。上部板30aと下部板30bの幅方向100の寸法は、2枚の縦板20cの幅方向寸法と同じに設定されている。つなぎ梁30は、上部板30aと下部板30bの間に、2枚の縦板30cを備え、上部板30aおよび下部板30bの幅方向100の両端部と、縦板30cの高さ方向の両端部を、突き合わせた突き合わせ部をつなぎ梁30の長手方向110の方向に沿って連続溶接して組み立てられている。   FIG. 8 is an enlarged perspective view of a cross section CC of the bogie frame shown in FIG. In FIG. 8, the connecting beam 30 is composed of an upper plate 30a and a lower plate 30b that are spaced apart in the horizontal direction and two vertical plates that are spaced apart in the vertical direction. The vertical cross-sectional shape in the longitudinal direction 110 is a square pipe shape. The upper plate 30a, the lower plate 30b, and the vertical plate 30c are made of aluminum alloy plates, and these plates are formed into a plate shape by rolling and then processed into predetermined dimensions. The dimensions in the width direction 100 of the upper plate 30a and the lower plate 30b are set to be the same as the width direction dimensions of the two vertical plates 20c. The connecting beam 30 includes two vertical plates 30c between the upper plate 30a and the lower plate 30b, both ends of the upper plate 30a and the lower plate 30b in the width direction 100, and both ends in the height direction of the vertical plate 30c. The abutted portions are joined together along the longitudinal direction 110 of the beam 30 and assembled.

したがって、溶接ビード74は上部板30aと下部板30bの側面(端面)aに若干の溶け込みが発生する。溶接部の近傍には、上述した理由によって、上部板30aおよび下部板30bの側面(端面)aには応力腐食割れが生じる場合がある。   Therefore, the weld bead 74 slightly melts into the side surfaces (end surfaces) a of the upper plate 30a and the lower plate 30b. In the vicinity of the weld, stress corrosion cracking may occur on the side surfaces (end surfaces) a of the upper plate 30a and the lower plate 30b for the reasons described above.

そこで、この応力腐食割れを防止するために、アルミニウム合金のより硬質の素材から製作された円筒形状の回転工具70を準備し、この回転工具70を軸周りに回転させながら長手方向の端面を上部板30aおよび下部板30bの側面(端面)aの表面(垂直面)に押圧しながら側面(端面)aに沿って矢印72の方向に移動させる。このプロセスによって、回転工具70の端面と、上部板30aおよび下部板30bの側面(端面)aとの間に高温の摩擦熱と高い圧力が生じるので、上部板30aおよび下部板30bの側面(端面)aの結晶粒界を微細化するとともに残留引張り応力が解放される改質面76を得ることができる。この結果、上部板30aおよび下部板30bの側面(端面)aに生じる応力腐食割れの発生を抑制することができる。   Therefore, in order to prevent this stress corrosion cracking, a cylindrical rotary tool 70 made of a harder material of an aluminum alloy is prepared, and the end face in the longitudinal direction is turned upward while rotating the rotary tool 70 about its axis. The plate 30a and the lower plate 30b are moved in the direction of the arrow 72 along the side surface (end surface) a while being pressed against the surface (vertical surface) of the side surface (end surface) a. By this process, high-temperature frictional heat and high pressure are generated between the end surface of the rotary tool 70 and the side surfaces (end surfaces) a of the upper plate 30a and the lower plate 30b, and therefore the side surfaces (end surfaces) of the upper plate 30a and the lower plate 30b. ) It is possible to obtain a modified surface 76 in which the grain boundary of a is refined and the residual tensile stress is released. As a result, it is possible to suppress the occurrence of stress corrosion cracks generated on the side surfaces (end surfaces) a of the upper plate 30a and the lower plate 30b.

図9は、図5で示した台車枠の長手方向100の両端部に、両側梁10の長手方向の端部同士を接続する端梁を備えた鉄道車両用台車の台車枠斜視図である。図9において、台車枠は、図5で説明した、レール方向に沿って離置される2本の側梁10と、各側梁10の長手方向100(レール方向)の中央部同士を接続する2本の横梁20と、各側梁10の長手方向100の両端部同士を接続する2本の橋梁(端梁)40から構成されている。   FIG. 9 is a perspective view of the bogie frame of the bogie for railcars provided with end beams connecting the longitudinal ends of the side beams 10 at both ends in the longitudinal direction 100 of the bogie frame shown in FIG. In FIG. 9, the bogie frame connects the two side beams 10 separated in the rail direction described in FIG. 5 and the central portions of the side beams 10 in the longitudinal direction 100 (rail direction). It is composed of two lateral beams 20 and two bridges (end beams) 40 that connect both end portions in the longitudinal direction 100 of each side beam 10.

側梁10のA−A断面、横梁20のB−B断面および端梁40のC−C断面には、それぞれ、図6〜図8で示した各々の構成を適用することができる。さらに、側梁10と横梁20および端梁40を構成する各板材を溶接して組み立てた際に、図2および図6(側梁)、図7(横梁)、図8(つなぎ梁)で示した溶接部の近傍に位置する板材の端面に生じる応力腐食割れを抑制できる施工を施すことによって、応力腐食割れを抑制できる台車枠を構成することができる。   The configurations shown in FIGS. 6 to 8 can be applied to the AA cross section of the side beam 10, the BB cross section of the lateral beam 20, and the CC cross section of the end beam 40, respectively. 2 and 6 (side beams), FIG. 7 (lateral beams), and FIG. 8 (joint beams) when the plate members constituting the side beams 10, the side beams 20, and the end beams 40 are assembled by welding. A carriage frame that can suppress stress corrosion cracking can be configured by performing construction that can suppress stress corrosion cracking that occurs on the end face of the plate material positioned in the vicinity of the welded portion.

例えば、側梁10の長手方向の両端部同士を接続する端梁40を構成するアルミニウム合金製の板材として、上部板と下部板(図示せず)との間に、その幅方向の寸法が上部板および下部板の幅方向の寸法よりも小さい複数の縦板(図示せず)を配設し、縦板の高さ方向の両端部を、上部板および下部板の幅方向の端部に突き合わせて溶接した後、回転工具70をその軸周りに回転させながら、回転工具70の長手方向の端面を上部板および下部板の幅方向の垂直面に押圧しながら垂直面に沿って移動させることで、上部板および下部板の幅方向の垂直面に生じる応力腐食割れを抑制できる。   For example, as a plate material made of an aluminum alloy that constitutes the end beam 40 that connects both ends in the longitudinal direction of the side beam 10, the dimension in the width direction is an upper portion between an upper plate and a lower plate (not shown). A plurality of vertical plates (not shown) smaller than the width dimension of the plate and the lower plate are arranged, and both ends of the vertical plate in the height direction are butted against the width direction ends of the upper plate and the lower plate. After rotating the rotary tool 70 around its axis, the longitudinal end face of the rotary tool 70 is moved along the vertical plane while pressing the vertical end faces of the upper and lower plates in the width direction. In addition, stress corrosion cracks that occur on the vertical surfaces in the width direction of the upper and lower plates can be suppressed.

また、側梁10の長手方向の両端部同士を接続する端梁を構成するアルミニウム合金製の板材として、上部板と下部板(図示せず)との間に、その幅方向の寸法が上部板および下部板の幅方向の寸法と同じ縦板(図示せず)を配設し、上部板および下部板の幅方向の両端部を、縦板の高さ方向の両端部に突き合わせて溶接した後、回転工具70をその軸周りに回転させながら、回転工具70の長手方向の端面を上部板および下部板の幅方向の垂直面に押圧しながら垂直面に沿って移動させることで、上部板および下部板の幅方向の垂直面に生じる応力腐食割れを抑制できる。   In addition, as a plate material made of aluminum alloy that constitutes an end beam that connects both ends in the longitudinal direction of the side beam 10, the dimension in the width direction between the upper plate and the lower plate (not shown) is the upper plate. And a vertical plate (not shown) having the same size as the width of the lower plate is disposed, and both ends of the upper plate and the lower plate in the width direction are butted against both ends of the vertical plate in the height direction. , While rotating the rotary tool 70 about its axis, moving the longitudinal end surface of the rotary tool 70 along the vertical plane while pressing the end face in the width direction of the upper plate and the lower plate, Stress corrosion cracking that occurs on the vertical surface in the width direction of the lower plate can be suppressed.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1…台車、5…枕梁、6…押出形材、7…塞ぎ板、10…側梁、20…横梁、30…つなぎ梁、40…端梁、60…空気ばね、80…輪軸、70…回転工具、72…回転工具の進む方向、74…溶接ビード、76…改質面、a…圧延方向に交差する面、b…圧延方向に沿う面、c…押出方向に交差する面、100…長手方向、110…幅方向、120…高さ方向、200…圧延方向(板材)、300…押出方向(押出形材)。 DESCRIPTION OF SYMBOLS 1 ... Carriage, 5 ... Pillow beam, 6 ... Extrusion profile, 7 ... Closing plate, 10 ... Side beam, 20 ... Cross beam, 30 ... Connecting beam, 40 ... End beam, 60 ... Air spring, 80 ... Wheel axis, 70 ... Rotating tool, 72... Rotating tool traveling direction, 74, weld bead, 76, modified surface, a, surface intersecting the rolling direction, b, surface along the rolling direction, c, surface intersecting the extrusion direction, 100,. Longitudinal direction, 110 ... width direction, 120 ... height direction, 200 ... rolling direction (plate material), 300 ... extrusion direction (extruded profile).

Claims (7)

レール方向に沿って離置されたアルミニウム合金製の側梁と、
前記側梁の長手方向の中央部同士を接続するアルミニウム合金製の横梁と、
を有する鉄道車両用台車枠の製造方法において、
圧延によって曲げ加工が施され、長手方向の断面形状が逆U字状に成型された上部側梁の垂直片の先端部を、前記上部側梁の幅方向寸法より大きい幅方向寸法を有する形状に圧延によって成型された下部側梁の幅方向の端部に突き合わせて溶接した後、
前記側梁の材質より硬い材質からなる円柱状の回転工具をその軸周りに回転させながら、前記回転工具の長手方向の端面を、前記下部側梁の成型時における圧延方向に交差する面であって、前記下部側梁の幅方向の垂直面に押圧しながら前記垂直面に沿って移動させること、
を特徴とする鉄道車両用台車枠の製造方法。
Side beams made of aluminum alloy separated along the rail direction;
A lateral beam made of aluminum alloy that connects the central portions of the side beams in the longitudinal direction;
In the manufacturing method of the bogie frame for railway vehicles having
Bending by rolling is performed, that the longitudinal direction of the sectional shape of the distal end portion of the vertical piece of molded upper side beam in an inverted U-shape, having a larger width dimension than the width dimension of the upper side beams After welding to the end in the width direction of the lower side beam formed by rolling into a shape ,
While rotating a cylindrical rotary tool made of a material harder than the material of the side beam around its axis, the end face in the longitudinal direction of the rotary tool is a surface that intersects the rolling direction at the time of molding the lower side beam. Te, moving along the vertical plane while pressing on the vertical plane in the width direction of the lower side beam,
The manufacturing method of the bogie frame for rail vehicles characterized by these.
請求項1に記載の鉄道車両用台車枠の製造方法であって、
前記側梁の長手方向の中央部に形成された開口部に差し込まれた、押出し成型による円筒状の横梁の先端部と前記開口部の周縁とを溶接によって接合し、前記先端部を塞ぐ塞ぎ板を溶接した後、
前記回転工具をその軸周りに回転させながら、前記回転工具の長手方向の端面を前記先端部の端面に押圧しながら、前記横梁を押出し成型時に押出方向に交差する断面で切断した切断面に沿って移動させること、
を特徴とする鉄道車両用台車枠の製造方法。
It is a manufacturing method of the bogie frame for rail vehicles according to claim 1,
A closing plate that is inserted into an opening formed in the central portion of the side beam in the longitudinal direction and welds the distal end portion of the cylindrical horizontal beam by extrusion molding and the peripheral edge of the opening portion to close the distal end portion. After welding
While rotating the rotary tool around its axis, while pressing the end face in the longitudinal direction of the rotary tool against the end face of the tip portion, along the cut surface cut along the cross section intersecting the extrusion direction during extrusion molding Moving
The manufacturing method of the bogie frame for rail vehicles characterized by these.
請求項1に記載の鉄道車両用台車枠の製造方法であって、
前記横梁は、対向する2枚の垂直板の下端部を下部板の幅方向の端部上面に載置して溶接するとともに、前記垂直板の上端部に上部板の幅方向の端部を載置して溶接した後、
前記回転工具をその軸周りに回転させながら、前記回転工具の長手方向の端面を前記上部板および下部板の幅方向の垂直面に押圧しながら前記垂直面に沿って移動させること、
を特徴とする鉄道車両用台車枠の製造方法。
It is a manufacturing method of the bogie frame for rail vehicles according to claim 1,
The transverse beams are placed by welding the lower end portions of two opposing vertical plates on the upper surface of the lower plate in the width direction, and the upper plate in the width direction on the upper end of the vertical plate. After placing and welding,
Moving along the vertical surface while rotating the rotary tool around its axis while pressing the longitudinal end faces of the rotary tool against the vertical surfaces of the upper and lower plates in the width direction;
The manufacturing method of the bogie frame for rail vehicles characterized by these.
請求項3に記載の鉄道車両用台車枠の製造方法であって、
前記鉄道車両用台車枠は前記横梁の長手方向の中央部同士を接続するアルミニウム合金製のつなぎ梁を備えており、前記つなぎ梁は対向する2枚の垂直板の下端部を下部板の幅方向の端部上面に載置して溶接するとともに、前記垂直板の上端部に上部板の幅方向の端部を載置して溶接した後、
前記回転工具をその軸周りに回転させながら、前記回転工具の長手方向の端面を前記上部板および下部板の幅方向の垂直面に押圧しながら前記垂直面に沿って移動させること、
を特徴とする鉄道車両用台車枠の製造方法。
It is a manufacturing method of the bogie frame for rail vehicles according to claim 3,
The railcar bogie frame includes a connecting beam made of aluminum alloy that connects the central portions of the transverse beams in the longitudinal direction, and the connecting beam has lower ends of two opposing vertical plates in the width direction of the lower plate. After placing and welding on the upper surface of the end portion of the top plate, the end portion in the width direction of the upper plate is placed on the upper end portion of the vertical plate and welded.
Moving along the vertical surface while rotating the rotary tool around its axis while pressing the longitudinal end faces of the rotary tool against the vertical surfaces of the upper and lower plates in the width direction;
The manufacturing method of the bogie frame for rail vehicles characterized by these.
請求項3又は4に記載の鉄道車両用台車枠の製造方法であって、
前記鉄道車両用台車枠は前記側梁の長手方向の両端部同士を接続する端梁を備えており、前記端梁は対向する2枚の垂直板の下端部を下部板の幅方向の端部上面に載置して溶接するとともに、前記垂直板の上端部に上部板の幅方向の端部を載置して溶接した後、
前記回転工具をその軸周りに回転させながら、前記回転工具の長手方向の端面を前記上部板および下部板の幅方向の垂直面に押圧しながら前記垂直面に沿って移動させること、
を特徴とする鉄道車両用台車枠の製造方法。
A method for manufacturing a bogie frame for a railway vehicle according to claim 3 or 4,
The bogie frame for railway vehicles includes end beams that connect both ends in the longitudinal direction of the side beams, and the end beams are formed by connecting the lower end portions of two opposing vertical plates to the end portions in the width direction of the lower plate. After placing and welding on the upper surface, placing the end of the upper plate in the width direction on the upper end of the vertical plate and welding,
Moving along the vertical surface while rotating the rotary tool around its axis while pressing the longitudinal end faces of the rotary tool against the vertical surfaces of the upper and lower plates in the width direction;
The manufacturing method of the bogie frame for rail vehicles characterized by these.
請求項5に記載の鉄道車両用台車枠の製造方法であって、
前記側梁の長手方向の両端部同士を接続する端梁を構成するアルミニウム合金製の板材として、上部板と下部板との間に、その幅方向の寸法が前記上部板および下部板の幅方向の寸法と同じ縦板を配設し、前記上部板および下部板の幅方向の両端部を、前記縦板の高さ方向の両端部に突き合わせて溶接した後、
前記回転工具をその軸周りに回転させながら、前記回転工具の長手方向の端面を前記上部板および下部板の幅方向の垂直面に押圧しながら前記垂直面に沿って移動させること、
を特徴とする鉄道車両用台車枠の製造方法。
It is a manufacturing method of the bogie frame for rail vehicles according to claim 5,
As an aluminum alloy plate material constituting an end beam connecting both ends in the longitudinal direction of the side beam, the width direction dimension between the upper plate and the lower plate is the width direction of the upper plate and the lower plate. A vertical plate having the same dimensions as that of the upper plate and the lower plate, both ends in the width direction of the vertical plate are butted against both ends in the height direction of the vertical plate, and then welded.
Moving along the vertical surface while rotating the rotary tool around its axis while pressing the longitudinal end faces of the rotary tool against the vertical surfaces of the upper and lower plates in the width direction;
The manufacturing method of the bogie frame for rail vehicles characterized by these.
請求項1〜6のうちいずれか1項に記載の鉄道車両用台車枠の製造方法であって、
前記横梁の上方に前記横梁の長手方向に沿って、アルミニウム合金製の押出形材からなる枕梁を備えており、前記枕梁はその押出方向を前記横梁の長手方向に沿って配設されており、前記枕梁の押出方向の端面を塞ぐ塞ぎ板を溶接した後、
前記回転工具をその軸周りに回転させながら、前記回転工具の長手方向の端面を前記端面に押圧しながら前記端面に沿って移動させること、
を特徴とする鉄道車両用台車枠の製造方法。
It is a manufacturing method of the bogie frame for rail vehicles of any 1 paragraph among Claims 1-6,
A pillow beam made of an extruded material made of aluminum alloy is provided above the horizontal beam along the longitudinal direction of the horizontal beam, and the pillow beam is disposed along the longitudinal direction of the horizontal beam. And after welding a closing plate that closes the end face in the extrusion direction of the pillow beam,
Moving along the end face while rotating the rotary tool around its axis while pressing the end face in the longitudinal direction of the rotary tool against the end face;
The manufacturing method of the bogie frame for rail vehicles characterized by these.
JP2013162612A 2013-08-05 2013-08-05 Manufacturing method of bogie frame for railway vehicles Active JP6041352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013162612A JP6041352B2 (en) 2013-08-05 2013-08-05 Manufacturing method of bogie frame for railway vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013162612A JP6041352B2 (en) 2013-08-05 2013-08-05 Manufacturing method of bogie frame for railway vehicles

Publications (2)

Publication Number Publication Date
JP2015030410A JP2015030410A (en) 2015-02-16
JP6041352B2 true JP6041352B2 (en) 2016-12-07

Family

ID=52516109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013162612A Active JP6041352B2 (en) 2013-08-05 2013-08-05 Manufacturing method of bogie frame for railway vehicles

Country Status (1)

Country Link
JP (1) JP6041352B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SK9185Y1 (en) * 2020-09-28 2021-06-09 Tatravagonka As Frame of freight railway bogie

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11321636A (en) * 1998-05-20 1999-11-24 Sumitomo Metal Ind Ltd Truck frame for magnetic levitation type rolling stock
JP2002102983A (en) * 2000-09-28 2002-04-09 Aisin Seiki Co Ltd Surface reforming method for light metal
JP2006193129A (en) * 2004-12-16 2006-07-27 Hitachi Ltd Method for manufacturing truck frame for rolling stock, and truck frame

Also Published As

Publication number Publication date
JP2015030410A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
KR101967571B1 (en) Structure for bonding press-molded article, structural article for automobile having said bonding structure, and method for manufacturing bonded article
JP7407354B2 (en) Laser welding method
JP6744274B2 (en) Welded structure
JP4568161B2 (en) Tailored blank welded structural members
JP2003500278A (en) Shell structure made of metal material
TWI599433B (en) Fillet welding method and fillet welded joint
JP2014522353A (en) Fork arm manufacturing method and fork arm
CN109131566A (en) The welding method of the bridging arrangement and cross of vehicle beam and stringer, stringer
JP6041352B2 (en) Manufacturing method of bogie frame for railway vehicles
US10981253B2 (en) Structure having stress protected groove weld and structural members forming the same
JP5015443B2 (en) How to repair holes in metal workpieces
US20200230749A1 (en) Structure having stress protected groove weld and structural members forming the same
RU2566798C2 (en) Freight car bogie side frame of built-up structure and method of its production
JP3942132B2 (en) Welded joint structural material
JP2013139047A (en) Weld joint part of steel member
JP4463183B2 (en) Aluminum structure and manufacturing method thereof
Kah et al. Joining of sheet metals using different welding processes
JP4234696B2 (en) Railcar head structure
JP2013107129A (en) Method for repairing welded part
US20190136886A1 (en) Welding method and corner joint component
JP4731900B2 (en) Bogie frame for railway vehicles
JP6251463B1 (en) Welded structure with excellent brittle crack propagation stop properties
Mouallif et al. Finite element modeling of the aluminothermic welding with internal defects and experimental analysis
JP7375175B2 (en) welded structure
JP7368716B2 (en) Manufacturing method of resistance spot welding joints

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161102

R150 Certificate of patent or registration of utility model

Ref document number: 6041352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150