JP6039820B2 - Manufacturing method of ceramic filter - Google Patents

Manufacturing method of ceramic filter Download PDF

Info

Publication number
JP6039820B2
JP6039820B2 JP2015543983A JP2015543983A JP6039820B2 JP 6039820 B2 JP6039820 B2 JP 6039820B2 JP 2015543983 A JP2015543983 A JP 2015543983A JP 2015543983 A JP2015543983 A JP 2015543983A JP 6039820 B2 JP6039820 B2 JP 6039820B2
Authority
JP
Japan
Prior art keywords
filter
ceramic
ceramic composition
composition powder
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015543983A
Other languages
Japanese (ja)
Other versions
JP2015536820A (en
Inventor
ハ イ・ミョン
ハ イ・ミョン
ジン チェ・ヒョン
ジン チェ・ヒョン
ウク キム・ジョン
ウク キム・ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Industrial Technology KITECH
Original Assignee
Korea Institute of Industrial Technology KITECH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Industrial Technology KITECH filed Critical Korea Institute of Industrial Technology KITECH
Publication of JP2015536820A publication Critical patent/JP2015536820A/en
Application granted granted Critical
Publication of JP6039820B2 publication Critical patent/JP6039820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2082Other inorganic materials, e.g. ceramics the material being filamentary or fibrous
    • B01D39/2089Other inorganic materials, e.g. ceramics the material being filamentary or fibrous otherwise bonded, e.g. by resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00411Inorganic membrane manufacture by agglomeration of particles in the dry state by sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron

Description

本発明は、高温用セラミックフィルタの製造方法に関し、セラミック組成物パウダーを含む空気を高分子ろ過体でろ過することにより、前記高分子ろ過体の表面にセラミック組成物パウダー層を形成するステップと、前記セラミック組成物パウダー層が形成された高分子ろ過体を焼結するステップを含む、乾式工程による高温用セラミックフィルタの製造方法に関する。   The present invention relates to a method for producing a ceramic filter for high temperature, the step of forming a ceramic composition powder layer on the surface of the polymer filter by filtering air containing the ceramic composition powder with a polymer filter; The present invention relates to a method for producing a high-temperature ceramic filter by a dry process, including a step of sintering a polymer filter body on which the ceramic composition powder layer is formed.

産業の発展に伴い、各産業工程で排出される粒子状及びガス状の汚染物質による被害がますます深刻化しているのが現状である。よって、排気ガス中に含まれる粒子状汚染物質の排出を防止するためにフィルタを用いることが多いが、用いられている高分子フィルタは耐熱性、耐化学性、耐摩耗性及び難燃性において脆弱であるという問題がある。例えば、ポリエステルにおいては150℃で収縮が起こり、耐熱性に優れるPTFE(テフロン)(登録商標)においても最高で300℃以上の温度には耐えられないという問題がある。また、産業用フィルタを用いる工程では摩耗性の強い粒子状汚染物質が多量に排出されるので、このように排出された粒子状物質がポリエステル、ポリプロピレン、アクリル、ポリアミド、ポリイミド、ガラス繊維などのフィルタ素材の表面を損傷させるため、フィルタの寿命を短くする働きをする。それだけでなく、各産業の燃焼工程中に火花が発生して火災につながったり、フィルタに穴が開いて排気ガスのろ過効果を低下させるという問題がある。   With the development of industry, the damage caused by particulate and gaseous pollutants discharged in each industrial process is becoming increasingly serious. Therefore, a filter is often used to prevent the discharge of particulate pollutants contained in the exhaust gas, but the used polymer filter is in terms of heat resistance, chemical resistance, wear resistance and flame retardancy. There is a problem of being vulnerable. For example, polyester shrinks at 150 ° C., and PTFE (Teflon) (registered trademark), which has excellent heat resistance, cannot withstand temperatures of 300 ° C. or higher at the maximum. In addition, since the process using an industrial filter discharges a large amount of particulate contaminants with high wear resistance, such discharged particulate substances are filtered from polyester, polypropylene, acrylic, polyamide, polyimide, glass fiber, etc. It works to shorten the life of the filter to damage the surface of the material. In addition, there is a problem that a spark is generated during the combustion process of each industry, leading to a fire, or a filter is perforated to reduce the exhaust gas filtering effect.

よって、このような問題を解決するためにセラミックフィルタの開発が行われてきた。セラミックフィルタは、高分子フィルタに比べて耐熱性、耐化学性、耐摩耗性などに非常に優れるという特徴があり、特に、耐熱性に優れるので、排気装置内に冷却装置などを別途に設置する必要がなく、設置費及び維持費を削減できるという利点がある。   Accordingly, ceramic filters have been developed to solve such problems. Ceramic filters are extremely superior in heat resistance, chemical resistance, wear resistance, etc. compared to polymer filters, and in particular, since they are excellent in heat resistance, a cooling device or the like is separately installed in the exhaust system. There is an advantage that installation cost and maintenance cost can be reduced.

従来のセラミックフィルタの場合、組成物をスラリー状にし、真空成形や押出成形を行ってチューブ状にするのが最も普遍的な方法であった。しかし、この方法は、ろ過効率や圧力損失を自由に調節できないだけでなく、製造にかかるコストが高く、長時間用いるとセラミックフィルタの内部に埃が堆積されるのでろ過性能が低下するという欠点がある。また、フィルタを再生する場合は、圧縮空気を逆噴射して外壁の埃を払い落とす際にセラミックフィルタが破損することがあり、このように破損したセラミックフィルタを用いて正常運転をすると、埃が排気ガス中に含まれるので、それが排出されることにより二次公害を発生させるという問題がある。それだけでなく、セラミックフィルタの深さ方向(内・外壁)に全体が同じ気孔度を有する構造からなるので、内部に埃が捕集されるとフィルタの目詰まり現象の発生により圧力損失が大きくなるという問題がある。   In the case of a conventional ceramic filter, the most common method has been to form a composition into a slurry and perform vacuum forming or extrusion to form a tube. However, this method has the disadvantages that not only the filtration efficiency and pressure loss can be freely adjusted, but also the manufacturing cost is high, and if it is used for a long time, the dust is accumulated inside the ceramic filter and the filtration performance deteriorates. is there. In addition, when regenerating the filter, the ceramic filter may be damaged when the compressed air is jetted backward to remove dust on the outer wall. Since it is contained in the exhaust gas, there is a problem that secondary pollution is caused by exhausting it. In addition, since the entire ceramic filter has the same porosity in the depth direction (inner and outer walls), if dust is collected inside, the pressure loss increases due to the clogging phenomenon of the filter. There is a problem.

また、製造工程に関しては、真空成形工程の場合は真空チャンバ及び真空ポンプの製造によりコストが高くなり、真空チャンバのサイズ制限により製作できるセラミックフィルタのサイズに制約があるので、大型フィルタは製造できないという問題があり、セラミック素材が激しく摩耗するため一定の生産量ごとに金型を交換しなければならないので、高い固定費により生産コストが高くなるという問題もある。   Also, regarding the manufacturing process, in the case of the vacuum forming process, the manufacturing cost of the vacuum chamber and the vacuum pump is high, and the size of the ceramic filter that can be manufactured is limited due to the size limitation of the vacuum chamber, so a large filter cannot be manufactured. There is a problem, and since the ceramic material is worn out violently, it is necessary to replace the mold for every certain production amount, and there is also a problem that the production cost becomes high due to a high fixed cost.

さらに、前記真空成形方法以外にも、押出成形、プレス成形、静水圧(hydrostatic pressure)成形などの方法が開発されているが、これらにおいても製作時の金型製作が必須であり、加圧装置を備えなければならないので、製作コストが増加して製造が容易でないだけでなく、金型が決定されると製作形状の変更が容易でなく、大型フィルタの生産が難しいという問題がある。また、前述した成形方法は、加圧方式による成形であるので、気孔度が低く、通気性に劣り、フィルタ通過時の圧力損失が大きくなるという問題がある。   In addition to the vacuum forming method, methods such as extrusion molding, press molding, and hydrostatic pressure molding have been developed. In these methods as well, it is essential to produce a mold at the time of production. Therefore, not only is the manufacturing cost increased and manufacturing is not easy, but when the mold is determined, it is not easy to change the manufacturing shape and it is difficult to produce a large filter. Further, since the molding method described above is molding by a pressurization method, there is a problem that the porosity is low, the air permeability is inferior, and the pressure loss when passing through the filter is increased.

そこで、本発明者らは、フィルタの気孔のサイズ調節が容易であり、低コストかつ低エネルギーで製造できる高温用セラミックフィルタの製造方法について研究を重ねたところ、セラミックパウダー組成物をエアロゾル化することにより湿式工程ではない乾式工程で製造した高温用セラミックフィルタが、優れたフィルタ特性を示すと共に、上記問題を補完できることを確認することにより、本発明を完成するに至った。   Therefore, the present inventors have conducted research on a method for producing a high-temperature ceramic filter that can easily adjust the pore size of the filter and can be produced at low cost and low energy. Thus, the present invention has been completed by confirming that the high-temperature ceramic filter manufactured by a dry process that is not a wet process exhibits excellent filter characteristics and can complement the above problems.

本発明は、気孔のサイズ調節が容易であり、低コストかつ低エネルギーで製造できる、乾式工程による高温用セラミックフィルタの製造方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a high-temperature ceramic filter by a dry process, which can easily adjust the size of pores and can be produced at low cost and low energy.

上記課題を解決するために、本発明は、セラミック組成物パウダーを含む空気を高分子ろ過体でろ過することにより、前記高分子ろ過体の表面にセラミック組成物パウダー層を形成するステップ(ステップ1)と、及び、前記セラミック組成物パウダー層が形成された高分子ろ過体を焼結するステップ(ステップ2)とを含む、セラミックフィルタの製造方法を提供する。   In order to solve the above-mentioned problems, the present invention forms a ceramic composition powder layer on the surface of the polymer filter by filtering air containing the ceramic composition powder with a polymer filter (Step 1). And a step (step 2) of sintering the polymer filter body on which the ceramic composition powder layer is formed.

前記ステップ1は、セラミック組成物パウダーを高分子ろ過体の表面に均一に形成させるために、前記セラミック組成物パウダーを含む空気を前記高分子ろ過体でろ過するステップである。   The step 1 is a step of filtering air containing the ceramic composition powder with the polymer filter in order to uniformly form the ceramic composition powder on the surface of the polymer filter.

本発明における用語「セラミック組成物パウダー」とは、セラミックを形成できるパウダー状の組成物を意味する。具体的には、前記セラミック組成物パウダーとは、高分子ろ過体上に一定の厚さで蓄積され、その後焼結されることによりセラミックを形成できるパウダー状の組成物を意味する。   The term “ceramic composition powder” in the present invention means a powdery composition capable of forming a ceramic. Specifically, the ceramic composition powder means a powder-like composition that can be formed on a polymer filter body at a certain thickness and then sintered to form a ceramic.

本発明において、前記セラミック組成物パウダーは、炭化ケイ素(SiC)、ムライト(3Al・SiO)、ジルコニア(ZrO)、炭酸カルシウム(CaCO)、カルボキシメチルセルロース、又はそれらの組み合わせであってもよい。また、前記セラミック組成物パウダーは、水(water)をさらに含んでもよい。水をさらに含むことにより、セラミック組成物パウダーが高分子ろ過体の表面にさらによく付着するので、セラミック組成物パウダー層の形成がさらに容易になるという利点がある。本発明において、前記パウダーをろ過するステップは、初期ステップと後期ステップに分けられ、異なる粒子サイズのセラミック組成物パウダーを用いることができる。初期ステップにはパウダーの粒子サイズが100μm程度のものを用い、後期ステップにはパウダーの粒子サイズが5μm程度のものを用いることが好ましい。前述したように、初期ステップにパウダーの粒子サイズがより大きいものを用い、セラミック組成物パウダーが初期ステップでは早く形成されるようにし、後期ステップに粒子サイズがより小さいものを用いることにより、厚さ調節を容易に行うことができる。また、前述したように、初期ステップにパウダーの粒子サイズがより大きいものを用いることにより、微細な粒子が高効率で表面でろ過され、粉じん払落しの際に内側の大きい気孔と外側の小さい気孔により粉じん払落し効率が向上するという利点がある。 In the present invention, the ceramic composition powder is silicon carbide (SiC), mullite (3Al 2 O 3 .SiO 2 ), zirconia (ZrO 2 ), calcium carbonate (CaCO 3 ), carboxymethyl cellulose, or a combination thereof. May be. The ceramic composition powder may further include water. By further containing water, the ceramic composition powder adheres better to the surface of the polymer filter body, and thus there is an advantage that the formation of the ceramic composition powder layer becomes easier. In the present invention, the step of filtering the powder is divided into an initial step and a later step, and ceramic composition powders having different particle sizes can be used. It is preferable to use a powder having a particle size of about 100 μm for the initial step and a powder having a powder particle size of about 5 μm for the latter step. As described above, by using a powder having a larger particle size in the initial step, a ceramic composition powder is formed earlier in the initial step, and by using a smaller particle size in the later step. Adjustment can be made easily. In addition, as described above, by using a powder having a larger particle size in the initial step, fine particles are filtered on the surface with high efficiency, and when the dust is removed, large pores on the inside and small pores on the outside are used. This has the advantage of improving dusting efficiency.

本発明において、前記セラミック組成物パウダーは、セラミック成分として炭化ケイ素を含んでもよい。   In the present invention, the ceramic composition powder may contain silicon carbide as a ceramic component.

本発明において、前記炭化ケイ素の含量は、セラミック組成物パウダー全体を100重量部を基準に、好ましくは70〜75重量部、より好ましくは73〜74重量部、最も好ましくは73.8重量部である。前記炭化ケイ素の含量が上記上限よりも多いとバインダーの不足によりセラミック層に亀裂が生じることがあり、上記下限よりも少ないと炭化ケイ素の不足により機械的強度が低下し、耐熱性が落ちることがある。   In the present invention, the silicon carbide content is preferably 70 to 75 parts by weight, more preferably 73 to 74 parts by weight, and most preferably 73.8 parts by weight based on 100 parts by weight of the entire ceramic composition powder. is there. If the silicon carbide content is higher than the above upper limit, the ceramic layer may crack due to insufficient binder, and if it is lower than the lower limit, the mechanical strength may decrease due to insufficient silicon carbide and heat resistance may decrease. is there.

本発明において、炭化ケイ素の粒子サイズによりフィルタの気孔のサイズを調節することができるので、それによって、排気ガス中の粒子状汚染物質のろ過効率を調節することができる。   In the present invention, the pore size of the filter can be adjusted by the particle size of the silicon carbide, so that the filtration efficiency of particulate pollutants in the exhaust gas can be adjusted.

本発明において、前記炭化ケイ素の粒子サイズは、好ましくは5μm〜100μm、より好ましくは10μm〜50μm、最も好ましくは25μmである。前記炭化ケイ素の粒子サイズが5μm未満では気孔が緻密になりすぎて汚染物質により気孔が塞がることがあり、100μmよりも大きいと気孔サイズが大きすぎて微小汚染物質のろ過効率が低下することがある。   In the present invention, the particle size of the silicon carbide is preferably 5 μm to 100 μm, more preferably 10 μm to 50 μm, and most preferably 25 μm. When the particle size of the silicon carbide is less than 5 μm, the pores may be too dense and the pores may be blocked by the pollutant. When the particle size is larger than 100 μm, the pore size may be too large and the filtration efficiency of the fine pollutant may be reduced. .

具体的には、本発明の一実施例において、前記炭化ケイ素の粒子サイズが10μm、25μm及び50μmのものを用いてセラミックフィルタを製造し、そのろ過効率を測定した結果、10μm〜50μmの炭化ケイ素の粒子サイズ範囲において1μm以下の微小汚染物質を90%以上ろ過できることが確認された。   Specifically, in one embodiment of the present invention, a ceramic filter was manufactured using silicon carbide particles having a particle size of 10 μm, 25 μm and 50 μm, and the filtration efficiency was measured. As a result, silicon carbide having a particle size of 10 μm to 50 μm was obtained. It was confirmed that 90% or more of fine contaminants of 1 μm or less can be filtered in the particle size range of.

本発明において、前記セラミック組成物パウダーは、無機バインダーとしてムライトを含んでもよい。   In the present invention, the ceramic composition powder may contain mullite as an inorganic binder.

本発明において、前記ムライトの含量は、セラミック組成物パウダー全体を100重量部を基準に、好ましくは3〜4重量部、より好ましくは3.5〜3.8重量部、最も好ましくは3.7重量部である。前記ムライトの含量が前記上限よりも多いと炭化ケイ素の不足により機械的強度が低下し、耐熱性が落ちることがあり、前記下限よりも少ないとバインダーの不足により亀裂が生じることがある。   In the present invention, the mullite content is preferably 3 to 4 parts by weight, more preferably 3.5 to 3.8 parts by weight, most preferably 3.7 based on 100 parts by weight of the entire ceramic composition powder. Parts by weight. If the mullite content is higher than the upper limit, the mechanical strength may be reduced due to the lack of silicon carbide and the heat resistance may be lowered. If the mullite content is lower than the lower limit, cracks may occur due to the lack of the binder.

本発明において、前記セラミック組成物パウダーは、無機バインダーとしてジルコニアを含んでもよい。   In the present invention, the ceramic composition powder may contain zirconia as an inorganic binder.

本発明において、前記ジルコニアの含量は、セラミック組成物パウダー全体を100重量部を基準に、好ましくは3〜4重量部、より好ましくは3.5〜3.8重量部、最も好ましくは3.7重量部である。前記ジルコニアの含量が前記上限よりも多いと炭化ケイ素の不足により機械的強度が低下し、耐熱性が落ちることがあり、前記下限よりも少ないとバインダーの不足により亀裂が生じることがある。   In the present invention, the content of the zirconia is preferably 3 to 4 parts by weight, more preferably 3.5 to 3.8 parts by weight, and most preferably 3.7 based on 100 parts by weight of the entire ceramic composition powder. Parts by weight. If the content of zirconia is higher than the upper limit, mechanical strength may be reduced due to insufficient silicon carbide and heat resistance may be reduced. If the content is lower than the lower limit, cracks may be generated due to insufficient binder.

本発明において、前記セラミック組成物パウダーは、無機バインダーとして炭酸カルシウムを含んでもよい。   In the present invention, the ceramic composition powder may contain calcium carbonate as an inorganic binder.

本発明において、前記炭酸カルシウムの含量は、セラミック組成物パウダー全体を100重量部を基準に、好ましくは0.5〜1.0重量部、より好ましくは0.7〜0.9重量部、最も好ましくは0.8重量部である。前記炭酸カルシウムの含量が前記上限よりも多いと炭化ケイ素の不足により機械的強度が低下し、耐熱性が落ちることがあり、前記下限よりも少ないとバインダーの不足により亀裂が生じることがある。   In the present invention, the content of the calcium carbonate is preferably 0.5 to 1.0 parts by weight, more preferably 0.7 to 0.9 parts by weight, most preferably 100 parts by weight of the entire ceramic composition powder. Preferably it is 0.8 weight part. If the calcium carbonate content is higher than the upper limit, mechanical strength may decrease due to insufficient silicon carbide and heat resistance may decrease, and if the content is lower than the lower limit, cracks may occur due to insufficient binder.

本発明において、前記セラミック組成物パウダーは、有機バインダーとしてカルボキシメチルセルロース(CMC)を含んでもよい。   In the present invention, the ceramic composition powder may include carboxymethyl cellulose (CMC) as an organic binder.

本発明において、前記カルボキシメチルセルロースの含量は、セラミック組成物パウダー全体を100重量部を基準に、好ましくは1〜2重量部、より好ましくは1.5〜1.7重量部、最も好ましくは1.6重量部である。前記カルボキシメチルセルロースの含量が前記上限よりも多いと炭化ケイ素の不足により機械的強度が低下し、耐熱性が落ちることがあり、前記下限よりも少ないとバインダーの不足により亀裂が生じることがある。   In the present invention, the content of the carboxymethyl cellulose is preferably 1 to 2 parts by weight, more preferably 1.5 to 1.7 parts by weight, and most preferably 1. parts by weight based on 100 parts by weight of the entire ceramic composition powder. 6 parts by weight. If the content of carboxymethyl cellulose is higher than the upper limit, mechanical strength may be lowered due to insufficient silicon carbide and heat resistance may be lowered. If the content is lower than the lower limit, cracks may be generated due to insufficient binder.

本発明において、前記セラミック組成物パウダーは、前述したように、パウダーの付着力を増加させるために水(water)をさらに含んでもよい。   In the present invention, the ceramic composition powder may further include water in order to increase the adhesion of the powder, as described above.

本発明において、前記水の含量は、セラミック組成物パウダー全体を100重量部を基準に、好ましくは10〜20重量部、より好ましくは15〜17重量部、最も好ましくは16.4重量部である。前記水の含量が前記上限よりも多いと乾式工程を行うことが困難になり、前記下限よりも少ないとパウダーの付着力が低下することがある。   In the present invention, the water content is preferably 10 to 20 parts by weight, more preferably 15 to 17 parts by weight, and most preferably 16.4 parts by weight based on 100 parts by weight of the entire ceramic composition powder. . When the water content is higher than the upper limit, it is difficult to perform the dry process, and when the water content is lower than the lower limit, the adhesion of the powder may be reduced.

本発明の好ましい一実施例として、前記セラミック組成物パウダーは、炭化ケイ素、ムライト、ジルコニア、炭酸カルシウム、カルボキシメチルセルロース及び水を重量基準とした場合、70〜75:3〜4:3〜4:0.5〜1.0:1〜2:10〜20の割合で含むものであってもよい。前記セラミック組成物パウダーは、炭化ケイ素、ムライト、ジルコニア、炭酸カルシウム、カルボキシメチルセルロース及び水を重量基準とした場合、73.8:3.7:3.7:0.8:1.6:16.4の割合で含むものであることが最も好ましい。前記のような割合のセラミック組成物パウダーを用いることにより、亀裂が生じることなく、機械的強度に優れ、耐熱性に優れたセラミックフィルタを製造することができる。   As a preferred embodiment of the present invention, the ceramic composition powder may have a weight ratio of 70 to 75: 3 to 4: 3 to 4: 0 based on silicon carbide, mullite, zirconia, calcium carbonate, carboxymethylcellulose and water. .5 to 1.0: 1 to 2:10 to 20 may be included. When the ceramic composition powder is based on weight of silicon carbide, mullite, zirconia, calcium carbonate, carboxymethylcellulose and water, 73.8: 3.7: 3.7: 0.8: 1.6: 16. Most preferably, it is contained at a ratio of 4. By using the ceramic composition powder in the above ratio, a ceramic filter having excellent mechanical strength and excellent heat resistance can be produced without causing cracks.

本発明における用語「高分子ろ過体」とは、高分子素材のろ過体を意味する。前記高分子ろ過体は、通常入手可能な高分子ろ過体を購入して用いてもよく、通常の製造方法で直接製造したものを用いてもよい。   The term “polymer filter body” in the present invention means a polymer filter body. As the polymer filter, a commercially available polymer filter may be purchased and used, or one produced directly by a normal manufacturing method may be used.

本発明において、前記高分子ろ過体は、好ましくは5μm以下、より好ましくは1μm〜5μmの気孔サイズを有するものである。前記のような気孔サイズを有する高分子ろ過体を用いることにより、セラミック組成物パウダーを含む空気を高分子ろ過体でろ過するステップ1)において、前記高分子ろ過体の表面にセラミック組成物パウダー層が容易に形成される。   In the present invention, the polymer filter preferably has a pore size of 5 μm or less, more preferably 1 μm to 5 μm. In the step 1) of filtering the air containing the ceramic composition powder with the polymer filter by using the polymer filter having the pore size as described above, the ceramic composition powder layer is formed on the surface of the polymer filter. Is easily formed.

本発明において、前記高分子ろ過体は、ポリエステル、ポリプロピレン、アクリル、ポリアミド、ポリイミド又はガラス繊維からなるものであるが、これらに限定されるものではない。   In the present invention, the polymer filter is made of polyester, polypropylene, acrylic, polyamide, polyimide or glass fiber, but is not limited thereto.

本発明において、前記ろ過速度は、0.5〜10m/minであることが好ましい。このろ過速度の範囲では、セラミック組成物パウダー層の形成効率に優れる。   In the present invention, the filtration rate is preferably 0.5 to 10 m / min. In the range of this filtration rate, the ceramic composition powder layer is excellent in formation efficiency.

本発明において、前記セラミック組成物パウダー層は、1mm〜10mmの厚さであることが好ましい。前記セラミック組成物パウダー層の厚さが1mm以上の場合、焼結後に得られるセラミック層の機械的強度及び耐熱性に優れるという利点があり、前記厚さが10mm以下の場合、フィルタが適切な気孔サイズを有し、ろ過効率に優れる。   In the present invention, the ceramic composition powder layer preferably has a thickness of 1 mm to 10 mm. When the thickness of the ceramic composition powder layer is 1 mm or more, there is an advantage that the ceramic layer obtained after sintering is excellent in mechanical strength and heat resistance. When the thickness is 10 mm or less, the filter has appropriate pores. It has a size and excellent filtration efficiency.

本発明の製造方法は、前述したように、セラミック組成物パウダー層の厚さ調節が容易であり、フィルタの気孔サイズ調節が容易にできるので、フィルタ通過時に発生する圧力損失の問題を解決できるという利点を有する。   As described above, the manufacturing method of the present invention can easily adjust the thickness of the ceramic composition powder layer, and can easily adjust the pore size of the filter, thereby solving the problem of pressure loss that occurs when passing through the filter. Have advantages.

ステップ2は、前記セラミック組成物パウダー層が形成された高分子ろ過体を焼結してセラミックフィルタを製造するステップである。   Step 2 is a step of manufacturing a ceramic filter by sintering the polymer filter body on which the ceramic composition powder layer is formed.

本発明において、前記焼結温度は、好ましくは1400℃〜1500℃、最も好ましくは1450℃である。   In the present invention, the sintering temperature is preferably 1400 ° C to 1500 ° C, and most preferably 1450 ° C.

本発明において、前記焼結時に、室温から焼結温度まで徐々に昇温させることがセラミックの亀裂防止の観点から好ましい。ここで、前記昇温速度は、3〜4℃/minの範囲、最も好ましくは3.3℃/minを保持することが亀裂防止の観点から好ましい。   In the present invention, it is preferable from the viewpoint of preventing cracks in the ceramic that the temperature is gradually raised from room temperature to the sintering temperature during the sintering. Here, it is preferable from the viewpoint of preventing cracking that the temperature rising rate is in the range of 3 to 4 ° C./min, most preferably 3.3 ° C./min.

本発明において、前記焼結時間は、好ましくは1時間〜5時間、より好ましくは1時間〜3時間、最も好ましくは2時間である。   In the present invention, the sintering time is preferably 1 hour to 5 hours, more preferably 1 hour to 3 hours, and most preferably 2 hours.

本発明のセラミックフィルタの製造方法は、前述したように、セラミック組成物パウダー層の厚さ調節によりフィルタの気孔サイズ調節が容易になるだけでなく、別途の金型及び加圧装置などを必要としないので、低コストかつ低エネルギーで製造することができ、用いられる高分子ろ過体の形態及びサイズに応じて様々な形態を有し、小型から大型まで様々なサイズを有するセラミックフィルタを製造できるという利点を有する。   As described above, the method for manufacturing a ceramic filter of the present invention not only facilitates the adjustment of the pore size of the filter by adjusting the thickness of the ceramic composition powder layer, but also requires a separate mold and pressure device. Therefore, it can be manufactured at low cost and with low energy, and has various forms according to the form and size of the polymer filter used, and can produce ceramic filters having various sizes from small to large. Have advantages.

また、本発明は、上記方法で製造されたセラミックフィルタを提供する。   Moreover, this invention provides the ceramic filter manufactured by the said method.

本発明のセラミックフィルタは、上記方法で製造されることにより、高分子ろ過体の表面上でセラミック層が形成された形態を有し、セラミック層による高い耐熱性、耐化学性、及び耐摩耗性などのセラミックフィルタが有する利点を有する。   The ceramic filter of the present invention has a form in which a ceramic layer is formed on the surface of the polymer filter by being manufactured by the above method, and has high heat resistance, chemical resistance, and wear resistance due to the ceramic layer. Etc. have the advantages that ceramic filters have.

本発明によるセラミックフィルタは、従来の加圧方式を用いないので、フィルタの気孔サイズ調節を容易に行うことができ、フィルタ通過時に発生する圧力損失の問題を解決することができる。   Since the ceramic filter according to the present invention does not use the conventional pressurization method, the pore size of the filter can be easily adjusted, and the problem of pressure loss generated when passing through the filter can be solved.

また、本発明によるセラミックフィルタの製造方法は、別途の金型製作過程を必要としないので、低コストでフィルタを製作することができ、別途の金型を用いることなくフィルタを製造することができるので、フィルタの形状変更が容易であり、用途に応じてろ過面積を最大化することにより高性能のフィルタを製造することができる。   In addition, since the ceramic filter manufacturing method according to the present invention does not require a separate mold manufacturing process, the filter can be manufactured at low cost, and the filter can be manufactured without using a separate mold. Therefore, it is easy to change the shape of the filter, and a high-performance filter can be manufactured by maximizing the filtration area according to the application.

よって、本発明によるセラミックフィルタ及びその製造方法は、低コストかつ低エネルギーで高性能のセラミックフィルタを製造することができるので、フィルタ関連産業において有用である。   Therefore, the ceramic filter and the manufacturing method thereof according to the present invention can be used in the filter-related industry because a high-performance ceramic filter can be manufactured with low cost and low energy.

本発明のセラミックフィルタ製造工程を示す模式図である。It is a schematic diagram which shows the ceramic filter manufacturing process of this invention. 本発明のセラミックフィルタ製造時に用いられた高分子ろ過体の形態(A)、製造されたセラミックフィルタの形態(B)、及び前記セラミックフィルタの表面の形を走査型電子顕微鏡で観察した結果(C)を示す図である。The result (C) of the form (A) of the polymer filter used at the time of manufacturing the ceramic filter of the present invention, the form (B) of the manufactured ceramic filter, and the surface shape of the ceramic filter (C) ). 本発明のセラミックフィルタのろ過効率を示すグラフである。It is a graph which shows the filtration efficiency of the ceramic filter of this invention.

以下、実施例を挙げて本発明の構成及び効果をより具体的に説明するが、これらの実施例は本発明の例示的な記載にすぎず、本発明の範囲がこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and the structure and effect of this invention are demonstrated more concretely, these Examples are only the illustration description of this invention, and the scope of the present invention is limited to these Examples. It is not something.

実施例1〜3:本発明のセラミックフィルタの製造
図1に本発明のセラミックフィルタ製造過程を模式的に示す。
Examples 1-3: Production of Ceramic Filter of the Present Invention FIG. 1 schematically shows a process for producing a ceramic filter of the present invention.

具体的には、高温用セラミックフィルタを製造するために、まず、炭化ケイ素、ムライト、ジルコニア、炭酸カルシウム、カルボキシメチルセルロース及び水を重量基準とした場合、73.8:3.7:3.7:0.8:1.6:16.4の割合で含むセラミック組成物パウダーをパウダー注入口から空気と共に高分子ろ過体(平均気孔サイズ3μm、ポリエステル、テソンフィルターテック)を通過するように注入した。ここで、炭化ケイ素は、粒子サイズがそれぞれ10μm(実施例1)、25μm(実施例2)及び50μm(実施例3)のものを用いた。また、ろ過速度は5m/minに調節し、セラミック組成物パウダー層の厚さは5mmになるようにした。   Specifically, in order to produce a ceramic filter for high temperature, first, when silicon carbide, mullite, zirconia, calcium carbonate, carboxymethyl cellulose and water are used as a weight basis, 73.8: 3.7: 3.7: The ceramic composition powder containing 0.8: 1.6: 16.4 was injected from the powder injection port with air so as to pass through the polymer filter (average pore size: 3 μm, polyester, Tesson filter tech). Here, silicon carbide having a particle size of 10 μm (Example 1), 25 μm (Example 2), and 50 μm (Example 3) was used. The filtration rate was adjusted to 5 m / min, and the thickness of the ceramic composition powder layer was 5 mm.

その後、セラミックパウダー層が形成された高分子ろ過体を1450℃で2時間焼結することによりセラミックフィルタを製造した。前記焼結時に、室温から焼結温度まで3.3℃/minの昇温速度を保持した。   Thereafter, the polymer filter body on which the ceramic powder layer was formed was sintered at 1450 ° C. for 2 hours to produce a ceramic filter. During the sintering, a temperature rising rate of 3.3 ° C./min was maintained from room temperature to the sintering temperature.

実験例1:本発明のセラミックフィルタの構造的な特性調査
上記実施例2で製造した本発明のセラミックフィルタの構造特性の調査をするために、本発明のセラミックフィルタの表面を走査型電子顕微鏡(SEM)で観察した。
Experimental Example 1: Investigation of structural characteristics of ceramic filter of the present invention In order to investigate the structural characteristics of the ceramic filter of the present invention manufactured in Example 2, the surface of the ceramic filter of the present invention was scanned with a scanning electron microscope ( SEM).

以下、その結果を図2に示す。   The results are shown in FIG.

図2において、Aは本発明のセラミックフィルタを製造するために用いた高分子ろ過体の形態を示すものであり、Bは製造されたセラミックフィルタの形態を示すものであり、Cは前記セラミックフィルタの表面の形を走査型電子顕微鏡で観察した結果を示すものである。   In FIG. 2, A shows the form of the polymer filter used for producing the ceramic filter of the present invention, B shows the form of the produced ceramic filter, and C shows the ceramic filter. The result of having observed the shape of the surface of this with a scanning electron microscope is shown.

図2に示すように、本発明の製造方法により高分子ろ過体の表面上で均一かつ緻密なセラミック層が形成されたことが確認された。   As shown in FIG. 2, it was confirmed that a uniform and dense ceramic layer was formed on the surface of the polymer filter by the production method of the present invention.

実験例2:本発明のセラミックフィルタの性能評価
本発明のセラミックフィルタの性能評価のために、上記実施例1〜3で製造したセラミックフィルタのろ過効率(collection efficiency)を測定した。
Experimental Example 2: Performance evaluation of the ceramic filter of the present invention In order to evaluate the performance of the ceramic filter of the present invention, the filtration efficiency of the ceramic filters manufactured in Examples 1 to 3 was measured.

製造されたフィルタのろ過効率を測定するために、ろ過バックテスト装置に、製造されたセラミックフィルタを装着してFly ashをテスト粒子により発生させた。ろ過バックを通過する流体の速度を1m/minに固定し、その後フィルタの前、後段で埃の個数濃度をエアロダイナミックパーティクルサイザー(Aerodynamic Particle Sizer、APS、モデル: 3321、TSI Instruments)で測定することによりろ過効率を測定した。   In order to measure the filtration efficiency of the produced filter, the produced ceramic filter was attached to the filtration back test apparatus, and Fly ash was generated by the test particles. The speed of the fluid passing through the filtration bag is fixed at 1 m / min, and then the number density of dust is measured with an aerodynamic particle sizer (Aerodynamic Particle Sizer, APS, model: 3321, TSI Instruments) before and after the filter. The filtration efficiency was measured.

その結果を図3に示す。   The result is shown in FIG.

図3に示すように、10μm〜50μmの粒子サイズを有する炭化ケイ素を用いて製造したセラミックフィルタが1μm以下の微小汚染物質を90%以上ろ過できることが確認された。   As shown in FIG. 3, it was confirmed that a ceramic filter manufactured using silicon carbide having a particle size of 10 μm to 50 μm can filter 90% or more of minute contaminants of 1 μm or less.

Claims (11)

セラミック組成物パウダーを空気と混合してエアロゾル化したパウダー含有空気を高分子ろ過体でろ過することにより、前記高分子ろ過体の表面にセラミック組成物パウダー層を形成するステップ(ステップ1)と、
前記セラミック組成物パウダー層が形成された高分子ろ過体を焼結するステップ(ステップ2)とを含む、セラミックフィルタの製造方法。
A step of forming a ceramic composition powder layer on the surface of the polymer filter body by filtering the powder-containing air, which is aerosolized by mixing the ceramic composition powder with air, with a polymer filter body (step 1) ;
Sintering the polymer filter body on which the ceramic composition powder layer is formed (step 2).
前記セラミック組成物パウダーは、炭化ケイ素(SiC)を含み、かつ、ムライト(3Al・SiO)、ジルコニア(ZrO)、炭酸カルシウム(CaCO)、及びカルボキシメチルセルロースの群から選ばれる1種以上のバインダーを含むことを特徴とする
請求項1に記載の製造方法。
The ceramic composition powder contains silicon carbide (SiC) and is selected from the group consisting of mullite (3Al 2 O 3 .SiO 2 ), zirconia (ZrO 2 ), calcium carbonate (CaCO 3 ), and carboxymethyl cellulose. The production method according to claim 1, comprising at least one kind of binder .
前記セラミック組成物パウダーは、該パウダー全体100重量部を基準に10〜20重量部の水(water)をさらに含むことを特徴とする
請求項1に記載の製造方法。
The method according to claim 1, wherein the ceramic composition powder further includes 10 to 20 parts by weight of water based on 100 parts by weight of the whole powder .
前記炭化ケイ素の粒子サイズは、5μm〜100μmであることを特徴とする
請求項2に記載の製造方法。
The manufacturing method according to claim 2, wherein a particle size of the silicon carbide is 5 μm to 100 μm.
前記セラミック組成物パウダーは、炭化ケイ素、ムライト、ジルコニア、炭酸カルシウム、カルボキシメチルセルロース及び水を重量基準とした場合、70〜75:3〜4:3〜4:0.5〜1.0:1〜2:10〜20の割合で含むことを特徴とする
請求項1に記載の製造方法。
When the ceramic composition powder is based on silicon carbide, mullite, zirconia, calcium carbonate, carboxymethylcellulose and water, 70 to 75: 3 to 4: 3 to 4: 0.5 to 1.0: 1. The production method according to claim 1, wherein the composition is contained at a ratio of 2: 10-20.
前記高分子ろ過体は、ポリエステル、ポリプロピレン、アクリル、ポリアミド、又はポリイミドからなることを特徴とする
請求項1に記載の製造方法。
The manufacturing method according to claim 1, wherein the polymer filter body is made of polyester, polypropylene, acrylic, polyamide, or polyimide.
前記ろ過は、ろ過速度0.5〜10m/minで行うことを特徴とする
請求項1に記載の製造方法。
The filtration method according to claim 1, characterized in that the filtration rate of 0.5 to 10 m / min.
前記セラミック組成物パウダー層は、1mm〜10mmの厚さであることを特徴とする
請求項1に記載の製造方法。
The manufacturing method according to claim 1, wherein the ceramic composition powder layer has a thickness of 1 mm to 10 mm.
前記焼結は、焼結温度1400℃〜1500℃で行うことを特徴とする
請求項1に記載の製造方法。
The sintering method according to claim 1, characterized in that at a sintering temperature 1400 ° C. to 1500 ° C..
前記焼結時に、3〜4℃/minの昇温速度を保持することを特徴とする
請求項1に記載の製造方法。
The manufacturing method according to claim 1, wherein a heating rate of 3 to 4 ° C./min is maintained during the sintering.
前記焼結は、焼結時間1時間〜5時間で行うことを特徴とする
請求項1に記載の製造方法。
The sintering method according to claim 1, characterized in that a sintering time of 1 hour to 5 hours.
JP2015543983A 2012-11-21 2013-11-21 Manufacturing method of ceramic filter Active JP6039820B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2012-0132608 2012-11-21
KR20120132608 2012-11-21
PCT/KR2013/010620 WO2014081218A1 (en) 2012-11-21 2013-11-21 Method for manufacturing ceramic filter

Publications (2)

Publication Number Publication Date
JP2015536820A JP2015536820A (en) 2015-12-24
JP6039820B2 true JP6039820B2 (en) 2016-12-07

Family

ID=50776323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015543983A Active JP6039820B2 (en) 2012-11-21 2013-11-21 Manufacturing method of ceramic filter

Country Status (3)

Country Link
JP (1) JP6039820B2 (en)
KR (1) KR101575828B1 (en)
WO (1) WO2014081218A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101881922B1 (en) * 2017-06-27 2018-07-26 한국과학기술원 Method and apparatus for producing ceramics nano filtration membrane, operation method of computer apparatus for controlling filtration coating process
US11105234B2 (en) 2017-08-11 2021-08-31 Ford Global Technologies, Llc Particulate filters
CN108858660B (en) * 2018-06-19 2020-04-21 南京理工大学 Continuous fiber toughening ceramic matrix composite material additive manufacturing device and manufacturing method thereof
CN112156656B (en) * 2020-09-11 2022-07-05 武汉理工大学 Mullite whisker ceramic filter membrane with high permeability and high filtering precision and preparation method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190250A (en) * 1983-04-13 1984-10-29 東洋ゴム工業株式会社 Manufacture of ceramic porous body
JPS6033250A (en) * 1983-07-28 1985-02-20 株式会社興人 Manufacture of ceramic formed body
JPS62149317A (en) * 1985-09-11 1987-07-03 Nippon Denso Co Ltd Porous ceramic structural body and its production
JP3504710B2 (en) * 1994-02-08 2004-03-08 キャステム株式会社 Ceramic filter and method of manufacturing the same
JPH0948679A (en) * 1995-08-02 1997-02-18 Mitsubishi Heavy Ind Ltd Ceramic filter element and its production
JP3608901B2 (en) * 1997-03-14 2005-01-12 日本碍子株式会社 Manufacturing method of filter element for dust collection
JP3581518B2 (en) * 1997-03-27 2004-10-27 三菱重工業株式会社 Equipment for manufacturing ceramic filter elements
JP2002054422A (en) * 2000-08-08 2002-02-20 Ngk Insulators Ltd Ceramic filter, and method of manufacturing same
ATE498598T1 (en) * 2001-04-23 2011-03-15 Dow Global Technologies Inc METHOD FOR PRODUCING A MONOLITHIC WALL FLOW FILTER
EP1479881B1 (en) * 2002-02-05 2017-05-10 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination, adhesive, coating material and process for producing honeycomb filter for exhaust gas decontamination
KR100690573B1 (en) * 2002-12-05 2007-03-09 주식회사 이비에스아이 Ceramic filter and its producing method
US20040176246A1 (en) * 2003-03-05 2004-09-09 3M Innovative Properties Company Catalyzing filters and methods of making
KR101041505B1 (en) * 2005-02-03 2011-06-16 유재화 Method of preparing stacked ceramic filter and stacked ceramic filter prepared thereby
US20080096751A1 (en) * 2006-10-18 2008-04-24 Ngk Insulators, Ltd. Method of manufacturing ceramic porous membrane and method of manufacturing ceramic filter
KR101133097B1 (en) * 2009-11-04 2012-07-09 한국에너지기술연구원 Silicon carbide ceramic compositions for high temperature hot gas filters by mullite-zirconia bonding and preparing method of hot gas filters using this
JP5597148B2 (en) * 2010-03-18 2014-10-01 日本碍子株式会社 Honeycomb filter manufacturing equipment
JP5597146B2 (en) * 2010-03-18 2014-10-01 日本碍子株式会社 Honeycomb filter manufacturing equipment

Also Published As

Publication number Publication date
WO2014081218A1 (en) 2014-05-30
KR101575828B1 (en) 2015-12-09
JP2015536820A (en) 2015-12-24
KR20140065367A (en) 2014-05-29

Similar Documents

Publication Publication Date Title
JP2005530616A (en) Aluminum magnesium silicate structure for DPF applications
JP6039820B2 (en) Manufacturing method of ceramic filter
JP5863951B2 (en) Honeycomb filter and method for manufacturing honeycomb filter
JP2014108404A (en) Honeycomb catalyst body
JP2011161425A (en) Method for manufacturing honeycomb filter
CN107915475A (en) A kind of gradient pore high temperature filtration ceramic tube and preparation method thereof
JP2015171981A (en) honeycomb structure
WO2016013511A1 (en) Honeycomb filter
KR20210044883A (en) Honeycomb body with porous material
JP2012075989A (en) Method for manufacturing honeycomb structure
JP4980299B2 (en) Silicon carbide based porous material
JP2007045686A (en) Method for manufacturing porous ceramic structure
US9839869B2 (en) Honeycomb filter
JP5707203B2 (en) Honeycomb structure
CN104387113B (en) A kind of fibre-reinforced ceramic element and preparation method thereof
US9796632B2 (en) Method for manufacturing ceramic filter
KR101351468B1 (en) Manufacturing method of diesel particulate filter and diesel particulate filter manufactured by the method
JP3872096B1 (en) Oil mist filter
US9719385B2 (en) Honeycomb filter
US9795910B2 (en) Honeycomb filter and production method for honeycomb filter
WOO et al. Role of porosity in dust cleaning of silicon carbide ceramic filters
JP2013144847A (en) Method for producing metallic porous sintered body
JP7215636B1 (en) Silicon carbide ceramic honeycomb structure and manufacturing method thereof
CN113800939B (en) Nano fiber SiO 2 Porous ceramic material and preparation method thereof
KR102199010B1 (en) Manufacturing method of diesel particulate filter with an improved thermal expansion coefficient and diesel particulate filter manufactured by the method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160701

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161104

R150 Certificate of patent or registration of utility model

Ref document number: 6039820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250