JP6016516B2 - 画像処理装置およびその制御方法、画像処理プログラム、並びに撮像装置 - Google Patents

画像処理装置およびその制御方法、画像処理プログラム、並びに撮像装置 Download PDF

Info

Publication number
JP6016516B2
JP6016516B2 JP2012179590A JP2012179590A JP6016516B2 JP 6016516 B2 JP6016516 B2 JP 6016516B2 JP 2012179590 A JP2012179590 A JP 2012179590A JP 2012179590 A JP2012179590 A JP 2012179590A JP 6016516 B2 JP6016516 B2 JP 6016516B2
Authority
JP
Japan
Prior art keywords
information
data
pixel
image
confusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012179590A
Other languages
English (en)
Other versions
JP2014039119A (ja
Inventor
隆 川上
隆 川上
和明 瀬川
和明 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012179590A priority Critical patent/JP6016516B2/ja
Publication of JP2014039119A publication Critical patent/JP2014039119A/ja
Application granted granted Critical
Publication of JP6016516B2 publication Critical patent/JP6016516B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、撮影後にピント状態を指定可能な画像データの圧縮処理技術に関する。
複数の光線情報を画素情報として取得して処理することで、撮影後にピントや視点を指定できるライトフィールド(以下、LFとも表記する)と呼ばれる技術が知られている。近年、LFカメラと呼ばれる撮像装置が実用化されている。この撮像装置は、イメージセンサ上に配置したマイクロレンズアレイによって入射光を分割することで、複数の方向の光を撮影して光線情報を記録する。撮影後の記録データから、光の強度と光の入射方向に基づいて所定の計算処理を実行することによって、任意の視点での画像や任意の位置にピントを合わせた画像を構築できる。つまり、ユーザはLFカメラで撮影した画像(以下、LF画像という)を視聴する場合、任意の奥行きにピントを合わせる操作を行える。記録データに対して計算処理を施すことにより、撮影後に視点やピント位置を変更した画像を構築できる点がLFカメラの利点である。
LFカメラでは複数方向の光線情報を記録するため、通常のデジタルカメラに比較して、画素数に対するデータ量が大きくなる。そこで、データ量を削減するため、特許文献1には、撮像画像のボケ具合に応じてデータを圧縮する方法が開示されている。また、特許文献2に開示の技術では、一部のデータをJPEG(Joint Photographic Experts Group)データに変換して画素データとして保持することで、全体のデータ量の削減を行っている。
特開2006−229838号公報 特開2008−182692号公報
上記のようにLFカメラにより得られるデータ量に対しては削減が望まれるが、撮影後に視点やピント位置を指定できるというLFカメラの利点を維持する必要がある。
前記特許文献1に開示の技術では、撮影時の画像のボケ具合に応じて一律に圧縮が行われるに過ぎず、撮影後に視点やピント位置を指定できるデータの圧縮処理については考慮されていなかった。また、前記特許文献2に開示の技術では、データの置き換え画素が固定位置の画素であるために削減率が常に一定である。よって、さらにデータ量を減らすには限界がある。
本発明は、撮影後にピント状態を指定可能な画像データの利点を活かしつつ、データ量を削減することを目的とする。
上記課題を解決するために、本発明に係る第1の側面としての装置は、撮影された光の強度を示す光線情報および光の方向を示す方向情報を含み、ピント状態を指定できる画像データの圧縮処理を行う画像処理装置であって、画像データの再生時に設定可能なピント位置の範囲を設定する設定手段と、前記光線情報および方向情報を取得して画素ごとに奥行きを検出する奥行き検出手段と、前記設定手段による設定範囲の情報および前記奥行き検出手段により検出された奥行き情報を取得して前記画素ごとに錯乱円径を算出し、錯乱円内を通過する光の光線情報および方向情報を保持し、錯乱円外を通過する光の光線情報および方向情報を削除することによりデータの圧縮処理を行う圧縮処理手段を備える。
また、本発明の第2の側面としての装置は、撮影された光の強度を示す光線情報および光の方向を示す方向情報を含み、ピント状態を指定できる画像データの圧縮処理を行う画像処理装置であって、前記光線情報および方向情報を解析して画素ごとの奥行き情報を生成する奥行き情報解析手段と、前記奥行き情報解析手段から奥行き情報を取得し、前記画像データの一部を、前記光線情報および方向情報から積分計算した積分画素データに置き換えることによりデータの圧縮処理を行う圧縮処理手段を備える。
本発明によれば、撮影後にピント状態を指定可能な画像データの利点を活かしつつ、データ量を削減することができる。
図2ないし図8と併せて本発明の第1実施形態を説明するために、画像処理装置の構成例を示すブロック図である。 撮像部の構成例を示す模式図である。 フォーカス可能範囲の説明図である。 マイクロレンズアレイとイメージセンサとの関係を表す模式図である。 撮像素子と錯乱円との関係を表す模式図である。 錯乱円径計算部の構成例を示すブロック図である。 錯乱円径計算部の処理例を説明するフローチャートである。 記録データ生成部の構成例を示すブロック図である。 第1実施形態の変形例に係る記録データ生成部の構成例を示すブロック図である。 図11ないし図17と併せて本発明の第2実施形態を説明するために、映像表示装置の構成例を示すブロック図である。 撮像装置の構成例を示すブロック図である。 撮像データを映像表示装置へ送出する処理例を示すフローチャートである。 奥行き解析に基づく画素領域の登録処理例を示すフローチャートである。 データの圧縮処理例を示すフローチャートである。 映像表示装置における処理例を示すフローチャートである。 撮像データから画像表示データ生成する処理例を示すフローチャートである。 画素領域テーブルを例示する図である。 第2実施形態の変形例に係る撮像装置と外部装置を示すブロック図である。 第2実施形態の変形例における処理例を示すフローチャートである。
以下に、本発明の各実施形態について、添付図面を参照して詳細に説明する。各実施形態では、撮像レンズとレンズアレイを用いた撮像光学系を備える撮像装置を例示して説明するが、本発明は複数の撮像装置を組み合わせて使用する実施形態にも適用できる。
[第1実施形態]
図1(A)は本発明の第1実施形態に係る画像処理装置の構成の概略を示すブロック図である。
撮像部101は被写体の光線情報を記録する。本実施形態では装置内に撮像部101をもつ形態を説明する。なお、外部の撮像装置から画像処理装置にデータを取り込む形態については、変形例として後述する。
図2は、撮像部101の構成を概略的に示す模式図である。
撮像光学系を構成する撮像レンズ201を通過して、マイクロレンズアレイ202に入射した被写体からの光は、イメージセンサ203によって光電変換されて電気信号が得られる。撮像レンズ201は、被写体からの光をマイクロレンズアレイ202に投射する。撮像レンズ201は交換可能であり、撮像装置の本体部に装着して使用する。ユーザは撮像レンズ201のズーム操作により撮像倍率を変更することができる。マイクロレンズアレイ202は、多数の微小レンズ(マイクロレンズ202a)を格子状に配列して構成されており、撮像レンズ201とイメージセンサ203の間に位置する。
マイクロレンズアレイ202を構成する各マイクロレンズ202aは、撮像レンズ201からの入射光を分割し、分割した光をイメージセンサ203に出力する。撮像部101を構成するイメージセンサ203は複数の画素を有する撮像素子であり、各画素にて光の強度を検出する。被写体からの光を受光するイメージセンサ203の各画素には、各マイクロレンズ202aによって分割した光がそれぞれ入射する。各マイクロレンズ202aは、イメージセンサ203における複数の画素が対応するように配置される。イメージセンサ203の各画素には各マイクロレンズ202aが分割した光が入射し、各画素にて異なる方向からの光の強度(光線情報)を検出する。また、各マイクロレンズ202aとイメージセンサ203の各画素との位置関係に応じて、マイクロレンズを介してイメージセンサ203の各画素に入射した光線の入射方向(方向情報)を検出できる。マイクロレンズアレイ202のレンズ頂点面からの距離が異なる焦点面での像は、各マイクロレンズ202aの光軸からの偏心量に対応した位置にあるイメージセンサ203の画素の各出力を合成することで得られる。なお、光線は位置や方位、波長等のパラメータを用いて、平行な2平面によってパラメータ化される関数で表される。つまり、各マイクロレンズ202aに対応する複数の画素の配置によって各画素への光の入射方向が決まっている。
以上のように取得した光線情報と方向情報に基づいて、光線の並べ替えと計算処理を行うことにより、任意のピント位置や視点を指定した画像データを生成できる。以下、光線情報および方向情報を総称してLFデータと呼ぶ。
図1の奥行きマップ生成部102は、LFデータから奥行き検出を行って錯乱円径計算部103に検出結果を出力する。奥行きマップ生成部102は撮像部101から取得したLFデータを解析し、画素ごとに奥行き情報を生成する。奥行き情報をマップ化したものが奥行きマップである。奥行きマップ生成部102は、光線情報及び方向情報から2つ以上の異なる視点での画像を生成し、生成した画像同士を比較して画像の位置ズレを検出することで奥行き情報を生成する。奥行き情報は錯乱円径計算部103に送られる。錯乱円径計算部103は、撮像部101から取得したLFデータのうち、記録する必要のある部分を判定する。処理の詳細については後述する。
フォーカス範囲設定部104は、LFデータの再生時に設定可能なピント位置の範囲について設定処理を行う。以下では、この設定範囲をフォーカス可能範囲という。図3はフォーカス可能範囲の概念を説明する模式図である。図3の例では撮像装置(LFカメラ)で被写体A、B、Cを撮影する状況を示す。被写体Bが撮像装置に最も近く、次に近いのが被写体Aであり、最も遠いのが被写体Cである。「フォーカス可能範囲1」は被写体AおよびBにピント合わせが可能な範囲を示し、「フォーカス可能範囲2」は被写体AおよびCにピント合わせが可能な範囲を示す。
図3(A)にて、フォーカス可能範囲1が設定されている場合、撮像装置は被写体Aおよび被写体Bにピントを合わせてLFデータの生成および再生が可能である。一方、フォーカス可能範囲2が設定されている場合、被写体Aおよび被写体Cにピントを合わせてLFデータの生成および再生を行えるが、被写体Bにピントを合わせることはできない。フォーカス可能範囲を示す情報は、錯乱円径計算部103に出力される。なお、フォーカス可能範囲については、撮影時にユーザ操作で設定してもよいし、撮影時にピントの合っていた位置を基準にして、その前後における一定範囲を自動で設定してもよい。
図1の記録データ生成部106は、撮像部101および錯乱円径計算部103から取得したデータを用いて圧縮処理を行って記録データを生成する。記録データ生成部106の詳細については後述する。データ記録部107は、記録データ生成部106により生成された記録データを受け取って記録媒体への記録処理を行う。データは、例えばメモリカード等のリムーバブルメディアに記録されるが、これに限るものではない。
次に錯乱円径計算部103の詳細を説明する。
まず、図4および図5を参照して、LF画像における錯乱円の概念を説明する。図4はマイクロレンズアレイ202とイメージセンサ203との関係を表す模式図である。図中に円形枠で示す部分は1つのマイクロレンズ202aを表し、また四角形枠で示す部分はイメージセンサ203の各画素、つまり個々の検出素子203aを表している。図4の例では、1個のマイクロレンズ202aに対して、5行×5列=25個の検出素子203aが割り当てられて配置されている。
図5(A)は、図3に示す被写体Aにピントを合わせている場合において、被写体Aの撮像データを出力する撮像素子と錯乱円との関係を表す模式図である。つまり、図5(A)は被写体Aに対してピントが合った状態を示しており、錯乱円501は撮像素子における1つの検出素子203aの範囲(四角形枠)内に収まっている。これは許容錯乱円であり、残りの24個の検出素子203aが出力するデータは必要ないこととなる。図5(B)は、図3における被写体Aにピントを合わせている場合において、被写体Bの撮像データを出力する撮像素子と錯乱円の関係を表す模式図である。図3に示すように、撮像装置から見て、被写体Bは被写体Aからやや離れて位置しているため、図5(A)に比べて錯乱円601の円径が大きくなる。錯乱円601は撮像素子における1つの検出素子203aの範囲(四角形枠)よりも大きい。すなわち、被写体Bにピントは合っていないが、画像のボケ具合は小さい状態である。図5(C)は、図3における被写体Aにピントを合わせている場合において、被写体Cの撮像データを出力する撮像素子と錯乱円との関係を表す模式図である。図3に示すように、被写体Cは被写体Bと比較して、被写体Aから大分離れて位置しているため、図5(C)に示すように錯乱円701の円径がさらに大きくなる。すなわち、画像のボケ具合が大きい状態である。なお、図5(A)ないし(C)には最大錯乱円500を円形枠で示す。
次に錯乱円径計算部103を説明する。図6は、錯乱円径計算部103の構成例を概略的に示すブロック図である。
距離情報生成部801は、奥行きマップ生成部102から取得したデータ、つまり奥行き情報を用いて、現在注目している画素(以下、注目画素という)の距離情報を生成する。この距離情報は、奥行き方向において注目画像に対応する位置と撮影位置との差に相当し、最大距離算出部802に送られる。最大距離算出部802は、距離情報生成部801から取得した距離情報、およびフォーカス範囲設定部104から取得したフォーカス可能範囲の情報に基づき、注目画素についてフォーカス可能範囲を基準とした最大距離を算出する。
図3(B)を参照して最大距離について説明する。図3(B)の例は、撮像データから奥行き情報として0〜10が取得されている場合を示す。つまり奥行き検出範囲は10である。被写体A、B、Cについてはそれぞれ距離4、1、9に位置する場合を想定する。0で示す位置が撮像装置に最も近く、10で示す位置が撮像装置から最も遠い。フォーカス可能範囲は2〜5に設定されており、撮像装置から見て手前側にある第1の端位置での距離が2であり、奥側にある第2の端位置での距離が5である。
撮像装置から見て、被写体Bはフォーカス可能範囲よりも手前側に位置している。このため、フォーカス可能範囲にて最も奥位置(第2の端位置)での距離5と、被写体Bの距離1との差分の絶対値4が最大距離として算出される。また、撮像装置から見て、被写体Cはフォーカス可能範囲よりもさらに奥側に位置している。このため、フォーカス可能範囲の最も手前の位置(第1の端位置)での距離2と、被写体Cの距離9との差分の絶対値7が最大距離となる。被写体Aについては、フォーカス可能範囲内に位置している。このため、被写体Aの距離4と第2の端位置での距離5との距離差|5−4|=1、および被写体Aの距離4と第1の端位置での距離2との距離差|4−2|=2が比較される。両者のうちで大きい方の距離差、すなわち2が最大距離となる。
図6の錯乱円径算出部803は、最大距離算出部802の出力に応じて注目画素の錯乱円径を算出する。錯乱円径は、最大距離が0の場合に最小値(撮像素子の1画素分の面積に相当する)となり、最大距離が、取得されている奥行き情報の範囲(奥行き検出範囲)と一致する場合に最大値になるように算出する。具体的には、図3(B)の場合、奥行き検出範囲は10である。最大距離算出部802が算出した最大距離が10である場合、最大錯乱円径は1つのマイクロレンズ202aがカバーする画素範囲の面積に比例し、図4および図5の場合、画素数25となる。例えば、被写体Aの場合、最大距離は2であるため、錯乱円径は25×(2÷10)=5となる。被写体Cの場合、最大距離は7であるため、錯乱円径は25×(7÷10)≒18となる。
次に、図7のフローチャートを参照して、錯乱円径計算部103の処理例を説明する。
錯乱円径計算部103は、奥行きマップ生成部102から取得した奥行き情報を用いて、注目画素の距離情報を取得する(S1001)。次にフォーカス可能範囲にて最も奥位置(第2の端位置)と、注目画素の位置との距離差(これをAと記す)が算出される(S1002)。次にフォーカス可能範囲にて最も手前の位置(第1の端位置)と、注目画素の位置との距離差(これをBと記す)が算出される(1003)。
S1004では、S1002で算出した|A|とS1003で算出した|B|が比較される。つまり、差分の絶対値について大小関係が比較される。判定結果が|A|≧|B|の場合、S1005に処理を進め、|A|<|B|の場合、S1006に処理を進める。S1005ではAの絶対値が最大距離に設定される。一方、S1006では、Bの絶対値が最大距離に設定される。
S1005、S1006の次に、錯乱円径計算部103は、奥行きマップにて距離情報が取得できている範囲(奥行き検出範囲)の大きさを算出する(S1007)。そして、下式を用いて錯乱円径が算出される(S1008)。
・計算式
錯乱円径 = 最大錯乱円径×(最大距離÷奥行き検出範囲)
LFカメラの最大錯乱円径は、1つのマイクロレンズ202aに対応する撮像素子の検出画素数により算定される。最大錯乱円径に対して、最大距離と奥行き検出範囲の比率を乗算すれば、錯乱円径が得られる。S1001からS1008の処理を全ての画素に対して行うことで、全画素について錯乱円径を算出することができる。
次に、図1の記録データ生成部106について詳細を説明する。図8は記録データ生成部106の構成例を概略的に示すブロック図である。
撮像データ受信部1101は、撮像部101から撮像データ(LFデータ)を受信して圧縮データ生成部1104へ送信する。錯乱円径受信部1102は、錯乱円径計算部103から画素ごとの錯乱円径の情報を受信し、圧縮データ生成部1104および錯乱円径データ生成部1105へ送信する。圧縮データ生成部1104は、錯乱円径受信部1102から受信した錯乱円径の情報に基づいて、錯乱円外(錯乱円よりもマイクロレンズの周縁側)を通過する光の光線情報および方向情報を削除することで圧縮データを生成する。錯乱円径データ生成部1105は、錯乱円径受信部1102から受信したデータを画素の順に並べて錯乱円径データを生成する。データ合成部1106は圧縮データ生成部1104が生成した圧縮データと、錯乱円径データ生成部1105が生成した錯乱円径データを受け取り、両者を合成することによって記録データを生成する。記録データは錯乱円径データを含むが、LFデータの一部(錯乱円内を通過する光の光線情報および方向情報)だけを含むので、元のLFデータに比べてデータ量が少ない。
第1実施形態によれば、LF画像の利点を活かしつつ、再生時に必要となる錯乱円径に基づいて不要なデータを削除することで、効率良くデータ圧縮処理を行える。
[変形例(第1実施形態)]
次に、第1実施形態の変形例を説明する。なお、既に説明した部分と同様の部分には前記と同一の符号を用いることにより、それらの詳細な説明を省略し、主に相違点を説明する。
図1(A)に示すモード記憶部1301は、画像データ(LFデータ)の記録モードを示す情報を記憶している。記録モードには通常モードおよび圧縮モードがあり、通常モードではLFデータの圧縮処理を行わないものとする。記録データ生成部106はモード記憶部1301が記憶している記録モードの情報に応じて、撮像データから記録データを生成する。
図9は記録データ生成部106の構成例を概略的に示すブロック図である。図8との相違点は錯乱円径決定部1401である。錯乱円径決定部1401はモード記憶部1301から記録モードの情報を取得してモード判定処理を行う。記録モードが通常モードである場合、錯乱円径決定部1401は、LFカメラの最大錯乱円径を錯乱円径データとして出力する。また、記録モードが圧縮モードである場合、錯乱円径決定部1401は、錯乱円径受信部1102から受信した錯乱円径を錯乱円径データとして出力する。
圧縮データ生成部1104および錯乱円径データ生成部1105は、錯乱円径決定部1401からそれぞれ受信した錯乱円径データを用いて各処理を実行する。錯乱円径データがLFカメラの最大錯乱円径を示す場合、錯乱円外を通過する光線のデータは存在しないので、データ圧縮処理は行われない。また、錯乱円径データが最大錯乱円径より小さい場合、該データの示す錯乱円外を通過する光線情報および方向情報を削除する圧縮処理が行われる。
変形例によれば、記録モードに応じて、LFデータの圧縮処理を行う設定と、LFデータの圧縮処理を行わない設定を切り替えることができる。
次に図1(B)を参照して、さらに別の変形例を説明する。例えば、パーソナルコンピュータ等の情報処理装置は、撮像装置からLFデータを取得して圧縮処理を行う。この場合、撮像部101は外部装置であり、装置内のデータ受信部1221に対してLFデータを無線または有線で送信する。
LFカメラ1210は撮像部101およびデータ送信部1211を備える。データ送信部1211は撮像部101によるLFデータをデータ受信部1221へ送信する。データの送信には公知の映像インターフェース(DVI等)やEthernet(登録商標)等を利用すればよい。DVIは”Digital Visual Interface”の略号である。情報処理装置内のデータ受信部1221は、データ送信部1211からLFデータを受信し、奥行きマップ生成部102、錯乱円径計算部103、記録データ生成部106へそれぞれ出力する。
以上説明したように、撮影後にピント状態を指定できるというLFカメラの利点を維持したまま、データ量を削減することが可能となる。
[第2実施形態]
次に、本発明の第2実施形態を説明する。
第2実施形態では、撮像装置としてのLFカメラと、該カメラが生成したLF映像信号受信して処理する映像表示装置について説明する。
図10は撮像装置(LFカメラ)2200および映像表示装置2100の構成例を示すブロック図である。
撮像装置2200は被写体を撮像してLF映像信号を出力する。映像表示装置2100内の映像入力部2101は、撮像装置2200から映像表示装置2100に入力されるLF映像信号を受信する。LF映像信号は、DPやDVI、HDMI、SDI等の映像入力端子より入力される。DPは”DisplayPort”、HDMIは”High-Definition Multimedia Interface”、SDIは”Serial Digital Interface”の略号である。
CPU(中央演算処理装置)2102は、映像表示装置2100全体を制御する。CPU2102はメモリからプログラムを読み出して実行することにより各種制御を行う。RAM(Random Access Memory)2103は各種データを一時保存するために使用する。一時保存データとしては、CPU2102が実行するプログラムや各種テーブルデータ等が挙げられる。ROM(Read Only Memory)2104は各種データを保存する書き換え可能な不揮発性記憶デバイスである。記憶データとしてはユーザ設定値等が挙げられる。操作検出部2105は各種ボタン操作を検出して操作指示をCPU2102へ通知する。CPU2102は検出された操作指示信号に従って、電源のON/OFFや、入力切換、UI(ユーザ・インターフェース)処理等を制御する。
LFデータ解析部2106は、映像入力部2101から受信したLFデータを用いて、ピント情報、視点情報、画素配置情報等を解析し、解析結果を後述の映像処理部2109に通知する。積分画素位置情報受信部(以下、位置情報受信部という)2107は、撮像装置2200から送信される情報を受信して映像処理部2109に出力する。この情報(積分画素位置情報)は、積分画素データに置き換えた画素位置の情報であり、その詳細については後述する。
ピント位置指定部2108は、ユーザ操作または装置の動作モード等に応じてLF画像に関するピント位置を指定し、画像内でピントを合わせる位置を設定する。設定情報(ピント情報)は映像処理部2109に送られる。映像処理部2109は、LFデータ解析部2106、位置情報受信部2107、ピント位置指定部2108からの各情報に基づいて画像表示データを生成する。映像処理部2109は、映像入力部2101から入力された画像データに対して、色域変換、スケーリング処理、OSD(On Screen Display)重畳等の各種処理を行う。映像処理部2109は、ピント位置指定部2108からの設定情報に基づいて画像表示データを生成する。生成された画像表示データは表示部2110へ送信される。表示部2110は、画像表示データに従って画像を表示する。
次に、図11を参照して撮像装置2200の構成要素について説明する。
撮像装置2200は、被写体2201からの光を結像させるレンズ部2202を備える。被写体2201からの光はレンズ部2202を通して撮像素子部2203に到達する。撮像光学系を構成するレンズ部2202は、図2および図4で説明したように、撮像レンズとマイクロレンズアレイを組み合わせて構成される。レンズ部2202を通過した光線は撮像素子部2203で光電変換されて、撮像データが得られる。撮像レンズおよびマイクロレンズアレイの特性と、撮像素子の画素配置に基づき、撮像された画像に対してピントや視点といった各種LF情報が付与される。
カメラCPU2204は各種プログラムを実行して撮像装置2200全体を制御する。RAM2205は、一時保存データとして、カメラCPU2204が実行するプログラムや、ピント範囲の設定値や各種テーブルデータ等を記憶する。ROM2206は各種データを保存する書き換え可能な不揮発性記憶デバイスである。各種データとしては、LF撮像データ、撮影モード設定等の各種ユーザ設定値等が挙げられる。LF撮像データはLFカメラで撮像したLFデータである。なお、ROM2206については、LF撮像データの取り扱いの利便性を考慮して、取り外し可能なリムーバブルメディアを併用してもよい。
操作検出部2207は各種ボタン操作を検出して操作指示をカメラCPU2204へ通知する。カメラCPU2204は検出された操作指示信号に従って、電源のON/OFFや、シャッタ操作、ピント操作、絞り操作、撮影モード設定、各種UI処理等を制御する。
撮影モード設定部2208は、UI画面上でのユーザ操作等に応じて撮影モードの設定処理を行う。撮影モードは、LFデータを圧縮しない通常モードと、LFデータを圧縮してデータ量を削減する圧縮モードを含み、撮影モードの設定情報はROM2206に保持される。奥行き情報解析部2209は、LFデータを解析して奥行き情報を生成する。この奥行き情報をマップ化したデータは奥行きマップや3Dマップと呼ばれ、撮像データ中での各被写体の位置関係を表す情報を有する。
積分画素位置決定部2210は、奥行き情報解析部2209が解析した奥行き情報を取得し、撮像データ中の画素領域を解析する。積分画素位置決定部2210は、画素ごとの奥行き情報が生成された第1の領域と、奥行き情報が解析できなかった第2の領域を特定する領域決定処理を行う。その詳細は後述するが、第1の領域内の画素についてはLFデータの再構築により画像データを生成可能である。一方、第2の領域内の画素については、ピント変更によるボケ量の変更は必要ないため、LFデータから積分計算した画素データ(積分画素データ)に置き換える処理が行われる。以下、第2の領域を、置換対象領域という。領域決定処理により置換対象領域として特定された領域内での、複数の画素位置を示す位置情報(以下、画素領域情報という)は映像データ生成部2212に出力される。
積分画素生成部2211は積分画素データ生成手段であり、置換対象領域内の画素に対して積分画素データを生成する。生成された積分画素データは、元のLFデータに比べてデータ量が削減される。これは、LFデータの一部が、計算済みの積分画素データに置換されるので、計算前の元のLFデータに比べて画素数当たりのデータ量が少なくなるからである。
映像データ生成部2212は、積分画素位置決定部2210からの画素領域情報、積分画素生成部2211からの積分画素データ、および撮影モードの設定情報に基づいてLFデータの置換処理を行う。撮影モードが通常モードに設定されている場合、前記置換処理は行わない。また、圧縮モードの場合には、積分画素生成部2211が生成した積分画素データへの置換処理を行ったLFデータを、映像データ生成部2212が映像データ送信部2213に出力する。映像データ送信部2213は、処理済みのLFデータを映像表示装置2100へ送信するためのインタフェース部である。積分画素位置情報送信部(以下、位置情報送信部という)2214は、積分画素データに置き換えた画素位置を示す情報を出力する位置情報出力手段である。位置情報送信部2214は、置換対象領域内の画素位置を示す画素領域情報を映像表示装置2100へ送信する。映像表示装置2100は、受信した画素領域情報に基づいて映像データの生成処理を行う。
撮像装置2200における撮像素子の各画素とマイクロレンズとの対応関係は図2および図4で説明した通りである。また、被写体とカメラ位置との位置関係、およびピント位置とボケ具合を表現する錯乱円との関係については、図3および図5を用いて説明した通りである。なお、図5(A)に示すように、ピントが合っている画像に対する錯乱円(許容錯乱円)は1個の検出素子の範囲内に収まっている。また、図5(B)に示すように、ピントは合っていないが、ピント位置から近い被写体に対する錯乱円径は比較的小さいので、画素データ生成時の積分範囲の面積が小さくなる。図5(C)に示すように、ピントが合っておらず、ピント位置から遠い被写体に対する錯乱円径は大きいので、画素データ生成時の積分範囲の面積が大きくなる。
次に図12ないし図17を参照して、本実施形態の処理について説明する。
図12は撮像装置2200がLF撮像データを映像表示装置2100へ送出する処理例を説明するフローチャートである。以下では、予めユーザ操作によって、撮影モードフラグが圧縮モードに設定されているものとする。表1に示す撮影モードフラグはカメラCPU2204が撮影モードの管理に使用する情報である。
Figure 0006016516
まず、S801にて奥行き情報解析部2209は、LF撮像データに基づいて奥行き情報を解析する。次にS802で積分画素位置決定部2210は、奥行きが解析できなかった範囲を含む置換対象領域を特定する。具体的には、図17に例示する画素領域テーブルが作成される。画素領域テーブルは、領域名とその開始位置のX座標およびY座標、縦サイズおよび横サイズの各情報を含む。これらの情報を用いることで、置き換え画素の各位置を特定できる。なお、本処理については図13を参照して後述する。
S803にて積分画素生成部2211は、LF撮像データ、撮影モードフラグ、画素領域テーブル(図17参照)の各情報に基づいて、置き換え画素データとしての積分画素データを生成する。本実施形態では、置換対象領域内の画素に対して積分画素データへの置換処理を1種類の画素データで行う。これに限らず、積分画素生成部2211では、画質設定に従ってボケ量を変更した画素データを生成してもよい。この場合、ボケ具合の異なる複数の画素データを置き換え画素データとして使用できる。あるいは、複数の画素領域を含む広い範囲にピントが合っているパンフォーカス画像の画素データを生成して前記の置換処理を行ってもよい。このように、複数種類の積分画素データを作成することが可能である。本処理ついては、図14を参照して後述する。次のS804にて映像データ生成部2212は、積分画素データと、元のLF撮像データに基づいて、更新LFデータを生成する。更新LFデータは、積分画素データとLF撮像データが混在したデータである。S805で映像データ送信部2213は更新LFデータを映像表示装置2100へ送信し、位置情報送信部2214は置き換え画素の位置情報を映像表示装置2100へ送信する。これらの情報は、各種映像送信規格やデータ送信規格に従ったデータとして送信される。
図13は、図12のS802の処理例を説明するフローチャートである。本処理は、奥行きが解析できなかった画素領域の情報を収集し、画素領域テーブル(図17参照)を作成して、置き換え画素の位置を特定する処理であり、積分画素位置決定部2210が実行する。
まず、S901にて予め解析済みの奥行き情報(奥行き解析情報)が参照され、S902に処理を進める。S902は奥行き解析ができなかった領域の有無についての判定処理である。奥行き解析ができなかった領域があると判定された場合、S903に処理を進め、該領域が無いと判定された場合、S904に処理を進める。S903では、奥行き解析ができなかった領域内の画素に対して、積分画素データに置き換える領域として画素領域テーブル(図17参照)に登録する処理が実行される。具体的には、置換対象領域として特定するための領域名と、開始位置のX座標およびY座標と、縦サイズおよび横サイズの各情報が登録される。一方、S904では積分画素データに置き換える画素領域が無いと判断されるため、画素領域テーブルへの登録処理は行わない。
S903やS904の後でS905に進み、LF撮像データを全て解析して置換画素領域の特定が終了したか否かについて判定される。解析処理が全て完了した場合、処理を終了する。解析処理が終わっていない場合、S906に進んで処理を続行し、S902に戻る。
次に、図14のフローチャートを参照して、図13のS903で説明した画素領域テーブルに従い、置き換え画素に対して積分画素データを生成して置き換えを行う処理を説明する。
S2001では、撮影モードフラグが判定される。撮影モードが通常モードの場合、S2002へ処理を進め、また、圧縮モードの場合、S2003へ処理を進める。S2003で積分画素生成部2211は、積分画素データを生成して映像データ生成部2212に出力する。この場合、映像データ生成部2212は、置換対象領域内の画素に対して、光線情報および方向情報から積分計算した積分画素データへの置換処理を実行し、データ量を削減する圧縮処理を行う。一方、S2002では、映像データ生成部2212は、積分画素データへの置換処理を行わない。
次に、図15のフローチャートを参照して、撮像装置2200から映像表示装置2100へ送信されたLF撮像データを処理して映像表示を行う処理について説明する。なお、撮像装置2200の映像データ送信部2213が送信したLF撮像データは、映像表示装置2100の映像入力部2101が受信する。また撮像装置2200の位置情報送信部2214が送信した積分画素位置情報は、映像表示装置2100の位置情報受信部2107が受信する。
まず、S2101にて映像処理部2109は、位置情報受信部2107から取得した積分画素位置情報から、積分画素データへの置換処理を行った領域の画素位置を特定する。但し、撮影モードの設定情報や被写体の位置関係によっては置換処理を行った領域が存在しない場合もある。次のS2102で映像処理部2109は、積分画素位置情報とLF撮像データ、およびユーザ操作で指定したピント位置に基づいて画像表示データを生成する。本処理については、図16を参照して後述する。S2103で表示部2110は、S2102で生成した画像表示データに従って画像を表示する。
次に図16のフローチャートを参照して、図15のS2102で説明した、LF撮像データから画像表示データを生成する処理について説明する。
S2201で映像処理部2109は、ユーザ操作により指定されたピント情報を取得する。次のS2202で映像処理部2109は、積分済み画素領域テーブルを参照する。積分済み画素領域とは、置換対象領域内の各画素に対して積分画素データへの置換処理を行った領域である。前記テーブルは積分画素データに置き換えた画素領域を記載した情報を含み、図17と同様に、積分画素データへの置換処理を行った画素領域を特定するための領域名と、開始位置のX座標およびY座標と、縦サイズおよび横サイズの各情報を含む。
S2202では、積分済み画素領域が存在するか否かについての判定処理が行われる。積分済み画素領域が存在しない場合、S2203へ処理を進め、また、積分済み画素領域が存在する場合、S2204へ処理を進める。
S2203で映像処理部2109は、撮像装置2200から送信されてきたデータが元のLF撮像データ(つまり、積分画素データへの置換処理を行っていないデータ)のみで成り立っていると判断する。S2205に進み、映像処理部2109は当該LF撮像データから画像を再構築して画像表示データを生成する。一方、S2204では、積分済み画素領域が存在するので、映像処理部2109は当該領域内の画素データが積分画素データに置き換えられたデータとして送信されてきたと判断する。映像処理部2109は、撮像装置2200にて積分画素データへの置換処理が行われた画素データについてはそのまま使用して画像表示データを生成する(S2205)。積分済み画素領域以外でのLF撮影データについては再構築により画像表示データが生成される。
第2実施形態によれば、LFデータの一部を積分画素データに置き換えることにより、LF画像の特徴を活かしたままで、データ量を削減することができる。
[変形例(第2実施形態)]
次に、図18および図19を参照して、第2実施形態の変形例を説明する。
第2実施形態に係る前記の例では、置換対象領域に対する置き換え画素データの生成および置換処理を、撮像装置2200が行った。変形例では、図18に示す撮像装置2200から外部装置2600に対して、LF撮像データと置換対象領域の情報が送信される。
図18は撮像装置2200としてLFカメラを例示し、外部装置2600としてパーソナルコンピュータ(PC)等の情報処理装置を例示した図である。撮像装置2200は外部装置2600に対して、置換対象領域の画素位置情報を通知する。また撮像装置2200において、ユーザ操作により画素生成モードフラグを設定しておくものとする。下表2の画素生成モードフラグは、置換対象領域に対する置き換え画素データの生成および置換処理を撮像装置2200が行うのか、または外部装置2600が行うのかを管理する情報である。これらの処理を外部装置2600が行う場合、画素生成モードフラグは「外部」に設定され、撮像装置2200が処理を行う場合には「カメラ」に設定される。
Figure 0006016516
なお、外部装置2600は有線または無線通信により、撮像装置2200からデータを受信する機能と、図10で説明した各構成要素により実現される機能と同様の機能を有する。例えば、外部装置2600は、LF撮像データの編集や閲覧が可能であり、撮像装置2200から送信された画素領域テーブル(図17参照)の情報に基づいて、積分画素データの生成および置換処理を実行する機能が備わっている。
次に、図19のフローチャートを参照して、変形例における処理例を説明する。なお、図12との違いは、撮像装置2200が画素生成モードフラグを参照し、積分画素データの生成とLFデータの再構築を行うか否かを判断する処理である。よって、図12との相違点である、S2703ないしS2705の処理を説明する。なお、S805にて情報の出力先は外部装置2600である。
S2703にて、画素生成モードフラグの値が判定され、これが「外部」に設定されている場合、S2704に処理を進め、フラグの値が「カメラ」に設定されている場合、S803に処理を進める。
S2704では、撮像装置2200は積分画素データの生成および置換処理を行わず、S2705に進み、LF撮像データ、および置き換え画素の位置情報等を含む画素領域テーブル情報(図17参照)を外部装置2600へ送信する。外部装置2600では、積分画素データの生成および置換処理が行われ、積分済みの画素データおよび元のLF撮像データが混在した更新LFデータが生成される。
なお、フラグの値が「カメラ」に設定されている場合、既に説明したS803からS805の処理が実行される。処理の詳細については、図12で説明済みである。
変形例によれば、ユーザ操作による画素生成モードフラグの設定に応じて、積分画素データの生成および置換処理を撮像装置で行うか、または外部装置で行うかを任意に選択できる。よって、撮像装置のバッテリ残量や使用状況等に応じたLF撮像データの処理が可能となり、ユーザの利便性が向上する。
[その他の実施形態]
また、本発明は、以下の処理を実行することによっても実現される。即ち、前記実施形態の機能を実現する画像処理プログラムを、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム又は装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
101 撮像部
106 記録データ生成部
201 撮像レンズ
202 マイクロレンズアレイ
203 イメージセンサ
1301 モード記憶部
2100 映像表示装置
2109 映像処理部
2200 撮像装置(LFカメラ)
2212 映像データ生成部
2600 外部装置

Claims (22)

  1. 撮影された光の強度を示す光線情報および光の方向を示す方向情報を含み、ピント状態を指定できる画像データの圧縮処理を行う画像処理装置であって、
    画像データの再生時に設定可能なピント位置の範囲を設定する設定手段と、
    前記光線情報および方向情報を取得して画素ごとに奥行きを検出する奥行き検出手段と、
    前記設定手段による設定範囲の情報および前記奥行き検出手段により検出された奥行き情報を取得して前記画素ごとに錯乱円径を算出し、錯乱円内を通過する光の光線情報および方向情報を保持し、錯乱円外を通過する光の光線情報および方向情報を削除することによりデータの圧縮処理を行う圧縮処理手段を備えることを特徴とする画像処理装置。
  2. 前記圧縮処理手段は、前記設定手段による設定範囲の端位置と、前記奥行き検出手段により検出された奥行き情報から画素ごとに算出した距離情報の示す位置との差を算出し、当該差の大きさが最大となる距離から前記錯乱円径を算出する錯乱円径計算手段を備えることを特徴とする請求項1に記載の画像処理装置。
  3. 前記錯乱円径計算手段は、
    前記奥行き情報から前記距離情報を生成する距離情報生成手段と、
    前記設定手段による設定範囲の端位置に対して、前記距離情報の示す位置との距離差を画素ごとに算出し、当該距離差が最大となる最大距離を算出する最大距離算出手段と、
    前記最大距離を奥行き検出範囲の大きさで割った比率を最大錯乱円径に乗算することにより前記錯乱円径を算出する錯乱円径算出手段を備えることを特徴とする請求項2に記載の画像処理装置。
  4. 前記画像データの記録モードを示す情報を記憶するモード記憶手段と、
    前記モード記憶手段が記憶する情報が前記画像データを圧縮して記録処理を実行するモードである場合、前記圧縮処理手段により圧縮されたデータ、および錯乱円径のデータを合成して記録データを生成する記録データ生成手段を備えることを特徴とする請求項1から3のいずれか1項に記載の画像処理装置。
  5. 撮影された光の強度を示す光線情報および光の方向を示す方向情報を含み、ピント状態を指定できる画像データの圧縮処理を行う画像処理装置にて実行される制御方法であって、
    画像データの再生時に設定可能なピント位置の範囲を設定する設定ステップと、
    前記光線情報および方向情報を取得して画素ごとに奥行きを検出する奥行き検出ステップと、
    前記設定ステップで設定された設定範囲の情報および前記奥行き検出ステップにて検出された奥行き情報を取得して前記画素ごとに錯乱円径を算出する算出ステップと、
    錯乱円内を通過する光の光線情報および方向情報を保持し、錯乱円外を通過する光の光線情報および方向情報を削除することによりデータの圧縮処理を行う圧縮処理ステップを有することを特徴とする画像処理装置の制御方法。
  6. 前記圧縮処理ステップは、前記設定ステップでの設定範囲の端位置と、前記奥行き検出ステップで検出した奥行き情報から画素ごとに算出した距離情報の示す位置との差を算出し、当該差の大きさが最大となる距離から前記錯乱円径を算出する錯乱円径計算ステップを有することを特徴とする請求項5に記載の画像処理装置の制御方法。
  7. 前記錯乱円径計算ステップは、
    前記奥行き情報から前記距離情報を生成する距離情報生成ステップと、
    前記設定範囲の端位置に対して、前記距離情報の示す位置との距離差を画素ごとに算出し、当該距離差が最大となる最大距離を算出する最大距離算出ステップと、
    前記最大距離を奥行き検出範囲の大きさで割った比率を最大錯乱円径に乗算することにより前記錯乱円径を算出する錯乱円径算出ステップを有することを特徴とする請求項6に記載の画像処理装置の制御方法。
  8. モード記憶手段が記憶する情報を取得し、前記画像データを圧縮して記録処理を実行するモードであるか否かを判定する判定ステップと、
    前記判定ステップにて、前記画像データを圧縮して記録処理を実行するモードが判定された場合、前記圧縮処理ステップで圧縮したデータ、および前記算出した錯乱円径のデータを合成して記録データを生成する記録データ生成ステップを有することを特徴とする請求項5から7のいずれか1項に記載の画像処理装置の制御方法。
  9. 撮影された光の強度を示す光線情報および光の方向を示す方向情報を含み、ピント状態を指定できる画像データの圧縮処理を行う画像処理装置であって、
    前記光線情報および方向情報を解析して画素ごとの奥行き情報を生成する奥行き情報解析手段と、
    前記奥行き情報解析手段から奥行き情報を取得し、前記画像データの一部を、前記光線情報および方向情報から積分計算した積分画素データに置き換えることによりデータの圧縮処理を行う圧縮処理手段を備えることを特徴とする画像処理装置。
  10. 前記圧縮処理手段は、前記奥行き情報解析手段から奥行き情報を取得し、画素ごとの奥行き情報が生成された第1の領域と、奥行き情報が解析できなかった第2の領域を特定し、前記第2の領域を、前記積分画素データへの置き換えを行う領域であると決定して当該領域の位置情報を出力する領域決定手段を備えることを特徴とする請求項9に記載の画像処理装置。
  11. 前記圧縮処理手段は、
    前記光線情報および方向情報から前記積分画素データを生成する画素データ生成手段と、
    前記第2の領域の位置情報、および前記積分画素データを取得し、前記第2の領域に対して前記積分画素データへの置き換えを行う置換処理手段を備えることを特徴とする請求項10に記載の画像処理装置。
  12. 前記画素データ生成手段は、画質設定に従ってボケ量を変更した画素データまたは複数の画素領域にピントを合わせたパンフォーカス画像の画素データを、前記第2の領域内の画素データと置き換えるために生成することを特徴とする請求項11に記載の画像処理装置。
  13. 前記積分画素データへの置き換えを行った前記第2の領域の位置情報を出力する位置情報出力手段を備えることを特徴とする請求項10から12のいずれか1項に記載の画像処理装置。
  14. 画像内のピントを合わせる位置を設定する設定手段と、
    前記設定手段による設定情報と、前記圧縮処理手段により圧縮処理された画像データ、および前記領域決定手段による前記第2の領域の位置情報を取得し、前記光線情報および方向情報から生成した画像データおよび前記積分画素データへの置き換えを行った画像データを用いて画像表示データを生成する映像処理手段を備えることを特徴とする請求項10から13のいずれか1項に記載の画像処理装置。
  15. 撮影された光の強度を示す光線情報および光の方向を示す方向情報を含み、ピント状態を指定できる画像データの圧縮処理を行う画像処理装置にて実行される制御方法であって、
    前記光線情報および方向情報を解析して画素ごとの奥行き情報を生成する奥行き情報解析ステップと、
    前記奥行き情報解析ステップで生成した奥行き情報を用いて、前記画像データの一部を、前記光線情報および方向情報から積分計算した積分画素データに置き換えることによりデータの圧縮処理を行う圧縮処理ステップを有することを特徴とする画像処理装置の制御方法。
  16. 前記圧縮処理ステップは、前記画素ごとの奥行き情報が生成された第1の領域と、奥行き情報が解析できなかった第2の領域を特定するステップと、前記第2の領域を、前記積分画素データへの置き換えを行う領域であると決定するステップを有することを特徴とする請求項15に記載の画像処理装置の制御方法。
  17. 前記圧縮処理ステップは、前記光線情報および方向情報から前記積分画素データを生成する画素データ生成ステップと、前記第2の領域の位置情報、および前記積分画素データを用いて、前記第2の領域に対して前記積分画素データへの置き換えを行う置換処理ステップを有することを特徴とする請求項16に記載の画像処理装置の制御方法。
  18. 前記画素データ生成ステップにて、画質設定に従ってボケ量を変更した画素データまたは複数の画素領域にピントを合わせたパンフォーカス画像の画素データを、前記第2の領域内の画素データと置き換えるために生成することを特徴とする請求項17に記載の画像処理装置の制御方法。
  19. 前記積分画素データへの置き換えを行った前記第2の領域の位置情報を出力するステップをさらに有することを特徴とする請求項16から18のいずれか1項に記載の画像処理装置の制御方法。
  20. 画像内のピントを合わせる位置を設定する設定ステップと、
    前記設定ステップによる設定情報と、前記圧縮処理された画像データ、および前記第2の領域の位置情報を取得し、前記光線情報および方向情報から生成した画像データおよび前記積分画素データへの置き換えを行った画像データを用いて画像表示データを生成する映像処理ステップをさらに有することを特徴とする請求項16から19のいずれか1項に記載の画像処理装置の制御方法。
  21. 請求項5から8、15から20のいずれか1項に記載の画像処理装置の制御方法の各ステップをコンピュータに実行させるための画像処理プログラム。
  22. 請求項1から4、9から14のいずれか1項に記載の画像処理装置と、
    撮像光学系から複数のマイクロレンズを介してそれぞれ入射する光を電気信号に変換する複数の光電変換手段を有し、該複数の光電変換手段から出力される前記光線情報および方向情報を前記画像処理装置に出力する撮像手段を備えることを特徴とする撮像装置。
JP2012179590A 2012-08-13 2012-08-13 画像処理装置およびその制御方法、画像処理プログラム、並びに撮像装置 Expired - Fee Related JP6016516B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012179590A JP6016516B2 (ja) 2012-08-13 2012-08-13 画像処理装置およびその制御方法、画像処理プログラム、並びに撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012179590A JP6016516B2 (ja) 2012-08-13 2012-08-13 画像処理装置およびその制御方法、画像処理プログラム、並びに撮像装置

Publications (2)

Publication Number Publication Date
JP2014039119A JP2014039119A (ja) 2014-02-27
JP6016516B2 true JP6016516B2 (ja) 2016-10-26

Family

ID=50286937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012179590A Expired - Fee Related JP6016516B2 (ja) 2012-08-13 2012-08-13 画像処理装置およびその制御方法、画像処理プログラム、並びに撮像装置

Country Status (1)

Country Link
JP (1) JP6016516B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6071374B2 (ja) * 2012-09-21 2017-02-01 キヤノン株式会社 画像処理装置、画像処理方法およびプログラムならびに画像処理装置を備えた撮像装置
JP6362433B2 (ja) * 2014-06-04 2018-07-25 キヤノン株式会社 画像処理装置およびその制御方法、プログラム
CN104243823B (zh) 2014-09-15 2018-02-13 北京智谷技术服务有限公司 光场采集控制方法和装置、光场采集设备
JP6385241B2 (ja) * 2014-10-27 2018-09-05 キヤノン株式会社 画像処理装置、画像処理方法およびプログラム
JP7056554B2 (ja) * 2016-03-29 2022-04-19 ソニーグループ株式会社 情報処理装置、撮像装置、画像再生装置、および方法とプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8103111B2 (en) * 2006-12-26 2012-01-24 Olympus Imaging Corp. Coding method, electronic camera, recording medium storing coded program, and decoding method
JP5657343B2 (ja) * 2010-10-28 2015-01-21 株式会社ザクティ 電子機器
JP5218611B2 (ja) * 2011-07-19 2013-06-26 株式会社ニコン 画像合成方法及び撮像装置

Also Published As

Publication number Publication date
JP2014039119A (ja) 2014-02-27

Similar Documents

Publication Publication Date Title
JP5854984B2 (ja) 画像処理装置、撮像装置、制御方法、及びプログラム
US10587860B2 (en) Imaging apparatus and method for controlling same
JP5101101B2 (ja) 画像記録装置及び画像記録方法
JP6548367B2 (ja) 画像処理装置、撮像装置、画像処理方法及びプログラム
JP2008219878A (ja) 復号方法、復号装置、復号プログラム、及び電子カメラ
JP2013201752A5 (ja)
JP6016516B2 (ja) 画像処理装置およびその制御方法、画像処理プログラム、並びに撮像装置
JP2008310696A (ja) 撮像装置、立体画像再生装置及び立体画像再生プログラム
JP2013009274A (ja) 画像処理装置および画像処理方法、プログラム
JP2009021989A (ja) 画像表示装置及び画像表示方法
JP6095266B2 (ja) 画像処理装置及びその制御方法
JP2008186287A (ja) 画像記録装置及び画像記録方法
JP5583242B2 (ja) 画像処理装置およびその制御方法、並びにプログラム
JP2008310187A (ja) 画像処理装置及び画像処理方法
US9369698B2 (en) Imaging apparatus and method for controlling same
JP5743769B2 (ja) 画像処理装置および画像処理方法
JP4833947B2 (ja) 画像記録装置、画像編集装置及び画像記録方法
JP6502640B2 (ja) 画像処理装置、画像処理方法、プログラム及び記録媒体
JP2013098739A (ja) 画像処理装置およびその制御方法
JP6074201B2 (ja) 画像処理装置、制御方法、及びプログラム
JP5864992B2 (ja) 撮像装置およびその制御方法、並びに画像処理装置およびその制御方法
JP2005229280A (ja) 画像処理装置および方法並びにプログラム
JP5744642B2 (ja) 画像処理装置および画像処理方法、プログラム。
JP2015139018A (ja) 電子機器及び制御プログラム
JP2014110442A (ja) 撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160927

R151 Written notification of patent or utility model registration

Ref document number: 6016516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees