JP6032576B2 - Copper material - Google Patents

Copper material Download PDF

Info

Publication number
JP6032576B2
JP6032576B2 JP2015137415A JP2015137415A JP6032576B2 JP 6032576 B2 JP6032576 B2 JP 6032576B2 JP 2015137415 A JP2015137415 A JP 2015137415A JP 2015137415 A JP2015137415 A JP 2015137415A JP 6032576 B2 JP6032576 B2 JP 6032576B2
Authority
JP
Japan
Prior art keywords
copper
layer
oxygen
thickness
based material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015137415A
Other languages
Japanese (ja)
Other versions
JP2015232179A (en
Inventor
青山 正義
正義 青山
英之 佐川
英之 佐川
亨 鷲見
亨 鷲見
啓輔 藤戸
啓輔 藤戸
黒田 洋光
洋光 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2015137415A priority Critical patent/JP6032576B2/en
Publication of JP2015232179A publication Critical patent/JP2015232179A/en
Application granted granted Critical
Publication of JP6032576B2 publication Critical patent/JP6032576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

本発明は、銅又は銅合金材料の表面に、銅とは異なる金属元素からなる薄い表面処理層を設けることにより、表面の変色及び酸化が低減された装飾材料用又は導電材料用の銅系材料に関する。   The present invention provides a copper-based material for decorative materials or conductive materials in which discoloration and oxidation of the surface are reduced by providing a thin surface treatment layer made of a metal element different from copper on the surface of copper or a copper alloy material. About.

日常生活の中で、さまざまな商品(家、家具、車、家電製品、道具、嗜好品、アクセサリー、日常雑貨等)が存在するが、それら商品の価値を決定するものとして、実用性、機能の他、美的外観が挙げられる。美的外観を求める装飾品においては、形、色、艶等が、その価値を高める要因となっている。純銅系材料が持つ淡いピンク色及びその光沢は、古くから好まれ、装飾用の材料として利用されてきた。   There are various products (houses, furniture, cars, home appliances, tools, luxury goods, accessories, daily miscellaneous goods, etc.) in daily life. In addition, an aesthetic appearance is mentioned. In a decorative product that requires an aesthetic appearance, shape, color, luster, and the like are factors that increase its value. The light pink color and luster of pure copper-based materials have long been preferred and have been used as decorative materials.

また、銅は、銀に次いで電気伝導率が高いため、ケーブルを始めとした多くの導電用部材として利用されている。純銅系導体としては、無酸素銅、タフピッチ銅が代表的であり、線若しくは板状材料、又はめっきとして利用される。   Moreover, since copper has the second highest electrical conductivity after silver, it is used as many conductive members including cables. The pure copper-based conductor is typically oxygen-free copper or tough pitch copper, and is used as a wire or plate material, or plating.

装飾用としての銅素材には、その表面に、ベンゾトリアゾール等の防錆剤を塗布して、銅素材の酸化を抑制することが行われているが、大気環境下で放置した場合、経年に伴い、その色や光沢は劣化し、純銅としての本来の美的外観が損なわれる。銅の場合、自然酸化膜としての数nmの厚さの初期の酸化膜が生じるが、その後この酸化膜の厚さが、数十nmの厚さに成長しただけでも、外観の色調は大きく変化し、光沢も低下してしまう。これは、銅表面に、主に銅と酸素が結合した酸化物(Cu2OやCuO)を形成し、時間とともにその厚さが増大するためである。 Copper materials for decoration are coated with a rust-preventing agent such as benzotriazole on the surface to suppress oxidation of the copper material, but if left in an atmospheric environment, Along with this, the color and gloss deteriorate, and the original aesthetic appearance as pure copper is impaired. In the case of copper, an initial oxide film with a thickness of several nanometers is formed as a natural oxide film, but the color tone of the appearance changes greatly even if the thickness of this oxide film grows to a thickness of several tens of nanometers thereafter. In addition, the gloss is also lowered. This is because an oxide (Cu 2 O or CuO) mainly composed of copper and oxygen is formed on the copper surface, and the thickness increases with time.

一方で、この耐食性向上を目的として、銅素材に添加元素を加えて、銅素材自体を合金化するという考え方がある。また、銅材表面に、亜鉛(Zn)めっきを施した後、拡散加熱処理を行うことで、亜鉛(Zn)濃度が10〜40%である銅―亜鉛(Cu−Zn)の層を形成し、耐食性のある銅系部材とする手法がある(例えば、特許文献1参照)。   On the other hand, for the purpose of improving the corrosion resistance, there is a concept of adding an additive element to the copper material to alloy the copper material itself. In addition, after performing zinc (Zn) plating on the copper material surface, a diffusion heat treatment is performed to form a copper-zinc (Cu-Zn) layer having a zinc (Zn) concentration of 10 to 40%. There is a technique of using a copper-based member having corrosion resistance (see, for example, Patent Document 1).

特開昭62−040361号公報Japanese Patent Application Laid-Open No. 62-040361 国際公開2007/108496号公報International Publication No. 2007/108496 特開2008−045203号公報JP 2008-045203 A 特開2004−176082号公報JP 2004-176082 A 特開2001−059198号公報JP 2001-059198 A 特開2010−163641号公報JP 2010-163641 A

しかし、本発明者等の検討によると、このような銅系部材を用いたとしても、例えば、環境温度、又は環境温度及び動作温度を合わせた温度が100℃以上に達する自動車、又は車両用の動力及び信号伝達用ケーブル導体として使用した場合、製品に求められる要求性能、つまり、高温での長時間の使用に対する耐食性(耐酸化性)は、未だ十分に満足し得るものではないことが判明している。   However, according to the study by the present inventors, even if such a copper-based member is used, for example, for an automobile or vehicle for which the environmental temperature, or the combined temperature of the environmental temperature and the operating temperature reaches 100 ° C. or more When used as a power and signal transmission cable conductor, the required performance required for the product, that is, the corrosion resistance (oxidation resistance) for long-time use at high temperatures, has not yet been fully satisfied. ing.

また、近年では、アモルファス合金が、原子が密に詰まった構造を有することから、優れた耐食性を示すとの報告がなされている(例えば、特許文献2〜6参照)。   In recent years, it has been reported that amorphous alloys exhibit excellent corrosion resistance because they have a structure in which atoms are densely packed (see, for example, Patent Documents 2 to 6).

上述のアモルファス合金は、優れた耐食性を有する点において利点を有するが、複数の金属元素を利用して合金化された材料を必要とするため、製造工程が煩雑化してしまう欠点があり、合金化されていない亜鉛元素を使用してアモルファス層を形成する技術については、未だ十分な検討がなされていない。   The above-mentioned amorphous alloy has an advantage in that it has excellent corrosion resistance, but it requires a material alloyed using a plurality of metal elements, so there is a drawback that the manufacturing process becomes complicated, and alloying is performed. A technique for forming an amorphous layer using zinc element that has not been studied has not yet been sufficiently studied.

本発明の目的は、高温環境下における長時間の使用に耐え得る耐食性(耐酸化性)を有し、かつ、簡易な手法によりアモルファス層を形成することができる銅系材料を提供することにある。   An object of the present invention is to provide a copper-based material that has corrosion resistance (oxidation resistance) that can withstand long-time use in a high-temperature environment and that can form an amorphous layer by a simple technique. .

上記目的を達成するため、本発明によれば、以下の銅系材料が提供される。   In order to achieve the above object, according to the present invention, the following copper-based materials are provided.

(1)銅を主成分とする基材と、前記基材の表面に配置され、銅よりも酸素との親和性が高い金属及び酸素を含有し、RHEED分析による電子線の回折像がハローパターンを示す層と、を備えた銅系材料。 (1) A base material mainly composed of copper and a metal and oxygen which are arranged on the surface of the base material and have higher affinity with oxygen than copper, and a diffraction pattern of an electron beam by RHEED analysis is a halo pattern And a copper-based material.

本発明によれば、高温環境下における長時間の使用に耐え得る耐食性(耐酸化性)を有し、かつ、簡易な手法によりアモルファス層を形成することができる銅系材料を提供することができる。   According to the present invention, it is possible to provide a copper-based material that has corrosion resistance (oxidation resistance) that can withstand long-time use in a high-temperature environment and that can form an amorphous layer by a simple technique. .

本発明の一の実施の形態に係る銅系材料を模式的に示す断面図である。It is sectional drawing which shows typically the copper-type material which concerns on one embodiment of this invention. 本発明の他の実施の形態に係る銅系材料を模式的に示す断面図である。It is sectional drawing which shows typically the copper-type material which concerns on other embodiment of this invention. 本発明の実施例3に係る銅系材料の恒温(100℃)保持試験における1000時間試験品の、表層からスパッタを繰り返しながら深さ方向のオージェ元素分析を行った結果を示すグラフである。It is a graph which shows the result of carrying out the Auger elemental analysis of the depth direction, repeating the sputter | spatter from a surface layer of the 1000-hour test article in the constant temperature (100 degreeC) holding | maintenance test of the copper-type material which concerns on Example 3 of this invention. 本発明の実施例3及び比較例4に係る銅系材料の恒温(100℃)保持試験における、表層からの酸素進入深さ(酸化膜厚さ)の時間変化を示すグラフ図である。It is a graph which shows the time change of the oxygen penetration depth (oxide film thickness) from a surface layer in the constant temperature (100 degreeC) holding | maintenance test of the copper-type material which concerns on Example 3 and Comparative Example 4 of this invention. 本発明の実施例に係る銅系材料のRHEED分析結果を示す電子線の回折像である。It is a diffraction image of the electron beam which shows the RHEED analysis result of the copper-type material which concerns on the Example of this invention.

[実施の形態の要約]
本実施の形態の銅系材料は、銅を主成分とする基材と、基材の表面に形成された、アモルファス層を有する表面処理層とを備えて構成された銅系材料において、アモルファス層は、銅よりも酸素との親和性が高い金属元素(例えば、亜鉛)及び酸素、並びに必要に応じて基材から拡散した銅を含有して構成されたものである。
[Summary of embodiment]
The copper-based material of the present embodiment is an amorphous layer in a copper-based material configured to include a base material mainly composed of copper and a surface treatment layer having an amorphous layer formed on the surface of the base material. Is configured to contain a metal element (for example, zinc) having higher affinity with oxygen than copper and oxygen, and, if necessary, copper diffused from the base material.

以下に、本発明の一の実施の形態について、図面を用いて説明する。図1は、本発明の他の実施の形態に係る銅系材料を模式的に示す断面図である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing a copper-based material according to another embodiment of the present invention.

図1に示すように、本実施の形態に係る銅系材料1は、銅を主成分とする基材2と、基材2の表面に形成された、アモルファス層を有する表面処理層3とを備えて構成され、このアモルファス層は、例えば、銅よりも酸素との親和性が高い金属元素(例えば、亜鉛)及び酸素、又は銅よりも酸素との親和性が高い金属元素(例えば、亜鉛)、酸素及び基材2から拡散した銅を含有している。元素がランダムに配置されるアモルファス層は、元素が規則正しく配列した結晶質層と比較して緻密な構造と考えられるため、このアモルファス層が、銅素材の酸化の原因である表面処理層の表面への銅の拡散、又は銅素材中へ酸素の進入、及びその結果としての、銅及び酸素が結合することを阻止するバリア層として機能すると考えられる。   As shown in FIG. 1, a copper-based material 1 according to the present embodiment includes a base material 2 mainly composed of copper and a surface treatment layer 3 having an amorphous layer formed on the surface of the base material 2. The amorphous layer is made of, for example, a metal element (for example, zinc) having a higher affinity for oxygen than copper and oxygen, or a metal element (for example, zinc) having a higher affinity for oxygen than copper. , Oxygen and copper diffused from the substrate 2 are contained. The amorphous layer in which the elements are randomly arranged is considered to have a dense structure compared to the crystalline layer in which the elements are regularly arranged. It is believed that it functions as a barrier layer that prevents the diffusion of copper, or the entry of oxygen into the copper material, and the resulting binding of copper and oxygen.

このアモルファス層を形成するためには、酸素及び銅以外の他の金属元素が優先的に結合することが必要であり、そのアモルファス層の形成を促進するためには、基材2である銅よりも酸素との親和性が高い金属元素(例えば、亜鉛)が基材の表面に配置されていることが好ましい。   In order to form this amorphous layer, it is necessary for other metal elements other than oxygen and copper to be preferentially bonded. In order to promote the formation of the amorphous layer, the base layer 2 is made of copper. In addition, it is preferable that a metal element (for example, zinc) having high affinity with oxygen is disposed on the surface of the substrate.

なお、図2に示すように、本発明の他の実施の形態に係る銅系材料4として、表面処理層5は、アモルファス層7と、アモルファス層7の下に形成された、銅及び銅よりも酸素との親和性が高い金属元素(例えば、亜鉛)からなる拡散層6、又は、銅、銅よりも酸素との親和性が高い金属元素及び酸素からなる拡散層6を有するものであってもよい。   As shown in FIG. 2, as the copper-based material 4 according to another embodiment of the present invention, the surface treatment layer 5 is composed of an amorphous layer 7 and copper and copper formed under the amorphous layer 7. And a diffusion layer 6 made of a metal element (for example, zinc) having a high affinity with oxygen or a diffusion layer 6 made of a metal element and oxygen having a higher affinity for oxygen than copper and copper. Also good.

このように構成された本実施の形態に係る銅系材料は、装飾用途の部材及び導電用途の部材のいずれの用途に対しても広く耐食性(耐酸化性)を有し、特に、高温環境下での長時間の使用に耐え得る耐食性(耐酸化性)を有する。   The copper-based material according to the present embodiment configured as described above has a wide range of corrosion resistance (oxidation resistance) for any use of a member for decorative use and a member for conductive use, particularly in a high temperature environment. Corrosion resistance (oxidation resistance) that can withstand long-term use.

以下、本実施の形態に係る銅系材料のさらに具体的な構成について説明する。   Hereinafter, a more specific configuration of the copper-based material according to the present embodiment will be described.

本実施の形態に係る銅系材料1に用いられる表面処理層3(拡散層6を有する銅系材料4の場合は表面処理層5)の厚さは、拡散層6の厚さ及び加熱処理条件にもよるが、3.6nm以上0.6μm以下が好ましい。   The thickness of the surface treatment layer 3 (the surface treatment layer 5 in the case of the copper material 4 having the diffusion layer 6) used for the copper-based material 1 according to the present embodiment is the thickness of the diffusion layer 6 and the heat treatment conditions. However, it is preferably 3.6 nm or more and 0.6 μm or less.

また、拡散層6を有する場合、アモルファス層7の厚さとしては、特に制限はないが、3.0nm以上が好ましい。   When the diffusion layer 6 is provided, the thickness of the amorphous layer 7 is not particularly limited, but is preferably 3.0 nm or more.

また、拡散層6の厚さは、その下限値としては特に制限はなく、心材としての銅が被覆されていればよく、実用上の下限の被覆厚さは3nm程度である。   Moreover, the thickness of the diffusion layer 6 is not particularly limited as the lower limit value, and it is sufficient that copper as a core material is coated. The practical lower limit coating thickness is about 3 nm.

また、拡散層6の厚さは、0.5μm以下が好ましい。0.5μmを超えると、高い耐食性の発現に寄与するアモルファス層7が安定して形成されにくくなることがある。   Moreover, the thickness of the diffusion layer 6 is preferably 0.5 μm or less. If it exceeds 0.5 μm, the amorphous layer 7 that contributes to the development of high corrosion resistance may not be stably formed.

表面処理層3、すなわちアモルファス層(拡散層6を有する場合はアモルファス層7)を構成する、銅よりも酸素との親和性が高い金属元素としては、亜鉛以外に、例えば、Ti,Mg,Al,Fe,Sn,Mn等を挙げることができる。とりわけ、リサイクルの観点から、銅の製造時に酸化除去し易いTi及びMgが好ましい。   As the metal element constituting the surface treatment layer 3, that is, the amorphous layer (or the amorphous layer 7 when the diffusion layer 6 is provided) and having higher affinity with oxygen than copper, other than zinc, for example, Ti, Mg, Al , Fe, Sn, Mn and the like. In particular, from the viewpoint of recycling, Ti and Mg that are easily oxidized and removed during the production of copper are preferable.

基材2を構成する、銅を主成分とする材料としては、必ずしも純銅である必要はなく、本発明の効果を奏する限りにおいては、銅合金を使用することも可能であり、例えば、無酸素銅、タフピッチ銅等を使用することができる。具体的には、3〜15質量ppmの硫黄と、2〜30質量ppmの酸素と、5〜55質量ppmのTiとを含む希薄銅合金等を使用することができる。   As a material which comprises the base material 2 and which has copper as a main component, it is not necessarily pure copper, and a copper alloy can be used as long as the effect of the present invention is exhibited. Copper, tough pitch copper, or the like can be used. Specifically, a dilute copper alloy containing 3 to 15 mass ppm of sulfur, 2 to 30 mass ppm of oxygen, and 5 to 55 mass ppm of Ti can be used.

また、表面処理層3又は5は、異種元素が界面で接する拡散層を含むため、異種元素界面で、通常なだらかな濃度変化を示すものであり、表面処理層の厚さの定義が難しい。そこで、本発明においては、表面処理層の厚さを、「銅よりも酸素との親和性が高い金属元素及び酸素、並びに必要に応じて銅を含有する層の厚さであり、かつ、その層を構成する元素のいずれをも、元素含有比率としての原子濃度(at%)として、2at%以上含有する層の厚さ)」と定義した。   Further, since the surface treatment layer 3 or 5 includes a diffusion layer in which different elements are in contact with each other at the interface, the concentration of the surface treatment layer is difficult to define because it usually exhibits a gentle concentration change at the different element interface. Therefore, in the present invention, the thickness of the surface treatment layer is defined as “the thickness of a metal element and oxygen having higher affinity with oxygen than copper, and a layer containing copper as required, and Any of the elements constituting the layer was defined as “atomic concentration (at%) as an element content ratio of the layer containing 2 at% or more”.

本実施の形態の銅系材料は、銅よりも酸素との親和性が高い金属元素が、例えば、亜鉛である場合には、最終製品のサイズ及び形状にて、銅系導体の表面に電解めっきでZn層を形成した後、そのまま50℃以上150℃以下の温度で30秒以上60分以下の時間の条件で大気中にて加熱することで少なくとも、亜及び酸素からなるアモルファス層を含有した表面処理層を有する銅系材料を製造することができる。つまり、銅を主成分とする基材の表面に、亜鉛を被覆して所定の加熱処理を施すだけの簡易な手法によりアモルファス層を形成することができる。なお、表面処理層は、基材の片面だけに形成してもよいし、両面に形成してもよい。   When the metal element having a higher affinity for oxygen than copper is, for example, zinc, the copper-based material of the present embodiment is electroplated on the surface of the copper-based conductor in the size and shape of the final product. After forming the Zn layer in step 1, the surface containing at least an amorphous layer composed of sub- and oxygen by heating in the atmosphere at a temperature of 50 ° C. to 150 ° C. for 30 seconds to 60 minutes. A copper-based material having a treatment layer can be produced. That is, the amorphous layer can be formed on the surface of the base material containing copper as a main component by a simple method in which zinc is coated and subjected to a predetermined heat treatment. The surface treatment layer may be formed only on one side of the substrate or on both sides.

また、その他の実施の形態として、最終製品サイズ、形状に加工する前に、予め亜鉛からなるめっきを行い、その後、最終製品サイズ、形状に加工し、被覆層を0.5μm以下とする方法で製造したものであってもよい。   As another embodiment, before processing into the final product size and shape, plating with zinc is performed in advance, and then processing into the final product size and shape to make the coating layer 0.5 μm or less. It may be manufactured.

本発明の銅系材料は、導電材料、飾り物、文字プレート等の装飾材料等への適用が可能である。   The copper-based material of the present invention can be applied to decorative materials such as conductive materials, ornaments, and character plates.

また、その他、本発明の銅系材料は、高周波用導体を用いたケーブル、アンテナ、高周波同軸ケーブル用の導体、可とう楕円導波管等への適用が可能である。   In addition, the copper-based material of the present invention can be applied to cables, antennas, high-frequency coaxial cable conductors, flexible elliptical waveguides, and the like using high-frequency conductors.

また、本発明の銅系材料の製造方法では、上述のように、被覆層を、50℃以上150℃以下の温度で、30秒以上60分以下の時間で加熱処理することが好ましい。また、Zn層の形成は、めっき法を好ましく用いることができる。なお、めっき法のほか、スパッタ法、真空蒸着法、クラッド法等を用いることもできる。   In the method for producing a copper-based material of the present invention, as described above, it is preferable to heat-treat the coating layer at a temperature of 50 ° C. to 150 ° C. for a time of 30 seconds to 60 minutes. In addition, a plating method can be preferably used for forming the Zn layer. In addition to the plating method, a sputtering method, a vacuum evaporation method, a cladding method, or the like can also be used.

以下、本発明を実施例によってさらに具体的に説明する。ここで、本発明の実施例1〜6及び比較例1〜5の概略を、表1に示す。   Hereinafter, the present invention will be described more specifically with reference to examples. Here, Table 1 shows an outline of Examples 1 to 6 and Comparative Examples 1 to 5 of the present invention.

実施例1〜6及び比較例1〜5の詳細については、後述するが、表1における実施例1〜6、及び比較例1〜5は、概略として、基材としての銅からなる平板上に、種々の厚さの亜鉛の被覆層を電解めっきにより形成し、作製したものである。   Details of Examples 1 to 6 and Comparative Examples 1 to 5 will be described later, but Examples 1 to 6 and Comparative Examples 1 to 5 in Table 1 are roughly on a flat plate made of copper as a base material. The zinc coating layers having various thicknesses were formed by electrolytic plating.

すなわち、実施例1〜6の銅系材料は、タフピッチ銅からなる平板上に、0.002〜0.45μmの亜鉛めっきの厚さを変えた被覆層を形成し、その後、大気中で焼鈍をして作製したものである。   That is, the copper-based materials of Examples 1 to 6 are formed on a flat plate made of tough pitch copper by forming a coating layer having a galvanization thickness of 0.002 to 0.45 μm, and then annealed in the atmosphere. It was produced.

また、比較例1の銅系材料は、銅系材料の特性に及ぼす亜鉛層の厚さの影響を評価すべく、厚さを変化させた亜鉛層を形成し、その後、実施例1と同様の加熱処理をしたものであり、比較例2及び3の銅系材料は、銅系材料の特性に及ぼす加熱処理条件の影響を評価すべく、加熱処理条件を変化させ(比較例2)、又は加熱処理をせずに(比較例3)、作製したものである。   Further, the copper-based material of Comparative Example 1 formed a zinc layer having a changed thickness in order to evaluate the influence of the thickness of the zinc layer on the properties of the copper-based material, and then the same as in Example 1 The copper-based materials of Comparative Examples 2 and 3 were subjected to heat treatment, and the heat-treatment conditions were changed (Comparative Example 2) or heating to evaluate the influence of the heat-treatment conditions on the properties of the copper-based material. This was prepared without any treatment (Comparative Example 3).

さらに、比較例4及び5として、タフピッチ銅(比較例4)、及びCu−30質量%Zn合金(比較例5)を用意した。   Furthermore, as Comparative Examples 4 and 5, tough pitch copper (Comparative Example 4) and a Cu-30 mass% Zn alloy (Comparative Example 5) were prepared.

表1において、アモルファス層の存在の確認は、RHEED分析(Reflection High Energy Electron Diffraction)により行った。アモルファス層の存在を示すハローパターンが確認できたものを「有」、結晶質の構造を示す電子線の回折斑点が確認できたものを「無」とした。   In Table 1, the presence of the amorphous layer was confirmed by RHEED analysis (Reflection High Energy Electron Diffraction). “Yes” indicates that the halo pattern indicating the presence of the amorphous layer was confirmed, and “No” indicates that the diffraction spot of the electron beam indicating the crystalline structure was confirmed.

なお、表1において、作製した各銅系材料の外観、耐食性、総合評価は、以下のようにして行った。   In Table 1, the appearance, corrosion resistance, and comprehensive evaluation of each produced copper-based material were performed as follows.

「外観」は、100℃に設定した恒温槽において、大気中で1000時間まで保持する恒温保持試験、及び温度85℃×湿度85%の試験槽中で100時間保持する試験を実施し、評価した。試験前後の色、光沢の変化で判断し、最も変化の少ないものを◎、最も変化が大きく外観上劣化したものを×、その中間を△とした。   “Appearance” was evaluated by performing a constant temperature holding test in a constant temperature bath set to 100 ° C. for up to 1000 hours in the atmosphere and a test holding for 100 hours in a test bath having a temperature of 85 ° C. and a humidity of 85%. . Judgment was based on changes in color and gloss before and after the test, and ◎ indicates the least change, × indicates the most significant change in appearance, and Δ indicates the middle.

「耐食性」は、100℃に設定した恒温槽において、大気中で1000時間まで保持し、試験後に計測された酸化膜の増加量により評価した。初期(試験前)と比較して最も変化が少ないものを◎、最も変化が大きく、劣化していたものを×とし、その中間をその変化の程度に応じてそれぞれ○、△とした。定量的な基準としては、初期(試験前)の酸化膜の厚さと比較し、1000時間後の酸化膜の厚さが3倍以上となったものは、外観の変化によらず全て×とした。   “Corrosion resistance” was evaluated based on the increase in the number of oxide films measured after the test in a constant temperature bath set at 100 ° C. and held in the atmosphere for up to 1000 hours. The sample with the least change compared to the initial (before the test) was marked with ◎, the sample with the greatest change and deteriorated was marked with ×, and the middle was marked with ◯ and △ depending on the degree of the change. As a quantitative standard, when the thickness of the oxide film after 1000 hours is 3 times or more compared with the thickness of the oxide film at the initial stage (before the test), all the cases were evaluated as x regardless of the change in appearance. .

「総合評価」は、これらの項目を総合的に評価して、◎最良、○良好、△不足、×不適と判断した。   "Comprehensive evaluation" evaluated these items comprehensively, and judged as ◎ best, ○ good, △ insufficient, × unsuitable.

以下に、実施例1〜6及び比較例1〜5の詳細を示す。   Details of Examples 1 to 6 and Comparative Examples 1 to 5 are shown below.

[実施例1]
純Cu(タフピッチ銅;以下TPC)からなる厚さ0.5mmの平板を用意し、その表面に、電解めっきにより厚さ0.002μmの亜鉛からなる被覆層を形成し、その後、50℃の温度で10分間、大気中で加熱処理して、表面処理層を備えた銅系材料を作製した。作製した銅系材料に対し、表面から深さ方向のオージェ分析を行うことで、亜鉛(Zn)、酸素(O)及び銅(Cu)からなる群から選択された2種又は3種で構成される表面処理層が、0.003μmの厚さに形成されていることを確認した。
[Example 1]
A flat plate made of pure Cu (tough pitch copper; hereinafter referred to as TPC) having a thickness of 0.5 mm is prepared, and a coating layer made of zinc having a thickness of 0.002 μm is formed on the surface by electrolytic plating, and then a temperature of 50 ° C. The copper-based material provided with the surface treatment layer was manufactured by heating in the atmosphere for 10 minutes. By performing Auger analysis in the depth direction from the surface to the produced copper-based material, it is composed of two or three selected from the group consisting of zinc (Zn), oxygen (O) and copper (Cu). It was confirmed that the surface treatment layer having a thickness of 0.003 μm was formed.

[実施例2]
実施例2では、TPCからなる厚さ0.5mmの平板を用意し、その表面に、電解めっきにより厚さ0.005μmのZn層を形成し、その後、50℃の温度で1時間、大気中で加熱処理した銅系材料を作製した。作製した銅系材料に対し、表面から深さ方向のオージェ分析を行うことで、亜鉛(Zn)、酸素(O)及び銅(Cu)からなる群から選択された2種又は3種で構成される表面処理層が、0.006μmの厚さに形成されていることを確認した。
[Example 2]
In Example 2, a flat plate made of TPC having a thickness of 0.5 mm was prepared, and a Zn layer having a thickness of 0.005 μm was formed on the surface thereof by electrolytic plating, and then at a temperature of 50 ° C. for 1 hour in the atmosphere. The copper-type material heat-processed with was produced. By performing Auger analysis in the depth direction from the surface to the produced copper-based material, it is composed of two or three selected from the group consisting of zinc (Zn), oxygen (O) and copper (Cu). It was confirmed that the surface treatment layer having a thickness of 0.006 μm was formed.

[実施例3]
実施例3では、TPCからなる厚さ0.5mmの平板を用意し、その表面に、電解めっきにより厚さ0.008μmのZn層を形成し、その後、100℃の温度で5分間、大気中で加熱処理した銅系材料を作製した。作製した銅系材料に対し、表面から深さ方向のオージェ分析を行うことで、亜鉛(Zn)、酸素(O)及び銅(Cu)からなる群から選択された2種又は3種で構成される表面処理層が、0.01μmの厚さに形成されていることを確認した。
[Example 3]
In Example 3, a flat plate made of TPC having a thickness of 0.5 mm was prepared, and a Zn layer having a thickness of 0.008 μm was formed on the surface thereof by electrolytic plating, and then in the atmosphere at a temperature of 100 ° C. for 5 minutes. The copper-type material heat-processed with was produced. By performing Auger analysis in the depth direction from the surface to the produced copper-based material, it is composed of two or three selected from the group consisting of zinc (Zn), oxygen (O) and copper (Cu). It was confirmed that the surface treatment layer having a thickness of 0.01 μm was formed.

[実施例4]
実施例4では、TPCからなる厚さ0.5mmの平板を用意し、その表面に、電解めっきにより厚さ0.04μmのZn層を形成し、その後、120℃の温度で10分間、大気中で加熱処理した銅系材料を作製した。作製した銅系材料に対し、表面から深さ方向のオージェ分析を行うことで、亜鉛(Zn)、酸素(O)及び銅(Cu)からなる群から選択された2種又は3種で構成される表面処理層が、0.05μmの厚さに形成されていることを確認した。
[Example 4]
In Example 4, a flat plate made of TPC having a thickness of 0.5 mm was prepared, and a Zn layer having a thickness of 0.04 μm was formed on the surface thereof by electrolytic plating, and then at a temperature of 120 ° C. for 10 minutes in the atmosphere. The copper-type material heat-processed with was produced. By performing Auger analysis in the depth direction from the surface to the produced copper-based material, it is composed of two or three selected from the group consisting of zinc (Zn), oxygen (O) and copper (Cu). It was confirmed that the surface treatment layer was formed to a thickness of 0.05 μm.

[実施例5]
実施例5では、TPCからなる厚さ0.5mmの平板を用意し、その表面に、電解めっきにより厚さ0.08μmのZn層を形成し、その後、150℃の温度で30秒間、大気中で加熱処理した銅系材料を作製した。作製した銅系材料に対し、表面から深さ方向のオージェ分析を行うことで、亜鉛(Zn)、酸素(O)及び銅(Cu)からなる群から選択された2種又は3種で構成される表面処理層が、0.1μmの厚さに形成されていることを確認した。
[Example 5]
In Example 5, a 0.5 mm thick flat plate made of TPC was prepared, and a 0.08 μm thick Zn layer was formed on the surface thereof by electrolytic plating, and then in the atmosphere at a temperature of 150 ° C. for 30 seconds. The copper-type material heat-processed with was produced. By performing Auger analysis in the depth direction from the surface to the produced copper-based material, it is composed of two or three selected from the group consisting of zinc (Zn), oxygen (O) and copper (Cu). It was confirmed that the surface treatment layer having a thickness of 0.1 μm was formed.

[実施例6]
実施例6では、TPCからなる厚さ0.5mmの平板を用意し、その表面に、電解めっきにより厚さ0.45μmのZn層を形成し、その後、150℃の温度で30秒間、加熱処理した銅系材料を作製した。作製した銅系材料に対し、表面から深さ方向のオージェ分析を行うことで、亜鉛(Zn)、酸素(O)及び銅(Cu)からなる群から選択された2種又は3種で構成される表面処理層が、0.5μmの厚さに形成されていることを確認した。
[Example 6]
In Example 6, a 0.5 mm thick flat plate made of TPC was prepared, and a 0.45 μm thick Zn layer was formed on the surface thereof by electrolytic plating. Thereafter, heat treatment was performed at a temperature of 150 ° C. for 30 seconds. A copper-based material was prepared. By performing Auger analysis in the depth direction from the surface to the produced copper-based material, it is composed of two or three selected from the group consisting of zinc (Zn), oxygen (O) and copper (Cu). It was confirmed that the surface treatment layer having a thickness of 0.5 μm was formed.

[比較例1]
比較例1では、TPCからなる厚さ0.5mmの平板を用意し、その表面に、電解めっきにより厚さ0.95μmのZn層を形成し、その後、100℃の温度で5分間、大気中で加熱処理した銅系材料を作製した。作製した銅系材料に対し、表面から深さ方向のオージェ分析を行うことで、亜鉛(Zn)、酸素(O)及び銅(Cu)からなる群から選択された2種又は3種で構成される表面処理層が、1μmの厚さに形成されていることを確認した。
[Comparative Example 1]
In Comparative Example 1, a flat plate made of TPC having a thickness of 0.5 mm was prepared, and a 0.95 μm-thick Zn layer was formed on the surface thereof by electrolytic plating, and then in the atmosphere at a temperature of 100 ° C. for 5 minutes. The copper-type material heat-processed with was produced. By performing Auger analysis in the depth direction from the surface to the produced copper-based material, it is composed of two or three selected from the group consisting of zinc (Zn), oxygen (O) and copper (Cu). It was confirmed that the surface treatment layer having a thickness of 1 μm was formed.

[比較例2]
比較例2では、TPCからなる厚さ0.5mmの平板を用意し、その表面に、電解めっきにより厚さ0.02μmのZn層を形成し、銅系材料を作製した。
[Comparative Example 2]
In Comparative Example 2, a flat plate made of TPC having a thickness of 0.5 mm was prepared, and a Zn layer having a thickness of 0.02 μm was formed on the surface thereof by electrolytic plating to produce a copper-based material.

[比較例3]
比較例3では、TPCからなる厚さ0.5mmの平板を用意し、その表面に、電解めっきにより厚さ0.01μmのZn層を形成し、その後、400℃の温度で30秒間、大気中で加熱処理した銅系材料を作製した。作製した銅系材料に対し、表面から深さ方向のオージェ分析を行うことで、亜鉛(Zn)、酸素(O)及び銅(Cu)からなる群から選択された2種又は3種で構成される表面処理層が、0.02μmの厚さに形成されていることを確認した。
[Comparative Example 3]
In Comparative Example 3, a 0.5 mm thick flat plate made of TPC was prepared, and a 0.01 μm thick Zn layer was formed on the surface thereof by electrolytic plating, and then in the atmosphere at a temperature of 400 ° C. for 30 seconds. The copper-type material heat-processed with was produced. By performing Auger analysis in the depth direction from the surface to the produced copper-based material, it is composed of two or three selected from the group consisting of zinc (Zn), oxygen (O) and copper (Cu). It was confirmed that the surface treatment layer having a thickness of 0.02 μm was formed.

[比較例4]
比較例4では、TPCからなる厚さ0.5mmの平板を評価試料とした。
[Comparative Example 4]
In Comparative Example 4, a flat plate made of TPC and having a thickness of 0.5 mm was used as an evaluation sample.

[比較例5]
比較例5では、Cu−30質量%Zn合金(黄銅)の厚さ0.5mmの平板を評価試料とした。
[Comparative Example 5]
In Comparative Example 5, a flat plate having a thickness of 0.5 mm made of a Cu-30 mass% Zn alloy (brass) was used as an evaluation sample.

図3は、実施例3に係る銅系材料の恒温(100℃)保持試験における1000時間試験品の、表層からスパッタを繰り返しながら深さ方向のオージェ元素分析を行った結果を示すグラフである。横軸は表面からの深さ(nm)、縦軸は原子濃度(at%)を表し、実線は酸素の含有比率としての原子濃度(at%)、長い破線は亜鉛の原子濃度、破線は銅の原子濃度を示している。酸素進入深さは、表面から8nm程度であり、特に深さ0〜3nmの表層部位における平均元素含有比率を(深さ0〜3nmでの各元素の最大原子濃度−最小原子濃度)/2と定義すると、実施例3では、亜鉛(Zn)が37at%、酸素(O)が50at%、銅(Cu)が13at%であった。   FIG. 3 is a graph showing a result of Auger elemental analysis in the depth direction while repeating sputtering from the surface layer of a 1000-hour test product in a constant temperature (100 ° C.) holding test of a copper-based material according to Example 3. The horizontal axis represents the depth from the surface (nm), the vertical axis represents the atomic concentration (at%), the solid line represents the atomic concentration (at%) as the oxygen content, the long broken line represents the zinc atomic concentration, and the broken line represents copper. The atomic concentration of is shown. The oxygen penetration depth is about 8 nm from the surface, and in particular, the average element content ratio in the surface layer portion of the depth of 0 to 3 nm is (maximum atomic concentration of each element at the depth of 0 to 3 nm−minimum atomic concentration) / 2. When defined, in Example 3, zinc (Zn) was 37 at%, oxygen (O) was 50 at%, and copper (Cu) was 13 at%.

また、他の実施例を含めると、上記平均元素含有比率は、亜鉛(Zn)が35〜68at%、酸素(O)が30〜60at%、銅(Cu)が0〜15at%の範囲にあることがわかった。   When other examples are included, the average element content ratio is in the range of 35 to 68 at% for zinc (Zn), 30 to 60 at% for oxygen (O), and 0 to 15 at% for copper (Cu). I understood it.

一方、比較例1の銅系材料は、亜鉛(Zn)が33at%、酸素(O)が41at%、銅(Cu)が26at%であり、比較例5の銅系材料は、亜鉛(Zn)が5at%、酸素(O)が46at%、銅(Cu)が49at%であった。   On the other hand, the copper-based material of Comparative Example 1 has 33 at% zinc (Zn), 41 at% oxygen (O), and 26 at% copper (Cu), and the copper-based material of Comparative Example 5 has zinc (Zn). Was 5 at%, oxygen (O) was 46 at%, and copper (Cu) was 49 at%.

図4は、実施例3及び比較例4に係る銅系材料の恒温(100℃)保持試験における、表層からの酸素進入深さ(酸化膜厚さ)の時間変化を示すグラフ図である。酸素進入深さは、各時間保持したサンプル表面から、スパッタを繰り返しながら、深さ方向にオージェ分析を行うことで求めた。図4において、横軸は100℃等温保持時間(h)、縦軸は酸素進入深さ(nm)を表し、実線は実施例3、破線は比較例4及び5の酸素進入深さを示している。なお、比較例1は点で示されている。   FIG. 4 is a graph showing temporal changes in the oxygen penetration depth (oxide film thickness) from the surface layer in the constant temperature (100 ° C.) holding test of the copper-based material according to Example 3 and Comparative Example 4. The oxygen penetration depth was obtained by performing Auger analysis in the depth direction while repeating sputtering from the sample surface held for each time. In FIG. 4, the horizontal axis represents the 100 ° C. isothermal holding time (h), the vertical axis represents the oxygen penetration depth (nm), the solid line represents Example 3, and the broken line represents the oxygen penetration depth of Comparative Examples 4 and 5. Yes. Note that Comparative Example 1 is indicated by dots.

実施例3では、図3に示すように、3600時間保持経過後の状態で、表面近傍での酸素濃度が増加しているものの、その進入深さは試験前と殆ど変化せず約0.01μm以下であり、実施例3の銅系材料は高い耐酸化性を示した。   In Example 3, as shown in FIG. 3, the oxygen concentration in the vicinity of the surface increased after 3600 hours of retention, but the penetration depth hardly changed from that before the test and was about 0.01 μm. The copper-based material of Example 3 showed high oxidation resistance.

一方、図4に示すように、恒温保持試験前の比較例4(タフピッチ銅)及び比較例5では酸素を含む層の厚さが表面から約0.006μm程度と、恒温保持試験前の実施例3と同程度の深さであったが、3600時間保持試験後の比較例4では、表面近傍での酸素濃度が恒温保持試験前に比較して顕著に増加し、さらに、比較例4の酸素進入深さは約0.036μmと試験前の5倍以上となり、比較例5の酸素進入深さは約0.078μmと試験前の13倍となった。また試験後の比較例4及び比較例5では外観上も赤茶系に変色しており、明らかに酸素を含む層が厚く形成されていると判断することができた。また、TPCに0.95μmのZn層を形成した比較例1は1000時間保持試験後に既に酸素進入深さが約0.080μmに達していた。   On the other hand, as shown in FIG. 4, in Comparative Example 4 (tough pitch copper) before the constant temperature holding test and Comparative Example 5, the thickness of the layer containing oxygen was about 0.006 μm from the surface, and the example before the constant temperature holding test. In Comparative Example 4 after the 3600 hour holding test, the oxygen concentration in the vicinity of the surface was significantly increased as compared with that before the constant temperature holding test. The penetration depth was about 0.036 μm, which was 5 times or more before the test, and the oxygen penetration depth of Comparative Example 5 was about 0.078 μm, which was 13 times before the test. In Comparative Example 4 and Comparative Example 5 after the test, the appearance was also changed to a red-brown color, and it was clearly determined that the layer containing oxygen was formed thick. Further, in Comparative Example 1 in which a 0.95 μm Zn layer was formed on TPC, the oxygen penetration depth had already reached about 0.080 μm after the 1000 hour holding test.

耐食性に優れた実施例3の表面をRHEED分析した結果を図5に示す。電子線の回折像は、ハローパターンを示しており、表1にも示すとおり、表面にアモルファス層が形成されていることがわかった。一方、耐食性に劣る比較例4は、銅及び酸素で構成される結晶質であることが確認された。   The result of the RHEED analysis of the surface of Example 3 excellent in corrosion resistance is shown in FIG. The diffraction pattern of the electron beam showed a halo pattern, and as shown in Table 1, it was found that an amorphous layer was formed on the surface. On the other hand, it was confirmed that the comparative example 4 which is inferior in corrosion resistance is a crystalline material composed of copper and oxygen.

また、表1によれば、厚さを0.003〜0.5μmに変化させた表面処理層をもち、かつ、その表面処理層がアモルファス構造を有している実施例1〜6の外観及び耐食性の評価は良好であった。特に、表面処理層の厚さが0.006〜0.05μmの場合、優れた特性を示した。   Moreover, according to Table 1, it has the surface treatment layer which changed thickness into 0.003-0.5 micrometer, and the external appearance of Examples 1-6 in which the surface treatment layer has an amorphous structure, and The evaluation of corrosion resistance was good. In particular, when the thickness of the surface treatment layer was 0.006 to 0.05 μm, excellent characteristics were exhibited.

以上の結果から、実施例1〜6に示す構造は、表面酸化の進行がなく、100℃×1000時間にも及ぶ恒温保持試験、及び、85℃×85%の環境でも安定した表面状態を保っていることが確認された。   From the above results, the structures shown in Examples 1 to 6 have no progress of surface oxidation, and maintain a stable surface state even in an environment of 100 ° C. × 1000 hours and an environment of 85 ° C. × 85%. It was confirmed that

一方、同じくZn系の表面処理層を持つ比較例1〜3であっても、良好な特性が得られない場合が認められた。比較例1のように、亜鉛の厚さが厚い場合、比較例2のようにめっき後の加熱処理を実施していない場合、比較例3のようにめっき後に過剰な加熱処理を行った場合等、表層にアモルファスが形成されないものはいずれも、耐食性の評価結果は不良となった。   On the other hand, even in Comparative Examples 1 to 3 having a Zn-based surface treatment layer, it was recognized that good characteristics could not be obtained. When the thickness of zinc is thick as in Comparative Example 1, when heat treatment after plating is not performed as in Comparative Example 2, when excessive heat treatment is performed after plating as in Comparative Example 3, etc. In all cases where no amorphous layer was formed on the surface layer, the corrosion resistance evaluation result was poor.

以上の結果から、加熱処理の条件としては、酸素を1%以上含む雰囲気中で50℃以上であることが好ましいことが確認された。   From the above results, it was confirmed that the heat treatment conditions were preferably 50 ° C. or higher in an atmosphere containing 1% or more oxygen.

コスト(経済性)に関して、本発明の実施例1〜6は、材料そのものの耐食性に優れているが材料コストが高い貴金属コーティング等を必要とせず、安価なZnを使用し、しかもその厚さが極めて薄いため、生産性と経済性に極めて優れている。   Regarding costs (economics), Examples 1 to 6 of the present invention are excellent in the corrosion resistance of the material itself, but do not require a precious metal coating or the like having a high material cost, use inexpensive Zn, and have a thickness of Because it is extremely thin, it is extremely productive and economical.

上述の結果から総合的に判断すると、実施例1〜6に示す本発明によれば、高温環境下における長時間の使用に耐え得る耐食性(耐酸化性)を有し、かつ、簡易な手法によりアモルファス層を形成することができ、銅系の装飾用材料及び導電材料として好適である銅系材料及びその製造方法を提供することができる。また、本発明によれば、銅又は銅合金材料本来の色や光沢を有し、それらの表面酸化による劣化を低減させた銅系の装飾用材料及び導電材料を得ることができる。   Comprehensively judging from the above results, according to the present invention shown in Examples 1 to 6, it has corrosion resistance (oxidation resistance) that can withstand long-time use in a high temperature environment, and by a simple method. An amorphous layer can be formed, and a copper-based material suitable as a copper-based decorative material and a conductive material and a method for manufacturing the copper-based material can be provided. In addition, according to the present invention, it is possible to obtain a copper-based decorative material and conductive material that have the original color and gloss of copper or a copper alloy material and have reduced deterioration due to surface oxidation thereof.

また、心材(基材)としての銅及び銅合金は、一般的なタフピッチ銅、無酸素銅に制限されるものではなく、高純度銅や上述したいわゆる希薄銅合金に対しても、本発明の方法は適用が可能である。   Further, copper and copper alloy as the core material (base material) are not limited to general tough pitch copper and oxygen-free copper, but also to high-purity copper and the so-called dilute copper alloy described above. The method is applicable.

1 銅系材料
2 基材
3 表面処理層
4 銅系材料
5 表面処理層
6 拡散層
7 アモルファス層
DESCRIPTION OF SYMBOLS 1 Copper-type material 2 Base material 3 Surface treatment layer 4 Copper-type material 5 Surface treatment layer 6 Diffusion layer 7 Amorphous layer

Claims (3)

銅を主成分とする基材と、
前記基材の表面に配置され、銅よりも酸素との親和性が高い金属及び酸素を含有する金属酸化物層を有する表面処理層とを備え、
前記金属酸化物層は、RHEED分析による電子線の回折像がハローパターンを示す銅系材料。
A base material mainly composed of copper;
Disposed on a surface of the substrate, and a surface treatment layer having a metal oxide layer affinity for oxygen containing high metals and oxygen than copper,
The metal oxide layer, shown to a copper-based material diffraction pattern halo pattern of the electron beam by RHEED analysis.
前記表面処理層は、前記金属酸化物層の下に、さらに、銅及び銅よりも酸素との親和性が高い金属元素からなる拡散層、又は銅、銅よりも酸素との親和性が高い金属元素及び酸素からなる拡散層を有する請求項1に記載の銅系材料。The surface treatment layer is a diffusion layer made of a metal element having a higher affinity for oxygen than copper and copper, or a metal having a higher affinity for oxygen than copper or copper, below the metal oxide layer. The copper-based material according to claim 1, comprising a diffusion layer composed of an element and oxygen. 前記金属酸化物層は、前記基材から拡散した銅をさらに含有した請求項1または2に記載の銅系材料。The copper-based material according to claim 1, wherein the metal oxide layer further contains copper diffused from the base material.
JP2015137415A 2015-07-09 2015-07-09 Copper material Active JP6032576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015137415A JP6032576B2 (en) 2015-07-09 2015-07-09 Copper material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015137415A JP6032576B2 (en) 2015-07-09 2015-07-09 Copper material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012125861A Division JP5776630B2 (en) 2012-06-01 2012-06-01 Copper-based material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015232179A JP2015232179A (en) 2015-12-24
JP6032576B2 true JP6032576B2 (en) 2016-11-30

Family

ID=54933798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015137415A Active JP6032576B2 (en) 2015-07-09 2015-07-09 Copper material

Country Status (1)

Country Link
JP (1) JP6032576B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3315211B2 (en) * 1992-08-27 2002-08-19 株式会社東芝 Electronic components
JP4230713B2 (en) * 1992-08-27 2009-02-25 株式会社東芝 Electronic component and manufacturing method thereof
JPH09308961A (en) * 1996-05-20 1997-12-02 Advantest Corp Soldering method
JP5509764B2 (en) * 2009-09-24 2014-06-04 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5655288B2 (en) * 2009-09-25 2015-01-21 富士ゼロックス株式会社 Oxide film, electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5446659B2 (en) * 2009-09-24 2014-03-19 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus

Also Published As

Publication number Publication date
JP2015232179A (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5776630B2 (en) Copper-based material and method for producing the same
WO2015045856A1 (en) Electric contact material for connector, and method for producing same
JP2011157630A (en) Copper alloy containing cobalt, nickel, and silicon
JP2009079250A (en) Copper or copper alloy member having silver alloy layer formed as outermost surface layer, and manufacturing method therefor
CN1455829A (en) Metal-plated material and method for preparation, and electric and electronic parts using same
CN106795643A (en) The excellent connection member conductive material of resistance to micro- skimming wear
JP2015155560A (en) Copper alloy sheet strip with surface coating layer excellent in heat resistance
JP6123655B2 (en) Copper foil and manufacturing method thereof
JP5742859B2 (en) High-speed transmission cable conductor, manufacturing method thereof, and high-speed transmission cable
JP5803793B2 (en) Plated terminals for connectors
WO2007126010A1 (en) HEAT-RESISTANT Sn-PLATED Cu-Zn ALLOY STRIP SUPPRESSED IN WHISKERING
JP2008248332A (en) Tin-plated strip and its production method
JP6281451B2 (en) TERMINAL MEMBER, ITS MANUFACTURING METHOD, AND CONNECTOR TERMINAL
JP6287126B2 (en) Printed wiring board and manufacturing method thereof
WO2018124115A1 (en) Surface treatment material and article fabricated using same
JP6032576B2 (en) Copper material
JPH0547252A (en) Electric contact material and its manufacture
CN107849721B (en) Plating material having excellent heat resistance and method for producing same
JP7281971B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
JP7306879B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
JP2019178347A (en) Copper-based material
JP2012124025A (en) Plated copper wire and manufacturing method thereof
JP7281970B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
JP2011127153A (en) Plating material and method of producing the same
JP7353928B2 (en) Materials for electrical contacts and their manufacturing methods, connector terminals, connectors, and electronic components

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161013

R150 Certificate of patent or registration of utility model

Ref document number: 6032576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350