JP6020223B2 - Overcurrent detection circuit - Google Patents

Overcurrent detection circuit Download PDF

Info

Publication number
JP6020223B2
JP6020223B2 JP2013022225A JP2013022225A JP6020223B2 JP 6020223 B2 JP6020223 B2 JP 6020223B2 JP 2013022225 A JP2013022225 A JP 2013022225A JP 2013022225 A JP2013022225 A JP 2013022225A JP 6020223 B2 JP6020223 B2 JP 6020223B2
Authority
JP
Japan
Prior art keywords
mosfet
current
circuit
voltage
resistance element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013022225A
Other languages
Japanese (ja)
Other versions
JP2014154669A (en
Inventor
吉田 順一
順一 吉田
佐竹 弘之
弘之 佐竹
博樹 角井
博樹 角井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013022225A priority Critical patent/JP6020223B2/en
Publication of JP2014154669A publication Critical patent/JP2014154669A/en
Application granted granted Critical
Publication of JP6020223B2 publication Critical patent/JP6020223B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Logic Circuits (AREA)
  • Electronic Switches (AREA)

Description

本発明は、出力端子の一端が負荷に接続される駆動用MOSFETに流れる過電流を検出する回路に関する。   The present invention relates to a circuit for detecting an overcurrent flowing in a driving MOSFET having one end of an output terminal connected to a load.

駆動用MOSFETを介して流れる過電流を検出するものとして、例えば検出用のMOSFET及び抵抗素子の直列回路を駆動用MOSFETに並列に接続し、検出用抵抗素子の電位を閾値電圧と比較する構成の回路がある。しかし一般的に、閾値電圧を設定する部分の回路が温度特性を有しているので、閾値のばらつきが大きくなる傾向にある。そのためのマージンを考慮すると、駆動用MOSFETのサイズを大きくする必要があり、チップ面積が大きくなることが問題となる。そこで、閾値電圧のばらつきを低減するための構成が、例えば特許文献1に開示されている。   For detecting overcurrent flowing through the drive MOSFET, for example, a series circuit of a detection MOSFET and a resistance element is connected in parallel to the drive MOSFET, and the potential of the detection resistance element is compared with a threshold voltage. There is a circuit. However, in general, since the circuit of the part where the threshold voltage is set has temperature characteristics, the variation of the threshold tends to increase. Considering the margin for that purpose, it is necessary to increase the size of the driving MOSFET, and there is a problem that the chip area increases. Therefore, for example, Patent Document 1 discloses a configuration for reducing variation in threshold voltage.

特開2002−17036号公報JP 2002-17036 A

しかしながら、特許文献1の構成では、閾値電圧を設定するために供給する定電流値をダイナミックに調整するため、比較的複雑な回路構成を採用している。
本発明は上記事情に鑑みてなされたものであり、その目的は、より簡単な構成で、駆動用MOSFETを介して流れる過電流の検出を精度良く行うことができる過電流検出回路を提供することにある。
However, in the configuration of Patent Document 1, a relatively complicated circuit configuration is adopted in order to dynamically adjust the constant current value supplied to set the threshold voltage.
The present invention has been made in view of the above circumstances, and an object thereof is to provide an overcurrent detection circuit capable of accurately detecting an overcurrent flowing through a driving MOSFET with a simpler configuration. It is in.

請求項1記載の過電流検出回路によれば、駆動用MOSFETに対し、電流検出用MOSFET及び電流検出用抵抗素子の直列回路を並列に接続し、比較器は、電流検出用抵抗素子の端子電圧を閾値電圧と比較して過電流検出を行う。そして、前記閾値電圧を発生させる閾値設定回路を、電流源と、前記駆動用MOSFETと同一の温度特性を有する温度特性補正用MOSFETと、閾値設定用抵抗素子との直列回路で構成する。   According to the overcurrent detection circuit of claim 1, a series circuit of a current detection MOSFET and a current detection resistance element is connected in parallel to the drive MOSFET, and the comparator has a terminal voltage of the current detection resistance element. Is compared with the threshold voltage to detect overcurrent. The threshold setting circuit for generating the threshold voltage is configured by a series circuit of a current source, a temperature characteristic correcting MOSFET having the same temperature characteristics as the driving MOSFET, and a threshold setting resistance element.

このように構成すれば、電流検出用抵抗素子に流れる電流により発生する検出電圧と、閾値設定用抵抗素子に流れる電流により発生する閾値電圧の温度特性が同一になる。これにより双方の電圧の温度特性がキャンセルされるので、過電流の検出を高い精度で行うことができる。したがって、極めて簡単な構成で検出精度を向上させることができ、従来のように駆動用MOSFETの電流駆動能力に余裕を持たせる必要が無くなり、素子サイズを小型にすることができる。   With this configuration, the temperature characteristics of the detection voltage generated by the current flowing through the current detection resistance element and the threshold voltage generated by the current flowing through the threshold setting resistance element are the same. As a result, the temperature characteristics of both voltages are canceled, so that overcurrent can be detected with high accuracy. Therefore, the detection accuracy can be improved with an extremely simple configuration, and it is not necessary to provide a margin for the current driving capability of the driving MOSFET as in the prior art, and the element size can be reduced.

請求項2記載の過電流検出回路によれば、温度特性補正用MOSFETのオン抵抗値をR1,閾値設定用抵抗素子の抵抗値をR2,電流検出用抵抗素子の端子電圧をVx,温度特性補正用MOSFET及び閾値設定用抵抗素子の共通接続点の端子電圧をVyとする。そして、抵抗値R1,R2を、低温時,高温時でそれぞれ電流検出用抵抗素子に流れる電流の変化を考慮し、低温時,高温時の電圧Vxと電圧Vyとが何れも等しくなることを条件に決定する。   According to the overcurrent detection circuit of claim 2, the on-resistance value of the temperature characteristic correction MOSFET is R1, the resistance value of the threshold setting resistance element is R2, the terminal voltage of the current detection resistance element is Vx, and the temperature characteristic correction is performed. The terminal voltage at the common connection point of the MOSFET for use and the threshold setting resistor is Vy. The resistance values R1 and R2 are set under the condition that the voltage Vx and the voltage Vy at the low temperature and the high temperature are equal to each other in consideration of a change in the current flowing through the current detection resistor element at the low temperature and the high temperature. To decide.

例えば、駆動用,検出用,温度特性補正用MOSFETにそれぞれ流れる電流をI1〜I3とし、各MOSFETのオン抵抗は、低温時を基準として高温時にα倍になるものとする。また、駆動用,検出用MOSFETのオン抵抗をそれぞれA,Bとし、検出用抵抗素子の抵抗値をCとする。すると、低温時において電流I1が過電流となった場合に、検出用MOSFETに流れる電流I2は、
I2=A/(B+C)・I1 …(1)
となり、高温時において電流I1が過電流となった場合に流れる電流I2は、
I2=αA/(αB+C)・I1 …(2)
となる。
For example, the currents flowing through the driving, detection, and temperature characteristic correction MOSFETs are I1 to I3, respectively, and the on-resistance of each MOSFET is α times higher when the temperature is higher than the lower temperature. The on-resistances of the driving and detection MOSFETs are A and B, respectively, and the resistance value of the detection resistance element is C. Then, when the current I1 becomes an overcurrent at a low temperature, the current I2 flowing through the detection MOSFET is
I2 = A / (B + C) · I1 (1)
The current I2 that flows when the current I1 becomes an overcurrent at a high temperature is
I2 = αA / (αB + C) · I1 (2)
It becomes.

そして、低温時の電圧Vx,電圧Vyは、
Vx=A/(B+C)・I1・C …(3)
Vy=(R1+R2)・I3 …(4)
高温時の電圧Vx,電圧Vyは、
Vx=αA/(αB+C)・I1・C …(5)
Vy=(αR1+R2)・I3 …(6)
となる。
And the voltage Vx and the voltage Vy at the time of low temperature are:
Vx = A / (B + C) · I1 · C (3)
Vy = (R1 + R2) · I3 (4)
The voltage Vx and voltage Vy at high temperature are
Vx = αA / (αB + C) · I1 · C (5)
Vy = (αR1 + R2) · I3 (6)
It becomes.

これらより、(3)式と(4)式,(5)式と(6)式がそれぞれ等しくなることが条件となるから、これらの式を解くと、
R1=I1/I3{αA・C/(αB+C)−A・C/(B+C)}
/(α−1) …(7)
R2=I1/I3[A・C/(B+C)−{αA・C/(αB+C)
−A・C/(B+C)}/(α−1)] …(8)
が得られる。したがって、温度特性補正用MOSFETのオン抵抗値と閾値設定用抵抗素子の抵抗値とを、具体的に決定することができる。
From these, since it is a condition that the equations (3) and (4), (5) and (6) are equal, solving these equations,
R1 = I1 / I3 {αA · C / (αB + C) −A · C / (B + C)}
/ (Α-1) (7)
R2 = I1 / I3 [A · C / (B + C) − {αA · C / (αB + C)
−A · C / (B + C)} / (α−1)] (8)
Is obtained. Therefore, the ON resistance value of the temperature characteristic correcting MOSFET and the resistance value of the threshold value setting resistance element can be specifically determined.

第1実施形態であり、過電流検出回路の構成を示す図The figure which is 1st Embodiment and shows the structure of an overcurrent detection circuit 第2実施形態を示す図1相当図FIG. 1 equivalent view showing the second embodiment 第3実施形態を示す図1相当図FIG. 1 equivalent diagram showing the third embodiment (a)は第4実施形態を示す図1相当図、(b)は電流源の構成を示す図(A) is a diagram corresponding to FIG. 1 showing the fourth embodiment, (b) is a diagram showing the configuration of the current source. 第5実施形態であり、ハーフブリッジ回路を構成した場合の図1相当図FIG. 1 is a diagram corresponding to FIG. 1 when a half bridge circuit is configured according to the fifth embodiment. 第6実施形態であり、Hブリッジ回路を構成した場合の図1相当図FIG. 1 is a diagram corresponding to FIG. 1 when an H-bridge circuit is configured according to the sixth embodiment.

(第1実施形態)
以下、第1実施形態について説明する。図1(a)において、図示しない負荷が接続される出力端子OUTとグランドとの間には、駆動用MOSFET1と、検出用MOSFET2及び検出用抵抗素子3の直列回路とが接続されている。これらのMOSFET1及び2は何れもNチャネル型であり、これらのゲートには、ゲート制御部4により共通のゲート信号が与えられる。ゲート制御部4には、例えば5Vの電源VCCが動作用電源として供給されている。尚、検出用MOSFET2のサイズは、駆動用MOSFET1のサイズ以下に設定されている。
(First embodiment)
The first embodiment will be described below. In FIG. 1A, a drive MOSFET 1, a series circuit of a detection MOSFET 2 and a detection resistance element 3 are connected between an output terminal OUT to which a load (not shown) is connected and the ground. These MOSFETs 1 and 2 are both N-channel type, and a common gate signal is given to these gates by the gate controller 4. For example, a power supply VCC of 5V is supplied to the gate controller 4 as an operation power supply. The size of the detection MOSFET 2 is set to be equal to or smaller than the size of the drive MOSFET 1.

検出用MOSFET2のソースは、ヒステリシス付きコンパレータである比較器5の非反転入力端子に接続されている。電源VCCとグランドとの間には、電流源6,温度特性補正用MOSFET7及び閾値設定用抵抗素子8の直列回路が接続されている。この直列回路は閾値設定回路9を構成している。温度特性補正用MOSFET7もNチャネル型であり、そのドレインは、比較器5の反転入力端子に接続されており、ゲートは電源VCCにプルアップされている。   The source of the detection MOSFET 2 is connected to the non-inverting input terminal of the comparator 5 which is a comparator with hysteresis. A series circuit of a current source 6, a temperature characteristic correcting MOSFET 7 and a threshold setting resistance element 8 is connected between the power supply VCC and the ground. This series circuit constitutes a threshold setting circuit 9. The temperature characteristic correcting MOSFET 7 is also an N-channel type, its drain is connected to the inverting input terminal of the comparator 5, and its gate is pulled up to the power supply VCC.

ここで、温度特性補正用MOSFET7には、駆動用MOSFET1と同一の温度特性を有する素子が選択されている。尚、検出用MOSFET2の温度特性が駆動用MOSFET1と同一であることは言うまでもない。また、閾値設定用抵抗素子8についても、検出用抵抗素子3と同一の温度特性を有する素子が選択されている。   Here, an element having the same temperature characteristic as that of the driving MOSFET 1 is selected as the temperature characteristic correcting MOSFET 7. Needless to say, the temperature characteristics of the detection MOSFET 2 are the same as those of the drive MOSFET 1. As the threshold value setting resistance element 8, an element having the same temperature characteristics as the detection resistance element 3 is selected.

比較器5は、検出用抵抗素子3の端子電圧(検出電圧)を、温度特性補正用MOSFET7のドレイン電圧である閾値電圧と比較し、前者が後者を超えると出力端子をハイレベルにして、過電流検出信号をゲート制御部4に出力する。ゲート制御部4は、上記過電流検出信号が入力されると、駆動用MOSFET1の駆動を停止する。以上において、駆動用MOSFET1及びゲート制御部4を除いたものが過電流検出回路10を構成している。   The comparator 5 compares the terminal voltage (detection voltage) of the detection resistance element 3 with a threshold voltage that is the drain voltage of the temperature characteristic correction MOSFET 7, and if the former exceeds the latter, the output terminal is set to a high level. The current detection signal is output to the gate control unit 4. When the overcurrent detection signal is input, the gate controller 4 stops driving the driving MOSFET 1. In the above description, the overcurrent detection circuit 10 is configured except for the driving MOSFET 1 and the gate control unit 4.

次に、本実施形態の作用について説明する。ここで、駆動用,検出用,温度特性補正用MOSFET1,2,7にそれぞれ流れる電流をI1〜I3とする。ゲート制御部4がゲート駆動信号をハイレベルにすると、検出用MOSFET2は駆動用MOSFET1と同時にオンして、両者のサイズ比に応じた電流I2を検出用抵抗素子3に流す。したがって、比較器5の非反転入力端子に与えられる検出電圧は、検出用抵抗素子3の抵抗値をCΩとすると、C・I2となる。一方、閾値設定回路9においては、電流源6より供給される電流I3が、温度特性補正用MOSFET7を介して閾値設定用抵抗素子8に流れる。したがって、比較器5の反転入力端子に与えられる閾値電圧は、閾値設定用抵抗素子8の抵抗値をEΩとすると、E・I3となる。   Next, the operation of this embodiment will be described. Here, currents flowing through the driving, detecting, and temperature characteristic correcting MOSFETs 1, 2, and 7 are I1 to I3, respectively. When the gate control unit 4 sets the gate drive signal to the high level, the detection MOSFET 2 is turned on simultaneously with the drive MOSFET 1, and a current I2 corresponding to the size ratio of both is supplied to the detection resistance element 3. Therefore, the detection voltage applied to the non-inverting input terminal of the comparator 5 is C · I2 when the resistance value of the detection resistance element 3 is CΩ. On the other hand, in the threshold setting circuit 9, the current I 3 supplied from the current source 6 flows to the threshold setting resistor 8 through the temperature characteristic correcting MOSFET 7. Therefore, the threshold voltage applied to the inverting input terminal of the comparator 5 is E · I3 when the resistance value of the threshold setting resistance element 8 is EΩ.

駆動用,検出用,温度特性補正用MOSFET1,2,7が何れも同じ温度特性を有しているので、検出用抵抗素子3,閾値設定用抵抗素子8に流れる電流I2,I3により発生する検出電圧と閾値電圧とは、同じ温度特性を有することになる。したがって、上述のように、比較器5が検出電圧を閾値電圧と比較して駆動用MOSFET1に流れる電流I1が過電流となったことを、高い精度で検出できる。   Since the drive, detection, and temperature characteristic correction MOSFETs 1, 2, and 7 all have the same temperature characteristics, detection is generated by the currents I2 and I3 flowing through the detection resistance element 3 and the threshold setting resistance element 8. The voltage and the threshold voltage have the same temperature characteristics. Therefore, as described above, the comparator 5 compares the detection voltage with the threshold voltage and can detect with high accuracy that the current I1 flowing through the driving MOSFET 1 has become an overcurrent.

ここで、駆動用,検出用MOSFET1,2のオン抵抗をそれぞれAΩ,BΩとし、検出用抵抗素子の抵抗値をCΩとする。また、温度特性補正用MOSFET7のオン抵抗をDΩ,閾値設定用抵抗素子8の抵抗値EΩとして、オン抵抗D(=R1)Ω,抵抗値E(=R2)Ωを決定する方法の一例を示す。各MOSFET1,2,7のオン抵抗は、低温時を基準として高温時にα倍になるものとする。   Here, the ON resistances of the driving and detection MOSFETs 1 and 2 are AΩ and BΩ, respectively, and the resistance value of the detection resistance element is CΩ. Further, an example of a method for determining the on-resistance D (= R1) Ω and the resistance value E (= R2) Ω, where the on-resistance of the temperature characteristic correction MOSFET 7 is DΩ and the resistance value EΩ of the threshold setting resistor 8 is shown. . The on-resistances of the MOSFETs 1, 2, and 7 are assumed to be α times at high temperatures with reference to low temperatures.

すると、低温時,高温時に検出用MOSFET2に流れる電流I2は、それぞれ前述の(1)式,(2)式で表される。また、比較器5の非反転入力端子,反転入力端子の電位をそれぞれVx,Vyとすると、低温時の電圧Vx,電圧Vyはそれぞれ(3)式,(4)式で表され、高温時の電圧Vx,電圧Vyはそれぞれ(5)式,(6)式で表される。   Then, the current I2 flowing through the detection MOSFET 2 at the low temperature and at the high temperature is expressed by the above-described equations (1) and (2), respectively. Further, assuming that the potentials of the non-inverting input terminal and the inverting input terminal of the comparator 5 are Vx and Vy, respectively, the low-temperature voltage Vx and the voltage Vy are expressed by the equations (3) and (4), respectively. The voltage Vx and the voltage Vy are expressed by equations (5) and (6), respectively.

そして、オン抵抗DΩ,抵抗値EΩは、低温時の電圧Vx,電圧Vyと、高温時の電圧Vx,電圧Vyとがそれぞれ等しくなるように決定すれば良い。すなわち、
A/(B+C)・I1・C=I3・(D+E) …(10)
αA・C/(αB+C)・I1・C=I3・(αD+E) …(11)
を解いて、オン抵抗DΩ,抵抗値EΩを求めると(7)式,(8)式が得られる。
The on-resistance DΩ and the resistance value EΩ may be determined so that the low-temperature voltage Vx and the voltage Vy are equal to the high-temperature voltage Vx and the voltage Vy, respectively. That is,
A / (B + C) · I1 · C = I3 · (D + E) (10)
αA · C / (αB + C) · I1 · C = I3 · (αD + E) (11)
To obtain the on-resistance DΩ and the resistance value EΩ, the equations (7) and (8) are obtained.

また、図1(b)に示すように、各電流値及び抵抗値に具体的な数値を付与した場合について、オン抵抗DΩ,抵抗値EΩを求めると以下のようになる。
A=100m,B=100,C=10,電流I1の過電流値を1[A],I3=20μ[A]とし、α=2とする。低温時に検出用MOSFETに流れる電流I2は、(1)式より、
I2=100・10−3/(100+10)・1=0.909[mA]
となり、高温時に流れる電流I2は、(2)式より、
I2=2・100・10−3/(2・100+10)・1=0.952[mA]
低温時の電圧Vx,電圧Vyは、(3)式,(4)式より、
Vx=0.909・10−3・10=9.09[mV] …(12)
Vy=20・10−6・(D+E) …(13)
一方、高温時の電圧Vx,電圧Vyは、(5)式,(6)式より、
Vx=0.952・10−3・10=9.52[mV] …(14)
Vy=20・10−6・(2D+E) …(15)
となる。
Further, as shown in FIG. 1B, when a specific numerical value is given to each current value and resistance value, the ON resistance DΩ and the resistance value EΩ are obtained as follows.
A = 100 m, B = 100, C = 10, the overcurrent value of the current I1 is 1 [A], I3 = 20 μ [A], and α = 2. The current I2 flowing through the detection MOSFET at a low temperature is expressed by the following equation (1):
I2 = 100 · 10 −3 /(100+10)·1=0.909 [mA]
The current I2 flowing at a high temperature is
I2 = 2 · 100 · 10 −3 /(2·100+10)·1=0.925 [mA]
The voltage Vx and the voltage Vy at the time of low temperature are obtained from the equations (3) and (4).
Vx = 0.909 · 10 −3 · 10 = 9.09 [mV] (12)
Vy = 20 · 10 −6 · (D + E) (13)
On the other hand, the voltage Vx and the voltage Vy at the time of high temperature are obtained from the equations (5) and (6),
Vx = 0.952 · 10 −3 · 10 = 9.52 [mV] (14)
Vy = 20 · 10 −6 · (2D + E) (15)
It becomes.

そして、(12)式と(13)式,(14)式と(15)式がそれぞれ等しくなることが条件となるから、
20・10−6・(D+E)=9.09・10−3 …(16)
20・10−6・(2D+E)=9.52・10−3 …(17)
となり、これらの式を解くと、
D=21.5[Ω]
E=433[Ω]
が得られる。
And, since the condition is that the expressions (12) and (13), the expressions (14) and (15) are equal,
20 · 10 −6 · (D + E) = 9.09 · 10 −3 (16)
20 · 10 −6 · (2D + E) = 9.52 · 10 −3 (17)
And solving these equations,
D = 21.5 [Ω]
E = 433 [Ω]
Is obtained.

以上のように本実施形態によれば、過電流検出回路10は、駆動用MOSFET1に対し、電流検出用MOSFET2及び電流検出用抵抗素子3の直列回路を並列に接続し、比較器5は、電流検出用抵抗素子3の端子電圧を閾値電圧と比較して過電流検出を行う。そして、閾値電圧を発生させる閾値設定回路9を、電流源6と、駆動用MOSFET1と同一の温度特性を有する温度特性補正用MOSFET7と、閾値設定用抵抗素子8との直列回路で構成した。   As described above, according to the present embodiment, the overcurrent detection circuit 10 connects the series circuit of the current detection MOSFET 2 and the current detection resistance element 3 in parallel to the drive MOSFET 1, and the comparator 5 Overcurrent detection is performed by comparing the terminal voltage of the detection resistance element 3 with a threshold voltage. The threshold setting circuit 9 for generating the threshold voltage is constituted by a series circuit of a current source 6, a temperature characteristic correcting MOSFET 7 having the same temperature characteristics as the driving MOSFET 1, and a threshold setting resistance element 8.

このように構成すれば、電流検出用抵抗素子3に流れる電流I2により発生する検出電圧と、閾値設定用抵抗素子8に流れる電流I3により発生する閾値電圧の温度特性が同一になり,双方の電圧の温度特性がキャンセルされるので、過電流の検出を高い精度で行うことができる。したがって、極めて簡単な構成で検出精度の向上を図ることができ、従来のように駆動用MOSFETQの電流駆動能力に余裕を持たせる必要が無くなり、素子サイズを小型にできる。   With this configuration, the temperature characteristics of the detection voltage generated by the current I2 flowing through the current detection resistor element 3 and the threshold voltage generated by the current I3 flowing through the threshold setting resistor element 8 are the same, and both voltages Therefore, the overcurrent can be detected with high accuracy. Therefore, the detection accuracy can be improved with an extremely simple configuration, and it is not necessary to provide a margin for the current driving capability of the driving MOSFET Q as in the prior art, and the element size can be reduced.

また、温度特性補正用MOSFET7のオン抵抗値をD,閾値設定用抵抗素子8の抵抗値をE,比較器5の非反転入力端子,反転入力端子の電位をそれぞれVx,Vyとして、抵抗値D,Eを、低温時,高温時でそれぞれ電流検出用抵抗素子3に流れる電流の変化を考慮し、低温時,高温時の電圧Vxと電圧Vyとが何れも等しくなることを条件に決定する。したがって、温度特性補正用MOSFET7のオン抵抗値と閾値設定用抵抗素子8の抵抗値とを、具体的に決定することができる。そして、電流検出用抵抗素子3と閾値設定用抵抗素子8とを同一の温度特性を有する抵抗素子としたので、過電流の検出精度を一層高めることができる。   Further, the resistance value D is set such that the on-resistance value of the temperature characteristic correcting MOSFET 7 is D, the resistance value of the threshold setting resistor 8 is E, and the potentials of the non-inverting input terminal and the inverting input terminal of the comparator 5 are Vx and Vy, respectively. , E are determined on the condition that the voltage Vx and the voltage Vy at the low temperature and the high temperature are equal in consideration of changes in the current flowing through the current detection resistor element 3 at the low temperature and the high temperature, respectively. Therefore, the on-resistance value of the temperature characteristic correcting MOSFET 7 and the resistance value of the threshold-setting resistance element 8 can be specifically determined. Since the current detection resistance element 3 and the threshold setting resistance element 8 are resistance elements having the same temperature characteristics, the overcurrent detection accuracy can be further enhanced.

(第2実施形態)
以下、第1実施形態と同一部分には同一符号を付して説明を省略し、異なる部分について説明する。図2に示す電圧検出回路10’は、第1実施形態の閾値設定回路9を、NチャネルMOSFET7と閾値設定用抵抗素子8との直列接続順を入れ替えた、閾値設定回路9’に置き換えたものである。このように構成される第2実施形態による場合も、第1実施形態と同様の効果が得られる。
(Second Embodiment)
Hereinafter, the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof will be omitted, and different parts will be described. The voltage detection circuit 10 ′ shown in FIG. 2 is obtained by replacing the threshold setting circuit 9 of the first embodiment with a threshold setting circuit 9 ′ in which the series connection order of the N-channel MOSFET 7 and the threshold setting resistance element 8 is switched. It is. In the case of the second embodiment configured as described above, the same effect as that of the first embodiment can be obtained.

(第3実施形態)
第1実施形態は、ローサイド駆動方式であったが、図3に示す過電流検出回路11はハイサイド駆動方式に適用したものである。駆動用MOSFET12と、検出用抵抗素子3及び検出用MOSFET13の直列回路とは、14Vの電源VBと出力端子OUTとの間に接続されている。この場合、MOSFET12及び13はPチャネル型であり、これらのゲートには、ゲート制御部4に替わるゲート制御部14より共通のゲート駆動信号が与えられる。ゲート制御部14には、電源VCCに加えて、ゲート駆動用電源として電源VBも供給されている。
(Third embodiment)
The first embodiment is a low-side drive method, but the overcurrent detection circuit 11 shown in FIG. 3 is applied to the high-side drive method. The driving MOSFET 12 and the series circuit of the detection resistive element 3 and the detection MOSFET 13 are connected between a 14 V power supply VB and the output terminal OUT. In this case, the MOSFETs 12 and 13 are P-channel type, and a common gate drive signal is given to these gates from a gate control unit 14 in place of the gate control unit 4. In addition to the power supply VCC, the gate control unit 14 is also supplied with a power supply VB as a gate drive power supply.

電源VBとグランドとの間には、抵抗素子8,温度特性補正用MOSFET15(Pチャネル型)及び電流源6の直列回路が接続されており、これらが閾値設定回路16を構成している。温度特性補正用MOSFET15のゲートはグランドにプルダウンされている。そして、検出用MOSFET13のソースは、比較器5の非反転入力端子に接続されている。また、温度特性補正用MOSFET15は、駆動用MOSFET12と同一の温度特性を有する素子が選択されている。   Between the power supply VB and the ground, a series circuit of a resistance element 8, a temperature characteristic correction MOSFET 15 (P channel type) and a current source 6 is connected, and these constitute a threshold setting circuit 16. The gate of the temperature characteristic correcting MOSFET 15 is pulled down to the ground. The source of the detection MOSFET 13 is connected to the non-inverting input terminal of the comparator 5. For the temperature characteristic correcting MOSFET 15, an element having the same temperature characteristic as that of the driving MOSFET 12 is selected.

次に、第3実施形態の作用について説明する。ゲート制御部14がゲート駆動信号をローレベルにすると、検出用MOSFET13は駆動用MOSFET12と同時にオンして、両者のサイズ比に応じた電流I2を検出用抵抗素子3に流す。したがって、比較器5の非反転入力端子に与えられる検出電圧は、検出用抵抗素子3の抵抗値をCΩとすると、(VB−C・I2)となる。一方、閾値設定回路16においては、電流源6がシンクする電流I3が、閾値設定用抵抗素子8を介して温度特性補正用MOSFET15に流れる。したがって、比較器5の反転入力端子に与えられる閾値電圧は、温度特性補正用MOSFET15のオン抵抗をDΩ,閾値設定用抵抗素子8の抵抗値をEΩとすると、{VB−(D+E)・I3}となる。   Next, the operation of the third embodiment will be described. When the gate control unit 14 sets the gate drive signal to a low level, the detection MOSFET 13 is turned on simultaneously with the drive MOSFET 12, and a current I2 corresponding to the size ratio of both is supplied to the detection resistance element 3. Therefore, the detection voltage applied to the non-inverting input terminal of the comparator 5 is (VB−C · I2), where the resistance value of the detection resistance element 3 is CΩ. On the other hand, in the threshold setting circuit 16, the current I 3 sunk by the current source 6 flows to the temperature characteristic correction MOSFET 15 via the threshold setting resistor 8. Therefore, the threshold voltage applied to the inverting input terminal of the comparator 5 is {VB− (D + E) · I3}, where DΩ is the on-resistance of the temperature characteristic correction MOSFET 15 and EΩ is the resistance value of the threshold setting resistor element 8. It becomes.

以上のように構成される第3実施形態によれば、過電流検出回路11を、Pチャネル型の駆動用MOSFET12を用いたハイサイド駆動方式に適用した場合も、第1実施形態と同様の効果が得られる。   According to the third embodiment configured as described above, even when the overcurrent detection circuit 11 is applied to the high-side drive method using the P-channel type drive MOSFET 12, the same effect as the first embodiment is obtained. Is obtained.

(第4実施形態)
第4実施形態の過電流検出回路21は、第1実施形態の過電流検出回路1を構成していた閾値設定回路9を、閾値設定回路22に置き換えたもので、閾値設定回路22は、電流源23と閾値設定用抵抗素子8との直列回路で構成されている。図4(b)に示す電流源23において、電源VCCにソースが接続される2つのPチャネルMOSFET24a,24bは、カレントミラー回路24を構成している。PチャネルMOSFET24a,24bのドレイン(それぞれ主電流経路,ミラー電流経路)は、それぞれ制御用抵抗素子25,閾値設定用抵抗素子8を介してグランドに接続されている。
(Fourth embodiment)
The overcurrent detection circuit 21 of the fourth embodiment is obtained by replacing the threshold setting circuit 9 constituting the overcurrent detection circuit 1 of the first embodiment with a threshold setting circuit 22, and the threshold setting circuit 22 It is composed of a series circuit of a source 23 and a threshold setting resistance element 8. In the current source 23 shown in FIG. 4B, two P-channel MOSFETs 24 a and 24 b whose sources are connected to the power supply VCC constitute a current mirror circuit 24. The drains (main current path and mirror current path) of the P-channel MOSFETs 24a and 24b are connected to the ground via the control resistance element 25 and the threshold setting resistance element 8, respectively.

また、電源VCCとグランドとの間には、抵抗素子26及び温度特性補正用MOSFET27の直列回路が接続されている。温度特性補正用MOSFET27はNチャネル型であり、そのゲートは電源VCCにプルアップされている。また、温度特性補正用MOSFET27は、駆動用MOSFET1と同一の温度特性を有する素子が選択されている。これらは基準電圧生成回路28を構成している。   Further, a series circuit of a resistance element 26 and a temperature characteristic correcting MOSFET 27 is connected between the power supply VCC and the ground. The temperature characteristic correcting MOSFET 27 is an N-channel type, and its gate is pulled up to the power supply VCC. For the temperature characteristic correcting MOSFET 27, an element having the same temperature characteristic as that of the driving MOSFET 1 is selected. These constitute the reference voltage generation circuit 28.

制御用抵抗素子26及び温度特性補正用MOSFET27の共通接続点とPチャネルMOSFET24aのドレインとは、オペアンプ29(電流制御回路)の非反転入力端子と反転入力端子とにそれぞれ接続されている。そして、オペアンプ29の出力端子は、PチャネルMOSFET24a,24bのゲートに接続されている。   A common connection point of the control resistance element 26 and the temperature characteristic correction MOSFET 27 and the drain of the P-channel MOSFET 24a are connected to the non-inverting input terminal and the inverting input terminal of the operational amplifier 29 (current control circuit), respectively. The output terminal of the operational amplifier 29 is connected to the gates of the P-channel MOSFETs 24a and 24b.

次に、第4実施形態の作用について説明する。オペアンプ29の非反転入力端子の電位は、電源VCCの電圧を、制御用抵抗素子26の抵抗値と、温度特性補正用MOSFET27のオン抵抗とで分圧したもの(基準電圧)となる。オペアンプ29は、PチャネルMOSFET24a,24bのゲート電位を、抵抗素子25の端子電圧と前記制御電圧との差に応じた電圧とするように制御する。したがって、PチャネルMOSFET24bを介して閾値設定用抵抗素子8に流れる電流I4は、基準電圧によって制御される。   Next, the operation of the fourth embodiment will be described. The potential of the non-inverting input terminal of the operational amplifier 29 is a voltage (reference voltage) obtained by dividing the voltage of the power supply VCC by the resistance value of the control resistance element 26 and the ON resistance of the temperature characteristic correction MOSFET 27. The operational amplifier 29 controls the gate potentials of the P-channel MOSFETs 24a and 24b so as to be a voltage corresponding to the difference between the terminal voltage of the resistance element 25 and the control voltage. Therefore, the current I4 flowing through the threshold setting resistance element 8 via the P-channel MOSFET 24b is controlled by the reference voltage.

そして、温度特性補正用MOSFET27は、駆動用MOSFET1と同一の温度特性を有しているので、閾値設定用抵抗素子8の端子電圧;閾値電圧は、検出電圧と同様に変化することになり、温度特性がキャンセルされる。   Since the temperature characteristic correcting MOSFET 27 has the same temperature characteristic as that of the driving MOSFET 1, the terminal voltage of the threshold setting resistance element 8; the threshold voltage changes in the same manner as the detection voltage. The property is cancelled.

以上のように第4実施形態によれば、過電流検出回路21を構成する電流源23を、主電流経路に制御用抵抗素子25が接続され、ミラー電流経路に閾値設定用抵抗素子8が接続されるカレントミラー回路24と、基準電圧生成回路28と、制御用抵抗素子28の端子電圧と基準電圧とがそれぞれ入力端子に与えられ、カレントミラー回路24に流れるミラー電流を制御するオペアンプ29とで構成する。そして、基準電圧生成回路28は、駆動用MOSFET1と同一の温度特性を有する温度特性補正用MOSFET27のオン抵抗を用いて基準電圧を発生させる。このような構成を用いた場合も、第1実施形態と同様の効果が得られる。   As described above, according to the fourth embodiment, the current source 23 constituting the overcurrent detection circuit 21 is connected to the control resistor element 25 in the main current path, and the threshold setting resistor element 8 is connected to the mirror current path. A current mirror circuit 24, a reference voltage generation circuit 28, and a terminal voltage and a reference voltage of the control resistance element 28 are applied to input terminals, respectively, and an operational amplifier 29 that controls a mirror current flowing in the current mirror circuit 24. Configure. The reference voltage generation circuit 28 generates a reference voltage using the on-resistance of the temperature characteristic correction MOSFET 27 having the same temperature characteristic as that of the driving MOSFET 1. Even when such a configuration is used, the same effect as in the first embodiment can be obtained.

(第5実施形態)
図5は、電源VBとグランド(VSS)との間に、駆動用MOSFET12及び1の直列回路を接続してハーフブリッジ回路31を構成した場合に、駆動用MOSFET12及び1のそれぞれに過電流検出回路11及び10を配置したものである。出力端子OUTに接続される負荷としては、例えばコイル32及びコンデンサ33から成るLC共振回路等である。
(Fifth embodiment)
FIG. 5 shows an overcurrent detection circuit for each of the driving MOSFETs 12 and 1 when a half bridge circuit 31 is configured by connecting a series circuit of the driving MOSFETs 12 and 1 between the power supply VB and the ground (VSS). 11 and 10 are arranged. The load connected to the output terminal OUT is, for example, an LC resonance circuit including a coil 32 and a capacitor 33.

(第6実施形態)
図6は、電源VBとグランドとの間に、駆動用MOSFET12A及び1Aの直列回路と、駆動用MOSFET12B及び1Bの直列回路とを接続してHブリッジ回路41を構成した場合に、駆動用MOSFET12及び1のそれぞれに過電流検出回路11及び10を配置したものである。2つの出力端子OUT_A,OUT_B間に接続される負荷としては、例えばDCモータ42等である。
(Sixth embodiment)
FIG. 6 shows a case where an H bridge circuit 41 is configured by connecting a series circuit of driving MOSFETs 12A and 1A and a series circuit of driving MOSFETs 12B and 1B between a power source VB and a ground. 1 are provided with overcurrent detection circuits 11 and 10 respectively. An example of the load connected between the two output terminals OUT_A and OUT_B is the DC motor 42.

本発明は上記した、又は図面に記載した実施例にのみ限定されるものではなく、以下の用な変形又は拡張が可能である。
閾値設定用抵抗素子8と検出用抵抗素子3との温度特性が異なる場合でも、第1実施形態で示した計算と同様の考え方により、それぞれの抵抗値を最適化するように決定できる。
電流制御回路はオペアンプ29に限らず、例えば複数のトランジスタを組み合わせて構成しても良い。
The present invention is not limited to the embodiments described above or shown in the drawings, and the following modifications or expansions are possible.
Even when the temperature characteristics of the threshold setting resistance element 8 and the detection resistance element 3 are different, the respective resistance values can be determined to be optimized based on the same idea as the calculation shown in the first embodiment.
The current control circuit is not limited to the operational amplifier 29, and may be configured by combining a plurality of transistors, for example.

図面中、1は駆動用MOSFET、2は検出用MOSFET、3は検出用抵抗素子、5は比較器、6は電流源、7は温度特性補正用MOSFET、8は閾値設定用抵抗素子、9は閾値設定回路、10は過電流検出回路を示す。   In the drawing, 1 is a drive MOSFET, 2 is a detection MOSFET, 3 is a detection resistance element, 5 is a comparator, 6 is a current source, 7 is a temperature characteristic correction MOSFET, 8 is a threshold setting resistance element, and 9 is A threshold setting circuit 10 indicates an overcurrent detection circuit.

Claims (4)

出力端子の一端が負荷に接続されている駆動用MOSFET(1,12)に並列に接続される、電流検出用MOSFET(2,13)及び電流検出用抵抗素子(3)の直列回路と、
前記電流検出用抵抗素子の端子電圧を、閾値電圧と比較する比較器(5)と、
電流源(6)と、前記駆動用MOSFETと同一の温度特性を有する温度特性補正用MOSFET(7,15)と、閾値設定用抵抗素子(8)との直列回路で構成され、前記閾値電圧を発生させる閾値設定回路(9)とを備えることを特徴とする過電流検出回路(1,10,10’,11)。
A series circuit of a current detection MOSFET (2, 13) and a current detection resistor element (3) connected in parallel to a drive MOSFET (1, 12) having one end of an output terminal connected to a load;
A comparator (5) for comparing a terminal voltage of the current detection resistance element with a threshold voltage;
It comprises a series circuit of a current source (6), temperature characteristic correcting MOSFETs (7, 15) having the same temperature characteristics as the driving MOSFET, and a threshold setting resistance element (8), and the threshold voltage is An overcurrent detection circuit (1, 10, 10 ′, 11), characterized by comprising a threshold setting circuit (9) to be generated.
前記温度特性補正用MOSFETのオン抵抗値をR1,前記閾値設定用抵抗素子の抵抗値をR2,前記電流検出用抵抗素子の端子電圧をVx,前記温度特性補正用MOSFET及び前記閾値設定用抵抗素子の共通接続点の端子電圧をVyとすると、
前記抵抗値R1,R2は、低温時と高温時とのそれぞれにおいて前記電流検出用抵抗素子に流れる電流の変化を考慮し、低温時と高温時とのそれぞれにおける電圧Vxと電圧Vyとが何れも等しくなることを条件として決定されていることを特徴とする請求項1記載の過電流検出回路(1)。
The on-resistance value of the temperature characteristic correction MOSFET is R1, the resistance value of the threshold setting resistance element is R2, the terminal voltage of the current detection resistance element is Vx, the temperature characteristic correction MOSFET and the threshold setting resistance element If the terminal voltage at the common connection point is Vy,
The resistance values R1 and R2 take into account changes in the current flowing through the current detection resistor element at low temperature and high temperature, and the voltage Vx and the voltage Vy at low temperature and high temperature are both 2. The overcurrent detection circuit (1) according to claim 1, wherein the overcurrent detection circuit (1) is determined on condition that they are equal.
出力端子の一端が負荷に接続されている駆動用MOSFET(1)に並列に接続される、電流検出用MOSFET(2)及び電流検出用抵抗素子(3)の直列回路と、
前記電流検出用抵抗素子の端子電圧を、閾値電圧と比較する比較器(5)と、
電流源(23)と、閾値設定用抵抗素子(8)との直列回路で構成される閾値設定回路(22)とを備え、
前記電流源は、主電流経路に制御用抵抗素子(25)が接続され、ミラー電流経路に前記閾値設定用抵抗素子が接続されるカレントミラー回路(24)と、
基準電圧を生成する基準電圧生成回路(28)と、
前記制御用抵抗素子の端子電圧と前記基準電圧とが夫々入力端子に与えられ、前記カレントミラー回路に流れるミラー電流を制御する電流制御回路(29)とで構成され、
基準電圧生成回路は、前記駆動用MOSFETと同一の温度特性を有する温度特性補正用MOSFET(27)のオン抵抗を用いて前記基準電圧を発生させることを特徴とする過電流検出回路(21)。
A series circuit of a current detection MOSFET (2) and a current detection resistor element (3) connected in parallel to the drive MOSFET (1) connected to the load at one end of the output terminal;
A comparator (5) for comparing a terminal voltage of the current detection resistance element with a threshold voltage;
A threshold setting circuit (22) configured by a series circuit of a current source (23) and a threshold setting resistance element (8);
The current source includes a current mirror circuit (24) in which a control resistor element (25) is connected to a main current path, and the threshold setting resistor element is connected to a mirror current path;
A reference voltage generation circuit (28) for generating a reference voltage;
A terminal voltage of the control resistance element and the reference voltage are applied to the input terminals, respectively, and a current control circuit (29) for controlling a mirror current flowing in the current mirror circuit;
An overcurrent detection circuit (21), wherein the reference voltage generation circuit generates the reference voltage using an on-resistance of a temperature characteristic correction MOSFET (27) having the same temperature characteristic as that of the driving MOSFET.
前記電流検出用抵抗素子(3)と前記閾値設定用抵抗素子(8)とは、同一の温度特性を有する抵抗素子であることを特徴とする請求項1から3の何れか一項に記載の過電流検出回路。   4. The current detection resistance element (3) and the threshold value setting resistance element (8) are resistance elements having the same temperature characteristic, according to claim 1. Overcurrent detection circuit.
JP2013022225A 2013-02-07 2013-02-07 Overcurrent detection circuit Expired - Fee Related JP6020223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013022225A JP6020223B2 (en) 2013-02-07 2013-02-07 Overcurrent detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013022225A JP6020223B2 (en) 2013-02-07 2013-02-07 Overcurrent detection circuit

Publications (2)

Publication Number Publication Date
JP2014154669A JP2014154669A (en) 2014-08-25
JP6020223B2 true JP6020223B2 (en) 2016-11-02

Family

ID=51576244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013022225A Expired - Fee Related JP6020223B2 (en) 2013-02-07 2013-02-07 Overcurrent detection circuit

Country Status (1)

Country Link
JP (1) JP6020223B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3192140B1 (en) 2014-09-11 2021-06-09 ABB Schweiz AG Protective circuit
JP6330655B2 (en) * 2014-12-25 2018-05-30 株式会社デンソー Overcurrent detection circuit
JP6365488B2 (en) * 2015-09-30 2018-08-01 京セラドキュメントソリューションズ株式会社 Electrical equipment
JP6658269B2 (en) * 2016-04-27 2020-03-04 株式会社デンソー Overcurrent detection circuit
JP6850196B2 (en) * 2017-05-24 2021-03-31 新日本無線株式会社 Overcurrent protection circuit
CN115085144A (en) * 2022-07-15 2022-09-20 力高(山东)新能源技术有限公司 Power supply output overcurrent protection circuit and method based on current detection
CN115932379B (en) * 2022-12-27 2023-08-08 希荻微电子集团股份有限公司 High-side current detection circuit, overcurrent protection circuit, calibration method and electronic equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257840A (en) * 1996-03-22 1997-10-03 Nissan Motor Co Ltd Overcurrent detecting circuit
JP2003198349A (en) * 2001-12-25 2003-07-11 Matsushita Electric Ind Co Ltd Output circuit device
JP3928473B2 (en) * 2002-04-30 2007-06-13 株式会社デンソー Current clamp circuit
JP2008235856A (en) * 2007-02-22 2008-10-02 Matsushita Electric Ind Co Ltd Semiconductor device

Also Published As

Publication number Publication date
JP2014154669A (en) 2014-08-25

Similar Documents

Publication Publication Date Title
JP6020223B2 (en) Overcurrent detection circuit
TWI489239B (en) Voltage regulator
JP6396730B2 (en) Semiconductor device
JP5082908B2 (en) Power supply circuit, overcurrent protection circuit thereof, and electronic device
WO2017164197A1 (en) Regulator circuit
JP6330655B2 (en) Overcurrent detection circuit
JP6262411B2 (en) Power conversion device and semiconductor device
US9194893B2 (en) Bi-directional input, bi-directional output, lossless current sensing scheme with temperature compensation
EP2876453B1 (en) Bi-directional current sensor
JP6658269B2 (en) Overcurrent detection circuit
EP3320349B1 (en) Apparatus and method for measuring load current by applying compensated gain to voltage derived from drain-to-source voltage of power gating device
US10094857B2 (en) Current detection circuit
JP2016015076A (en) Regulator circuit
US20130154604A1 (en) Reference current generation circuit and reference voltage generation circuit
JP5666694B2 (en) Load current detection circuit
WO2016002329A1 (en) Power semiconductor element current detection device
JP5801333B2 (en) Power circuit
JP6302639B2 (en) Current monitoring circuit
JP2018085885A (en) Gate drive device
US10175271B2 (en) Apparatus for differencing comparator and associated methods
KR102658159B1 (en) Overheat protection circuit and semiconductor apparatus having the same
JP4793214B2 (en) Semiconductor device drive circuit
JP2018031705A (en) Semiconductor device
JP2005218264A (en) Current limit circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R151 Written notification of patent or utility model registration

Ref document number: 6020223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees