JP6031333B2 - Manufacturing method of heat exchanger - Google Patents

Manufacturing method of heat exchanger Download PDF

Info

Publication number
JP6031333B2
JP6031333B2 JP2012249373A JP2012249373A JP6031333B2 JP 6031333 B2 JP6031333 B2 JP 6031333B2 JP 2012249373 A JP2012249373 A JP 2012249373A JP 2012249373 A JP2012249373 A JP 2012249373A JP 6031333 B2 JP6031333 B2 JP 6031333B2
Authority
JP
Japan
Prior art keywords
container
concentration
heat exchanger
brazing
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012249373A
Other languages
Japanese (ja)
Other versions
JP2014097511A (en
Inventor
南 和彦
和彦 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2012249373A priority Critical patent/JP6031333B2/en
Publication of JP2014097511A publication Critical patent/JP2014097511A/en
Application granted granted Critical
Publication of JP6031333B2 publication Critical patent/JP6031333B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は容器の内面に防食性能を有する熱交換器の製造方法に関する。   The present invention relates to a method of manufacturing a heat exchanger having anticorrosion performance on the inner surface of a container.

なお、この明細書および特許請求の範囲において、「アルミニウム」の語はアルミニウムおよびその合金の両者を含む意味で用いられる。   In this specification and claims, the term “aluminum” is used to include both aluminum and its alloys.

熱交換器は腐食環境で使用されるため、ろう付によって製作されるアルミニウム製熱交換器は高い耐食性とろう付性が求められる。また、作動液として水を使用するアルミニウム製熱交換器は外面だけでなく内面においても耐食性が要求される。   Since heat exchangers are used in corrosive environments, aluminum heat exchangers manufactured by brazing are required to have high corrosion resistance and brazing properties. Further, an aluminum heat exchanger that uses water as a working fluid is required to have corrosion resistance not only on the outer surface but also on the inner surface.

耐食性およびろう付性に優れた熱交換器用アルミニウム材料として、心材の一方の面にZnを含む犠牲腐食層をクラッドし、他方の面にAl−Si系合金ろう材をクラッドした高耐食性クラッド材が提案されている(特許文献1参照)。   As a heat exchanger aluminum material excellent in corrosion resistance and brazing, a high corrosion resistance clad material in which a sacrificial corrosion layer containing Zn is clad on one surface of a core material and an Al-Si alloy brazing material is clad on the other surface It has been proposed (see Patent Document 1).

特開2000−205680号公報JP 2000-205680 A

しかし、上記の高耐食性クラッド材を用いて熱交換器を真空ろう付すると蒸発したZnが炉を汚染するという問題点があった。   However, when the heat exchanger is vacuum brazed using the above high corrosion resistance clad material, there is a problem that evaporated Zn contaminates the furnace.

本発明は上述した背景技術に鑑み、真空ろう付において蒸発したZnで炉を汚染することなくZnによる防食性能を付与できる熱交換器の製造方法の提供を目的とする。   In view of the background art described above, an object of the present invention is to provide a method of manufacturing a heat exchanger capable of imparting anticorrosion performance with Zn without contaminating the furnace with Zn evaporated in vacuum brazing.

即ち、本発明は下記[1]〜[9]に記載の構成を有する。   That is, the present invention has the configurations described in [1] to [9] below.

[1]内部が作動液通路となり、該作動液通路に連通する開口部を有する容器は、少なくとも内面側がZn濃度:0.05質量%以下のアルミニウムで構成され、前記容器をZn濃度:0.5〜2.5質量%のアルミニウムからなるフィンを装入した状態で仮組し、
前記仮組体を真空ろう付して開口部を除く容器の縁を接合するとともに前記フィンを容器の内面に接合し、
ろう付時の加熱によってフィンからZnを蒸発させて、ろう付後のフィンの板厚方向の中央部におけるZn濃度を0.4質量%以下とするとともに、中央部から表面側に向かってZn濃度が低下する濃度勾配を生じさせ、
前記フィンから蒸発したZnを容器の内面に付着させるとともに容器の板厚の深部方向に拡散させてZn拡散層を形成することを特徴とする熱交換器の製造方法。
[1] A container having an inside serving as a hydraulic fluid passage and having an opening communicating with the hydraulic fluid passage includes at least an inner surface side made of aluminum having a Zn concentration of 0.05% by mass or less. Temporarily assembled in a state where fins made of 5 to 2.5% by mass of aluminum are inserted,
Joining the edge of the container excluding the opening by vacuum brazing the temporary assembly and joining the fin to the inner surface of the container,
Zn is evaporated from the fin by heating at the time of brazing, and the Zn concentration in the central portion in the plate thickness direction of the fin after brazing is 0.4 mass% or less, and the Zn concentration from the central portion toward the surface side Produces a concentration gradient that decreases,
A method of manufacturing a heat exchanger, characterized in that Zn evaporated from the fins adheres to the inner surface of a container and diffuses in the depth direction of the plate thickness of the container to form a Zn diffusion layer.

[2]前記Zn拡散層は表面から深部側に向かってZn濃度が低下する濃度勾配を有する前項1に記載の熱交換器の製造方法。   [2] The method for manufacturing a heat exchanger as recited in the aforementioned Item 1, wherein the Zn diffusion layer has a concentration gradient in which the Zn concentration decreases from the surface toward the deep side.

[3]前記真空ろう付の温度履歴において、570℃以上を保持する時間が10〜60分である前項1または2に記載の熱交換器の製造方法。   [3] The method for producing a heat exchanger according to the above item 1 or 2, wherein the time for holding at 570 ° C. or more is 10 to 60 minutes in the temperature history of the vacuum brazing.

[4]前記開口部の開口面積が10cm未満である前項1〜3のいずれかに記載の熱交換器の製造方法。 [4] The method for manufacturing a heat exchanger according to any one of items 1 to 3, wherein an opening area of the opening is less than 10 cm 2 .

[5]前記開口部の一部を塞いで真空ろう付する前項1〜4のいずれかに記載の熱交換器の製造方法。   [5] The method for manufacturing a heat exchanger according to any one of items 1 to 4, wherein a part of the opening is closed and vacuum brazed.

[6]前記真空ろう付の温度履歴において、ろう材溶融後に炉内を昇圧する前項1〜5のいずれかに記載の熱交換器の製造方法。   [6] The method for manufacturing a heat exchanger as described in any one of 1 to 5 above, wherein in the temperature history of the vacuum brazing, the pressure in the furnace is increased after the brazing material is melted.

[7]ろう材溶融後に炉内を常圧まで昇圧する前項6に記載の熱交換器の製造方法。   [7] The method for manufacturing a heat exchanger as described in [6] above, wherein the pressure in the furnace is increased to normal pressure after melting the brazing filler metal.

[8]アルミニウム容器内の作動液通路にアルミニウムフィンがろう付され、
前記フィンの板厚方向の中央部におけるZn濃度が0.4質量%以下であり、かつ中央部から表面側に向かってZn濃度が低下する濃度勾配を有し、
前記容器の内面側にZn拡散層を有することを特徴とする熱交換器。
[8] Aluminum fins are brazed to the hydraulic fluid passage in the aluminum container,
Zn concentration in the central part of the plate thickness direction of the fin is 0.4 mass% or less, and has a concentration gradient in which the Zn concentration decreases from the central part toward the surface side,
A heat exchanger comprising a Zn diffusion layer on the inner surface side of the container.

[9]前記Zn拡散層は表面から深部側に向かってZn濃度が低下する濃度勾配を有する前項8に記載の熱交換器。   [9] The heat exchanger according to [8], wherein the Zn diffusion layer has a concentration gradient in which the Zn concentration decreases from the surface toward the deep side.

上記[1]に記載の熱交換器の製造方法によれば、真空ろう付時にフィンから蒸発したZnは容器の内面に付着し拡散してZn拡散層を形成するので、容器の内面にZnの犠牲腐食による防食性能を付与できる。容器内部は半密閉空間であるから、蒸発したZnは容器外に放散しにくく、容器内に留まって内面に付着し易いので効率良くZn拡散層が形成される。また、蒸発したZnが容器外に放散しにくいので、ろう付炉の壁面へのZn汚染が少ない。   According to the method for manufacturing a heat exchanger described in [1] above, Zn evaporated from the fins during vacuum brazing adheres to the inner surface of the container and diffuses to form a Zn diffusion layer. It can provide anticorrosion performance by sacrificial corrosion. Since the inside of the container is a semi-enclosed space, the evaporated Zn is not easily diffused outside the container, and remains in the container and easily adheres to the inner surface, so that a Zn diffusion layer is efficiently formed. Moreover, since evaporated Zn is difficult to diffuse out of the container, there is little Zn contamination on the wall surface of the brazing furnace.

上記[2]に記載の熱交換器の製造方法によれば、表面から深部側に向かって濃度勾配を形成することで心材と表面に電位差が生じ長期的な耐食性を得ることができる。   According to the method for manufacturing a heat exchanger described in [2] above, by forming a concentration gradient from the surface toward the deep side, a potential difference occurs between the core material and the surface, and long-term corrosion resistance can be obtained.

上記[3]に記載の熱交換器の製造方法によれば、フィンからのZnの蒸発と容器へのZn付着および拡散が十分に行われ、効率良くZn拡散層を形成できる。   According to the method for manufacturing a heat exchanger as described in [3] above, the evaporation of Zn from the fins, the attachment and diffusion of Zn to the container are sufficiently performed, and the Zn diffusion layer can be formed efficiently.

上記[4]に記載の熱交換器の製造方法によれば、容器外へのZnの放散が抑制されて、容器内面に効率良くZn拡散層を形成できる。また、ろう付炉の汚染も少ない。   According to the method for producing a heat exchanger described in [4] above, the diffusion of Zn to the outside of the container is suppressed, and a Zn diffusion layer can be efficiently formed on the inner surface of the container. There is also little contamination of the brazing furnace.

上記[5]に記載の熱交換器の製造方法によれば、Zn拡散層形成を促し、ろう付炉の汚染を減少させることができる。   According to the method for producing a heat exchanger described in [5] above, Zn diffusion layer formation can be promoted, and contamination of the brazing furnace can be reduced.

上記[6][7]に記載の熱交換器の製造方法によれば、フィンから蒸発したZnの容器への付着および拡散が促され、効率良くZn拡散層を形成することができる。   According to the method for manufacturing a heat exchanger described in [6] and [7], adhesion and diffusion of Zn evaporated from the fin to the container are promoted, and a Zn diffusion layer can be efficiently formed.

上記[8][9]に記載の熱交換器によれば、容器の内面に形成されたZn拡散層によって内面防食性能を有する。   According to the heat exchanger as described in said [8] and [9], it has inner surface anticorrosion performance by Zn diffusion layer formed in the inner surface of a container.

本発明の方法により製作する熱交換器の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the heat exchanger manufactured by the method of this invention. フィンの板厚方向におけるZn濃度曲線を示す図である。It is a figure which shows the Zn density | concentration curve in the plate | board thickness direction of a fin. 容器の板厚方向におけるZn濃度曲線を示す図である。It is a figure which shows the Zn concentration curve in the plate | board thickness direction of a container.

図1は本発明の方法で作製した熱交換器の一実施形態である。   FIG. 1 shows an embodiment of a heat exchanger produced by the method of the present invention.

熱交換器(1)は、扁平チューブ(10)内の扁平空間を作動液通路(11)とし、この作動液通路(11)内に薄板を曲成したフィン(30)が装入された扁平チューブ型の熱交換器である。前記扁平チューブ(10)は本発明における容器に対応するものであり、外方に突出する通路形成部(21a)(21b)の幅方向の両端から外方に接合用側縁(22a)(23a)(22b)(23b)が延出する同形の2つの半部材(20a)(20b)を向かい合わせにして組み立てたものである。前記扁平チューブ(10)の両端は開口して、作動液通路(11)に連通する開口部(12)となされている。   The heat exchanger (1) has a flat space in the flat tube (10) as a hydraulic fluid passage (11), and a flat plate in which a thin fin (30) is inserted in the hydraulic fluid passage (11). It is a tube-type heat exchanger. The flat tube (10) corresponds to the container according to the present invention, and the joint side edges (22a) (23a) outward from both ends in the width direction of the passage forming portions (21a) (21b) projecting outward. ) (22b) (23b) is an assembly of two identical half members (20a) (20b) facing each other. Both ends of the flat tube (10) are opened to form openings (12) communicating with the hydraulic fluid passage (11).

前記熱交換器(1)は、一方の半部材(20a)の通路形成部(21a)の底(24a)にフィン(30)を置いて他方の半部材(20b)を被せ、接合用側縁(22a)(23a)、(22b)(23b)を重ね合わせるとともにフィン(30)の山部を通路形成部(21b)の天(24b)に当接させた状態に仮組みされる。このように組まれた仮組体を真空ろう付し、重ね合わせた接合用側縁(22a)(23a)、(22b)(23b)を接合するとともに、フィン(30)の谷部および山部をそれぞれ通路形成部(21a)(21b)の底(24a)および天(24b)に接合する。   In the heat exchanger (1), a fin (30) is placed on the bottom (24a) of the passage forming portion (21a) of one half member (20a) and the other half member (20b) is covered with the side edge for joining. (22a), (23a), (22b), and (23b) are overlapped and temporarily assembled in a state in which the peak portion of the fin (30) is in contact with the top (24b) of the passage forming portion (21b). The temporary assembly assembled in this way is vacuum brazed, and the joined side edges (22a) (23a), (22b) (23b) are joined together, and the valleys and peaks of the fin (30) Are joined to the bottom (24a) and the top (24b) of the passage forming portions (21a) and (21b), respectively.

なお、図1において、Ctは扁平チューブ(10)の板厚、Cwは作動液通路(11)の幅、Ftはフィン(30)の板厚である。Fhはフィン(30)の高さでありかつ作動液通路(11)の高さでもある。   In FIG. 1, Ct is the thickness of the flat tube (10), Cw is the width of the hydraulic fluid passage (11), and Ft is the thickness of the fin (30). Fh is the height of the fin (30) and the height of the hydraulic fluid passage (11).

本発明の熱交換器の製造方法は、容器の材料としてZn濃度を規制されたアルミニウムを用いる一方で、フィンの材料として所定量のZnを含有するアルミニウム合金を用い、真空ろう付によって容器とフィンとを接合するとともに、フィンに含まれるZnを蒸発させて蒸発したZnを容器の内面に付着させ板厚の深部方向に拡散させる。これにより、容器の内面側にZn拡散層を形成して犠牲腐食による防食性能を付与する。容器内部、即ち作動液通路は半密閉空間であるから、フィンから蒸発したZnは容器外に放散しにくい。このため、蒸発したZnは容器内に留まって内面に付着し易く、ろう付炉の壁面へのZn汚染が少ない。   The heat exchanger manufacturing method of the present invention uses aluminum whose Zn concentration is regulated as the material of the container, while using an aluminum alloy containing a predetermined amount of Zn as the material of the fin, and vacuum-brazing the container and the fin. The Zn contained in the fins is evaporated and the evaporated Zn is adhered to the inner surface of the container and diffused in the depth direction of the plate thickness. As a result, a Zn diffusion layer is formed on the inner surface side of the container to provide anticorrosion performance by sacrificial corrosion. Since the inside of the container, that is, the hydraulic fluid passage is a semi-enclosed space, Zn evaporated from the fins is difficult to diffuse out of the container. For this reason, the evaporated Zn stays in the vessel and easily adheres to the inner surface, and there is little Zn contamination on the wall surface of the brazing furnace.

上記効果を得るために、容器およびフィンを構成するアルミニウム材料の化学組成を以下のとおりに規定する。   In order to acquire the said effect, the chemical composition of the aluminum material which comprises a container and a fin is prescribed | regulated as follows.

容器の材料にはZn濃度が0.05質量%以下に規制されたアルミニウムを使用する。前記Zn濃度はろう付前の濃度である。ろう付前のZn濃度が0.05質量%を超えると、心材の電位が卑となり防食できなくなり、特にZn濃度が0.03質量%以下に規制されたアルミニウムが好ましい。Zn以外の添加元素やそれらの濃度は熱交換器容器としての強度、熱伝導性、ろう付性、成形性といった特性を具備する限り制限されないが、好ましい容器材料としてAl−Mn系の3000系合金やA3003などの合金を推奨できる。また、容器材料は上記組成のアルミニウムの無垢材であっても良いし、上記組成のアルミニウムを心材とし、この心材の片面または両面にろう材をクラッドしたブレージングシートであっても良い。また心材とろう材との間に中間層を設けたクラッド材であっても良い。ろう材としてはAl−Si−Mg合金を推奨できる。また、容器材料はZnを付着、拡散させる容器の内面側のアルミニウム中のZn濃度が0.05質量%以下に規制されていれば良いので、2層以上のクラッド材を用いる場合の外層や中間層におけるZn濃度は0.05質量%以下であることに限定されない。   As the material of the container, aluminum whose Zn concentration is regulated to 0.05 mass% or less is used. The Zn concentration is a concentration before brazing. If the Zn concentration before brazing exceeds 0.05% by mass, the potential of the core material becomes base and cannot be prevented from corrosion, and aluminum whose Zn concentration is regulated to 0.03% by mass or less is particularly preferable. Additive elements other than Zn and their concentrations are not limited as long as they have properties such as strength, heat conductivity, brazing, and formability as a heat exchanger container, but as a preferable container material, an Al-Mn 3000 series alloy And alloys such as A3003 can be recommended. The container material may be a solid aluminum material having the above composition, or may be a brazing sheet in which aluminum having the above composition is used as a core material and one or both surfaces of the core material are clad with a brazing material. Further, a clad material in which an intermediate layer is provided between the core material and the brazing material may be used. As the brazing material, an Al—Si—Mg alloy can be recommended. In addition, since the container material only needs to be regulated to 0.05% by mass or less of the Zn concentration in the aluminum on the inner surface side of the container on which Zn is adhered and diffused, the outer layer or intermediate layer when using two or more layers of clad material The Zn concentration in the layer is not limited to 0.05% by mass or less.

フィンの材料にはZn濃度が0.5〜2.5質量%を含有するアルミニウムを使用する。前記Zn濃度はろう付前の濃度である。ろう付前のZn濃度が0.5質量%未満では容器外に放散してしまい、容器内面に防食効果を有するZn拡散層を形成するに足りる量のZnを付着させることができない。一方、2.5質量%を超える高濃度のZn含有は不経済であるし、加工性が低下するのでフィンへの曲成が困難になる。特に好ましいZn濃度は0.7〜2.0質量%である。また、Zn以外の添加元素は耐食性や加工性に悪影響を及ぼさない限り制限されない。好ましいフィン材料は高温強度が得られるAl−Mn系合金である。また、Inは電位を卑にして耐食性を低下させるので、Inを含有しないアルミニウムであることが好ましい。   As the fin material, aluminum containing Zn in a concentration of 0.5 to 2.5% by mass is used. The Zn concentration is a concentration before brazing. If the Zn concentration before brazing is less than 0.5% by mass, the Zn diffuses out of the container, and an amount of Zn sufficient to form a Zn diffusion layer having an anticorrosive effect cannot be deposited on the inner surface of the container. On the other hand, containing Zn at a high concentration exceeding 2.5% by mass is uneconomical, and the workability is lowered, so that it is difficult to bend into fins. A particularly preferable Zn concentration is 0.7 to 2.0% by mass. Further, additive elements other than Zn are not limited as long as they do not adversely affect corrosion resistance and workability. A preferred fin material is an Al—Mn alloy that provides high-temperature strength. Further, since In lowers the potential and lowers the corrosion resistance, it is preferably aluminum that does not contain In.

図2はろう付後のフィン(30)の板厚(Ft)方向におけるZn濃度曲線(FZn)を示している。フィン(30)中のZnは表面に近い部分ほど蒸発量が多いので、ろう付後のZn濃度はフィン(30)の板厚(Ft)方向の中央部において最も高く、中央部から表面側に向かって濃度が低下する濃度勾配を生じ、Zn濃度は表面において最も低くなる。そして、本発明においては板厚(Ft)方向の中央部におけるZn濃度が0.4質量%以下であることを要する。Zn濃度が最大となる中央部で0.4質量%以下であるから、フィン全体としてもZn濃度は0.4質量%以下である。ろう付後のZn濃度を0.4質量%以下とするのは、0.4質量%を超えるとフィン中央が腐食してしまい、フィンとしての強度を維持することができなくなるためである。フィン(30)の板厚方向の中央部における好ましいZn濃度は0.2質量%以下である。 FIG. 2 shows a Zn concentration curve (F Zn ) in the plate thickness (Ft) direction of the fin (30) after brazing. Since Zn in the fin (30) is evaporated closer to the surface, the Zn concentration after brazing is highest in the central portion in the plate thickness (Ft) direction of the fin (30), and from the central portion to the surface side. A concentration gradient with decreasing concentration is produced, and the Zn concentration is lowest on the surface. In the present invention, the Zn concentration at the center in the thickness (Ft) direction is required to be 0.4% by mass or less. Since the Zn concentration is 0.4% by mass or less at the center where the Zn concentration is maximum, the Zn concentration is 0.4% by mass or less for the entire fin. The reason why the Zn concentration after brazing is 0.4% by mass or less is that if it exceeds 0.4% by mass, the center of the fin is corroded and the strength as a fin cannot be maintained. A preferable Zn concentration in the central portion of the fin (30) in the plate thickness direction is 0.2% by mass or less.

図3は、ろう付後の容器(扁平チューブ(10))の板厚(Ct)方向におけるZn濃度曲線(CZn)の一例を示している。容器(10)の内面にはフィン(30)から蒸発したZnが付着しかつ板厚の深部方向に拡散してZn拡散層(13)が形成される。容器(10)のZn拡散層は、Zn濃度が表面において最も高く、深部側に向かってZn濃度が低下する濃度勾配が形成されていることが好ましい。このような濃度勾配が好ましい理由は、表面から深部にかけて濃度勾配ができることで心材と表面に電位差を形成することができ、容器に貫通孔食が発生するのを防止することができるからである。また、容器(10)の表面における好ましいZn濃度は0.06〜0.7質量%であり、特に好ましいZn濃度は0.1〜0.6質量%である。また、前記Zn拡散層(13)の層厚(d)をZn濃度がろう付前の容器のZn濃度に等しくなる、即ち拡散量が0となる深さとして定義すると、Zn拡散層(13)の層厚(d)は2〜100μmが好ましく、特に5〜80μmが好ましい。 FIG. 3 shows an example of the Zn concentration curve (C Zn ) in the thickness (Ct) direction of the brazed container (flat tube (10)). Zn evaporated from the fin (30) adheres to the inner surface of the container (10) and diffuses in the depth direction of the plate thickness to form a Zn diffusion layer (13). The Zn diffusion layer of the container (10) preferably has a concentration gradient in which the Zn concentration is highest on the surface and the Zn concentration decreases toward the deeper side. The reason why such a concentration gradient is preferable is that a potential difference can be formed between the core material and the surface by forming the concentration gradient from the surface to the deep portion, and it is possible to prevent the occurrence of through pitting corrosion in the container. Moreover, the preferable Zn concentration in the surface of a container (10) is 0.06-0.7 mass%, and especially preferable Zn concentration is 0.1-0.6 mass%. Further, when the layer thickness (d) of the Zn diffusion layer (13) is defined as the depth at which the Zn concentration is equal to the Zn concentration of the container before brazing, that is, the diffusion amount is 0, the Zn diffusion layer (13) The layer thickness (d) is preferably 2 to 100 μm, particularly preferably 5 to 80 μm.

上述したように、ろう付後の板厚方向におけるZnの濃度勾配はフィン(30)と容器(10)とでは逆転する。このような板厚方向において逆転した濃度勾配の効果はフィン材を腐食させながら、容器材の孔食を防止し、組み合わせることで長期的に容器材料を防食することが可能となる。   As described above, the Zn concentration gradient in the plate thickness direction after brazing is reversed between the fin (30) and the container (10). Such an effect of the concentration gradient reversed in the plate thickness direction prevents the pitting corrosion of the container material while corroding the fin material, and it becomes possible to prevent the container material from being corroded for a long time by combining them.

[ろう付条件]
真空ろう付の温度条件は、容器とフィンとが良好にろう付されかつろう付後のフィンのZn濃度が規定した濃度と濃度勾配になる限り限定されない。Znは570℃以上で蒸発するので、フィンから十分にZnを蒸発させるには570℃以上の温度を10〜60分保持することが好ましい。570℃以上の保持時間が10分未満ではフィンからの蒸発量および容器内面への付着量および拡散量が少なくZn拡散層による防食効果も小さくなる。また、570℃以上で60分保持すれば十分にZnを蒸発させることができる。特に好ましい温度条件は580℃以上の温度を15〜50分保持することである。
[Brazing conditions]
The temperature condition of the vacuum brazing is not limited as long as the container and the fin are well brazed and the Zn concentration of the fin after brazing becomes a prescribed concentration and concentration gradient. Since Zn evaporates at 570 ° C. or higher, it is preferable to maintain a temperature of 570 ° C. or higher for 10 to 60 minutes in order to sufficiently evaporate Zn from the fin. When the holding time of 570 ° C. or higher is less than 10 minutes, the amount of evaporation from the fins, the amount of adhesion to the inner surface of the container and the amount of diffusion are small, and the anticorrosion effect by the Zn diffusion layer is also small. Moreover, if it hold | maintains at 570 degreeC or more for 60 minutes, Zn can fully be evaporated. A particularly preferred temperature condition is to maintain a temperature of 580 ° C. or higher for 15 to 50 minutes.

また、ろう付時の真空プロファイルについては、フィンからのZn蒸発と容器内面へのの付着、拡散を効率良く行うために、蒸発段階と付着、拡散段階とでそれぞれに適した圧力に設定することが好ましい。ろう材が十分に溶融するまでは高真空が必要であるが、ろう材が溶融した後は高真空を必要としない。また、Znの蒸発には高真空が必要であるが、容器内面への付着、拡散は低真空または常圧の方が効率が良い。従って、ろう材が溶融するまでの期間を高真空とし、ろう材が溶融した後に昇圧して低真空または常圧にすることが好ましい。ろう材が溶融するまでの好ましい真空度は1×10−3〜1×10−5Paであり、特に9×10−4〜5×10−5Paが好ましい。また、ろう材溶融後の低真空は10Pa以上が好ましく、特に50Pa〜常圧が好ましい。このうようにろう付時の真空度を管理することでZnを容器の板厚方向の深くまで拡散させて防食効果の高いZn拡散層を効率良く形成することができる。 In addition, the vacuum profile during brazing should be set to a pressure suitable for each of the evaporation stage, the adhesion, and the diffusion stage in order to efficiently perform the Zn evaporation from the fin and the adhesion and diffusion to the inner surface of the container. Is preferred. A high vacuum is required until the brazing material is sufficiently melted, but no high vacuum is required after the brazing material is melted. Moreover, high vacuum is required for the evaporation of Zn, but adhesion and diffusion to the inner surface of the container are more efficient at low vacuum or normal pressure. Accordingly, it is preferable that the period until the brazing material is melted is set to a high vacuum, and the pressure is increased to a low vacuum or normal pressure after the brazing material is melted. The preferable degree of vacuum until the brazing material is melted is 1 × 10 −3 to 1 × 10 −5 Pa, and particularly preferably 9 × 10 −4 to 5 × 10 −5 Pa. Further, the low vacuum after melting the brazing material is preferably 10 Pa or more, particularly preferably 50 Pa to normal pressure. By managing the degree of vacuum during brazing as described above, Zn can be diffused deep in the thickness direction of the container, and a Zn diffusion layer having a high anticorrosion effect can be efficiently formed.

熱交換器の仮組体において、容器は作動液通路に連通する開口部を有する半閉鎖空間を形成している。開口部の位置や形状は熱交換器の種類によって多様であり、例えば図1に示した扁平チューブ(10)では両端部が開口部(12)である。フィンから蒸発したZnを容器内面に効率良く付着、拡散させるには、蒸発したZnをできる限り開口部から容器外に逃がさないことが好ましい。また、ろう付炉内をZnで汚染しないためにもZnを容器外への放散を抑制することが好ましい。このため、容器の開口部の開口面積(S)は小さいことが好ましく、10cm以下であることが好ましい。特に好ましい開口部の開口面積(S)は8cm以下である。また、容器の内部容量に対して開口面積(S)は小さい方が好ましい。 In the temporary assembly of the heat exchanger, the container forms a semi-closed space having an opening communicating with the hydraulic fluid passage. The position and shape of the opening vary depending on the type of heat exchanger. For example, in the flat tube (10) shown in FIG. 1, both ends are openings (12). In order to efficiently deposit and diffuse Zn evaporated from the fins on the inner surface of the container, it is preferable not to let the evaporated Zn escape from the opening to the outside as much as possible. In order not to contaminate the brazing furnace with Zn, it is preferable to suppress the diffusion of Zn out of the container. For this reason, it is preferable that the opening area (S) of the opening part of a container is small, and it is preferable that it is 10 cm < 2 > or less. A particularly preferable opening area (S) of the opening is 8 cm 2 or less. Moreover, it is preferable that the opening area (S) is small with respect to the internal volume of the container.

なお、前記開口部の開口面積(S)とは容器に冷却水を流すための前後のパイプ等の断面積のことであり、パイプ等の通水口がない場合は、開口部の内断面積からフィンの断面積を差し引いた実質的な開口面積である。   The opening area (S) of the opening means the cross-sectional area of the pipes before and after flowing cooling water to the container. If there is no water inlet such as a pipe, the opening area (S) It is a substantial opening area obtained by subtracting the cross-sectional area of the fin.

また、ろう付時における容器の開口面積(S)は、開口部の一部を塞ぐことによって実質的に小さくすることができる。閉塞手段は、開口部に当て板をしたりキャップを被せる等を適宜選ぶことができる。このようにろう付時に開口部の一部を塞ぐことで容器内面へのZnの付着、拡散を促して効率良くZn拡散層を形成することができ、かつろう付炉の汚染も減少させることができる。さらに、開口部の内断面積の大きい容器に対しても開口部の一部を塞ぐことで本発明の方法を適用して炉を汚染することなく容器内面に防食性能を付与することができる。   Further, the opening area (S) of the container at the time of brazing can be substantially reduced by closing a part of the opening. The closing means can be selected as appropriate by putting a pad or covering a cap on the opening. Thus, by blocking a part of the opening during brazing, Zn can be deposited and diffused on the inner surface of the container to efficiently form a Zn diffusion layer, and contamination of the brazing furnace can be reduced. it can. Furthermore, even if the container has a large inner cross-sectional area, the method of the present invention can be applied by blocking a part of the opening to give corrosion resistance to the inner surface of the container without contaminating the furnace.

[熱交換器のろう付]
図1に参照される扁平チューブ型の熱交換器を仮組みしてろう付を行った。
[Brazing heat exchanger]
The flat tube type heat exchanger referred to FIG. 1 was temporarily assembled and brazed.

(実施例1)
扁平チューブ(10)を構成する半部材(20a)(20b)の材料は、A3003からなる心材の片面にAl−Si−Mg合金からなるろう材をクラッドした総厚(Ct)0.8mm、クラッド率6%のブレージングシートを使用した。前記ブレージングシートのろう材が作動液通路(11)の壁面となる方向にプレス成形し、通路形成部(21a)(21b)の両側に接合用側縁(22a)(23a)(22b)(23b)が延出する半部材(20a)(20b)を作製した。前記通路形成部通路形成部(21a)(21b)によって形成される作動液通路(11)の幅(Cw)は70mmである。フィン(30)を構成する材料は、A3203に1質量%Znを添加したアルミニウム合金からなる板厚(Ft):0.3mmの薄板を使用した。前記薄板を曲成してフィンピッチ(Fp):2.4mm、フィン高さ(Fh):6mmの波形のフィン(30)を作製した。
Example 1
The material of the half members (20a) (20b) constituting the flat tube (10) is a total thickness (Ct) of 0.8 mm, in which a brazing material made of an Al—Si—Mg alloy is clad on one side of a core material made of A3003. A brazing sheet with a rate of 6% was used. The brazing material of the brazing sheet is press-molded in the direction to be the wall surface of the hydraulic fluid passage (11), and the joining side edges (22a) (23a) (22b) (23b) are formed on both sides of the passage forming portions (21a) (21b). The semi-members (20a) and (20b) in which) extend were produced. The width (Cw) of the hydraulic fluid passage (11) formed by the passage formation portions (21a) and (21b) is 70 mm. As a material constituting the fin (30), a thin plate made of an aluminum alloy in which 1% by mass of Zn was added to A3203 (Ft): 0.3 mm was used. The thin plate was bent to produce a corrugated fin (30) having a fin pitch (Fp) of 2.4 mm and a fin height (Fh) of 6 mm.

2枚の半部材(20a)(20b)の間にフィン(30)を挟み付けて両端に開口部を(12)を有する扁平チューブ型の熱交換器(1)を仮組みした。この仮組体にはパイプが取り付けられておりその両端の開口部(12)の合計の開口面積(S)は6cmである。 A flat tube heat exchanger (1) having fins (30) sandwiched between two half members (20a) and (20b) and having openings (12) at both ends was temporarily assembled. Pipes are attached to the temporary assembly, and the total opening area (S) of the openings (12) at both ends thereof is 6 cm 2 .

前記仮組体を炉内で1×10−5Paの真空中で600℃×20分加熱し、その後炉内で実体温度が200℃に低下するまで自然冷却した。このろう付の温度履歴における570℃以上の保持時間は30分であった。 The temporary assembly was heated in a furnace at 600 ° C. for 20 minutes in a vacuum of 1 × 10 −5 Pa, and then naturally cooled in the furnace until the actual temperature decreased to 200 ° C. The holding time of 570 ° C. or higher in the brazing temperature history was 30 minutes.

ろう付した熱交換器(1)において、重ね合わせた接合用側縁(22a)(23a)(22b)(23b)、通路形成部(21a)の底(24a)とフィン(30)、通路形成部(21b)の天(24b)とフィン(30)はそれぞれ良好に接合されていることを確認した。   In the brazed heat exchanger (1), the overlapping joining side edges (22a) (23a) (22b) (23b), the bottom (24a) and fins (30) of the passage forming part (21a), the passage formation It was confirmed that the top (24b) and the fin (30) of the part (21b) were joined well.

(実施例2)
実施例1と同じ仮組体を炉内で1×10−5Paの真空中で600℃×20分加熱し、その後炉内で実体温度が200℃に低下するまで自然冷却した。このろう付の温度履歴における570℃以上の保持時間は30分であり、570℃以上の高温を15分保持した時点で炉内を常圧に戻した。
(Example 2)
The same temporary assembly as in Example 1 was heated in a furnace at 600 ° C. for 20 minutes in a vacuum of 1 × 10 −5 Pa, and then naturally cooled in the furnace until the actual temperature decreased to 200 ° C. In this brazing temperature history, the holding time of 570 ° C. or higher was 30 minutes, and when the high temperature of 570 ° C. or higher was held for 15 minutes, the inside of the furnace was returned to normal pressure.

ろう付した熱交換器(10)は重ね合わせた接合用側縁(22a)(23a)(22b)(23b)、通路形成部(21a)の底(24a)とフィン(30)、通路形成部(21b)の天(24b)とフィン(30)はそれぞれ良好に接合されていることを確認した。   The brazed heat exchanger (10) is composed of stacked side edges (22a) (23a) (22b) (23b), the bottom (24a) and fins (30) of the passage forming portion (21a), the passage forming portion It was confirmed that the top (24b) and the fin (30) of (21b) were joined well.

(比較例)
フィン(30)の材料としてA3203(Zn濃度:0質量%)を用いたことを除き、実施例1と同じ条件で熱交換器(1)を真空ろう付した。
(Comparative example)
The heat exchanger (1) was vacuum brazed under the same conditions as in Example 1 except that A3203 (Zn concentration: 0 mass%) was used as the material of the fin (30).

ろう付した熱交換器(10)は重ね合わせた接合用側縁(22a)(23a)(22b)(23b)、通路形成部(21a)の底(24a)とフィン(30)、通路形成部(21b)の天(24b)とフィン(30)はそれぞれ良好に接合されていることを確認した。   The brazed heat exchanger (10) is composed of stacked side edges (22a) (23a) (22b) (23b), the bottom (24a) and fins (30) of the passage forming portion (21a), the passage forming portion It was confirmed that the top (24b) and the fin (30) of (21b) were joined well.

[ろう付後のZn濃度]
上記の実施例1、2および比較例でろう付した熱交換器(1)のフィン(30)を高さ方向の中央部で切断し、板厚(Ft)方向におけるZn濃度を測定した。また、扁平チューブ(10)は通路形成部(21a)のフィン接合部の中間部で切断し、チューブ内部の表面から板厚(Ct)方向におけるZn濃度を測定した。測定位置はそれぞれの表面からの深さ(mm)で表すものとし、これらの位置における測定値を表1に示す。
[Zn concentration after brazing]
The fin (30) of the heat exchanger (1) brazed in Examples 1 and 2 and the comparative example was cut at the center in the height direction, and the Zn concentration in the plate thickness (Ft) direction was measured. Moreover, the flat tube (10) was cut | disconnected in the intermediate part of the fin junction part of a channel | path formation part (21a), and Zn density | concentration in a plate | board thickness (Ct) direction was measured from the surface inside a tube. The measurement positions are represented by the depth (mm) from each surface, and the measured values at these positions are shown in Table 1.

[耐食性試験]
ろう付した熱交換器(1)の作動液通路(11)にOY水を循環させるOY水内循環腐食試験を実施した。OY水は、Cl:195ppm、SO42−:60ppm、Fe3+:30ppmおよびCu2+:1ppmを含む水溶液である。そして、80℃の前記OY水を8時間内循環させ、続いて常温のOY水を16時間内循環させる内循環を1サイクルとし、このサイクルを20サイクル繰り返して合計480時間の腐食試験を実施した。試験後に熱交換器(1)を切断し、扁平チューブ(10)の内面の腐食の状態を観察して下記の基準で評価した。評価結果を表1に示す。
[Corrosion resistance test]
An OY water corrosion corrosion test was conducted in which OY water was circulated through the hydraulic fluid passage (11) of the brazed heat exchanger (1). The OY water is an aqueous solution containing Cl : 195 ppm, SO 4 2− : 60 ppm, Fe 3+ : 30 ppm and Cu 2+ : 1 ppm. Then, the above-mentioned OY water at 80 ° C. was circulated within 8 hours, and then the internal circulation in which OY water at normal temperature was circulated within 16 hours was defined as one cycle, and this cycle was repeated 20 times, and the corrosion test was conducted for a total of 480 hours. . After the test, the heat exchanger (1) was cut and the state of corrosion on the inner surface of the flat tube (10) was observed and evaluated according to the following criteria. The evaluation results are shown in Table 1.

◎:最大腐食深さが200μm以下
○:最大腐食深さが200μm超300μm未満
×:最大腐食深さが300μm以上
A: Maximum corrosion depth is 200 μm or less ○: Maximum corrosion depth is more than 200 μm and less than 300 μm ×: Maximum corrosion depth is 300 μm or more

Figure 0006031333
Figure 0006031333

表1に示したように、実施例1、2の熱交換器はフィン中のZnが蒸発して板厚方向の中央部から表面に向かって濃度が低下する濃度勾配を形成するとともに、扁平チューブにはフィンと逆方向の濃度勾配をもつZn拡散層が形成されることを確認した。耐食性試験の結果は、チューブ内面に形成したZn拡散層が防食効果を発揮していることを示している。また、実施例1、2は、ろう材溶融後の真空度の低下がZnの拡散を促進して防食効果の高いZn拡散層を形成しうることを示している。   As shown in Table 1, in the heat exchangers of Examples 1 and 2, Zn in the fins evaporates to form a concentration gradient in which the concentration decreases from the central part in the thickness direction toward the surface, and the flat tube It was confirmed that a Zn diffusion layer having a concentration gradient in the direction opposite to that of the fin was formed. The result of the corrosion resistance test indicates that the Zn diffusion layer formed on the inner surface of the tube exhibits the anticorrosion effect. Examples 1 and 2 show that a decrease in the degree of vacuum after melting the brazing filler metal can promote Zn diffusion and form a Zn diffusion layer having a high anticorrosion effect.

本発明は内部防食を必要とするアルミニウム熱交換器の製造に利用できる。   The present invention can be used to manufacture aluminum heat exchangers that require internal corrosion protection.

1…熱交換器
10…扁平チューブ(容器)
11…作動液通路
12…開口部
13…Zn拡散層
20a、20b…半部材(容器)
21a、21b…通路形成部
30…フィン
Ft…フィン板厚
Ct…扁平チューブ(容器)の板厚
Zn…フィンのZn濃度曲線
Zn…容器のZn濃度曲線
1 ... Heat exchanger
10 ... Flat tube (container)
11 ... Working fluid passage
12 ... Opening
13 ... Zn diffusion layer
20a, 20b ... Half member (container)
21a, 21b ... passage forming part
30 ... Fin Ft ... Fin plate thickness Ct ... Flat tube (container) plate thickness F Zn ... Fin Zn concentration curve C Zn ... Zn concentration curve of the container

Claims (18)

内部が作動液通路となり、該作動液通路に連通する開口部を有する容器は、少なくとも内面側がZn濃度:0.05質量%以下のアルミニウムで構成され、前記容器をZn濃度:0.5〜2.5質量%のアルミニウムからなるフィンを装入した状態で仮組し、
前記仮組体を、温度履歴において570℃以上を保持する時間が10〜60分の真空ろう付をして、開口部を除く容器の縁を接合するとともに前記フィンを容器の内面に接合し、
ろう付時の加熱によってフィンからZnを蒸発させて、ろう付後のフィンの板厚方向の中央部におけるZn濃度を0.4質量%以下とするとともに、中央部から表面側に向かってZn濃度が低下する濃度勾配を生じさせ、
前記フィンから蒸発したZnを容器の内面に付着させるとともに容器の板厚の深部方向に拡散させてZn拡散層を形成することを特徴とする熱交換器の製造方法。
At least the inner surface side of a container having an opening which is a hydraulic fluid passage and communicates with the hydraulic fluid passage is made of aluminum having a Zn concentration of 0.05% by mass or less, and the container has a Zn concentration of 0.5 to 2 Tentatively assembled with fins made of 5 mass% aluminum,
The temporary assembly is vacuum brazed for 10 to 60 minutes in a temperature history to maintain 570 ° C. or higher, and the edges of the container excluding the opening are joined and the fins are joined to the inner surface of the container,
Zn is evaporated from the fin by heating at the time of brazing, and the Zn concentration in the central portion in the plate thickness direction of the fin after brazing is 0.4 mass% or less, and the Zn concentration from the central portion toward the surface side Produces a concentration gradient that decreases,
A method of manufacturing a heat exchanger, characterized in that Zn evaporated from the fins adheres to the inner surface of a container and diffuses in the depth direction of the plate thickness of the container to form a Zn diffusion layer.
前記Zn拡散層は表面から深部側に向かってZn濃度が低下する濃度勾配を有する請求項1に記載の熱交換器の製造方法。   The method for manufacturing a heat exchanger according to claim 1, wherein the Zn diffusion layer has a concentration gradient in which a Zn concentration decreases from a surface toward a deeper side. 前記開口部の開口面積が10cm未満である請求項1または2に記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger as claimed in claim 1 or 2 opening area is less than 10 cm 2 of the opening. 前記開口部の一部を塞いで真空ろう付する請求項1〜のいずれかに記載の熱交換器の製造方法。 The method of manufacturing the heat exchanger according to any one of claims 1 to 3, with the vacuum brazing block the portion of the opening. 前記真空ろう付の温度履歴において、ろう材溶融後に炉内を昇圧する請求項1〜のいずれかに記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to any one of claims 1 to 4 , wherein in the temperature history of the vacuum brazing, the pressure in the furnace is increased after melting the brazing material. ろう材溶融後に炉内を常圧まで昇圧する請求項に記載の熱交換器の製造方法。 The method for producing a heat exchanger according to claim 5 , wherein the inside of the furnace is increased to normal pressure after the brazing filler metal is melted. 内部が作動液通路となり、該作動液通路に連通する開口部を有する容器は、少なくとも内面側がZn濃度:0.05質量%以下のアルミニウムで構成され、前記容器をZn濃度:0.5〜2.5質量%のアルミニウムからなるフィンを装入した状態で仮組し、
前記仮組体を、前記開口部の一部を塞いで真空ろう付して開口部を除く容器の縁を接合するとともに前記フィンを容器の内面に接合し、
ろう付時の加熱によってフィンからZnを蒸発させて、ろう付後のフィンの板厚方向の中央部におけるZn濃度を0.4質量%以下とするとともに、中央部から表面側に向かってZn濃度が低下する濃度勾配を生じさせ、
前記フィンから蒸発したZnを容器の内面に付着させるとともに容器の板厚の深部方向に拡散させてZn拡散層を形成することを特徴とする熱交換器の製造方法。
At least the inner surface side of a container having an opening which is a hydraulic fluid passage and communicates with the hydraulic fluid passage is made of aluminum having a Zn concentration of 0.05% by mass or less, and the container has a Zn concentration of 0.5 to 2 Tentatively assembled with fins made of 5 mass% aluminum,
The temporary assembly is sealed with a part of the opening and brazed in vacuum to join the edge of the container excluding the opening and join the fin to the inner surface of the container,
Zn is evaporated from the fin by heating at the time of brazing, and the Zn concentration in the central portion in the plate thickness direction of the fin after brazing is 0.4 mass% or less, and the Zn concentration from the central portion toward the surface side Produces a concentration gradient that decreases,
A method of manufacturing a heat exchanger, characterized in that Zn evaporated from the fins adheres to the inner surface of a container and diffuses in the depth direction of the plate thickness of the container to form a Zn diffusion layer.
前記Zn拡散層は表面から深部側に向かってZn濃度が低下する濃度勾配を有する請求項に記載の熱交換器の製造方法。 The said Zn diffused layer is a manufacturing method of the heat exchanger of Claim 7 which has a density | concentration gradient from which the Zn density | concentration falls toward the deep part side from the surface. 前記真空ろう付の温度履歴において、570℃以上を保持する時間が10〜60分である請求項7または8に記載の熱交換器の製造方法。 The method for producing a heat exchanger according to claim 7 or 8 , wherein in the temperature history of the vacuum brazing, a time for maintaining 570 ° C or higher is 10 to 60 minutes. 前記開口部の開口面積が10cm未満である請求項7〜9のいずれかに記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to claim 7 , wherein an opening area of the opening is less than 10 cm 2 . 前記真空ろう付の温度履歴において、ろう材溶融後に炉内を昇圧する請求項7〜10のいずれかに記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to any one of claims 7 to 10 , wherein in the temperature history of the vacuum brazing, the pressure in the furnace is increased after melting the brazing material. ろう材溶融後に炉内を常圧まで昇圧する請求項11に記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to claim 11 , wherein the interior of the furnace is increased to normal pressure after melting the brazing filler metal. 内部が作動液通路となり、該作動液通路に連通する開口部を有する容器は、少なくとも内面側がZn濃度:0.05質量%以下のアルミニウムで構成され、前記容器をZn濃度:0.5〜2.5質量%のアルミニウムからなるフィンを装入した状態で仮組し、
前記仮組体を、温度履歴においてろう材溶融後に炉内を昇圧する真空ろう付をして開口部を除く容器の縁を接合するとともに前記フィンを容器の内面に接合し、
ろう付時の加熱によってフィンからZnを蒸発させて、ろう付後のフィンの板厚方向の中央部におけるZn濃度を0.4質量%以下とするとともに、中央部から表面側に向かってZn濃度が低下する濃度勾配を生じさせ、
前記フィンから蒸発したZnを容器の内面に付着させるとともに容器の板厚の深部方向に拡散させてZn拡散層を形成することを特徴とする熱交換器の製造方法。
At least the inner surface side of a container having an opening which is a hydraulic fluid passage and communicates with the hydraulic fluid passage is made of aluminum having a Zn concentration of 0.05% by mass or less, and the container has a Zn concentration of 0.5 to 2 Tentatively assembled with fins made of 5 mass% aluminum,
The temporary assembly is vacuum brazed to increase the pressure inside the furnace after melting the brazing material in the temperature history, and the edge of the container excluding the opening is joined, and the fin is joined to the inner surface of the container,
Zn is evaporated from the fin by heating at the time of brazing, and the Zn concentration in the central portion in the plate thickness direction of the fin after brazing is 0.4 mass% or less, and the Zn concentration from the central portion toward the surface side Produces a concentration gradient that decreases,
A method of manufacturing a heat exchanger, characterized in that Zn evaporated from the fins adheres to the inner surface of a container and diffuses in the depth direction of the plate thickness of the container to form a Zn diffusion layer.
前記Zn拡散層は表面から深部側に向かってZn濃度が低下する濃度勾配を有する請求項13に記載の熱交換器の製造方法。 The method of manufacturing a heat exchanger according to claim 13 , wherein the Zn diffusion layer has a concentration gradient in which the Zn concentration decreases from the surface toward the deep side. 前記真空ろう付の温度履歴において、570℃以上を保持する時間が10〜60分である請求項13または14に記載の熱交換器の製造方法。 The method for producing a heat exchanger according to claim 13 or 14 , wherein, in the temperature history of the vacuum brazing, a time for maintaining 570 ° C or higher is 10 to 60 minutes. 前記開口部の開口面積が10cm未満である請求項13〜15のいずれかに記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger as claimed in any one of claims 13 to 15 opening area of the opening is less than 10 cm 2. 前記開口部の一部を塞いで真空ろう付する請求項13〜16のいずれかに記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to any one of claims 13 to 16 , wherein a part of the opening is closed and vacuum brazed. ろう材溶融後に炉内を常圧まで昇圧する請求項17に記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to claim 17 , wherein the pressure in the furnace is increased to normal pressure after melting the brazing filler metal.
JP2012249373A 2012-11-13 2012-11-13 Manufacturing method of heat exchanger Active JP6031333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012249373A JP6031333B2 (en) 2012-11-13 2012-11-13 Manufacturing method of heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012249373A JP6031333B2 (en) 2012-11-13 2012-11-13 Manufacturing method of heat exchanger

Publications (2)

Publication Number Publication Date
JP2014097511A JP2014097511A (en) 2014-05-29
JP6031333B2 true JP6031333B2 (en) 2016-11-24

Family

ID=50939987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012249373A Active JP6031333B2 (en) 2012-11-13 2012-11-13 Manufacturing method of heat exchanger

Country Status (1)

Country Link
JP (1) JP6031333B2 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732872A (en) * 1980-08-07 1982-02-22 Mitsubishi Alum Co Ltd Production of heat exchanger made of al alloy
JPS5764472A (en) * 1980-10-06 1982-04-19 Mitsubishi Alum Co Ltd Manufacturing of core section of heat exchanger made of aluminum alloy
JPS5986899A (en) * 1982-11-09 1984-05-19 Nippon Radiator Co Ltd Corrosion preventing treatment for aluminum heat exchanger
JPS59163777U (en) * 1983-04-15 1984-11-02 株式会社日本アルミ Heat exchanger
JPS61259871A (en) * 1985-05-13 1986-11-18 Mitsubishi Heavy Ind Ltd Production of aluminum alloy heat exchanger
JPH06100435B2 (en) * 1986-03-05 1994-12-12 三菱アルミニウム株式会社 Heat exchanger manufacturing method
JP2690889B2 (en) * 1986-11-17 1997-12-17 古河電気工業株式会社 Manufacturing method of aluminum heat exchanger
JPH06248380A (en) * 1993-02-23 1994-09-06 Mitsubishi Heavy Ind Ltd Laminated heat exchanger and its production
JP3371932B2 (en) * 1995-02-06 2003-01-27 昭和電工株式会社 Heat exchanger and method of manufacturing the same
JP3580942B2 (en) * 1996-04-05 2004-10-27 昭和電工株式会社 Flat tubes for heat exchangers and heat exchangers equipped with the tubes
JPH10288495A (en) * 1997-04-11 1998-10-27 Furukawa Electric Co Ltd:The Aluminum alloy fin material for heat-exchanger
JP3704632B2 (en) * 1997-12-24 2005-10-12 三菱アルミニウム株式会社 Fin material for aluminum heat exchanger and method for manufacturing aluminum heat exchanger
JPH11309566A (en) * 1998-04-23 1999-11-09 Mitsubishi Alum Co Ltd Manufacture of heat exchanger having excellent corrosion resistance

Also Published As

Publication number Publication date
JP2014097511A (en) 2014-05-29

Similar Documents

Publication Publication Date Title
JP6115892B2 (en) Aluminum alloy brazing sheet for fins, heat exchanger and heat exchanger manufacturing method
EP1475598A2 (en) Heat exchange tube
JP5918089B2 (en) Aluminum alloy heat exchanger and method of manufacturing the same
JP2006022405A (en) Composite material made of high-strength aluminum alloy
US20130043013A1 (en) Heat Exchanger and Method for Producing Heat Exchanger
JP2006064366A (en) Heat exchanger and method of manufacturing the same
JP2009058139A (en) Member for aluminum-made heat exchanger having superior corrosion resistance
JP5710946B2 (en) Flat tubes and heat exchangers for heat exchangers
JP2010197002A (en) Tube for plate bending-type aluminum heat exchanger, aluminum heat exchanger, and method of manufacturing tube for plate bending-type aluminum heat exchanger
JP4236183B2 (en) Aluminum alloy clad material for automotive heat exchanger
JP4236185B2 (en) Aluminum alloy clad material for automotive heat exchanger
JP2017020108A (en) Aluminum alloy clad material and manufacturing method therefor and heat exchanger using the aluminum alloy clad material
JP5597513B2 (en) Aluminum clad material for heat exchanger
JP5944626B2 (en) Manufacturing method of heat exchanger
JP6031333B2 (en) Manufacturing method of heat exchanger
JP5963112B2 (en) Aluminum heat exchanger for room air conditioner
JP5302114B2 (en) Aluminum alloy brazing sheet for vacuum brazing
JP4236184B2 (en) Aluminum alloy clad material for automotive heat exchanger
US20060234082A1 (en) Aluminum alloy brazing material, brazing member, brazed article and brazing method therefor using said material, brazing heat exchanginh tube, heat exchanger and manufacturing method thereof using said brazing heat exchanging tube
JP2004076145A (en) Sacrificial material for heat exchanger, and clad material made of aluminum alloy for heat exchanger
JP2005161352A (en) Heat exchanger made of aluminum alloy and manufacturing method for the same
JP4236187B2 (en) Aluminum alloy clad material for automotive heat exchanger
JP2018044693A (en) Precoat fin and heat exchanger prepared therewith
JP5219550B2 (en) Aluminum alloy brazing sheet for vacuum brazing
JP2004339582A (en) Tube for heat exchanger and heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161024

R150 Certificate of patent or registration of utility model

Ref document number: 6031333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350