JP4980299B2 - Silicon carbide based porous material - Google Patents

Silicon carbide based porous material Download PDF

Info

Publication number
JP4980299B2
JP4980299B2 JP2008150925A JP2008150925A JP4980299B2 JP 4980299 B2 JP4980299 B2 JP 4980299B2 JP 2008150925 A JP2008150925 A JP 2008150925A JP 2008150925 A JP2008150925 A JP 2008150925A JP 4980299 B2 JP4980299 B2 JP 4980299B2
Authority
JP
Japan
Prior art keywords
pore
diameter
silicon carbide
filter
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008150925A
Other languages
Japanese (ja)
Other versions
JP2009292709A (en
Inventor
孝治 常吉
修 高木
健友 影山
清寿 羽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2008150925A priority Critical patent/JP4980299B2/en
Publication of JP2009292709A publication Critical patent/JP2009292709A/en
Application granted granted Critical
Publication of JP4980299B2 publication Critical patent/JP4980299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、炭化ケイ素質多孔体に関するものであり、特に、ディーゼルパティキュレートフィルタの基体として用いられる炭化ケイ素質多孔体に関するものである。   The present invention relates to a silicon carbide based porous material, and more particularly to a silicon carbide based porous material used as a base for a diesel particulate filter.

ディーゼルエンジンから排出されるガスに含まれるスス等の粒子状物質(パティキュレートマター。以下、「PM」と称する)を捕集除去するディーゼルパティキュレートフィルタ(以下、「DPF」と称する)は、セラミックス多孔体の隔壁により区画された複数のセルが列設されたハニカム構造体であり、ガスがハニカム構造体の隔壁を通過する際に、セラミックス多孔体の気孔内にPMが捕集され除去される。このDPFの基体となるセラミックス多孔体としては、熱膨張率が小さく耐熱性、熱伝導性、耐熱衝撃性に優れることから、炭化ケイ素質のセラミックス多孔体が多用されている。また、炭化ケイ素は半導体であることから、捕集されたPMが所定量堆積すると、通電によって発熱させPMを燃焼させる再生処理が行われる。   A diesel particulate filter (hereinafter referred to as “DPF”) that collects and removes particulate matter (particulate matter, hereinafter referred to as “PM”) contained in gas discharged from a diesel engine is a ceramic. A honeycomb structure in which a plurality of cells partitioned by porous body partition walls are arranged. When gas passes through the partition walls of the honeycomb structure, PM is collected and removed in the pores of the ceramic porous body. . As the porous ceramic body serving as the DPF substrate, a silicon carbide based porous ceramic body is frequently used because of its low thermal expansion coefficient and excellent heat resistance, thermal conductivity, and thermal shock resistance. Further, since silicon carbide is a semiconductor, when a predetermined amount of collected PM is deposited, a regeneration process is performed in which heat is generated by energization to burn the PM.

DPFでは、セラミックス多孔体の気孔径が大きすぎると、捕集されずに隔壁を通過してしまうPMが増加し、捕集効率が低下する。一方、気孔径が小さすぎる場合は、ガスの通過に対する抵抗により圧力損失が上昇し、エンジンに負荷がかかる。そこで、隔壁を構成するセラミックス多孔体の気孔径を制御したフィルタが提案されている(例えば、特許文献1,特許文献2参照)。   In the DPF, if the pore size of the ceramic porous body is too large, PM that passes through the partition without being collected increases, and the collection efficiency decreases. On the other hand, if the pore diameter is too small, the pressure loss increases due to the resistance to the passage of gas, and the engine is loaded. Therefore, a filter in which the pore diameter of the ceramic porous body constituting the partition wall is controlled has been proposed (see, for example, Patent Document 1 and Patent Document 2).

これらのフィルタは、隔壁の気孔の径を限られた狭い範囲内となるように設定することにより、一般的に粒径(直径)が0.1〜0.3μmであるPMの捕集に適した気孔の相対数を多くすることを意図したものであり、水銀圧入法によって測定された気孔径の平均値を、前者(特許文献1)では1μm〜15μm、後者(特許文献2)では20μm〜60μmとし、気孔径を常用対数で表した場合の気孔径分布における標準偏差を、共に0.20以下としている。   These filters are generally suitable for collecting PM with a particle size (diameter) of 0.1 to 0.3 μm by setting the pore diameter of the partition walls to be within a limited narrow range. The average number of pore diameters measured by mercury porosimetry is 1 μm to 15 μm in the former (Patent Document 1), and 20 μm to the latter (Patent Document 2). The standard deviation in the pore size distribution when the pore size is expressed as a common logarithm is 60 μm, and both are 0.20 or less.

特許3272746号公報Japanese Patent No. 3272746 特開2002−242655号公報JP 2002-242655 A

しかしながら、捕集効率が高いことと圧力損失の上昇が抑制されることとは相反する要請であり、その調和を図ることは、上記のフィルタによっても不充分であった。また、近年では環境規制の強化により、排出ガス中のPMの個数制限が課されるようになり、新品のDPFや再生直後のDPF、すなわち、使用の初期段階のDPFにおけるPMの捕集漏れを低減することが強く要請されるようになってきている。   However, high collection efficiency and suppression of an increase in pressure loss are contradictory requirements, and it has been insufficient to achieve the harmony even with the above-described filter. In recent years, environmental regulations have been tightened to limit the number of PMs in exhaust gas, and PM collection leakage in new DPFs or DPFs immediately after regeneration, that is, DPFs in the initial stage of use, has been reduced. There is a strong demand for reduction.

そこで、本発明は、上記の実情に鑑み、ディーゼルパティキュレートフィルタの基体として用いられる炭化ケイ素質多孔体であって、捕集効率が高く圧力損失の上昇が抑制されていると共に、使用の初期段階におけるPMの捕集漏れを低減することができる炭化ケイ素質多孔体の提供を課題とするものである。   Therefore, in view of the above circumstances, the present invention is a silicon carbide based porous material used as a base of a diesel particulate filter, which has a high collection efficiency and suppresses an increase in pressure loss, and is an initial stage of use. It is an object of the present invention to provide a silicon carbide based porous material that can reduce PM collection leakage.

上記の課題を解決するため、本発明にかかる炭化ケイ素質多孔体は、「ディーゼルパティキュレートフィルタの基体として用いられる炭化ケイ素質多孔体であって、画像解析法によって円面積相当径として測定された気孔直径に対する気孔個数分布のモード径が8±1μmであり、前記気孔直径が40μm〜50μmの気孔の合計体積が、全気孔体積の10%以上を占める」ものである。なお、本発明の「炭化ケイ素質多孔体」は、「炭化ケイ素質セラミックスの多孔体」の意である。   In order to solve the above-mentioned problems, the silicon carbide based porous material according to the present invention is “a silicon carbide based porous material used as a base of a diesel particulate filter and measured as an equivalent circular area diameter by an image analysis method. The mode diameter of the pore number distribution with respect to the pore diameter is 8 ± 1 μm, and the total volume of the pores having the pore diameter of 40 μm to 50 μm occupies 10% or more of the total pore volume ”. The “silicon carbide based porous material” of the present invention means “a porous body of silicon carbide based ceramic material”.

上記の構成によれば、本発明の炭化ケイ素質多孔体は、気孔のモード径(最頻度径)が8±1μmという小さい値でありながら、気孔直径が40μm〜50μmという大きな気孔も10体積%以上含まれる構成であることから、多数の小さな気孔と大きな気孔とが混在している構成である。すなわち、小さな気孔が多数分散した比較的緻密なマトリックス中に、大径の気孔が処々存在するという構成となっている。   According to the above configuration, the porous silicon carbide of the present invention has a pore mode diameter (most frequent diameter) as small as 8 ± 1 μm, and a large pore having a pore diameter of 40 μm to 50 μm is 10% by volume. Since it is the structure included above, it is the structure in which many small pores and large pores are mixed. In other words, the large pores are present in a relatively dense matrix in which many small pores are dispersed.

上述のように、従来のDPFでは、気孔径は“限られた狭い範囲内”に制御し、 “気孔径を揃える”ことが望ましいとされてきた。本発明者らは、このような従来の常識に反し、気孔径の小さい比較的緻密なマトリックス中に、敢えて大径の気孔を分散させた炭化ケイ素質多孔体とすることにより、捕集効率が高く圧力損失の上昇が抑制されていると共に、使用の初期段階におけるPMの捕集漏れが低減されたDPFを実現できることを見出した。   As described above, in the conventional DPF, it has been desirable to control the pore diameter “within a limited narrow range” and “equalize the pore diameter”. Contrary to such conventional common knowledge, the inventors of the present invention have a collection efficiency by making a silicon carbide porous material in which large pores are intentionally dispersed in a relatively dense matrix having small pore sizes. It has been found that a DPF can be realized in which the increase in pressure loss is suppressed to a high level and the PM collection leakage in the initial stage of use is reduced.

ここで、比較的緻密なマトリックス中に大きな気孔が分散した炭化ケイ素質多孔体は、骨材としての炭化ケイ素粉末に、炭化ケイ素を反応生成させるケイ素源としての窒化ケイ素粉末と、炭素源としての炭素質物質の混合粉末とを加えて成形し焼成する方法において、炭素源として粒径の大きな炭素質固体粉末を用い、同時に炭素質固体粉末を造孔剤としても用いる方法により製造することができる。   Here, the silicon carbide based porous material in which large pores are dispersed in a relatively dense matrix is composed of a silicon nitride powder as a silicon source that causes silicon carbide to react with a silicon carbide powder as an aggregate, and a carbon source as a carbon source. In the method of forming and firing by adding a mixed powder of carbonaceous material, it can be produced by using a carbonaceous solid powder having a large particle size as a carbon source and simultaneously using the carbonaceous solid powder as a pore-forming agent. .

この製造方法は、本発明者らが研究開発した炭化ケイ素質多孔体の新規な製造方法であり、本願とは別に提案しているものである。従来、ケイ素源と炭素源とから炭化ケイ素を反応焼結させる場合、炭素源として微細な粒子を用いた方がケイ素源と反応し易いというのが当業者の常識であったところ、本発明者らは粒径の大きな炭素質固体粉末を炭素源として用いると、炭化ケイ素の生成反応の開始は炭素源が微細な粒子である場合より遅くなるものの、生成した炭化ケイ素の粒子がネック形成できるほどに成長するのが早く、強固なネックを形成できることを見出し、上記製造方法の発明に至ったものである。この製造方法では、炭素質固体粉末として平均粒子直径が10〜50μmの大きな粒子を好適に使用することができる。また、炭素質固体としては、黒鉛、石炭、コークス、木炭などを使用可能であるが、純度の高い黒鉛が望ましく、鱗片状、粒状、塊状、不定形、球状等、種々の粒子形状の天然または合成の黒鉛を使用することができる。なお、炭素質固体粉末の形状は球状に限らないが、「平均粒子直径」は回折散乱径として求めることができる。   This production method is a novel method for producing a silicon carbide based porous material researched and developed by the present inventors, and is proposed separately from the present application. Conventionally, when silicon carbide is reactively sintered from a silicon source and a carbon source, it has been common knowledge of those skilled in the art that it is easier to react with a silicon source if fine particles are used as the carbon source. Use carbon solid powder with a large particle size as a carbon source, although the initiation reaction of silicon carbide is slower than when the carbon source is a fine particle, but the generated silicon carbide particles can form a neck. It has been found that it can grow rapidly and can form a strong neck, and has led to the invention of the above production method. In this production method, large particles having an average particle diameter of 10 to 50 μm can be suitably used as the carbonaceous solid powder. Further, as the carbonaceous solid, graphite, coal, coke, charcoal, etc. can be used, but high purity graphite is desirable, natural or various particle shapes such as scaly, granular, massive, amorphous, spherical, etc. Synthetic graphite can be used. The shape of the carbonaceous solid powder is not limited to a spherical shape, but the “average particle diameter” can be obtained as a diffraction scattering diameter.

次に、本発明にかかる炭化ケイ素質多孔体は、「前記気孔直径が40μm〜50μmの大径の気孔が、前記気孔直径が5μm〜20μmの小径の気孔によって連結された、アリの巣状の気孔構造を有する」ものとすることができる。   Next, the silicon carbide based porous material according to the present invention has a ant nest-like shape in which “the large pores having a pore diameter of 40 μm to 50 μm are connected by small pores having a pore diameter of 5 μm to 20 μm”. Having a pore structure ".

「アリの巣状」とは、大径の気孔が多数の小径の気孔によって複雑に連結されている構造を、複数の小部屋が通路によって複雑に連結された昆虫のアリの巣穴に模して表現したものである。   The term “ant's nest” refers to a structure in which large pores are intricately connected by a large number of small pores, resembling an insect ant nest in which multiple small chambers are intricately connected by a passageway. It is what was expressed.

ここで、流路を流通する流体の速度は、流路の径が小さければ速く、流路の径が広がれば遅くなる。そのため、上記構成の本発明では、小径の気孔で形成された狭い流路を流通するガスに運ばれたPMは、ガスが大径の気孔に流入して減速することにより、大径の気孔の内壁に付着し易い。そして、大径の気孔の容積は大きいため、内部に多くのPMを捕集することができる。また、大径の気孔で捕集されなかったPMは、この大径の気孔に連通する小径の気孔による流路で増速するガスによって更に下流側に運ばれ、下流側で捕集される。このように、本発明の炭化ケイ素質多孔体は、小径の気孔と大径の気孔とが複雑に連結して、アリの巣状の気孔構造を形成していることにより、捕集効率が極めて高いと当時に、圧力損失の上昇が抑制されている。   Here, the speed of the fluid flowing through the flow path is high when the diameter of the flow path is small, and is slow when the diameter of the flow path is wide. Therefore, in the present invention configured as described above, the PM carried by the gas flowing through the narrow flow path formed by the small-diameter pores is decelerated by the gas flowing into the large-diameter pores and decelerating. Easy to adhere to the inner wall. And since the volume of a large diameter pore is large, many PM can be collected inside. Further, PM that has not been collected by the large-diameter pores is further carried downstream by the gas that is accelerated in the flow path by the small-diameter pores communicating with the large-diameter pores, and is collected downstream. As described above, the silicon carbide based porous material of the present invention has an extremely high trapping efficiency due to the complex connection of small-sized pores and large-sized pores to form an ant nest-like pore structure. If it is high, an increase in pressure loss is suppressed at that time.

以上のように、本発明の効果として、ディーゼルパティキュレートフィルタの基体として用いられる炭化ケイ素質多孔体であって、捕集効率が高く圧力損失の上昇が抑制されていると共に、使用の初期段階におけるPMの捕集漏れを低減することができる炭化ケイ素質多孔体を提供することができる。   As described above, the effect of the present invention is a silicon carbide based porous material used as a base for a diesel particulate filter, which has a high collection efficiency and suppresses an increase in pressure loss, and at an initial stage of use. It is possible to provide a silicon carbide based porous material that can reduce PM leakage.

以下、本発明の最良の一実施形態である炭化ケイ素質多孔体と、該炭化ケイ素質多孔体の製造方法について説明する。本実施形態の炭化ケイ素質多孔体は、ディーゼルパティキュレートフィルタの基体として用いられる炭化ケイ素質多孔体であって、画像解析法によって円面積相当径として測定された気孔直径に対する気孔個数分布のモード径が8±1μmであり、気孔直径が40μm〜50μmの気孔の合計体積が、全気孔体積の10%以上を占めるものである。加えて、本実施形態の炭化ケイ素質多孔体は、気孔直径が40μm〜50μmの大径の気孔が、気孔直径が5μm〜20μmの小径の気孔によって連結された、アリの巣状の気孔構造を有している。   Hereinafter, a silicon carbide based porous material and a method for producing the silicon carbide based porous material according to the best embodiment of the present invention will be described. The silicon carbide based porous material of the present embodiment is a silicon carbide based porous material used as a base of a diesel particulate filter, and the mode diameter of the pore number distribution with respect to the pore diameter measured as a circular area equivalent diameter by an image analysis method. Is 8 ± 1 μm, and the total volume of pores having a pore diameter of 40 μm to 50 μm occupies 10% or more of the total pore volume. In addition, the silicon carbide based porous material of the present embodiment has an ant nest-like pore structure in which large pores having a pore diameter of 40 μm to 50 μm are connected by small pores having a pore diameter of 5 μm to 20 μm. Have.

上記構成の炭化ケイ素質多孔体は、次のような製造方法で製造することができる。すなわち、本実施形態の炭化ケイ素質多孔体の製造方法(以下、単に「製造方法」と称する)は、骨材としての炭化ケイ素粉末65〜95質量%に、ケイ素及び炭素のモル比(Si/C)が0.5〜1.5である窒化ケイ素粉末及び炭素質固体粉末を混合し成形する成形工程と、成形工程で得られた成形体を乾燥する乾燥工程と、乾燥した成形体を1800〜2200℃の非酸化性雰囲気で一度のみ焼成する焼成工程と、焼成工程後に酸化性雰囲気で行われ、残留する炭素質固体粉末を燃焼させる脱炭工程とを具備している。また、炭素質固体粉末は、平均粒子径(直径)が10〜50μmであり、その配合量は骨材としての炭化ケイ素粉末、窒化ケイ素粉末、及び炭素質固体粉末の総質量に対して1〜10質量%が使用される。   The silicon carbide based porous material having the above structure can be manufactured by the following manufacturing method. That is, in the method for producing a silicon carbide based porous material of the present embodiment (hereinafter simply referred to as “production method”), the silicon carbide powder 65 to 95 mass% as an aggregate is mixed with a molar ratio of silicon and carbon (Si / C) A molding step of mixing and molding a silicon nitride powder and a carbonaceous solid powder having a ratio of 0.5 to 1.5, a drying step of drying the molded body obtained in the molding step, and a dried molded body of 1800 A firing step of firing only once in a non-oxidizing atmosphere at ˜2200 ° C. and a decarburizing step performed in an oxidizing atmosphere after the firing step and burning the remaining carbonaceous solid powder. The carbonaceous solid powder has an average particle diameter (diameter) of 10 to 50 μm, and the blending amount thereof is 1 to 1 based on the total mass of the silicon carbide powder, the silicon nitride powder, and the carbonaceous solid powder as an aggregate. 10% by weight is used.

製造方法をより詳細に説明すると、成形工程では、骨材としての炭化ケイ素粉末、窒化ケイ素粉末、及び炭素質固体粉末に、メチルセルロース等の有機バインダーや水分等の添加剤を添加し、混合・混錬した原料混錬物を押出成形して成形体を得る。また、乾燥工程は、調温調湿槽内での送風乾燥、外部加熱乾燥、マイクロ波照射による内部加熱乾燥等により行うことができる。   The manufacturing method will be described in more detail. In the molding process, an organic binder such as methylcellulose and an additive such as moisture are added to the silicon carbide powder, silicon nitride powder, and carbonaceous solid powder as aggregates, and mixed and mixed. A molded product is obtained by extruding the smelted raw material kneaded product. Moreover, a drying process can be performed by the ventilation drying in a temperature control humidity control tank, external heating drying, internal heating drying by microwave irradiation, etc.

焼成工程では、加熱炉を非酸化性雰囲気として、成形体に熱衝撃を与えない速度で昇温し、1800〜2200℃の所定の焼成温度で一定時間保持する。焼成時間は、成形体のサイズにもよるが、例えば、30分〜4時間とすることができる。この焼成工程において、ケイ素源の窒化ケイ素と炭素源の炭素質固体とが反応して炭化ケイ素が生成し、骨材としての炭化ケイ素を取り囲むように反応焼結する。これと同時に、炭化ケイ素の生成反応に使用された炭素質固体の跡に、気孔が形成される。そして、更に、炭化ケイ素の粒子が、粒子間にネックが成長できる程度まで成長する。焼成温度で所定時間保持した後は、熱衝撃を与えない速度で降温する。   In the firing step, the heating furnace is set to a non-oxidizing atmosphere, the temperature is raised at a speed that does not give a thermal shock to the molded body, and the temperature is maintained at a predetermined firing temperature of 1800 to 2200 ° C. for a certain period of time. The firing time can be, for example, 30 minutes to 4 hours, depending on the size of the molded body. In this firing step, silicon nitride as a silicon source and a carbonaceous solid as a carbon source react to form silicon carbide, and reactive sintering is performed so as to surround the silicon carbide as an aggregate. At the same time, pores are formed in the trace of the carbonaceous solid used in the silicon carbide production reaction. Further, silicon carbide particles grow to such an extent that necks can grow between the particles. After holding at the firing temperature for a predetermined time, the temperature is lowered at a speed that does not give a thermal shock.

脱炭工程では、酸化性雰囲気の加熱炉で焼結体を熱衝撃を与えない速度で昇温し、650〜900℃で1〜3時間保持した後、熱衝撃を与えない速度で降温する。この脱炭工程において、炭化ケイ素の生成反応に使用されずに残留した炭素質固体が燃焼し除去され、その跡にも気孔が形成する。   In the decarburization step, the sintered body is heated at a speed that does not give a thermal shock in a heating furnace in an oxidizing atmosphere, held at 650 to 900 ° C. for 1 to 3 hours, and then cooled at a speed that does not give a thermal shock. In this decarburization step, carbonaceous solids that remain without being used in the silicon carbide production reaction are burned and removed, and pores are also formed in the traces.

なお、成形工程では成形体を、単一の方向に延びて列設された複数の隔壁により区画された複数のセルを備えるハニカム構造に成形することができる。また、ハニカム構造の成形体において、一方向に開放したセルと他方向に開放したセルとが交互となるように、セルの一端を封止する場合は、成形工程と乾燥工程との間、或いは乾燥工程の後に、封止工程を設けることができる。   In the forming step, the formed body can be formed into a honeycomb structure including a plurality of cells partitioned by a plurality of partition walls extending in a single direction. Further, in the honeycomb structure formed body, when sealing one end of the cell so that the cell opened in one direction and the cell opened in the other direction are alternated, between the molding process and the drying process, or A sealing step can be provided after the drying step.

また、焼成工程を経て得られたハニカム構造の焼結体の複数を接着剤で接合すると共に、外周面を加工し、更に外周面に被覆剤を塗布して被覆層を形成する接合工程を設けることができる。その場合は、上記の脱炭工程に替えて、脱炭と同時に接着剤及び被覆剤の加熱硬化等の熱処理を行う脱炭・接合部熱処理工程とすることができる。   In addition, a plurality of honeycomb structure sintered bodies obtained through the firing step are bonded with an adhesive, and the outer peripheral surface is processed, and a coating step is applied to the outer peripheral surface to form a coating layer. be able to. In that case, it can replace with said decarburization process and can be set as the decarburization and joining part heat processing process which performs heat processing, such as heat hardening of an adhesive agent and a coating agent, simultaneously with decarburization.

次に、本実施形態の炭化ケイ素質多孔体を用いた具体的な実施例のDPFについて、同じく炭化ケイ素質多孔体を用いた対照例のDPF(市販品)と対比しつつ説明する。本実施例のDPF(以下、「Filter−A」と称する)は、次のように製造した。まず、表1に示した原料の混錬物をハニカム構造に押出成形し、ほぼ同一の原料によりハニカム構造のセルの一端を封止してフィルタエレメントの成形体を得た。得られた成形体について、乾燥工程、脱脂工程を経て、上述の焼成工程、脱炭工程を行い、フィルタエレメントの焼結体を得た。得られたフィルタエレメントの焼結体は、所定本数を接合すると共に外周面にセメントの被覆層を設けた後、キャニングした。ここで、Filter−Aのサイズは直径5.66inch×長さ6inchであり、隔壁の厚さは0.38mm、セル密度は169cpsiであった。なお、本実施例では、炭素質固体として粒子形状が鱗片状の黒鉛を使用し、平均粒子径はレーザー回折散乱法により回折散乱径として評価した。   Next, the DPF of a specific example using the silicon carbide based porous material of the present embodiment will be described in comparison with the DPF (commercial product) of the control example using the same silicon carbide based porous material. The DPF of this example (hereinafter referred to as “Filter-A”) was manufactured as follows. First, the kneaded product of the raw materials shown in Table 1 was extruded into a honeycomb structure, and one end of the cells of the honeycomb structure was sealed with substantially the same raw material to obtain a filter element molded body. About the obtained molded object, the above-mentioned baking process and decarburization process were performed through the drying process and the degreasing process, and the sintered compact of the filter element was obtained. The obtained sintered body of filter elements was canned after joining a predetermined number and providing a coating layer of cement on the outer peripheral surface. Here, the size of Filter-A was 5.66 inch in diameter × 6 inch in length, the partition wall thickness was 0.38 mm, and the cell density was 169 cpsi. In this example, graphite having a scaly particle shape was used as the carbonaceous solid, and the average particle diameter was evaluated as a diffraction scattering diameter by a laser diffraction scattering method.

一方、対照例のDPF(以下、「Filter−B」と称する)の基体の炭化ケイ素質多孔体は、炭化ケイ素粉末の圧縮成形体を蒸発凝縮及び表面拡散機構によって焼結させて得たものである(再結晶法)。また、Filter−BのサイズはFilter−Aと同一であり、隔壁の厚さは0.36mm、セル密度は178cpsiであり、Filter−Aと同程度であった。   On the other hand, the silicon carbide porous body of the base of the control DPF (hereinafter referred to as “Filter-B”) is obtained by sintering a compression molded body of silicon carbide powder by evaporation condensation and surface diffusion mechanism. Yes (recrystallization method). Further, the size of Filter-B was the same as that of Filter-A, the thickness of the partition wall was 0.36 mm, and the cell density was 178 cpsi, which was almost the same as that of Filter-A.

Filter−A及びFilter−Bについて、以下の評価を行った。
<粉末X線回折> リガク社製粉末X線回折装置(RINT III型)を使用し、出力40kV,40mA、スキャンスピード6°/minで粉末X線回折パターンを測定し、炭化ケイ素質多孔体(焼結体)の結晶相の同定を行った。
<画像解析による気孔径分布> X線CTによる断層画像を用いて、三次元的な気孔径分布を解析した。マイクロフォーカスX線管球として浜松ホトニクス社製L8321を、X線検出器として浜松ホトニクス社製C7876を、CTデータ再構築システムとしてユニハイトシステム製XVSを用いた。三次元画像解析に使用したソフトウェアとして、ラトックシステムエンジニアリング製TRI/3D−BONを使用した。
The following evaluation was performed about Filter-A and Filter-B.
<Powder X-ray diffraction> Using a powder X-ray diffractometer (RINT III type) manufactured by Rigaku Corporation, a powder X-ray diffraction pattern was measured at an output of 40 kV, 40 mA and a scan speed of 6 ° / min. The crystal phase of the sintered body was identified.
<Pore diameter distribution by image analysis> A three-dimensional pore diameter distribution was analyzed using a tomographic image obtained by X-ray CT. L8321 manufactured by Hamamatsu Photonics was used as the microfocus X-ray tube, C7876 manufactured by Hamamatsu Photonics was used as the X-ray detector, and XVS manufactured by Uni-Height System was used as the CT data reconstruction system. As software used for the three-dimensional image analysis, TRI / 3D-BON manufactured by Ratok System Engineering was used.

<耐熱衝撃性試験> DPFをディーゼルエンジン(NISSAN製QD32型)に取り付け、エンジンを回転数1400rpm、トルク200Nmで動作させ、フィルタ体積1リットル当たり10gのPMを堆積させる。次に、エンジンを回転数3000rpm、トルク190Nmで動作させ、温度が約680℃に達した時点で一気にアイドリング状態とし、酸素過剰状態でPMを燃焼させた。その後、アイドリングでエンジンを冷却し、100℃以下でDPFを取り出して脱缶、切断して、クラック発生の有無を確認した。
<初期捕集率試験> 耐熱衝撃性試験と同様にDPFをディーゼルエンジンに取り付け、充分に暖気したエンジンを回転数1400rpm、トルク200Nmで動作させ、初期の2分間にDPFから排出されるガスに含まれるPMの個数濃度を、EEPS(Engine Exhaust Particle Sizer:TSI Model3090)で測定した。
<圧力損失> ガス流路に設置したDPFに、PMを含むガスを流量5Nm/minで流通させ、上流側の圧力及び下流側の圧力を測定して、PMの堆積量の増加に伴う圧力損失の変化を測定した。
<Thermal shock resistance test> A DPF is attached to a diesel engine (QD32 type manufactured by NISSAN), and the engine is operated at a rotational speed of 1400 rpm and a torque of 200 Nm to deposit 10 g of PM per liter of filter volume. Next, the engine was operated at a rotational speed of 3000 rpm and a torque of 190 Nm. When the temperature reached about 680 ° C., the engine was idling at once, and PM was burned in an oxygen excess state. Thereafter, the engine was cooled by idling, and the DPF was taken out at 100 ° C. or lower, and canned and cut, and the presence or absence of cracks was confirmed.
<Initial collection rate test> Similar to the thermal shock resistance test, DPF is attached to a diesel engine, and a sufficiently warmed engine is operated at a rotation speed of 1400 rpm and a torque of 200 Nm, and is included in the gas discharged from the DPF in the initial 2 minutes. The number concentration of PM to be measured was measured by EEPROM (Engine Exhaust Particle Sizer: TSI Model 3090).
<Pressure loss> Pressure caused by an increase in the amount of accumulated PM by allowing a gas containing PM to flow at a flow rate of 5 Nm 3 / min through a DPF installed in the gas flow path and measuring the pressure on the upstream side and the pressure on the downstream side. The change in loss was measured.

<水銀圧入法による平均気孔径> 水銀ポロシメータ(micromeritics社製,オートポアIV9500)を使用し、水銀圧入法により測定した気孔径分布からモード径(最頻度径,直径)として求めた。
<見掛け気孔率> 水銀圧入法による平均気孔径の測定に際し、試料に圧入された水銀体積と試料体積とから算出した。
<常温での三点曲げ強度> DPFから2セル×3セル×40cmの試験片を切り出し、JIS R1601に準拠して、支点間距離30mm、クロスヘッドスピード0.5mm/minで測定した。
<電子顕微鏡観察> 走査型電子顕微鏡(日本電子株式会社製、JXA−840型)を使用し、破断面、及び、初期捕集率試験後の上流側表面の観察を行った。
<Average pore diameter by mercury intrusion method> Using a mercury porosimeter (manufactured by Micromeritics, Autopore IV9500), the pore diameter distribution measured by the mercury intrusion method was used as the mode diameter (most frequent diameter, diameter).
<Apparent Porosity> In measuring the average pore diameter by the mercury intrusion method, the porosity was calculated from the volume of mercury pressed into the sample and the sample volume.
<Three-point bending strength at normal temperature> A test piece of 2 cells × 3 cells × 40 cm was cut out from the DPF and measured at a distance between supporting points of 30 mm and a crosshead speed of 0.5 mm / min in accordance with JIS R1601.
<Electron Microscope Observation> A scanning electron microscope (JXA-840 type, manufactured by JEOL Ltd.) was used to observe the fracture surface and the upstream surface after the initial collection rate test.

粉末X線回折の結果を図1に示す。Filter−Aはα−SiCの単相からなる結晶であると認められ、未反応の窒化ケイ素などは存在しないことが確認された。   The results of powder X-ray diffraction are shown in FIG. Filter-A was recognized as a crystal composed of a single phase of α-SiC, and it was confirmed that there was no unreacted silicon nitride or the like.

水銀圧入法により求められた平均気孔径(直径)及び見掛け気孔率は、表2に示すように、Filter−AとFilter−Bとでほぼ同一であった。   As shown in Table 2, the average pore diameter (diameter) and apparent porosity determined by the mercury intrusion method were almost the same for Filter-A and Filter-B.

破断面の走査型電子顕微鏡による観察像(以下、単に「SEM像」と称する)を図2に示す。Filter−A(図2(a))では、大きさの揃った小さな粒子による比較的緻密なマトリックスに、大きな気孔が分散している様子が観察された。これは、Filter−Aでは炭化ケイ素を反応焼結させているために、焼結温度は再結晶法による対照例の場合より低い温度で済み、そのために異常な粒子成長が抑制されているものと考えられた。また、マトリックス中に分散している大径の気孔は、反応焼結の炭素源であると共に造孔剤として用いた黒鉛の燃焼跡に形成されたものと考えられた。そして、散在する大径の気孔が、マトリックス中の小さな気孔によって連結され、いわば「アリの巣状」の気孔構造となっている様子が観察された。   FIG. 2 shows an observation image (hereinafter, simply referred to as “SEM image”) of the fracture surface with a scanning electron microscope. In Filter-A (FIG. 2A), it was observed that large pores were dispersed in a relatively dense matrix of small particles of uniform size. This is because, in Filter-A, since silicon carbide is reactively sintered, the sintering temperature is lower than that in the control example by the recrystallization method, and therefore abnormal particle growth is suppressed. it was thought. The large pores dispersed in the matrix were thought to be formed in the combustion traces of graphite used as a pore forming agent as well as a carbon source for reaction sintering. Then, scattered large-diameter pores were connected by small pores in the matrix, and it was observed that a so-called “ant nest-like” pore structure was formed.

一方、Filter−B(図2(b))では、異常に粒子成長した大きな粒子を含めて、マトリックス粒子の大きさが不揃いである様子が観察され、その中にほぼ均一な大きさの気孔が分散していた。Filter−Bの気孔の大きさは、Filter−Aにおける大径の気孔よりは小さく、Filter−Aのマトリックス中の小径の気孔よりは大きいものであった。   On the other hand, in Filter-B (FIG. 2 (b)), it is observed that the sizes of the matrix particles are uneven, including large particles that have grown abnormally, and pores of almost uniform size are observed therein. It was dispersed. The pore size of Filter-B was smaller than the large pores in Filter-A and larger than the small pores in the Filter-A matrix.

上記のような気孔の分布は、画像解析により得られた気孔分布にも表れていた。ここで、気孔個数で表した気孔径分布を図3に示し、全気孔体積に対する体積%で表した気孔径分布を図4に示す。図3から分かるように、画像解析によるモード径はFilter−A及びFilter−Bともに約8μmと同程度であったが、Filter−Aは5〜20μmの小径側でFilter−Bより気孔数が多いと共に、約15μm付近に特徴的なピークを有していた。また、図4から分かるように、Filter−AはFilter−Bに比べて、10〜20μm及び40〜50μmの径の気孔の体積割合が大きかった。具体的には、Filter−Aにおいて、直径が10μm未満の気孔の合計体積の全気孔体積に占める割合は約3.5%、直径が10μm以上20μm未満の気孔の合計体積の全気孔体積に占める割合は約26%、直径が20μm以上40μm未満の気孔の合計体積の全気孔体積に占める割合は約59%、直径が40μm以上50μm未満の気孔の合計体積の全気孔体積に対する割合は約11%であった。   The pore distribution as described above also appeared in the pore distribution obtained by image analysis. Here, the pore size distribution expressed by the number of pores is shown in FIG. 3, and the pore size distribution expressed by volume% with respect to the total pore volume is shown in FIG. As can be seen from FIG. 3, the mode diameter by image analysis is about 8 μm for both Filter-A and Filter-B, but Filter-A has a larger number of pores than Filter-B on the small diameter side of 5 to 20 μm. In addition, it had a characteristic peak around 15 μm. In addition, as can be seen from FIG. 4, Filter-A has a larger volume ratio of pores having diameters of 10 to 20 μm and 40 to 50 μm than Filter-B. Specifically, in Filter-A, the ratio of the total volume of pores having a diameter of less than 10 μm to the total pore volume is about 3.5%, and the total volume of pores having a diameter of 10 μm or more and less than 20 μm is occupied by the total volume of pores. The ratio is about 26%, the ratio of the total volume of pores having a diameter of 20 μm to less than 40 μm to the total pore volume is about 59%, and the ratio of the total volume of pores having a diameter of 40 μm to less than 50 μm to the total pore volume is about 11%. Met.

一方、図4から明らかなように、Filter−BではFilter−Aに比べて、直径20〜40μmの気孔の体積割合が大きかった。具体的には、直径が10μm未満の気孔の合計体積の全気孔体積に占める割合は約3.4%、直径が10μm以上20μm未満の気孔の合計体積の全気孔体積に占める割合は約22%、直径が20μm以上40μm未満の気孔の合計体積の全気孔体積に占める割合は約69%、直径が40μm以上50μm未満の気孔の合計体積の全気孔体積に対する割合は約4.8%であった。   On the other hand, as apparent from FIG. 4, the volume ratio of pores having a diameter of 20 to 40 μm was larger in Filter-B than in Filter-A. Specifically, the ratio of the total volume of pores having a diameter of less than 10 μm to the total pore volume is about 3.4%, and the ratio of the total volume of pores having a diameter of 10 μm to less than 20 μm to the total pore volume is about 22%. The ratio of the total volume of pores having a diameter of 20 μm to less than 40 μm to the total pore volume was about 69%, and the ratio of the total volume of pores having a diameter of 40 μm to less than 50 μm to the total pore volume was about 4.8%. .

以上をまとめると、Filter−Aの基体の炭化ケイ素質多孔体は、特徴的な構成として、異常な粒子成長をしていないほぼ均一な大きさの炭化ケイ素粒子のマトリックス中に、直径が40〜50μmの大径の気孔(以下、「L−pore」と称する)が散在しており、多数存在するの直径が5〜20μmの小径の気孔(以下、「S−pore」と称する)によって複数のL−poreが連結された、アリの巣状の気孔構造を有していると考えることができる。   In summary, the silicon carbide based porous body of the base of Filter-A has a characteristic configuration in which a diameter of 40 to 40 is contained in a matrix of silicon carbide particles of almost uniform size without abnormal particle growth. 50 μm large pores (hereinafter referred to as “L-pore”) are scattered, and a plurality of small pores having a diameter of 5 to 20 μm (hereinafter referred to as “S-pore”) are used as a plurality. It can be considered to have an ant nest-like pore structure in which L-pores are connected.

これに対して、Filter−Bの基体の炭化ケイ素質多孔体の基本的な構成は、異常粒子成長した粒子を含む不揃いの大きさの炭化ケイ素粒子のマトリックス中に、直径が20〜40μmの中程度の大きさの気孔(以下、「M−pore」と称する)が分散している構成であると考えられる。すなわち、Filter−AとFilter−Bは、表2を用いて上述したように、平均気孔径及び気孔率はほぼ同一でありながら、気孔分布及び気孔構造は大きく異なっている。   On the other hand, the basic structure of the silicon carbide porous body of the base of Filter-B is a medium of irregularly sized silicon carbide particles including abnormally grown particles with a diameter of 20 to 40 μm. It is considered that the pores having a certain size (hereinafter referred to as “M-pore”) are dispersed. That is, as described above with reference to Table 2, Filter-A and Filter-B have substantially the same average pore diameter and porosity, but are greatly different in pore distribution and pore structure.

初期捕集率試験の結果を図5及び図6に示す。ここで、図5はDPFに捕集されずに漏れたPMの個数の経時変化を示すグラフであり、図6は捕集されずに漏れたPMの粒子径分布を含めた測定結果を示すグラフである。なお、図6では、X軸はPMの粒子径(直径)、Y軸はPMの個数、Z軸は紙面手前側に向かって時間の経過を示している。これらの図から明らかなように、Filter−AはFilter−Bに比べて、初期段階で捕集されずに漏れるPMの個数が少なかった。具体的には、使用開始直後のFilter−Aにおける捕集漏れPMの個数は、Filter−Bの約1/2であり、捕集漏れ個数がそれ以上は減少しない約200万個に達するまでの時間は、Filter−Bが約75秒であるのに対し、Filter−Aではその約1/2であった。なお、捕集されたPMは、Filter−A及びFilter−B共に、約80nm程度の粒子径のものが多かった。   The results of the initial collection rate test are shown in FIGS. Here, FIG. 5 is a graph showing the change over time of the number of PM leaked without being collected by the DPF, and FIG. 6 is a graph showing the measurement result including the particle size distribution of the PM leaked without being collected. It is. In FIG. 6, the X axis indicates the particle diameter (diameter) of PM, the Y axis indicates the number of PMs, and the Z axis indicates the passage of time toward the front side of the page. As is clear from these figures, Filter-A has a smaller number of PM leaking without being collected in the initial stage than Filter-B. Specifically, the number of collection leakage PMs in Filter-A immediately after the start of use is about ½ of Filter-B, and the number of collection leakages does not decrease any more until it reaches about 2 million. The time was about 75 seconds for Filter-B, and about half that for Filter-A. In addition, the collected PM had many particle diameters of about 80 nm for both Filter-A and Filter-B.

上記のように、Filter−AとFilter−Bの初期捕集率に差異がある理由は、次のように考えられる。図7に、初期捕集率試験後のDPFの上流側表面のSEM像を示す。Filter−A(図7(a))では、表面に開口している気孔のほとんどは、個数としてL−poreに比べて圧倒的に多数存在するS−poreであり、この小径の気孔の周縁にPMが付着している様子が観察される。従って、Filter−Aでは、小径の気孔によってPMが捕集されるために初期捕集率が高く、小径の気孔の目詰まり現象によって捕集漏れのPMの個数も早期に減少するものと考えられた。一方、Filter−BのSEM像(図7(b))では、表面にM−poreが多く開口している様子が観察された。従って、Filter−BではPMが捕集されずにM−poreを通過してしまうと共に、S−poreより大きいM−poreは目詰まりするのに時間を要するため、捕集漏れのPMの個数が減少するまで時間を要するものと考えられた。   As described above, the reason for the difference in the initial collection rate between Filter-A and Filter-B is considered as follows. FIG. 7 shows an SEM image of the upstream surface of the DPF after the initial collection rate test. In Filter-A (FIG. 7A), most of the pores that are open on the surface are S-pores that are overwhelmingly larger in number than L-pores. A state where PM is adhered is observed. Therefore, in Filter-A, since the PM is collected by the small-diameter pores, the initial collection rate is high, and the number of PMs in the collection leakage is prematurely reduced by the clogging phenomenon of the small-diameter pores. It was. On the other hand, in the SEM image of Filter-B (FIG. 7B), it was observed that many M-pores were opened on the surface. Therefore, in Filter-B, PM passes through M-pore without being collected, and M-pore larger than S-pore takes time to be clogged. It was thought that it took time to decrease.

また、Filter−Aの基体の炭化ケイ素質多孔体では、内部にS−poreと連通したL−poreを有し、L−poreとL−poreとが多数のS−poreで複雑につながったアリの巣状のガス流通路が形成されていると考えられる。そして、流路を流通する流体の速度は、流路の径が小さければ速く、流路の径が広がれば遅くなる。そのため、図8に模式的に表したように、S−poreの狭い流路2を流通するガスに運ばれたPM5は、ガスが大径のL−pore3に流入して減速したときにしたときにL−pore3の内壁に付着し易いと考えられる。そして、L−pore3の容積は大きいために、内部に多くのPM5を付着させることができる。その後、L−pore3で捕集されなかったPM5は、このL−pore3に連通するS−poreの狭い流路2で増速するガスによって更に下流側に運ばれ、下流側のL−pore3で捕集される。なお、S−poreにおけるガスの流速も徐々に減少し、また、そもそもS−poreにより形成された流路2は径が小さいため、もちろんS−poreにおいてもPMは捕集される。   In addition, the silicon carbide based porous body of the Filter-A base has an L-pore communicating with the S-pore inside, and the L-pore and the L-pore are complicatedly connected by a large number of S-pores. It is thought that a nest-like gas flow passage is formed. The speed of the fluid flowing through the flow path is high when the diameter of the flow path is small, and is slow when the diameter of the flow path is wide. Therefore, as schematically shown in FIG. 8, when the PM 5 transported to the gas flowing through the narrow flow path 2 of S-pore is decelerated by flowing into the large-diameter L-pore 3. It is thought that it is easy to adhere to the inner wall of L-pore3. And since the volume of L-pore3 is large, many PM5 can be made to adhere inside. After that, PM5 that has not been collected by the L-pore 3 is transported further downstream by the gas accelerating in the narrow flow path 2 of the S-pore communicating with the L-pore 3, and is captured by the L-pore 3 on the downstream side. Be collected. In addition, since the flow velocity of the gas in S-pore also decreases gradually and the diameter of the flow path 2 formed by S-pore is small in the first place, of course, PM is collected also in S-pore.

図9に、PMの捕集に伴う圧力損失の測定結果を示す。Filter−AはFiltere−Bに比べて小径の気孔(S−pore)を多く含むにも関わらず、PMの捕集に伴う圧力損失の上昇の程度はFiltere−Bと同程度であった。このことから、Filter−Aでは処々に大径のL−poreが分散しているために、圧力損失の増加が抑制されているものと考えられた。   In FIG. 9, the measurement result of the pressure loss accompanying PM collection is shown. Although Filter-A contained more pores (S-pore) with a smaller diameter than Filter-B, the degree of increase in pressure loss due to PM collection was about the same as Filter-B. From this, it was thought that the increase in pressure loss was suppressed because the large-diameter L-pore was dispersed in Filter-A.

また、三点曲げ強度の測定結果は、Filter−Aで9.8MPa、Filter−Bで7.6Mpaであった。すなわち、Filter−Aは直径40〜50μmという大径のL−poreを10体積%以上含むにも関わらず、L−poreより小径のM−poreがほぼ均一に分散しているFilter−Bより機械的強度が高かった。これは、Filter−Aの基体の炭化ケイ素が、窒化ケイ素と黒鉛との反応生成によって生成されたものであるため、比較的低い焼結温度で、かつ短い焼成時間であっても、粒子間にネックが形成されるほどに炭化ケイ素の粒子が成長するのが速く、しっかりとしたネックが形成されているためと考えられた。   The measurement results of the three-point bending strength were 9.8 MPa for Filter-A and 7.6 MPa for Filter-B. That is, although Filter-A contains 10% by volume or more of a large diameter L-pore having a diameter of 40 to 50 μm, it is more mechanical than Filter-B in which M-pore having a smaller diameter than L-pore is almost uniformly dispersed. Strength was high. This is because the silicon carbide of the base of Filter-A is produced by the reaction product of silicon nitride and graphite, so even between relatively low sintering temperatures and short firing times, It was thought that the silicon carbide particles grew so fast that the neck was formed, and that a solid neck was formed.

耐熱衝撃試験における測定チャートを図10に示すと共に、測定結果を表3に示す。燃焼時のDPFの最高温度は、Filter−BよりFilter−Aの方が若干低く、燃焼率(捕集されたPM質量に対する燃焼除去されたPM質量の百分率)は、Filter−Aの方が高かった。また、Filter−A、Filter−Bともに、燃焼後にクラックの発生は認められなかった。   FIG. 10 shows a measurement chart in the thermal shock test, and Table 3 shows the measurement results. The maximum temperature of the DPF during combustion is slightly lower in Filter-A than in Filter-B, and the combustion rate (percentage of PM mass removed by combustion with respect to collected PM mass) is higher in Filter-A. It was. Moreover, generation | occurrence | production of the crack was not recognized after combustion with Filter-A and Filter-B.

以上のことから、Filter−Aは市販のFilter−Bと同じく、燃焼により再生を繰り返して使用されるDPFとして実用的に使用することができると共に、初期捕集率、機械的強度、燃焼率など複数の点で、Filter−BよりDPFとして優れていると考えられた。   From the above, Filter-A can be used practically as a DPF that is used repeatedly by combustion, like commercial Filter-B, and has an initial collection rate, mechanical strength, combustion rate, etc. In several respects, it was considered superior to Filter-B as a DPF.

以上、本発明について好適な実施形態を挙げて説明したが、本発明は上記の実施形態に限定されるものではなく、以下に示すように、本発明の要旨を逸脱しない範囲において、種々の改良及び設計の変更が可能である。   The present invention has been described with reference to the preferred embodiments. However, the present invention is not limited to the above-described embodiments, and various improvements can be made without departing from the scope of the present invention as described below. And design changes are possible.

例えば、DPFの基体としての炭化ケイ素質多孔体に触媒を担持させることによって、捕集されたPMの燃焼による除去をより効率的に行うことができる。   For example, by collecting a catalyst on a silicon carbide porous body as a DPF substrate, it is possible to more efficiently remove the collected PM by combustion.

実施例及び対照例の粉末X線回折パターンである。It is a powder X-ray-diffraction pattern of an Example and a control example. 実施例及び対照例の破断面の走査型電子顕微鏡による観察像である。It is an observation image by the scanning electron microscope of the torn surface of an Example and a control example. 実施例及び対照例について気孔個数で表した気孔径分布である。It is a pore diameter distribution represented by the number of pores for Examples and Control Examples. 実施例及び対照例について全気孔体積に対する体積%で表した気孔径分布である。It is a pore diameter distribution represented by volume% with respect to the total pore volume for Examples and Control Examples. 実施例及び対照例の初期捕集率試験において、DPFに捕集されずに漏れたPMの個数の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the number of PM which leaked without being collected by DPF in the initial collection rate test of an Example and a control example. 実施例及び対照例の初期捕集率試験において、DPFに捕集されずに漏れたPMの粒子径分布を含めた測定結果を示すグラフである。It is a graph which shows the measurement result including the particle size distribution of PM which leaked without being collected by DPF in the initial collection rate test of an example and a control example. 実施例及び対照例について、初期捕集率試験後のDPFの上流側表面の走査型電子顕微鏡による観察像である。It is an observation image by the scanning electron microscope of the upstream surface of DPF after an initial collection rate test about an example and a control example. アリの巣状の気孔構造を模式的に表した説明図である。It is explanatory drawing which represented typically the ant nest-like pore structure. 実施例及び対照例についてPMの捕集に伴う圧力損失の変化を示すグラフである。It is a graph which shows the change of the pressure loss accompanying PM collection about an Example and a control example. 実施例及び対照例の耐熱衝撃試験における測定チャートである。It is a measurement chart in the thermal shock test of an Example and a control example.

符号の説明Explanation of symbols

2 S−pore(小径の気孔,気孔)による流路
3 L−pore(大径の気孔,気孔)
5 PM(粒子状物質,パティキュレートマター)
2 S-pore (small diameter pores, pores) flow path 3 L-pore (large diameter pores, pores)
5 PM (particulate matter, particulate matter)

Claims (1)

ディーゼルパティキュレートフィルタの基体として用いられる炭化ケイ素質多孔体であって、
画像解析法によって円面積相当径として測定された気孔直径に対する気孔個数分布のモード径が8±1μmであり、
前記気孔直径が40μm〜50μmの気孔の合計体積が、全気孔体積の10%以上を占め
前記気孔直径が40μm〜50μmの大径の気孔が、前記気孔直径が5μm〜20μmの小径の気孔によって連結された、アリの巣状の気孔構造を有し、
マトリックスは、ケイ素源の窒化ケイ素と炭素源の炭素質固体とが反応して生成した炭化ケイ素が、骨材としての炭化ケイ素を取り囲むように反応焼結した焼結体である
ことを特徴とする炭化ケイ素質多孔体。
A silicon carbide based porous material used as a base for a diesel particulate filter,
The mode diameter of the pore number distribution with respect to the pore diameter measured as a circle area equivalent diameter by the image analysis method is 8 ± 1 μm,
The total volume of pores having a pore diameter of 40 μm to 50 μm occupies 10% or more of the total pore volume ,
A large pore having a pore diameter of 40 μm to 50 μm is connected by a small pore having a pore diameter of 5 μm to 20 μm, and has a ant nest-like pore structure;
The matrix is a sintered body obtained by reactive sintering so that silicon carbide produced by reaction of silicon nitride as a silicon source and carbonaceous solid as a carbon source surrounds silicon carbide as an aggregate. A silicon carbide based porous material characterized by
JP2008150925A 2008-06-09 2008-06-09 Silicon carbide based porous material Active JP4980299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008150925A JP4980299B2 (en) 2008-06-09 2008-06-09 Silicon carbide based porous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008150925A JP4980299B2 (en) 2008-06-09 2008-06-09 Silicon carbide based porous material

Publications (2)

Publication Number Publication Date
JP2009292709A JP2009292709A (en) 2009-12-17
JP4980299B2 true JP4980299B2 (en) 2012-07-18

Family

ID=41541257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008150925A Active JP4980299B2 (en) 2008-06-09 2008-06-09 Silicon carbide based porous material

Country Status (1)

Country Link
JP (1) JP4980299B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012023560A2 (en) 2010-03-19 2019-09-24 Sumitomo Chemical Co process for producing honeycomb structure, honeycomb structure and particulate filter
JP2012117520A (en) * 2010-11-10 2012-06-21 Ngk Insulators Ltd Filter evaluating system and filter evaluating method
CN103443053A (en) * 2011-03-31 2013-12-11 住友化学株式会社 Honeycomb structure
JP6257968B2 (en) * 2013-09-06 2018-01-10 日本碍子株式会社 Porous material, honeycomb structure and honeycomb filter
JP2019118857A (en) * 2017-12-28 2019-07-22 トヨタ自動車株式会社 Exhaust gas purification
JP7289813B2 (en) * 2019-03-28 2023-06-12 日本碍子株式会社 CERAMIC POROUS BODY, MANUFACTURING METHOD THEREOF, AND FILTER FOR DUST COLLECTION
US11691137B2 (en) 2019-03-28 2023-07-04 Ngk Insulators, Ltd. Ceramic porous body and method for producing the same, and dust collecting filter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4304381B2 (en) * 1995-09-05 2009-07-29 株式会社ニッカトー Ceramic porous support
JP2000001365A (en) * 1998-04-16 2000-01-07 Denso Corp Honeycomb structure and its production
EP1403231B1 (en) * 2001-05-31 2012-11-21 Ibiden Co., Ltd. Method of producing a porous ceramic sintered body

Also Published As

Publication number Publication date
JP2009292709A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
US6815038B2 (en) Honeycomb structure
JP4980299B2 (en) Silicon carbide based porous material
EP1493724B1 (en) Porous material and method for production thereof
JP2005530616A (en) Aluminum magnesium silicate structure for DPF applications
KR100516537B1 (en) HONEYCOMB STRUCTURE CONTAINING Si AND METHOD FOR MANUFACTURE THEREOF
JPWO2008066167A1 (en) Ceramic honeycomb filter and manufacturing method thereof
US20130316129A1 (en) Silicon carbide material, honeycomb structure, and electric heating type catalyst carrier
JP2003154224A (en) Method for manufacturing silicon nitride-coupled silicon carbide honeycomb filter
JP5469337B2 (en) Honeycomb structure
US8475906B2 (en) Silicon carbide based porous material and method for preparation thereof
JP2015171981A (en) honeycomb structure
JP4991636B2 (en) Method for producing silicon carbide based porous material
JP6906468B2 (en) Ceramic porous body and its manufacturing method, and dust collection filter
JP5707203B2 (en) Honeycomb structure
JP2009143763A (en) Silicon carbide-based porous body
JP2016175809A (en) Honeycomb structure
JP5190878B2 (en) Honeycomb structure
JP4904515B2 (en) Ceramic porous body
JP4381011B2 (en) Silicon carbide honeycomb structure and ceramic filter using the same
CN110314449B (en) Ceramic porous body and dust collecting filter
JP4041879B2 (en) Ceramic porous body and method for producing the same
JP3689408B2 (en) Silicon carbide honeycomb structure and ceramic filter using the same
JP2006199557A (en) Porous sintered compact, method of manufacturing the same and filter for collecting particulate which is constructed by porous sintered compact
JP2015051898A (en) Porous material, honeycomb structure and honeycomb filter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111206

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4980299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250