JP6032241B2 - パティキュレートフィルタの異常判定装置 - Google Patents

パティキュレートフィルタの異常判定装置 Download PDF

Info

Publication number
JP6032241B2
JP6032241B2 JP2014096531A JP2014096531A JP6032241B2 JP 6032241 B2 JP6032241 B2 JP 6032241B2 JP 2014096531 A JP2014096531 A JP 2014096531A JP 2014096531 A JP2014096531 A JP 2014096531A JP 6032241 B2 JP6032241 B2 JP 6032241B2
Authority
JP
Japan
Prior art keywords
differential pressure
flow rate
value
determination
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014096531A
Other languages
English (en)
Other versions
JP2015214895A (ja
Inventor
誠 勝田
誠 勝田
洋介 橋本
洋介 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014096531A priority Critical patent/JP6032241B2/ja
Priority to EP15166947.0A priority patent/EP2942505B1/en
Publication of JP2015214895A publication Critical patent/JP2015214895A/ja
Application granted granted Critical
Publication of JP6032241B2 publication Critical patent/JP6032241B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/07Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas flow rate or velocity meter or sensor, intake flow meters only when exclusively used to determine exhaust gas parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0412Methods of control or diagnosing using pre-calibrated maps, tables or charts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1406Exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1411Exhaust gas flow rate, e.g. mass flow rate or volumetric flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、内燃機関の排気通路に備えられたパティキュレートフィルタに異常(故障)が発生しているか否かを判定するパティキュレートフィルタの異常判定装置に関する。
従来から、内燃機関(特に、ディーゼル機関)の排気通路には同機関から排出される微粒子(PM)を捕集する「パティキュレートフィルタ」が配設されている。このフィルタがディーゼル機関に適用されるとき、このフィルタは「DPF(ディーゼル・パティキュレート・フィルタ)」と称呼されている。
このようなパティキュレートフィルタは、一般に、ウォールフロータイプのフィルタである。即ち、パティキュレートフィルタは、その内部に設けられた多孔質の隔壁を排ガスが通過する際、その排ガス中に含まれる微粒子を捕集する。パティキュレートフィルタは、流路抵抗を生じせしめるフィルタであり、排ガスがパティキュレートフィルタを通過している場合、パティキュレートフィルタの前後差圧(フィルタの入口側の圧力と出口側の圧力との差であり、以下、単に「前後差圧」とも称呼する。)は、微粒子の捕集量が少ない場合においてもある程度の値となる。
これに対し、パティキュレートフィルタが破損した場合には前後差圧が小さくなる。そこで、従来の装置は、パティキュレートフィルタの前後差圧を用いてパティキュレートフィルタに異常が発生したか否かを判定するように構成されている(例えば、特許文献1を参照。)。
特開2011−252423号公報
しかしながら、パティキュレートフィルタの前後差圧は、吸入空気量が小さい(即ち、結果として排ガスの流量が小さく、それ故、パティキュレートフィルタを通過するガスの流量が小さい)場合、パティキュレートフィルタが正常であっても大きい値にはならない。換言すると、排ガス流量が小さい場合、パティキュレートフィルタに異常が発生している場合と発生していない場合とにおいて前後差圧に大きな差が発生しない場合がある。そのため、排ガス流量が小さい場合に取得された前後差圧を用いてパティキュレートフィルタの異常判定を行うと、その判定の精度は良好でない。従って、前後差圧を用いて精度の良い「パティキュレートフィルタの異常判定」を行うためには、排ガス流量が大きくなる場合まで待つ必要がある。
その一方、近年においては、機関の燃費を改善した結果、機関の通常の運転状態における排ガスの流量が大きくなる機会が減少している。この結果、従来の装置は、前後差圧を用いた精度の良い「パティキュレートフィルタの異常判定」を行う頻度が少なくなる。
本発明は上記問題に対処するために為されたものである。即ち、本発明の目的の一つは、パティキュレートフィルタの前後差圧を用いた同フィルタの異常判定の頻度を確保し、且つその異常判定を精度良く行うことができるパティキュレートフィルタの異常判定装置を提供することにある。
本発明のパティキュレートフィルタの異常判定装置(以下、「本発明装置」と称呼する。)は、触媒装置と、未燃成分供給部と、差圧取得部と、異常判定部と、を備える。
前記触媒装置は、内燃機関の排気通路に配設されたパティキュレートフィルタ(以下、単に「フィルタ」とも称呼する。)よりも排気通路上流側に配設されている。この触媒装置は、例えば、排ガス中の未燃成分(未燃ガス)を酸化する周知のディーゼル酸化触媒である。
前記未燃成分供給部は、前記触媒装置の温度を上げるための未燃成分(例えば、燃料)を同触媒装置に供給する。この未燃成分供給部は、前記触媒装置よりも排気通路の上流部位に燃料を添加することによって同触媒装置に燃料を供給する装置(例えば、燃料添加弁及び燃料添加弁への燃料供給装置)であってもよい。或いは、未燃成分供給部は、メイン噴射の噴射タイミングから遅れた噴射タイミングにて実行される所謂ポスト噴射を行うための装置(例えば、筒内噴射弁及び筒内噴射弁への燃料供給装置)であってもよい。未燃成分供給部から触媒装置に供給された未燃成分は、触媒装置内にて酸化され熱を発生する。その結果、触媒装置の温度及び触媒装置から排出されるガス(排ガス)の温度が上昇する。よって、そのガスが膨張して体積が増大するので、結果として、フィルタを通過する(フィルタに流入する)ガス流量(体積流量)が増大する。なお、以下において、フィルタを通過するガスの流量は、単に「通過ガス流量」とも称呼される。
前記差圧取得部は、前記パティキュレートフィルタの前後差圧を取得する。この差圧取得部は、パティキュレートフィルタの上流圧(入口側圧力)と下流圧(出口側圧力)との差圧を検出する周知の差圧センサであってもよい。或いは、前記差圧取得部は、パティキュレートフィルタの上流圧を検出する圧力センサの出力と、パティキュレートフィルタの下流圧を検出する圧力センサの出力と、に基づいてパティキュレートフィルタの前後差圧を取得する装置であってもよい。
前記異常判定部は、所定の特定条件が成立したと判定したとき、
(1)前記未燃成分供給部から前記未燃成分を前記触媒装置に供給して同触媒装置を昇温させ、
(2)前記触媒装置が昇温させられた昇温状態において前記差圧取得部を用いて前記パティキュレートフィルタの前後差圧を取得し、
(3)前記取得した前後差圧に相関を有する差圧相関値(判定用パラメータ)と、所定の閾値と、の比較結果に基づいて前記パティキュレートフィルタに異常が発生したか否かを判定する。
前記特定条件は、前記パティキュレートフィルタの異常判定を実行する際に使用する前記判定用パラメータを取得すべき状態であることを示す条件である。
前述したように、触媒装置が昇温されると、触媒装置を通過したガスの流量が増加する。よって、触媒装置の下流に配設されたパティキュレートフィルタの通過ガス流量が増大する。その結果、パティキュレートフィルタの前後差圧は増大する。このとき、正常なパティキュレートフィルタの前後差圧が増大する程度は、異常なパティキュレートフィルタの前後差圧が増大する程度より大きくなる。従って、触媒の昇温状態において取得される前後差圧は、フィルタが正常である場合と、フィルタに異常が発生している場合と、で大きく相違する。よって、その前後差圧に相関を有する差圧相関値もまた、フィルタが正常である場合と、フィルタに異常が発生している場合と、で大きく相違する。本発明装置は、このようにして得られる差圧相関値と所定の閾値との比較結果に基づいてフィルタの異常判定を行う。更に、本発明装置は、前記特定条件が成立したときに触媒温度を上昇させることによってパティキュレートフィルタの通過ガス流量を強制的に増大する。従って、本発明装置は、より高い頻度で精度の良い「フィルタの異常判定」を実行することができる。
なお、「前後差圧に相関を有する差圧相関値」は、前後差圧に応じて変化する値であればよい。例えば、差圧相関値は、前後差圧そのもの、前後差圧の逆数、或いは、「触媒が昇温させられている状態における前後差圧と、触媒が昇温させられていない状態における前後差圧と、の差」に基づいて得られる値(例えば、後述する差圧増加率及びその逆数等)であってもよい。
本発明の一態様に係る異常判定装置において、
前記異常判定部は、
(4)「前記触媒装置が昇温させられていない非昇温状態(未燃成分が供給されていない状態)」において、前記パティキュレートフィルタを通過するガスの流量(通過ガス流量)を第1流量として取得するとともに前記前後差圧を第1差圧として取得し、
(5)「前記触媒装置が昇温させられている昇温状態(未燃成分が供給されている状態)」において、前記通過ガス流量を第2流量として取得するとともに前記前後差圧を第2差圧として取得し、
(6)前記第2流量と前記第1流量との差に対する前記第2差圧と前記第1差圧との差の比である差圧増加率に応じた値(差圧増加率そのもの、及び、差圧増加率の逆数等)を前記差圧相関値として取得する、
ように構成される。
上記差圧増加率は、「前後差圧取得部がゼロ点誤差を有する場合」及び/又は「排ガス流量を取得又は推定する流量取得部がゼロ点誤差を有する場合」等であっても、それらのゼロ点誤差を相殺(補償)した値となる。従って、この態様に係る本発明装置によれば、昇温状態における前後差圧のみに基づいてパティキュレートフィルタの異常判定を行う場合に比較して、より精度の高いパティキュレートフィルタの異常判定を行うことができる。
本発明の一態様に係る異常判定装置において、
前記異常判定部は、
(7)前記触媒装置が昇温させられていない非昇温状態において前記差圧取得部を用いて取得される前記パティキュレートフィルタの前後差圧に相関を有する値を仮判定用値として採用し、
(8)前記仮判定用値と仮判定閾値との比較結果に基づいて前記パティキュレートフィルタに異常が発生した可能性があると判定した場合に、前記特定条件が成立したと判定する、
ように構成されている。
この態様に係る本発明装置は、触媒装置が非昇温状態にある場合に仮判定用値を取得する。仮判定用値は、パティキュレートフィルタに異常が発生した可能性があるか否かを判定する際に使用されるパラメータである。よって、仮判定用値は、最終的な異常判定を行う際に用いるパラメータに比べ、その精度が多少低くてもよい。従って、仮判定用値はフィルタの通過ガス流量が比較的小さい場合に取得することができるので、機関の通常の運転中に比較的早期に得ることができる。よって、パティキュレートフィルタに異常が発生している可能性があるか否かの判定(仮判定)も、比較的頻度よく実行することができる。その結果、パティキュレートフィルタに異常が発生しているか否かの最終的な判定を頻度よく行うことができる。
更に、この態様に係る本発明装置は、パティキュレートフィルタに異常が発生している可能性があると判定するまで触媒装置を昇温させない(触媒装置に未燃成分を供給しない)ので、未燃成分が無駄に消費されることを回避できる。
本発明の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の各実施形態についての説明から容易に理解されるであろう。
図1は、本発明の第1実施形態に係る「パティキュレートフィルタの異常判定装置」が適用された内燃機関の概略構成図である。 図2は、排ガス流量(パティキュレートフィルタ(DPF)の通過ガス流量)と図1に示したDPFの前後差圧との関係を示すグラフである。 図3は、第1実施形態に係る異常判定装置の作動の概略を示す概念フローチャートである。 図4は、第1実施形態のCPUが実行する「初期化ルーチン」を示したフローチャートである。 図5は、第1実施形態のCPUが実行する「仮判定用値取得ルーチン」を示したフローチャートである。 図6は、第1実施形態のCPUが実行する「第1領域における仮判定用値の元データ取得ルーチン」を示したフローチャートである。 図7は、第1実施形態のCPUが実行する「第2領域における仮判定用値の元データ取得ルーチン」を示したフローチャートである。 図8は、第1実施形態のCPUが実行する「仮異常判定ルーチン」を示したフローチャートである。 図9は、第1実施形態のCPUが実行する「本判定用値取得ルーチン」を示したフローチャートである。 図10は、第1実施形態のCPUが実行する「触媒昇温制御ルーチン」を示したフローチャートである。 図11は、第1実施形態のCPUが実行する「第3領域における本判定用値の元データ取得ルーチン」を示したフローチャートである。 図12は、第1実施形態のCPUが実行する「本異常判定ルーチン」を示したフローチャートである。
<第1実施形態>
以下、図面を参照しながら本発明の第1実施形態に係るパティキュレートフィルタの異常判定装置(以下、「第1判定装置」とも称呼する。)について説明する。
(構成)
第1判定装置は、図1に示した内燃機関(機関)10に適用される。機関10は、多気筒(本例では直列4気筒)・4サイクル・ピストン往復動型・ディーゼル機関である。機関10は、機関本体部20、燃料供給系統30、吸気系統40、排気系統50及びEGR系統60を含んでいる。
機関本体部20は、シリンダブロック、シリンダヘッド及びクランクケース等を含む本体21を備える。本体21には、4つの気筒(燃焼室)22が形成されている。各気筒22の上部には燃料噴射弁(インジェクタ)23が配設されている。燃料噴射弁23は、後述する電子制御装置70の指示に応答して開弁し、気筒内に燃料を直接噴射するようになっている。
燃料供給系統30は、燃料加圧ポンプ(サプライポンプ)31と、燃料送出管32と、コモンレール(蓄圧室)33と、添加燃料送出管34と、燃料添加弁35、とを含む。燃料加圧ポンプ31の吐出口は燃料送出管32及び添加燃料送出管34に接続されている。燃料送出管32はコモンレール33に接続されている。コモンレール33は燃料噴射弁23に接続されている。添加燃料送出管34は燃料添加弁35に接続されている。
燃料加圧ポンプ31は、図示しない燃料タンクに貯留されている燃料を汲み上げた後に加圧し、その加圧された高圧燃料を燃料送出管32を通してコモンレール33へ供給するようになっている。燃料加圧ポンプ31は、更に、燃料を添加燃料送出管34を通して燃料添加弁35へ供給するようになっている。
燃料添加弁35は、後述する電子制御装置70の指示に応答して開弁し、排気系統50(実際には、後述するエキゾーストマニホールド51)へ「未燃成分としての燃料」を添加するようになっている。
吸気系統40は、インテークマニホールド41、吸気管42及び過給機TCのコンプレッサ43を含んでいる。
排気系統50は、エキゾーストマニホールド51、排気管52、ディーゼル酸化触媒53、パティキュレートフィルタ54及び過給機TCのタービン55を含んでいる。以下において、ディーゼル酸化触媒53は「DOC53」と称呼される。パティキュレートフィルタは「DPF54」と称呼される。DPFはディーゼル・パティキュレート・フィルタの略である。
エキゾーストマニホールド51は各気筒に接続された枝部と、枝部が集合した集合部と、を含む。排気管52はエキゾーストマニホールド51の集合部に接続されている。エキゾーストマニホールド51及び排気管52は排気通路を構成している。排気管52には、排ガスの流れの上流から下流に向け、燃料添加弁35、タービン55、DOC53及びDPF54が配設されている。
DOC53は、白金及びパラジウム等の貴金属を触媒として、排ガス中の未燃成分(HC、CO、NO)を酸化し、排ガスを浄化する。即ち、DOC53により、HCは水とCOに酸化され、COはCOに酸化され、NOはNOに酸化される。
更に、DOC53は、燃料添加弁35から供給された燃料(未燃成分)を酸化する。その際、酸化熱が発生するので、DOC53の温度が上昇する。その結果、DOC53から流出する排ガスの温度が上昇し、従って、その排ガスの流量(体積流量)も増大する。即ち、過給機TCのタービン55から排出された排ガスの流量(体積流量)が一定であっても、燃料添加弁35から燃料が供給されるとDPF54を通過するガス(DPF54に流入するガス)の流量(体積流量)Vdpfが増大する。以下、DPF54を通過するガスの体積流量は、単に「DPF通過ガス流量Vdpf」とも称呼される。
DPF54は、炭素からなる煤及びこれに付着した有機物を含むPM(パティキュレートマター)を捕集する。DPF54は、周知のウォールフロータイプのセラミック製フィルタである。より具体的に述べると、DPF54は、ハニカム構造に成形された「コーディライト及びシリコン・カーバイド等」の耐熱性セラミックスにより形成される複数のガス流路を備えている。ガス流路は、隣接するガス流路の片端が互い違いに目詰めされている。DPF54内に流入した排ガスは、目詰めによって直接フィルタを抜けることはできずに、その複数のガス流路を構成する多孔質の隔壁を通過する。その際、排ガス中のPM及びアッシュ等がDPF54内部に捕集される。
なお、DPF54の下流に、図示しないSCR触媒が備えられていてもよい。SCR触媒は、NOxをアンモニア(NH)によって還元することにより排ガスを浄化する「NOx選択還元触媒」である。この場合、SCR触媒に供給されるアンモニアを加水分解によって生成するための尿素を供給する装置が設けられる。
電子制御装置70は、周知のマイクロコンピュータを含む電子回路であり、CPU、ROM、RAM、バックアップRAM(スタティックRAM又は不揮発性メモリ)及びインターフェース等を含む。電子制御装置70は、以下に述べるセンサ類と接続されていて、これらのセンサからの信号を受信(入力)するようになっている。更に、電子制御装置70は、CPUからの指示に応じて、各種アクチュエータに指示(駆動)信号を送出するようになっている。なお、バックアップRAMは、電子制御装置70に電力が供給されていない場合であっても情報を保持しておくことができるように構成されていれば、特に限定されない。
電子制御装置70は、前後差圧センサ71、排ガス流量センサ72、排ガス温度センサ73及びイグニッション・キー・スイッチ74等と接続されている。
前後差圧センサ71は、DPF54の上流圧(入口圧、DOC53とDPF54との間の圧力、即ち、上流側圧力)と下流圧(出口圧、即ち、下流側圧力)との差圧を検出し、前後差圧ΔPを出力する周知の圧力センサである。
排ガス流量センサ72は、排気管52であってタービン55とDOC53との間の位置に配設されている。排ガス流量センサ72は、排気管52を流れる排ガスの流量(体積流量)を検出し、その排ガス流量Vを表す信号を出力する。排ガス流量センサ72は、その中に温度センサを備え、排ガスの温度を検出し、その排ガス温度T0を表す信号を出力する。
排ガス温度センサ73は、排気管52であってDOC53とDPF54との間の位置に配設されている。排ガス温度センサ73は、DOC53を通過してDPF54に流入する排ガスの温度を検出し、その排ガス温度T1を表す信号を出力する。
イグニッション・キー・スイッチ74は、機関10の始動を行うためのオン位置と停止を行うためのオフ位置とを備えたスイッチである。
(作動の概要)
次に、第1判定装置の作動の概要について図2を参照しながら説明する。図2は、正常なDPF54(正常DPF)と、異常が発生しているDPF54(異常DPF)と、について、排ガス流量V(DPF通過ガス流量Vdpf)とDPF54の前後差圧ΔPとの関係を示したグラフである。曲線C1は正常DPFに関する曲線であり、曲線C2は異常DPFに関する曲線である。
図2の曲線C1及び曲線C2から理解されるように、前後差圧ΔPは排ガス流量Vに対して二次関数的に増加する。即ち、正常DPFについての前後差圧ΔPと排ガス流量VとはΔP=a・Vの関係を有し、異常DPFについての前後差圧ΔP’と排ガス流量V’とはΔP’=b・V’の関係を有していると言うことができる。但し、a(正の定数)はb(正の定数)よりも大きい。異常DPFについての前後差圧ΔP’は、bの値が小さいので、実質的に排ガス流量V’に比例しているとも言うことができ、ΔP’=k・V’なる式により表すこともできる。従って、正常DPFの前後差圧ΔPと、異常DPFの前後差圧ΔP’との差分(ΔP−ΔP’)は、排ガス流量Vが大きくなるにつれて大きくなる。
図2に示した例において、正常DPFに関し、排ガス流量Vが比較的小さい第1領域(小流量範囲)内にあるとき、点Z1で示した点のデータが得られる。点Z1の(排ガス流量V,前後差圧ΔP)は(V1,ΔP1)である。更に、排ガス流量Vが中程度の第2領域(中流量範囲)内にあるとき点Z2で示した点のデータが得られる。点Z2の(排ガス流量V,前後差圧ΔP)は(V2,ΔP2)である。従って、排ガス流量V(DPF通過ガス流量Vdpf)の増加量に対する前後差圧ΔPの増加量の比(以下、「差圧増加率」又は「差圧傾き」と称呼する。)S1は次式に示したとおりとなる。なお、差圧増加率は、前後差圧ΔPに相関を有する値であるので「前後差圧相関値」又は「差圧相関値」とも称呼される。

S1=(ΔP2−ΔP1)/(V2−V1)
図2から理解されるように、DPF54に異常(破損)が発生すると、DPF54が正常である場合に比べて差圧増加率Sは小さくなる。従って、差圧増加率Sが所定閾値Sathよりも小さい場合にDPF54が異常であると判定し、差圧増加率Sが所定閾値Sath以上である場合にDPF54が正常であると判定する異常判定装置が考えられる。
一方、異常DPFに関し、排ガス流量Vが比較的小さい第1領域(小流量範囲)内にあるとき点Y1で示した点のデータが得られる。点Y1の(排ガス流量V,前後差圧ΔP)は(V1’,ΔP1’)である。更に、排ガス流量Vが中程度の第2領域(中流量範囲)内にあるとき点Y2で示した点のデータが得られる。点Y2の(排ガス流量V,前後差圧ΔP)は(V2’,ΔP2’)である。従って、この場合の差圧増加率S1’は次式に示したとおりとなる。

S1’=(ΔP2’−ΔP1’)/(V2’−V1’)
この場合、図2から理解されるように、差圧増加率S1と差圧増加率S1’との差は比較的小さい。従って、種々の誤差により、正常DPFに関して得られる差圧増加率S1と異常DPFに関して得られる差圧増加率S1’とが略一致する場合がある。このため、「排ガス流量Vが第1領域内にある場合のデータと、排ガス流量Vが第2領域内にある場合のデータと、から求められる差圧増加率」が閾値よりも小さいことのみをもって、DPF54が異常であると判定すると、その判定は誤った判定となる場合がある。
これに対し、排ガス流量V(DPF通過ガス流量Vdpf)が比較的大きい第3領域(大流量範囲)内の流量に到達している場合、DPF54が正常であれば点Z3で示した点のデータが得られる。点Z3の(排ガス流量V,前後差圧ΔP)は(V3,ΔP3)である。更に、排ガス流量Vが比較的大きい第3領域(大流量範囲)内の流量に到達している場合、DPF54が異常であれば点Y3で示した点のデータが得られる。点Y3の(排ガス流量V,前後差圧ΔP)は(V3’,ΔP3’)である。
この場合、点Z3のデータと点Z1のデータとを用いて算出される差圧増加率S2は、次式により表される。

S2=(ΔP3−ΔP1)/(V3−V1)
同様に、点Y3のデータと点Y1のデータとを用いて算出される差圧増加率S2’は、次式により表される。

S2’=(ΔP3’−ΔP1’)/(V3’−V1’)
図2から理解されるように、差圧増加率S2は差圧増加率S1に比べて相当に増大しているが、差圧増加率S2’は差圧増加率S1’と略同一である。その結果、差圧増加率S2は差圧増加率S2’に比べて相当量大きい値となる。よって、閾値Sbthを適切に選択するとき、正常DPFに関して取得される差圧増加率S2は閾値Sbthよりも明らかに大きく、異常DPFに関して取得される差圧増加率S2’は閾値Sbthよりも明らかに小さくなる。
従って、「排ガス流量Vが第1領域内にある場合のデータと、排ガス流量Vが第3領域内にある場合のデータと、から求められる差圧増加率」と「閾値Sbth」とを比較することにより、DPF54が異常であるか否かを精度良く判定することができる。
ところが、最近の機関10は、その燃費が大幅に改善されているので、少ない排ガス流量の場合でも大きなトルク・出力を発生できる。よって、機関10が通常運転される場合、排ガス流量Vが第3領域(大流量範囲)内の値にまで増大する頻度は小さい。従って、排ガス流量Vが第3領域内にある場合のデータを用いた異常判定を行おうとすると、排ガス流量Vが第3領域内の値にまで増大するまで長期間待つ必要が生じる。そこで、第1判定装置は、次のようにDPF54の異常判定を行う。
(1)第1判定装置は、DPF通過ガス流量Vdpf(この場合、排ガス流量V)が小流量範囲内にあるときの(DPF通過ガス流量Vdpf,前後差圧ΔP)と、DPF通過ガス流量Vdpf(この場合、排ガス流量V)が中流量範囲内にあるときの(DPF通過ガス流量Vdpf,前後差圧ΔP)と、を取得し、それらのデータから差圧増加率Sを仮判定用値Aとして求める。これらの場合のDPF通過ガス流量Vdpfは排ガス流量Vと等しい。
(2)第1判定装置は、その仮判定用値Aと所定の仮判定閾値Sathとを比較する。
(3)第1判定装置は、仮判定用値Aが仮判定閾値Sathよりも小さい場合、DPF54が異常になっている可能性があると判定する。即ち、第1判定装置は、DPF54の異常判定を実行する際に使用する判定用パラメータを取得すべき状態であることを示す条件(即ち、特定条件)を構成する一つの条件が成立したと判定する。
(4)第1判定装置は、DPF54が異常になっている可能性があると判定した場合においてDPF通過ガス流量Vdpf(この場合、排ガス流量V)が中流量範囲内となったとき、前記特定条件を構成する他の一つの条件が成立したと判定する。このとき、第1判定装置は、燃料添加弁35から排気経路中に燃料(即ち、未燃成分)を添加することにより、DOC53に未燃成分を供給する。
これにより、DOC53において未燃成分が酸化され、その際に発生する熱によってDOC53及びDOC53を通過するガス(排ガス)の温度を上昇させる。その結果、排ガスが膨張するので、DPF54に流入するガスの体積流量(DPF通過ガス流量)が増大する。その結果、DPF通過ガス流量Vdpfは、図2に示した大流量範囲内の値となる。以下、このように、DPF通過ガス流量Vdpfを増大させるためにDOC53に未燃成分を添加してDOC53の温度を上昇させることを、「触媒昇温制御」と称呼し、触媒昇温制御によってDOC53の温度が上昇している状態を「昇温状態」と称呼する。更に、触媒昇温制御を実行していない状態は「非昇温状態」と称呼する。
(5)第1判定装置は、昇温状態において(即ち、DPF通過ガス流量Vdpfが大流量範囲内にあるとき)の(DPF通過ガス流量Vdpf,前後差圧ΔP)を取得する。
(6)第1判定装置は、DPF通過ガス流量Vdpfが小流量範囲内にあるときの(DPF通過ガス流量Vdpf,前後差圧ΔP)と、DPF通過ガス流量Vdpfが大流量範囲内にあるときの(DPF通過ガス流量Vdpf,前後差圧ΔP)と、から差圧増加率Sを本判定用値B(即ち、差圧相関値)として求める。なお、第1判定装置は、DPF通過ガス流量Vdpfが中流量範囲内にあるときの(DPF通過ガス流量Vdpf,前後差圧ΔP)と、DPF通過ガス流量Vdpfが大流量範囲内にあるときの(DPF通過ガス流量Vdpf,前後差圧ΔP)と、から差圧増加率Sを本判定用値Bとして求めてもよい。
(7)第1判定装置は、「差圧相関値」である本判定用値Bと「所定値」である本判定閾値Sbthとを比較する。
(8)第1判定装置は、本判定用値Bが本判定閾値Sbthよりも小さい場合、DPF54が異常であると判定する。第1判定装置は、本判定用値Bが本判定閾値Sbth以上である場合、DPF54は正常であると判定する。
なお、上述した差圧増加率Sは、前後差圧センサ71及び/又は排ガス流量センサ72の出力値がゼロ点誤差を含んでいる場合であっても、そのゼロ点誤差を相殺(補償)した値となる。従って、差圧増加率Sを用いたDPF54の異常判定は、前後差圧そのものを用いたDPF54の異常判定よりも、精度の高い判定結果をもたらすことができる。
更に、第1判定装置は、DPF通過ガス流量Vdpfが「0」でない(即ち、原点ではない)小流量範囲(第1領域)内の(DPF通過ガス流量Vdpf,前後差圧ΔP)を基準として差圧増加率Sを求めている。これは、前述したように、DPF通過ガス流量Vdpfに対して前後差圧ΔPが二次関数的に増加するので、DPF通過ガス流量Vdpfが「0」でないときの(DPF通過ガス流量Vdpf,前後差圧ΔP)を基準として差圧増加率Sを求めた方が、より大きな差圧増加率Sが得られるので、DPF54の異常判定をより精度良く行うことが可能となるからである。
なお、前述したように、触媒昇温制御が実行されていない場合、DPF通過ガス流量Vdpfと排ガス流量センサ72により検出される排ガス流量Vとは実質的に等しい。他方、触媒昇温制御が実行されている場合、DPF通過ガス流量Vdpfと排ガス流量センサ72により検出される排ガス流量Vとは相違する。そのため、電子制御装置70は、排ガス流量センサ72により検出される排ガス流量V及び排ガス温度T0と、排ガス温度センサ73により検出される排ガス温度T1と、に基づいてDPF通過ガス流量Vdpfを推定する。触媒昇温制御が実行されているときのDPF通過ガス流量Vdpfの推定方法については後述する。
<概念フロー>
次に、第1判定装置の具体的作動について図3を参照しながら具体的に説明する。図3は、電子制御装置70のCPUが実行する処理の流れを概念的に示している。
CPUは、先ず、ステップ305にて、アクティブ実行フラグXactiveの値が「0」であるか否かを判定する。アクティブ実行フラグXactiveの値は通常は「0」に設定されている。従って、通常、CPUはステップ305にて「Yes」と判定してステップ310に進み、DPF通過ガス流量Vdpfが第1領域(小流量範囲)内にある期間における「DPF通過ガス流量Vdpf及び前後差圧ΔP」をそれぞれ「V1及びΔP1」として1回取得する。この場合のDPF通過ガス流量Vdpfは排ガス流量Vと等しい。
次に、CPUはステップ315に進み、機関10の運転状態が「DPF通過ガス流量Vdpfが第2領域(中流量範囲)内になる運転状態」となっているとき、DPF通過ガス流量Vdpfが第2領域内にある期間における「DPF通過ガス流量Vdpf,前後差圧ΔP」を「V2,ΔP2」として繰り返し取得する。この場合のDPF通過ガス流量Vdpfは排ガス流量Vと等しい。更に、CPUは新たな「V2,ΔP2」の取得を完了する毎にステップ320に進み、差圧増加率S=(ΔP2−ΔP1)/(V2−V1)を算出する。そして、CPUは、その新たに算出された差圧増加率Sがその時点までに得られている差圧増加率Sの最大値(以下、「仮判定用値A」と称呼する。)よりも大きければ、その新たに算出された差圧増加率Sを仮判定用値Aとして採用する。即ち、CPUは、「V2,ΔP2」の取得毎に算出される差圧増加率Sのうちの最大値を仮判定用値Aとして求める。
「V2,ΔP2」のデータが複数個数取得された時点(即ち、差圧増加率Sが複数回算出された時点)にて、CPUはステップ325に進み、機関10を搭載した車両(図示省略)のイグニッション・キー・スイッチ74がオン位置からオフ位置へと変更されたか否か(即ち、機関10の運転が停止されたか否か)を判定する。
イグニッション・キー・スイッチ74がオン位置からオフ位置へと変更されると、CPUはステップ325にて「Yes」と判定してステップ330に進み、仮判定用値Aが仮判定閾値Sathよりも小さいか否かを判定する。即ち、CPUは、アクティブ実行フラグXactiveの値が「0」である場合、機関10の運転が停止される毎に、仮判定用値Aと仮判定閾値Sathとの比較に基づく仮異常判定を実行する。
仮判定用値Aが仮判定閾値Sath以上である場合、DPF54が異常である可能性はない(又は、その可能性は極めて低い)ので、CPUはステップ330にて「No」と判定し、ステップ395に直接進んで本ルーチンを一旦終了する。この結果、アクティブ実行フラグXactiveの値は「0」に維持される。
これに対し、仮判定用値Aが仮判定閾値Sathよりも小さい場合、DPF54が異常である可能性があるので、CPUはステップ330にて「Yes」と判定してステップ335に進み、アクティブ実行フラグXactiveの値を「1」に設定する。その後、CPUはステップ395に進む。
このようにしてアクティブ実行フラグXactiveの値が「1」に設定された場合、機関10の運転が再開された後にCPUがステップ305に進んだとき、CPUはそのステップ305にて「No」と判定してステップ340に進む。CPUは、ステップ340にて、ステップ310と同様、DPF通過ガス流量Vdpfが第1領域(小流量範囲)内にある期間における「DPF通過ガス流量Vdpf及び前後差圧ΔP」をそれぞれ「V1及びΔP1」として1回取得する。この場合のDPF通過ガス流量Vdpfは排ガス流量Vと等しい。
次に、CPUはステップ345に進み、機関10の運転状態が「DPF通過ガス流量Vdpfが第2領域(中流量範囲)内になる特定運転状態」となると、燃料添加弁35から排気管52中に燃料を供給してDOC53内の酸化反応を促進させる「触媒昇温制御」を実行する。それにより、DPF通過ガス流量Vdpfが第3領域(大流量範囲)内の値へと増加させられる。
次いで、CPUはステップ350に進み、DPF通過ガス流量Vdpfが第3領域(大流量範囲)内となっている期間において「DPF通過ガス流量Vdpf及び前後差圧ΔP」をそれぞれ「V3及びΔP3」として繰り返し取得する。更に、CPUは新たな「V3,ΔP3」の取得を完了する毎にステップ355に進み、差圧増加率S=(ΔP3−ΔP1)/(V3−V1)を算出する。そして、CPUは、その新たに算出された差圧増加率Sがその時点までに得られている差圧増加率Sの最大値(以下、「本判定用値B」と称呼する。)よりも大きければ、その新たに算出された差圧増加率Sを本判定用値Bとして採用する。即ち、CPUは、「V3,ΔP3」の取得毎に算出される差圧増加率Sのうちの最大値を本判定用値B(即ち、DPF54の前後差圧に相関を有する「差圧相関値」)として求める。
「V3,ΔP3」のデータが複数個数取得された時点(即ち、差圧増加率Sが複数回算出された時点)にて、CPUはステップ360に進み、ステップ325と同様、イグニッション・キー・スイッチ74がオン位置からオフ位置へと変更されたか否かを判定する。
イグニッション・キー・スイッチ74がオン位置からオフ位置へと変更されると、CPUはステップ360にて「Yes」と判定して、ステップ365に進み、本判定用値Bが本判定閾値Sbthよりも小さいか否かを判定する。即ち、CPUは、アクティブ実行フラグXactiveの値が「1」である場合、機関10の運転が停止される毎に、本判定用値Bと本判定閾値Sbthとの比較に基づく本異常判定を実行する。
本判定用値Bが本判定閾値Sbthよりも小さい場合、DPF54は異常であると判断されるので、CPUはステップ365にて「Yes」と判定してステップ370に進み、DPF54が異常であると判定し、その旨をバックアップRAMに記憶する。なお、このとき、CPUは車室内に設けられた図示しない警報ランプを点灯してもよい。その後、CPUはステップ375に進んでアクティブ実行フラグXactiveの値を「0」に設定し、ステップ395に進んで本ルーチンを一旦終了する。
これに対し、CPUがステップ365の処理を実行する時点において、本判定用値Bが本判定閾値Sbth以上である場合、DPF54は正常である(異常でない)と判断されるので、CPUはステップ365にて「No」と判定してステップ375に直接進む。なお、このとき、CPUは、DPF54が正常である旨をバックアップRAMに記憶してもよい。以上が、実際の作動の流れの概要である。
(具体的処理)
次に、CPUが実際に行う処理についてより具体的に説明する。
<変数の初期化>
CPUは、イグニッション・キー・スイッチ74がオフ位置からオン位置へと変更されると(即ち、機関10の始動がされると)、図4にフローチャートにより示したイニシャルルーチンの処理をステップ400から開始し、以下に述べるステップ410乃至ステップ460の処理を順に行う。
ステップ410:CPUは仮判定用値Aを「0」に設定する。
ステップ420:CPUは本判定用値Bを「0」に設定する。
ステップ430:CPUは第1フラグX1getの値を「0」に設定する。第1フラグX1getは、その値が「1」であるとき、DPF通過ガス流量Vdpf(この場合、排ガス流量V)が比較的小さい第1領域(小流量範囲)内にある場合における「仮判定用値及び本判定用値を求めるためのデータ」が取得されたことを示す。
ステップ440:CPUは第2フラグX2getの値を「0」に設定する。第2フラグX2getは、その値が「1」であるとき、DPF通過ガス流量Vdpf(この場合、排ガス流量V)が中程度の第2領域(中流量範囲)内にある場合における仮判定用値を求めるためのデータが取得されたことを示す。
ステップ450:CPUは第3フラグX3getの値を「0」に設定する。第3フラグX3getは、その値が「1」であるとき、DPF通過ガス流量Vdpfが比較的大きい第3領域(大流量範囲)内にある場合における本判定用値を求めるためのデータが取得されたことを示す。
ステップ460:CPUはその他の変数を初期化する。
<仮判定用値の取得>
CPUは、所定時間が経過する毎に図5にフローチャートにより示したルーチンを実行するようになっている。前述したように、アクティブ実行フラグXactiveの値は通常「0」である。従って、先ず、アクティブ実行フラグXactiveの値が「0」であると仮定して説明を進める。
イグニッション・キー・スイッチ74がオフ位置からオン位置へと変更された後、適当なタイミングになると、CPUは図5のステップ500から処理を開始し、ステップ510に進んでアクティブ実行フラグXactiveの値が「0」であるか否かを判定する。前述の仮定によればアクティブ実行フラグXactiveの値は「0」である。よって、CPUはステップ510にて「Yes」と判定してステップ520に進み、第1フラグX1getの値が「1」であるか否かを判定する。第1フラグX1getの値は前述したイニシャルルーチンにおいて「0」に設定されている。従って、CPUはステップ520にて「No」と判定し、ステップ595に直接進んで本ルーチンを一旦終了する。なお、CPUがステップ510の処理を実行する時点においてアクティブ実行フラグXactiveの値が「1」に設定されている場合、CPUはステップ510にて「No」と判定し、ステップ595に直接進んで本ルーチンを一旦終了する。
一方、CPUは、所定時間が経過する毎に図6にフローチャートにより示したルーチンを実行するようになっている。従って、適当なタイミングにてCPUはステップ600から処理を開始し、ステップ610に進んで第1フラグX1getの値が「0」であるか否かを判定する。このとき、第1フラグX1getの値が「0」でなければ、CPUはステップ610にて「No」と判定し、ステップ695に直接進んで本ルーチンを一旦終了する。
現時点において、第1フラグX1getの値は「0」である。従って、CPUはステップ610にて「Yes」と判定してステップ620に進み、前後差圧取得条件が成立しているか否かを判定する。この前後差圧取得条件は、本例では、以下の総ての条件が成立したときに成立する。
[条件1]別途実行される図示しない前後差圧センサ71の異常判定ルーチンにおいて、前後差圧センサ71が異常と判定されていない。本例では、CPUは、前後差圧センサ71の出力が「0」である状態が所定時間以上にわたり継続したとき、前後差圧センサ71が異常であると判定する。
[条件2]図示しない大気温度センサにより検出された大気温度(吸気温THA)が極めて低い閾値温度以下でない。
[条件3]DPF54の再生制御を実行した直後でない。
前後差圧取得条件が成立していない場合、CPUはステップ620にて「No」と判定し、ステップ695に直接進んで本ルーチンを一旦終了する。これに対し、前後差圧取得条件が成立している場合、CPUはステップ620にて「Yes」と判定してステップ630に進み、現時点のDPF通過ガス流量Vdpf(この場合、排ガス流量Vと等しい。)が第1領域(小流量範囲)内にあるか否かを判定する。より具体的には、この場合、CPUは排ガス流量センサ72により検出される排ガス流量Vに基づいてDPF通過ガス流量Vdpfが第1領域内であるか否かを判定する。第1領域は、低側流量閾値V1Lから高側流量閾値V1Hまでの範囲である(図2を参照。)。なお、低側流量閾値V1Lは「0」よりも大きい所定値であり、高側流量閾値V1Hは低側流量閾値V1Lよりも大きい所定値である。
このとき、DPF通過ガス流量Vdpfが第1領域内でなければ、CPUはステップ630にて「No」と判定し、ステップ695に直接進んで本ルーチンを一旦終了する。これに対し、DPF通過ガス流量Vdpfが第1領域(小流量範囲)内にある場合、CPUはステップ630にて「Yes」と判定してステップ640に進み、前後差圧ΔPの積算値SumΔP1を更新する(積算値SumΔP1に現時点の前後差圧ΔPを加える)とともに、DPF通過ガス流量Vdpf(この場合、排ガス流量Vと等しい。)の積算値SumV1を更新する(積算値SumV1に現時点のDPF通過ガス流量Vdpfを加える)。次に、CPUはステップ650に進み、積算されたデータの個数を示すカウンタN1の値を「1」だけ増加させる。
CPUはステップ660に進むと、カウンタN1の値が所定のデータ数閾値N1th以上であるか否かを判定する。カウンタN1の値が所定のデータ数閾値N1th未満であるとCPUはステップ660にて「No」と判定し、ステップ695に直接進んで本ルーチンを一旦終了する。従って、積算値SumΔP1及び積算値SumV1のそれぞれに積算されたデータの数がデータ数閾値N1thに到達するまで、ステップ640及びステップ650の処理が繰り返し実行される。
その後、カウンタN1の値が所定のデータ数閾値N1thになると、CPUはステップ660にて「Yes」と判定し、以下に述べるステップ670乃至ステップ690の処理を順に行い、ステップ695に進んで本ルーチンを一旦終了する。
ステップ670:CPUは、前後差圧ΔPの積算値SumΔP1を「カウンタN1の値であるデータ数閾値N1th」により除することによって、DPF通過ガス流量Vdpf(この場合、排ガス流量Vと等しい。)が第1領域(小流量範囲)内にある場合の前後差圧ΔPの平均値を前後差圧ΔP1として取得する。更に、CPUは、DPF通過ガス流量Vdpfの積算値SumV1を「カウンタN1の値であるデータ数閾値N1th」により除することによって、前後差圧(平均値)ΔP1を取得した期間におけるDPF通過ガス流量Vdpf(この場合、排ガス流量Vと等しい。)の平均値を排ガス流量V1として取得する。
ステップ680:CPUは第1フラグX1getの値を「1」に設定する。
ステップ690:CPUは、積算値SumV1、積算値SumΔP1及びカウンタN1等を「0」に設定する。
このように、DPF通過ガス流量Vdpfが第1領域(小流量範囲)内にある期間において単数又は複数個(データ数閾値N1th)の「DPF通過ガス流量Vdpf及び前後差圧ΔP」のデータが取得され、それらの各々の平均値が「DPF通過ガス流量Vdpfが第1領域(小流量範囲)内にある場合のデータ(DPF通過ガス流量V1及び前後差圧ΔP1)」として取得される。なお、データ数閾値N1thは「1」であってもよい。
このとき、CPUが図5のステップ520に進むと、CPUはそのステップ520にて「Yes」と判定してステップ530に進み、第2フラグX2getの値が「1」であるか否かを判定する。第2フラグX2getの値は前述したイニシャルルーチンにおいて「0」に設定されている。従って、CPUはステップ530にて「No」と判定し、ステップ595に直接進んで本ルーチンを一旦終了する。
一方、CPUは、所定時間が経過する毎に図7のフローチャートにより示したルーチンを実行するようになっている。従って、適当なタイミングにてCPUはステップ700から処理を開始し、ステップ710に進んで第2フラグX2getの値が「0」であるか否かを判定する。
現時点において、第2フラグX2getの値は「0」である。従って、CPUはステップ710にて「Yes」と判定してステップ720に進み、前述した前後差圧取得条件が成立しているか否かを判定する。
このとき、前後差圧取得条件が成立していると、CPUはステップ730以降のステップの処理を行う。ステップ730乃至ステップ790までの処理内容は、図6のステップ630乃至ステップ690までの処理内容と扱う変数を除いて同じであるので、詳細な説明を省略する。
なお、第2領域は、低側流量閾値V2Lから高側流量閾値V2Hまでの範囲であり(図2を参照。)、低側流量閾値V2Lは第1領域の高側流量閾値V1Hよりも大きい。更に、高側流量閾値V2Hは低側流量閾値V2Lよりも大きい。
図7のフローチャートにより扱われる変数及び閾値等は次のとおりである。
SumΔP2:DPF通過ガス流量Vdpf(この場合、排ガス流量Vと等しい。)が第2領域(中流量範囲)内にある場合の前後差圧ΔPの積算値
SumV2:DPF通過ガス流量Vdpf(この場合、排ガス流量Vと等しい。)が第2領域(中流量範囲)内にある場合のDPF通過ガス流量Vdpfの積算値
N2:積算値SumΔP2及び積算値SumV2のそれぞれに積算されたデータの数
N2th:データ数閾値(N1thと同じ値であってもよく、相違していてもよい。)
この図7に示したルーチンの処理により、DPF通過ガス流量Vdpfが第2領域(中流量範囲)内にある期間において単数又は複数個(データ数閾値N2th)の「DPF通過ガス流量Vdpf及び前後差圧ΔP」のデータが取得され、それらの各々の平均値が「DPF通過ガス流量Vdpfが第2領域(中流量範囲)内にある場合のデータ(DPF通過ガス流量V2,前後差圧ΔP2)」として取得される。更に、このデータの取得に伴い、第2フラグX2getの値が「1」に設定される。なお、CPUは、ステップ710、ステップ720、ステップ730及びステップ760の何れかにおいて「No」と判定した場合、ステップ795に直接進んで本ルーチンを一旦終了する。
第2フラグX2getの値が「1」に設定された後、CPUが図5のステップ530に進むと、CPUはそのステップ530にて「Yes」と判定してステップ540に進み、第2フラグX2getの値を「0」に設定する。この結果、図7に示したルーチンにより、DPF通過ガス流量Vdpfが第2領域(中流量範囲)内にある場合のデータ(DPF通過ガス流量V2,前後差圧ΔP2)が新たに取得され始める。次いで、CPUはステップ550に進み、次式に従って差圧増加率S1を算出する。

S1=(ΔP2−ΔP1)/(V2−V1)
その後、CPUはステップ560に進み、ステップ550にて新たに得られた差圧増加率S1がその時点の仮判定用値Aよりも大きいか否かを判定する。このとき、差圧増加率S1がその時点の仮判定用値Aよりも大きければ、CPUはステップ560にて「Yes」と判定してステップ570に進み、差圧増加率S1を仮判定用値Aとして設定する。これに対し、差圧増加率S1がその時点の仮判定用値A以下であれば、CPUはステップ560にて「No」と判定し、ステップ595に直接進んで本ルーチンを一旦終了する。
この結果、「DPF通過ガス流量Vdpf(排ガス流量V)が第2領域(中流量範囲)内にある場合のデータ(DPF通過ガス流量V2,前後差圧ΔP2)」が新たに算出されることに伴って差圧増加率S1が新たに取得(算出)される毎に、その時点にて及びその時点までに得られた複数の差圧増加率S1の最大値(第1の差圧増加率)が仮判定用値Aとして取得される。
<仮異常判定>
ところで、CPUは所定時間が経過する毎に図8にフローチャートにより示した仮異常判定のためのルーチンを実行するようになっている。従って、適当なタイミングになるとCPUはステップ800から処理を開始し、ステップ810に進んでアクティブ実行フラグXactiveの値が「0」であるか否かを判定する。
現時点においては、アクティブ実行フラグXactiveの値は「0」である。よって、CPUはステップ810にて「Yes」と判定してステップ820に進み、イグニッション・キー・スイッチ74がオン位置からオフ位置へと変更されたか否かを判定する。このステップ820において否定判定がなされる場合、CPUはステップ820にて「No」と判定し、ステップ895へと直接進んで本ルーチンを一旦終了する。
これに対し、CPUがステップ820の処理を実行する時点が「イグニッション・キー・スイッチ74のオフ位置への変更」直後であると、CPUはそのステップ820にて「Yes」と判定してステップ830に進み、仮判定用値Aが仮判定閾値Sathよりも小さいか否かを判定する。
このとき、仮判定用値Aが仮判定閾値Sath以上であれば、CPUはステップ830にて「No」と判定し、ステップ850へと直接進んで電子制御装置70を非作動状態(オフ)へと変更し、その後ステップ895に進んで本ルーチンを一旦終了する。よって、後述するステップ840の処理が実行されないから、アクティブ実行フラグXactiveの値は「0」に維持される。なお、この場合、CPUは「DPF54の異常判定(仮異常判定)を行った結果、DPF54が正常であると判定された旨」をバックアップRAMに書き込んでもよい。
これに対し、仮判定用値Aが仮判定閾値Sathよりも小さければ、DPF54が異常となっている可能性がある。従って、この場合、CPUはステップ830にて「Yes」と判定してステップ840に進み、アクティブ実行フラグXactiveの値を「1」に設定するとともに、そのアクティブ実行フラグXactiveの値をバックアップRAMに書き込む。そして、CPUはステップ850にて電子制御装置70を非作動状態(オフ)へと変更し、ステップ895に進んで本ルーチンを一旦終了する。
このように、アクティブ実行フラグXactiveの値が「0」である場合、機関10の運転停止時(イグニッション・キー・スイッチ74のオフ位置への変更時)に仮判定用値Aと仮判定閾値Sathとの比較に基づく仮異常判定が実行され、仮判定用値Aが仮判定閾値Sathよりも小さければアクティブ実行フラグXactiveの値が「1」へと変更される。なお、CPUがステップ810の処理を実行する時点においてアクティブ実行フラグXactiveの値が「1」であれば、CPUはステップ810にて「No」と判定し、ステップ895へと直接進んで本ルーチンを一旦終了する。
<本判定用値の取得>
CPUは、所定時間が経過する毎に図9にフローチャートにより示したルーチンを実行するようになっている。ここでは、アクティブ実行フラグXactiveの値が「1」に設定されていると仮定して説明を進める。
CPUは、適当なタイミングになると図9のステップ900から処理を開始し、ステップ910に進んでアクティブ実行フラグXactiveの値が「1」であるか否かを判定する。アクティブ実行フラグXactiveの値が「1」でない場合、CPUはステップ910にて「No」と判定し、ステップ995に直接進んで本ルーチンを一旦終了する。
一方、前述の仮定によればアクティブ実行フラグXactiveの値は「1」である。よって、CPUはステップ910にて「Yes」と判定してステップ920に進み、第1フラグX1getの値が「1」であるか否かを判定する。第1フラグX1getの値が「1」でなければ、CPUはステップ920にて「No」と判定し、ステップ995に直接進んで本ルーチンを一旦終了する。
この場合においても図6のルーチンが実行されることにより第1フラグX1getの値が「1」に変更されると、CPUはステップ920にて「Yes」と判定してステップ930に進み、第3フラグX3getの値が「1」であるか否かを判定する。第3フラグX3getの値は前述したイニシャルルーチンにおいて「0」に設定されている。従って、CPUはステップ930にて「No」と判定し、ステップ995に直接進んで本ルーチンを一旦終了する。
一方、CPUは、所定時間が経過する毎に図10にフローチャートにより示した触媒昇温制御ルーチンを実行するようになっている。従って、適当なタイミングにてCPUはステップ1000から処理を開始してステップ1010に進み、アクティブ実行フラグXactiveの値が「1」であるか否かを判定する。なお、このステップ1010の条件は前述した「特定条件」を成立させる条件のうちの1つである。
前述の仮定によればアクティブ実行フラグXactiveの値は「1」である。よって、CPUはステップ1010にて「Yes」と判定してステップ1020に進み、機関10の運転状態が「DPF通過ガス流量Vdpf(この場合、排ガス流量Vと等しい。)が第2領域(中流量範囲)内となる特定運転状態」であるか否か判定する。より具体的には、この場合、CPUは排ガス流量センサ72にて検出される排ガス流量Vに基づいてDPF通過ガス流量Vdpfが低側流量閾値V2Lから高側流量閾値V2Hの間にある(V2L<Vdpf<V2H)か否かを判定する。なお、このステップ1020の条件は前述した「特定条件」を成立させる条件のうちの他の1つである。
このとき、機関10の運転状態が前記特定運転状態であると、CPUはステップ1020にて「Yes」と判定してステップ1030に進み、排ガス温度(DOC温度)T1が所定の目標温度Ttgtとなるように、燃料添加弁35により排気管52中に添加される燃料添加量Qaddを決定し、この設定値に従って、燃料添加弁35を作動させる。その結果、DOC54に燃料添加量Qaddの燃料が供給され、よって、DOC54の温度が目標温度Ttgtの近傍の値へと上昇する。
より具体的に説明すると、CPUは、目標温度Ttgtがステップ1030を開始してからの経過時間に応じて上昇し、最終的にはDPF通過ガス流量Vdpfが第3領域(大流量範囲)となるような温度(例えば、450℃)となるように燃料添加量Qaddを制御する。更に、CPUは、排ガス温度センサ73により検出した排ガスの実温度T1と目標温度Ttgtとを比較して、実温度T1が目標温度Ttgt未満の場合は、燃料添加量Qaddを所定量ずつ増大させ、実温度T1が目標温度Ttgt以上の場合は燃料添加量Qaddを所定量ずつ減少させる。即ち、CPUは、燃料添加量Qaddを温度に関してフィードバック制御する。その後、CPUはステップ1095に進み、本ルーチンを一旦終了する。
これに対し、CPUがステップ1020の処理を実行する時点において、機関10の運転状態が前述した特定運転状態でなければ、CPUはステップ1020にて「No」と判定してステップ1040に進み、燃料添加量Qaddを「0」に設定する。即ち、CPUは、燃料添加を行わない。その後、CPUはステップ1095に進んで本ルーチンを一旦終了する。
なお、CPUがステップ1010の処理を実行する時点において、アクティブ実行フラグXactiveの値が「1」でなければ、CPUはそのステップ1010にて「No」と判定してステップ1040に進み、燃料添加量Qaddを「0」に設定する。従って、アクティブ実行フラグXactiveの値が「1」でない場合、燃料添加弁35からの燃料添加は行われない。その後、CPUはステップ1095に進んで本ルーチンを一旦終了する。
更に、CPUは、所定時間が経過する毎に図11にフローチャートにより示したルーチンを実行するようになっている。従って、適当なタイミングにてCPUはステップ1100から処理を開始し、ステップ1110に進んで第3フラグX3getの値が「0」であるか否かを判定する。
現時点において、第3フラグX3getの値は「0」である。従って、CPUはステップ1110にて「Yes」と判定してステップ1120に進み、前述した前後差圧取得条件が成立しているか否かを判定する。
前後差圧取得条件が成立していない場合、CPUはステップ1120にて「No」と判定し、ステップ1195に直接進んで本ルーチンを一旦終了する。これに対し、前後差圧取得条件が成立していると、CPUはステップ1120にて「Yes」と判定してステップ1130に進み、DPF通過ガス流量Vdpfが第3領域(大流量範囲)内にあるか否かを判定する。なお、第3領域は、低側流量閾値V3Lから高側流量閾値V3Hまでの範囲であり(図2を参照。)、低側流量閾値V3Lは第2領域の高側流量閾値V2H以上であり、本例においては両者は互いに等しい。更に、高側流量閾値V3Hは低側流量閾値V3Lよりも大きい。
より具体的に述べると、CPUは、ステップ1130にて、DPF通過ガス流量Vdpfを推定し、その推定されたDPF通過ガス流量Vdpfが第3領域(大流量範囲)内にあるか否かを判定する。このとき、CPUは、排ガス流量V、排ガス温度T0及び排ガス温度T1とDPF通過ガス流量Vdpfとの関係を規定するルックアップテーブルに、排ガス流量センサ72により検出される「排ガス流量V及び排ガス温度T0」と、排ガス温度センサ73により検出される排ガス温度T1と、を適用することにより、現時点のDPF通過ガス流量Vdpfを推定する(取得する)。このルックアップテーブルは予め実験等により定められ、ROMに格納されている。
なお、CPUは、ステップ1130にて、現時点において排ガス流量センサ72により検出される排ガス流量Vが第2領域内であり、且つ、現時点の燃料添加量Qaddが所定の範囲内の値であるとき、DPF通過ガス流量Vdpfが第3領域内であると判定してもよい。
更に、排ガス温度センサ73にガス流量を測定(検出)可能な流量センサを内蔵させてもよい。この場合、CPUは、その排ガス温度センサ73の出力に基づいて、ステップ1130にて現時点のDPF通過ガス流量Vdpfを直接検出してもよい。
CPUは、ステップ1130にて「Yes」と判定した場合、ステップ1140以降のステップの処理を行う。ステップ1140乃至ステップ1190までの処理内容は、図6のステップ640乃至ステップ690までの処理内容と扱う変数を除いて同じであるので、詳細な説明を省略する。
図11のフローチャートにより扱われる変数及び閾値等は次のとおりである。
SumΔP3:DPF通過ガス流量Vdpfが第3領域(大流量範囲)内にある場合の前後差圧ΔPの積算値
SumV3:DPF通過ガス流量Vdpfが第3領域(大流量範囲)内にある場合の排ガス流量Vの積算値
N3:積算値SumΔP3及び積算値SumV3のそれぞれに積算されたデータの数
N3th:データ数閾値(N1thと同じ値であってもよく、相違していてもよい。)
この図11に示したルーチンの処理により、DPF通過ガス流量Vdpfが第3領域(大流量範囲)内にある期間において単数又は複数個(データ数閾値N3th)の「DPF通過ガス流量Vdpf及び前後差圧ΔP」のデータが取得され、それらの各々の平均値が「DPF通過ガス流量Vdpfが第3領域(大流量範囲)内にある場合のデータ(DPF通過ガス流量V3,前後差圧ΔP3)」として取得される。更に、このデータの取得に伴い、第3フラグX3getの値が「1」に設定される。なお、CPUは、ステップ1110、ステップ1120、ステップ1130及びステップ1160の何れかにおいて「No」と判定した場合、ステップ1195に直接進んで本ルーチンを一旦終了する。
第3フラグX3getの値が図11のステップ1180にて「1」に設定された後、CPUが図9のステップ930に進むと、CPUはそのステップ930にて「Yes」と判定してステップ940に進み、第3フラグX3getの値を「0」に設定する。この結果、図11に示したルーチンにより、DPF通過ガス流量Vdpfが第3領域(大流量範囲)内にある場合のデータ(DPF通過ガス流量V3,前後差圧ΔP3)が新たに取得され始める。次いで、CPUはステップ950に進み、次式に従って差圧増加率S2を算出する。

S2=(ΔP3−ΔP1)/(V3−V1)
その後、CPUはステップ960に進み、ステップ950にて新たに得られた差圧増加率S2がその時点の本判定用値Bよりも大きいか否かを判定する。このとき、差圧増加率S2がその時点の本判定用値Bよりも大きければ、CPUはステップ960にて「Yes」と判定してステップ970に進み、差圧増加率S2を本判定用値Bとして設定する。これに対し、差圧増加率S2がその時点の本判定用値B以下であれば、CPUはステップ960にて「No」と判定し、ステップ995に直接進んで本ルーチンを一旦終了する。
この結果、「DPF通過ガス流量Vdpfが第3領域(大流量範囲)内にある場合のデータ(DPF通過ガス流量V3,前後差圧ΔP3)」が新たに算出されることに伴って差圧増加率S2が新たに取得(算出)される毎に、その時点にて及びその時点までに得られた複数の差圧増加率S2の最大値(即ち、差圧相関値)が本判定用値Bとして取得される。
<本異常判定>
ところで、CPUは所定時間が経過する毎に図12にフローチャートにより示した本異常判定のためのルーチンを実行するようになっている。従って、適当なタイミングになるとCPUはステップ1200から処理を開始し、ステップ1210に進んでアクティブ実行フラグXactiveの値が「1」であるか否かを判定する。
現時点においては、アクティブ実行フラグXactiveの値は「1」である。よって、CPUはステップ1210にて「Yes」と判定してステップ1220に進み、イグニッション・キー・スイッチ74がオン位置からオフ位置へと変更されたか否かを判定する。このステップ1220において否定判定がなされる場合、CPUはステップ1220からステップ1295へと直接進んで本ルーチンを一旦終了する。
これに対し、CPUがステップ1220の処理を実行する時点が「イグニッション・キー・スイッチ74のオフ位置への変更」直後であると、CPUはそのステップ1220にて「Yes」と判定してステップ1230に進み、本判定用値Bが本判定閾値Sbthよりも小さいか否かを判定する。なお、本判定閾値Sbthは仮判定閾値Sathと等しくてもよく、相違していてもよい。
このとき、本判定用値Bが本判定閾値Sbth以上であれば、CPUはステップ1230にて「No」と判定し、ステップ1250へと直接進む。よって、後述するステップ1240の処理が実行されないから、異常判定フラグXijoの値は「0」に維持される。なお、この場合、CPUは「DPF54の異常判定(本異常判定)を行った結果、DPF54が正常であると判定された旨」をバックアップRAMに書き込んでもよい。
これに対し、本判定用値Bが本判定閾値Sbthよりも小さければ、DPF54は異常になっていると判断される。従って、この場合、CPUはステップ1230にて「Yes」と判定してステップ1240に進み、異常判定フラグXijoの値を「1」に設定し、異常判定フラグXijoの値(即ち、「1」)をバックアップRAMに保存する。なお、このとき、CPUは車室内に設けられた図示しない警報ランプを点灯してもよい。
その後、CPUはステップ1250に進み、アクティブ実行フラグXactiveの値を「0」に設定するとともに、そのアクティブ実行フラグXactiveの値をバックアップRAMに書き込む。そして、CPUはステップ1260にて電子制御装置70を非作動状態(オフ)へと変更し、ステップ1295に進んで本ルーチンを一旦終了する。
なお、CPUがステップ1210の処理を実行する時点において、アクティブ実行フラグXactiveの値が「0」である場合、CPUはそのステップ1210にて「No」と判定し、ステップ1295に直接進んで本ルーチンを一旦終了する。
このように、アクティブ実行フラグXactiveの値が「1」である場合、DOC53(触媒装置)の温度が上昇せしめられ、排ガスの温度及び体積が増加させられ、それにより、DPF通過ガス流量Vdpf(DPF54を通過する排ガスの流量)が第3領域(大流量範囲)内の値になる頻度が増大させられる。更に、機関10の運転停止時(イグニッション・キー・スイッチ74のオフ位置への変更時)に、DPF通過ガス流量Vdpfが第3領域(大流量範囲)内にある場合に得られるデータ(V3,ΔP3)を用いて算出された本判定用値B(差圧増加率S2の最大値)と本判定閾値Sbthとの比較に基づく本異常判定が実行され、本判定用値Bが本判定閾値Sbthよりも小さければDPF54に異常が発生したと判定される。
即ち、第1判定装置は、内燃機関10の排気通路に配設されたパティキュレートフィルタ(DPF54)の異常判定装置であって、
前記排気通路であって前記パティキュレートフィルタの上流側位置に配設される触媒装置(DOC53)と、
前記触媒装置の温度を上げるための未燃成分を同触媒装置に供給する未燃成分供給部(燃料添加弁35及び添加燃料送出管34等)と、
前記パティキュレートフィルタの前後差圧を取得するための差圧取得部(前後差圧センサ71)と、
前記パティキュレートフィルタの異常判定を実行する際に使用する判定用パラメータを取得すべき状態であることを示す特定条件(図10のステップ1010及び1020)が成立したと判定したとき前記未燃成分供給部から前記未燃成分を前記触媒装置に供給して同触媒装置を昇温させるとともに(図3のステップ345、図10のステップ1010乃至ステップ1030)同触媒装置が昇温させられた昇温状態において前記差圧取得部を用いて前記前後差圧を取得し(図3のステップ350、図11のルーチン)、前記取得した前後差圧に相関を有する前記判定用パラメータとしての差圧相関値(B)と、所定の閾値(Sbth)と、の比較結果に基づいて前記パティキュレートフィルタに異常が発生したか否かを判定する異常判定部(図3のステップ355、ステップ365及びステップ370、図12のルーチン)と、
を備える。
更に、前記異常判定部は、
前記触媒装置が昇温させられていない非昇温状態において前記パティキュレートフィルタを通過するガスの流量である通過ガス流量を第1流量(V1)として取得するとともに前記差圧取得部を用いて前記前後差圧を第1差圧(ΔP1)として取得し(図3のステップ340、図6のルーチン)、
前記昇温状態において前記通過ガス流量を第2流量(V3)として取得するとともに前記差圧取得部を用いて前記前後差圧を第2差圧(ΔP3)として取得し(図3のステップ345及びステップ350、図11のルーチン)、
前記第2流量と前記第1流量との差に対する前記第2差圧と前記第1差圧との差の比である差圧増加率((ΔP3−ΔP1)/(V3−V1))に応じた値を前記差圧相関値(本判定用値B)として取得する(図3のステップ355、図9のルーチン)。
更に、前記異常判定部は、
前記触媒装置が昇温させられていない非昇温状態において前記差圧取得部を用いて取得される前記前後差圧に相関を有する値((ΔP2−ΔP1)/(V2−V1)の最大値)を仮判定用値(A)として採用し、前記仮判定用値(A)と所定の仮判定閾値(Sath)との比較結果に基づいて前記パティキュレートフィルタに異常が発生した可能性があると判定した場合であって(図3のステップ330及びステップ335、図5及び図8のルーチン)更に前記パティキュレートフィルタを通過するガスの流量である通過ガス流量が所定の範囲内にあると判定したとき前記特定条件が成立したと判定する(図3のステップ305及びステップ345、図10のステップ1010及びステップ1020)。
従って、第1判定装置は、無駄に未燃成分を消費することなく、且つ、高い頻度で「精度の良いパティキュレートフィルタの異常判定」を実行することができる。
なお、第1判定装置は、図9に示したルーチンにおいて、第1フラグX1getを第2フラグX2getに置換するとともに、ステップ950において以下の式により示される差圧増加率S2を採用してもよい。

S2=(ΔP3−ΔP2)/(V3−V2)

即ち、第1判定装置は、「前記第3通過ガス流量V3と前記第2通過ガス流量V2との差」に対する「前記第3前後差圧ΔP3と前記第2前後差圧ΔP2との差」の比、を差圧増加率S2として求め、その値に基づいて前記本判定用値Bを取得してもよい。
また、第1判定装置は、図10のステップ1020の処理を省略し、ステップ1020にて「Yes」と判定したときステップ1030に直接進んでもよい。即ち、前記異常判定部は、前記仮判定用値(A)と所定の仮判定閾値(Sath)との比較結果に基づいて前記パティキュレートフィルタに異常が発生した可能性があると判定した場合に前記特定条件が成立したと判定して、触媒昇温制御(ステップ1030)を実行してもよい。
<第2実施形態>
次に、本発明の第2実施形態に係るパティキュレートフィルタの異常判定装置(以下、「第2判定装置」とも称呼する。)について説明する。第2判定装置は、前記パティキュレートフィルタの異常判定を実行する際に使用する判定用パラメータ(本判定用値B及び本判定用値Bの元データ(V3,ΔP3))を取得すべき状態であることを示す特定条件の1つが、パティキュレートフィルタの仮異常判定によらない点のみにおいて、第1判定装置と相違している。従って、以下、この相違点について説明する。なお、この特定条件は、触媒昇温制御の開始条件でもある。
第1判定装置において、その特定条件は、「仮異常判定においてDPF54に異常が発生した可能性があると判定し(第1条件)、且つ、DPF通過ガス流量Vdpf(この場合、排ガス流量Vと等しい。)が第2領域(中流量範囲)内にあること(第2条件)」が成立するとき成立する。
これに対し、第2判定装置における特定条件は、次の総ての条件が成立するときに成立する条件である。
[条件1]前回のパティキュレートフィルタの異常判定の実行時期からの機関10の積算運転時間、積算回転数又は機関10を搭載した車両の走行距離が所定値を超えている。
[条件2]DPF通過ガス流量Vdpf(この場合、排ガス流量Vと等しい。)が第2領域(中流量範囲)内にある。
従って、第2判定装置は、第1判定装置において行っていた仮異常判定を行わずに本異常判定のみを行うことができる。
<第3実施形態>
次に、本発明の第3実施形態に係るパティキュレートフィルタの異常判定装置(以下、「第3判定装置」とも称呼する。)について説明する。第3判定装置は、差圧増加率に代え、前後差圧ΔPそのものを用いて仮異常判定及び/又は本異常判定を実行する点のみにおいて、第1判定装置と相違している。
第3判定装置のCPUは、図7のステップ740にて前後差圧ΔPを積算して積算値SumΔP2を求め、ステップ770にてその前後差圧ΔPの積算値SumΔP2をデータ数閾値N2thにより除することによって「DPF通過ガス流量Vdpf(この場合、排ガス流量Vと等しい。)が第2領域(中流量範囲)内にある場合の前後差圧ΔP2」を取得する。
そして、CPUは、図5のステップ550の処理を省略するとともに、ステップ560及びステップ570にて、前後差圧ΔP2の最大値を仮判定用値Aとして取得する。更に、CPUは、図8のステップ830にて、その仮判定用値A(前後差圧ΔP2の最大値)が仮判定閾値Sath未満であるか否かを判定することにより、仮異常判定を実行する。即ち、CPUは、仮判定用値A(前後差圧ΔP2の最大値)が仮判定閾値Sathよりも小さいとき、DPF54が異常となっている可能性があると判断し、ステップ840にてアクティブ実行フラグXactiveの値を「1」に設定し、その値をバックアップRAMに格納する。
同様に、第3判定装置のCPUは、図11のステップ1140にて前後差圧ΔPを積算して積算値SumΔP3を求め、ステップ1170にてその前後差圧ΔPの積算値SumΔP3をデータ数閾値N3thにより除することによって「DPF通過ガス流量Vdpfが第3領域(大流量範囲)内にある場合の前後差圧ΔP3」を取得する。
そして、CPUは、図9のステップ950の処理を省略するとともに、ステップ960及びステップ970にて、前後差圧ΔP3の最大値を本判定用値Bとして取得する。更に、CPUは図12のステップ1230にて、その本判定用値B(前後差圧ΔP3の最大値)が本判定閾値Sbth未満であるか否かを判定することにより、本異常判定を実行する。即ち、CPUは、本判定用値B(前後差圧ΔP3の最大値)が本判定閾値Sbthよりも小さいとき、DPF54が異常となっていると判断し、ステップ1240にて異常判定フラグXijoの値を「1」に設定し、その値をバックアップRAMへ格納する。更にステップ1250にてアクティブ実行フラグXactiveの値を「0」に設定し、その値をバックアップRAMへ格納する。
なお、第3判定装置は、前後差圧(ΔP1又はΔP2)そのものを用いて仮異常判定を実行し、差圧増加率(S2)を用いて本異常判定を実行してもよい。或いは、第3判定装置は、差圧増加率(S1)を用いて仮異常判定を実行し、前後差圧(ΔP3)そのものを用いて本異常判定を実行してもよい。
本発明は上記各実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、各判定装置は、本判定用値Bが本判定閾値Sbth未満であり、且つ、第3前後差圧ΔP3そのものが別の判定閾値Sbth’未満であるとき、DPF54が異常であると判定してもよい。或いは、各判定装置は、仮判定用値Aが本判定閾値Sath未満であり、且つ、第1前後差圧ΔP1又は第2前後差圧ΔP2そのものが別の判定閾値Sath’未満であるとき、DPF54に異常が発生している可能性があると判定してもよい。即ち、各判定装置は、差圧増加率と前後差圧の両方を用いて、仮異常判定及び/又は本異常判定を実行してもよい。
更に、上記各判定装置は、燃料添加弁35をエキゾーストマニホールド51に備え、燃料添加弁35からエキゾーストマニホールド51へ未燃成分を添加するようにしているが、燃料添加弁35を排気管52であってタービン55の下流側乃至DOC53の上流側位置に備え、排気管52へ未燃成分を添加するものであってもよい。
加えて、上記各判定装置は、燃料添加弁35からの燃料の添加に代え、又は、その添加に加え、燃料噴射弁23によるメイン噴射(主噴射)の噴射タイミングから大幅に遅れた噴射タイミングにて燃料噴射弁23から燃料噴射を行い(即ち、所謂、ポスト噴射を行い)、それにより、機関10の本体21から排気系統50へと未燃成分を排出し、その未燃成分を用いて触媒昇温制御を実行してもよい。
上記各判定装置は本異常判定を実行する際に、無駄に未燃成分が消費されないように、触媒装置(DOC53)の昇温時間及び/又は昇温回数を制限するものであってもよい。例えば、CPUは、排ガス温度センサ73により排ガス温度T1を監視して、排ガス温度T1が所定温度以上である時間の積算値が所定値を超えないように、或いは、排ガス温度T1が所定温度以下から所定温度以上へと変化する回数が所定回数を超えないように、触媒装置53への未燃燃料の供給を制御してもよい。
より具体的には、差圧相関値(差圧増加率S2)を算出する図9のステップ950を所定回数繰り返すまでを触媒昇温時間の上限としてもよいし、通常走行状態における触媒昇温時間の最大値(つまり、DPF54の再生時間の最大値)を触媒昇温時間の上限としてもよい。
上記各判定装置は、排ガス流量センサ72の出力に基づいて排ガス流量Vを取得していたが、機関10の運転状態(燃料噴射量Qfin、機関回転速度NE)等に基づいて排ガス流量Vを推定することにより、排ガス流量Vを取得してもよい。更に、上記各判定装置は、吸入空気量センサの出力及び/又はEGR弁の開度等に基づいて排ガス流量Vを推定してもよい。
上記各判定装置は、図5のステップ560及びステップ570にて差圧増加率S1の最大値(仮判定値A)を算出・更新し、イグニッション・キー・スイッチ74がオフ位置に変更されたときに仮異常判定(図8のステップ830)をしているが、イグニッション・キー・スイッチ74がオン位置からオフ位置へと変更されるのを待たずにステップ560及びステップ570を実行するタイミングにて、逐次仮異常判定をするものであってもよい。
同様に、上記各判定装置は、図9のステップ960及びステップ970にて差圧増加率S2の最大値(本判定値B)を算出・更新し、イグニッション・キー・スイッチ74がオフ位置に変更されたときに本異常判定(図12のステップ1230)をしているが、イグニッション・キー・スイッチ74がオン位置からオフ位置へと変更されるのを待たずにステップ960及びステップ970を実行するタイミングにて、逐次本異常判定をするものであってもよい。
更に、仮判定用値Aは、「差圧増加率S1又は前後差圧ΔP2」の最大値であったが、その最大値の逆数であってもよく、「複数の差圧増加率S1の平均値又は複数の前後差圧ΔP2の平均値」であってもよく、「複数の差圧増加率S1の平均値の逆数、又は、複数の前後差圧ΔP2の平均値の逆数」であってもよい。
同様に、本判定用値Bは、「差圧増加率S2又は前後差圧ΔP3」の最大値であったが、その最大値の逆数であってもよく、「複数の差圧増加率S2の平均値又は複数の前後差圧ΔP3の平均値」であってもよく、「複数の差圧増加率S2の平均値の逆数又は複数の前後差圧ΔP3の平均値の逆数」であってもよい。
10…内燃機関、21…本体、22…気筒(燃焼室)、34…添加燃料送出管、35…燃料添加弁、40…吸気系統、50…排気系統、52…排気管、53…ディーゼル酸化触媒(DOC)、54…パティキュレートフィルタ(DPF)、70…電子制御装置、71…前後差圧センサ、72…排ガス流量センサ、73…排ガス温度センサ。

Claims (3)

  1. 内燃機関の排気通路に配設されたパティキュレートフィルタの異常判定装置であって、
    前記排気通路であって前記パティキュレートフィルタの上流側位置に配設される触媒装置と、
    前記触媒装置の温度を上げるための未燃成分を同触媒装置に供給する未燃成分供給部と、
    前記パティキュレートフィルタの前後差圧を取得するための差圧取得部と、
    前記パティキュレートフィルタの異常判定を実行する際に使用する判定用パラメータを取得すべき状態であることを示す特定条件が成立したと判定したとき前記未燃成分供給部から前記未燃成分を前記触媒装置に供給して同触媒装置を昇温させるとともに同触媒装置が昇温させられた昇温状態において前記差圧取得部を用いて前記前後差圧を取得し、前記取得した前後差圧に相関を有する前記判定用パラメータとしての差圧相関値と、所定の閾値と、の比較結果に基づいて前記パティキュレートフィルタに異常が発生したか否かを判定する異常判定部と、を備え
    前記異常判定部は、
    前記触媒装置が昇温させられていない非昇温状態において前記差圧取得部を用いて取得される前記前後差圧に相関を有する値を仮判定用値として採用し、前記仮判定用値と所定の仮判定閾値との比較結果に基づいて前記パティキュレートフィルタに異常が発生した可能性があると判定した場合に前記特定条件が成立したと判定するように構成された異常判定装置。
  2. 内燃機関の排気通路に配設されたパティキュレートフィルタの異常判定装置であって、
    前記排気通路であって前記パティキュレートフィルタの上流側位置に配設される触媒装置と、
    前記触媒装置の温度を上げるための未燃成分を同触媒装置に供給する未燃成分供給部と、
    前記パティキュレートフィルタの前後差圧を取得するための差圧取得部と、
    前記パティキュレートフィルタの異常判定を実行する際に使用する判定用パラメータを取得すべき状態であることを示す特定条件が成立したと判定したとき前記未燃成分供給部から前記未燃成分を前記触媒装置に供給して同触媒装置を昇温させるとともに同触媒装置が昇温させられた昇温状態において前記差圧取得部を用いて前記前後差圧を取得し、前記取得した前後差圧に相関を有する前記判定用パラメータとしての差圧相関値と、所定の閾値と、の比較結果に基づいて前記パティキュレートフィルタに異常が発生したか否かを判定する異常判定部と、を備え、
    前記異常判定部は、
    前記触媒装置が昇温させられていない非昇温状態において前記差圧取得部を用いて取得される前記前後差圧に相関を有する値を仮判定用値として採用し、前記仮判定用値と所定の仮判定閾値との比較結果に基づいて前記パティキュレートフィルタに異常が発生した可能性があると判定し、更に前記パティキュレートフィルタを通過するガスの流量である通過ガス流量が中流量範囲内となった場合に前記特定条件が成立したと判定するように構成された異常判定装置。
  3. 請求項1又は請求項2に記載のパティキュレートフィルタの異常判定装置において、
    前記異常判定部は、
    前記触媒装置が昇温させられていない非昇温状態において前記パティキュレートフィルタを通過するガスの流量である通過ガス流量を第1流量として取得するとともに前記差圧取得部を用いて前記前後差圧を第1差圧として取得し、
    前記昇温状態において前記通過ガス流量を第2流量として取得するとともに前記差圧取得部を用いて前記前後差圧を第2差圧として取得し、
    前記第2流量と前記第1流量との差に対する前記第2差圧と前記第1差圧との差の比である差圧増加率に応じた値を前記差圧相関値として取得するように構成された異常判定装置。
JP2014096531A 2014-05-08 2014-05-08 パティキュレートフィルタの異常判定装置 Expired - Fee Related JP6032241B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014096531A JP6032241B2 (ja) 2014-05-08 2014-05-08 パティキュレートフィルタの異常判定装置
EP15166947.0A EP2942505B1 (en) 2014-05-08 2015-05-08 An abnormality determination apparatus for a particulate filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014096531A JP6032241B2 (ja) 2014-05-08 2014-05-08 パティキュレートフィルタの異常判定装置

Publications (2)

Publication Number Publication Date
JP2015214895A JP2015214895A (ja) 2015-12-03
JP6032241B2 true JP6032241B2 (ja) 2016-11-24

Family

ID=53051755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014096531A Expired - Fee Related JP6032241B2 (ja) 2014-05-08 2014-05-08 パティキュレートフィルタの異常判定装置

Country Status (2)

Country Link
EP (1) EP2942505B1 (ja)
JP (1) JP6032241B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015014931B4 (de) * 2015-11-18 2021-01-07 Audi Ag Verfahren zum Überwachen eines Zustands einer Vorrichtung
JP6624376B2 (ja) * 2015-12-28 2019-12-25 三菱自動車工業株式会社 排気後処理システム
JP6631786B2 (ja) * 2015-12-28 2020-01-15 三菱自動車工業株式会社 排気後処理システム
JP6350604B2 (ja) 2016-07-21 2018-07-04 トヨタ自動車株式会社 内燃機関の排気浄化システム
JP6936697B2 (ja) * 2017-10-25 2021-09-22 愛三工業株式会社 排気漏れ検出装置
FR3075872A3 (fr) * 2017-12-27 2019-06-28 Renault S.A.S Methode et dispositif de determination du fonctionnement d'un filtre a particules
EP3784884A1 (en) 2018-04-27 2021-03-03 Carrier Corporation Exhaust back pressure and temperature monitoring transport refrigeration unit
JP7186532B2 (ja) * 2018-07-17 2022-12-09 株式会社Subaru Pm堆積量推定装置及びpm堆積量推定方法
DE102018218209A1 (de) * 2018-10-24 2020-04-30 Robert Bosch Gmbh Verfahren zur Überwachung eines Abgasnachbehandlungssystems einer Brennkraftmaschine
US11041423B2 (en) * 2019-03-19 2021-06-22 Ford Global Technologies, Llc Method and system for leak detection at a particulate filter
WO2021162437A1 (ko) * 2020-02-13 2021-08-19 두산인프라코어 주식회사 배기가스 후처리 시스템
CN114439586A (zh) * 2020-10-30 2022-05-06 上海汽车集团股份有限公司 一种颗粒捕集器故障诊断方法及装置
CN113340766B (zh) * 2021-06-11 2023-03-24 山东大学 一种颗粒捕集设备清洗效果的评估方法
CN114233438B (zh) * 2021-12-22 2022-10-21 凯龙高科技股份有限公司 一种柴油机尾气后处理方法和装置
CN114370323B (zh) * 2022-01-18 2023-01-06 潍柴动力股份有限公司 一种dpf过载诊断方法及车辆

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004026589A1 (de) * 2004-06-01 2006-01-19 Siemens Ag Verfahren zur Überwachung eines Partikelfilters
JP4591389B2 (ja) * 2006-03-16 2010-12-01 株式会社デンソー 内燃機関用排気浄化装置
JP4506724B2 (ja) * 2006-06-07 2010-07-21 トヨタ自動車株式会社 Pmトラッパの故障検出システム
JP4430704B2 (ja) * 2007-10-01 2010-03-10 本田技研工業株式会社 内燃機関の排気浄化装置
JP2010112254A (ja) * 2008-11-06 2010-05-20 Toyota Motor Corp パティキュレートフィルタの異常判定システム
JP5556388B2 (ja) * 2010-06-01 2014-07-23 トヨタ自動車株式会社 パティキュレートフィルタの診断装置

Also Published As

Publication number Publication date
EP2942505B1 (en) 2017-04-12
EP2942505A1 (en) 2015-11-11
JP2015214895A (ja) 2015-12-03

Similar Documents

Publication Publication Date Title
JP6032241B2 (ja) パティキュレートフィルタの異常判定装置
KR100605836B1 (ko) 필터 제어 장치
JP6248789B2 (ja) 排気浄化システム
JP6288054B2 (ja) 排気浄化システムの故障診断装置
JP4658267B2 (ja) 内燃機関の排気浄化装置
JP2004076589A (ja) フィルタ制御方法及び装置
JP5786280B2 (ja) 尿素水温度センサの妥当性診断システム
JP2004293340A (ja) 排ガス浄化装置
JPWO2007026809A1 (ja) パティキュレートフィルタの再生方法
JP5573352B2 (ja) 尿素水温度センサの妥当性診断システム
JP5034864B2 (ja) 内燃機関の排気浄化装置
JP5471832B2 (ja) Scrシステム
AU2014347786B2 (en) Exhaust gas control apparatus and exhaust gas control method for engine
JP6210030B2 (ja) パティキュレートフィルタの異常判定装置
JP6287539B2 (ja) 排気浄化システム
JP5471833B2 (ja) Scrシステム
JP6436075B2 (ja) 排気浄化システムの故障診断装置
JP2008138537A (ja) 内燃機関の排気浄化装置
JP2006002672A (ja) パティキュレート堆積量推定方法及びパティキュレートフィルタ再生処理装置
JP2006274978A (ja) 内燃機関の排気浄化装置
JP5136465B2 (ja) 内燃機関の排気浄化装置
JP2007262983A (ja) 内燃機関のpm堆積量推定装置
JP2019035380A (ja) 内燃機関の排気浄化装置
JP2015075088A (ja) パティキュレートフィルタの異常判定装置
JP2011220169A (ja) ガソリンエンジンの排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161010

R151 Written notification of patent or utility model registration

Ref document number: 6032241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees