JP6011802B2 - Microbubble generating once-through pump device for friction reduction ship - Google Patents

Microbubble generating once-through pump device for friction reduction ship Download PDF

Info

Publication number
JP6011802B2
JP6011802B2 JP2013055978A JP2013055978A JP6011802B2 JP 6011802 B2 JP6011802 B2 JP 6011802B2 JP 2013055978 A JP2013055978 A JP 2013055978A JP 2013055978 A JP2013055978 A JP 2013055978A JP 6011802 B2 JP6011802 B2 JP 6011802B2
Authority
JP
Japan
Prior art keywords
pump
ship
hull
flow
microbubble generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013055978A
Other languages
Japanese (ja)
Other versions
JP2014180919A5 (en
JP2014180919A (en
Inventor
雅 田篭
雅 田篭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013055978A priority Critical patent/JP6011802B2/en
Publication of JP2014180919A publication Critical patent/JP2014180919A/en
Publication of JP2014180919A5 publication Critical patent/JP2014180919A5/ja
Application granted granted Critical
Publication of JP6011802B2 publication Critical patent/JP6011802B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Description

本発明は、船首側の水面下において大量のマイクロバブル(微細気泡)を発生させ、船の側面および底面に接する外板表面をマイクロバブルで覆うことによって、航行時の船体の摩擦抵抗を低減し、高い省エネ効果を得る装置に関する。   The present invention reduces the frictional resistance of the hull during navigation by generating a large amount of microbubbles (fine bubbles) under the water surface on the bow side and covering the outer plate surface in contact with the side surface and bottom surface of the ship with microbubbles. The invention relates to a device for obtaining a high energy saving effect.

従来は、船体の表面をマイクロバブルで覆って摩擦抵抗を低減させるための手段として、船首側の船の外板に設けた細いスリットや多数の噴出口およびノズルにより空気を吹き出させる方法などがある。例えば、吹き出し口がスリット形状では特許文献1、多数の噴出口形状では特許文献2や特許文献3、ノズル形状では特許文献4などが開示されている。また、特許文献5にはマイクロバブル発生ポンプを船の外板に設置してマイクロバブルを船体に沿って放出する方法もある。   Conventionally, as a means for reducing the frictional resistance by covering the surface of the hull with microbubbles, there is a method in which air is blown out by a thin slit provided on the ship outer plate on the bow side, a large number of jets and nozzles, etc. . For example, Patent Document 1 discloses that the outlet is slit-shaped, Patent Document 2 and Patent Document 3 that disclose many nozzle shapes, and Patent Document 4 that discloses the nozzle shape. Further, Patent Document 5 also has a method in which a microbubble generating pump is installed on the outer plate of a ship to discharge the microbubbles along the hull.

しかし、いずれの方法も既存の船体にマイクロバブル噴出口やスリットを設けることは困難である。また、マイクロバブル発生ポンプを直接船体の外板に取り付けるのも容易でなく、メンテナンスの問題もある。また、船体の形状も多種多様であり、船体に噴出口やスリットを施工する際に柔軟に対応できないなどの問題がる。   However, in any of the methods, it is difficult to provide a microbubble outlet and a slit in an existing hull. Moreover, it is not easy to attach the microbubble generating pump directly to the outer plate of the hull, and there is a problem of maintenance. In addition, the shape of the hull is various, and there is a problem that it is not possible to flexibly deal with the construction of jets and slits in the hull.

特開平9−156576号公報JP-A-9-156576 特開平9−207873号公報Japanese Patent Laid-Open No. 9-207873 特開平11−49080号公報Japanese Patent Laid-Open No. 11-49080 特開2008−18781号公報JP 2008-18781 A 特開2012−106542号公報JP 2012-106542 A

従来のマイクロバブルの発生技術は、基本的に船体外板にスリットや噴出口を施工する必要があり、費用や構造上の問題がある。また、既存の船体に追加工するのは困難である。また、マイクロバブル発生ポンプを水面下の船体外板に直接固定して設置する方法は、据付け位置の調整やメンテナンスに問題がる。従って、既存の船体にも摩擦低減のためにマイクロバブル発生装置を利用できて、据付け位置の調整やメンテナンスも容易にできる構造を必要とする。   The conventional technology for generating microbubbles basically requires the construction of slits and jets in the hull outer plate, which is problematic in terms of cost and structure. In addition, it is difficult to perform additional work on the existing hull. Moreover, the method of directly fixing the microbubble generation pump to the hull outer plate under the water surface has problems in adjusting the installation position and maintenance. Therefore, the existing hull needs a structure that can use the microbubble generator for friction reduction and can easily adjust the installation position and perform maintenance.

本発明は従来技術の問題点を解決するために、船首側の船体外板にリニアレールを上甲板部の外板から水面下の船底付近の所定の位置まで垂直に設置し、前記リニアレールの上を走行するスライドプレートに矩形構造のマイクロバブル発生貫流ポンプを取り付けた装置構成にしたものである。前記ポンプをレール走行により水面下の適正な位置に調整しながらセットできるので、既存の船体にも利用でき、またポンプが上下にレール走行できるので、メンテナンスも容易である。   In order to solve the problems of the prior art, the present invention vertically installs a linear rail on the hull outer plate on the bow side from the outer plate of the upper deck to a predetermined position near the bottom of the ship below the water surface. This is a device configuration in which a microbubble generating once-through pump having a rectangular structure is attached to a slide plate that travels above. Since the pump can be set while being adjusted to an appropriate position below the water surface by rail running, it can be used for existing hulls, and the pump can run on the rail up and down, so maintenance is easy.

多翼の円筒状羽根車を有する貫流ポンプ(クロスフロ−ポンプ)の構造は単純に二次元的であるため、モータを含めて全体が矩形にコンパクトにまとまり、レールの上を走行するスライドプレートに設置するのに都合よく容易に取り付けられる。また、単純に羽根車の長さを変えることによって、マイクロバブルで船体表面を覆う範囲を調整できる。なお、ポンプからのマイクロバブルを含む吐出し流れは、船の推進にも寄与するので無駄がない。 The structure of the once-through pump (cross flow pump) with a multi-blade cylindrical impeller is simply two-dimensional, so it is compactly assembled into a rectangular shape including the motor and installed on a slide plate that runs on the rail. Convenient and easy to install. Moreover, the range which covers the hull surface with microbubbles can be adjusted by simply changing the length of the impeller. In addition, since the discharge flow including the microbubbles from the pump contributes to the propulsion of the ship, there is no waste.

本発明の矩形構造のマイクロバブル発生貫流ポンプを船体外板に取り付けた走行型リニアレールの上にセットする方法は、既存の船舶にも前記貫流ポンプ装置を比較的容易に組込んで設置可能である。貫流ポンプの羽根車内で発生した大量のマイクロバブルは、ポンプ特有の幅広で安定した吐出し流れとともに船体表面に沿って供給できるので、航行時の船体摩擦抵抗を効率よく低減できる。また、メンテナンスもレール走行によりポンプを水中から引き上げることができるので作業効率が良い。 The method of setting the rectangular microbubble generating once-through pump of the present invention on the traveling linear rail attached to the hull outer plate can be installed in the existing ship relatively easily. is there. Since a large amount of microbubbles generated in the impeller of the once-through pump can be supplied along the surface of the hull along with a wide and stable discharge flow specific to the pump, the hull frictional resistance during navigation can be efficiently reduced. Also, maintenance can be performed efficiently because the pump can be lifted from the water by rail travel.

図1は本発明のマイクロバブル発生貫流ポンプ50を船体外板に取り付けた走行型リニアレールの上にセットした場合の基本的全体構成を示す据付図で、船体外面に沿うマイクロバブルの流れの状態を示す。(実施例1)FIG. 1 is an installation diagram showing a basic overall configuration when the microbubble generating once-through pump 50 of the present invention is set on a traveling linear rail attached to a hull outer plate, and the state of the flow of microbubbles along the hull outer surface Indicates. Example 1 図2は図1の平面断面図で、船の側面外板70bに設置したリニアレール30上にマイクロバブル発生貫流ポンプ50を設置した場合の据付け状態と船の側面外板に沿うマイクロバブルの流れの状態を示す。FIG. 2 is a cross-sectional plan view of FIG. 1 and shows the installation state and flow of microbubbles along the side skin of the ship when the microbubble generating once-through pump 50 is installed on the linear rail 30 installed on the side skin 70b of the ship. Shows the state. 図3は図2のマイクロバブル発生貫流ポンプ50のポンプ部の拡大断面図で、船体外面に沿うマイクロバブルの流れの状態を示す。FIG. 3 is an enlarged cross-sectional view of the pump portion of the microbubble generating once-through pump 50 of FIG. 2 and shows the state of the flow of microbubbles along the outer surface of the hull. 図4は図1の実施例1とは異なる別形態のマイクロバブル発生貫流ポンプ51を船首部に設置した場合の基本的全体構成を示す据付図で、船底外面に沿うマイクロバブルの流れの状態を示す。(実施例2)FIG. 4 is an installation diagram showing a basic overall configuration when a microbubble generating once-through pump 51 having a different form from that of Example 1 of FIG. 1 is installed at the bow, and shows the flow state of the microbubbles along the outer surface of the ship bottom. Show. (Example 2) 図5は図4の平面図で、船体左舷部の外板に設置したリニアレール30上にマイクロバブル発生貫流ポンプ51を設置した場合の据付け状態と船底外面に沿うマイクロバブルの流れの状態を示す。FIG. 5 is a plan view of FIG. 4, showing the installation state and the state of microbubble flow along the outer surface of the ship bottom when the microbubble generating once-through pump 51 is installed on the linear rail 30 installed on the outer plate of the hull port side. . 図6は図4のマイクロバブル発生貫流ポンプ51のポンプ部の拡大断面図で、船底外面に沿うマイクロバブルの流れの状態を示す。FIG. 6 is an enlarged cross-sectional view of the pump portion of the microbubble generating once-through pump 51 of FIG. 4 and shows the state of the flow of microbubbles along the outer surface of the ship bottom. 図7(a)はマイクロバブル発生貫流ポンプ50と51の羽根車部断面図で、散気孔タイプのノズルからの噴出状態Jを示す。(b)は別形態における筒型ノズルの先端からの噴出状態J2を示す。FIG. 7A is a cross-sectional view of the impeller portion of the microbubble generating through-flow pumps 50 and 51, and shows a jetting state J from the air diffuser type nozzle. (B) shows the ejection state J2 from the front-end | tip of the cylindrical nozzle in another form. 図8は気液混合チャンバーの詳細構造を示す。(a)は二重管構造タイプ、(b)はノズル噴流タイプであるFIG. 8 shows the detailed structure of the gas-liquid mixing chamber. (A) is a double pipe structure type, (b) is a nozzle jet type

以下に本発明の実施の形態を図1〜図8を参照して説明する。 Embodiments of the present invention will be described below with reference to FIGS.

図1は第1実施例で、請求項1の発明に関する全体構成を示す。図2は図1の平面断面図、図3は図2のポンプ部の拡大図である。図1は、船首側の船の側面外板にリニアレール30を上甲板部の外板から水面下の船底付近の所定の位置まで垂直に設置し、リニアレール30の上を走行するスライドプレート31にマイクロバブル発生貫流ポンプ50を取り付けた構成にし、水面下の適正な位置に調整しながらポンプ2台をセットできるようにしたものである。前述のように円筒状の多翼羽根車7を有する貫流ポンプの構造は単純で二次元的であるため、水中モータ12を含めて全体が矩形にコンパクトにまとまるので、レールを走行するスライドプレート31に都合よく容易に取り付けられる。また、メンテナンス時には、レール走行によりポンプを容易に水面上に引き上げることができるので有利である。スライドプレート31を自走型にすれば作業効率は良くなる。 FIG. 1 is a first embodiment, and shows an overall configuration relating to the invention of claim 1. 2 is a plan sectional view of FIG. 1, and FIG. 3 is an enlarged view of the pump portion of FIG. In FIG. 1, a linear rail 30 is vertically installed on a side shell of a ship on the bow side from a skin of an upper deck portion to a predetermined position near a bottom of a ship below the water surface, and a slide plate 31 traveling on the linear rail 30. The microbubble generating once-through pump 50 is attached to the pump, and two pumps can be set while adjusting to an appropriate position below the water surface. Since the structure of the once-through pump having the cylindrical multi-blade impeller 7 is simple and two-dimensional as described above, the entire structure including the submersible motor 12 is compactly collected in a rectangular shape. Therefore, the slide plate 31 that travels on the rails. Can be conveniently and easily attached. Also, during maintenance, it is advantageous because the pump can be easily lifted onto the water surface by rail running. If the slide plate 31 is self-propelled, the working efficiency is improved.

この実施の形態によれば、貫流ポンプの流れは二次元的で幅広の安定した一様な流れが得られるのとコアンダ効果(流れが物体表面に沿って流れる効果)により、図2、図3に示すように貫流ポンプ50から吐出されたマイクロバブルの流れが船の側面外板70bに沿って流れるので、薄い層のマイクロバブルで船体を覆うことができる。コアンダ効果を有効にするためには、図3に示す吐出し流れDの流速は外流F(船の速度や海流に関係する船体近傍を通り過ぎる流れ)の速度より速くする必要がある。 According to this embodiment, the flow of the once-through pump can obtain a two-dimensional, wide, stable and uniform flow and the Coanda effect (the effect of the flow flowing along the object surface). Since the flow of the microbubbles discharged from the once-through pump 50 flows along the side surface outer plate 70b of the ship as shown in FIG. 3, the hull can be covered with a thin layer of microbubbles. In order to make the Coanda effect effective, the flow velocity of the discharge flow D shown in FIG. 3 needs to be higher than the velocity of the external flow F (flow passing through the vicinity of the ship body related to the ship speed and the ocean current).

摩擦抵抗を低減させるためには、基本的には、水面下の船体表面の薄い境界層をマイクロバブルで覆えば良い。本発明では、マイクロバブルを含む吐出し流れを船体表面に沿ってシ−ト状に供給できるのとコアンダ効果により、確実に境界層を覆うことができるので効率が良い。また、二次元的形状の貫流ポンプ本体の吸込み口と吐出し口を含むケ−シング形状や舌部8の構造および羽根車の長さを適切にアレンジすることによって船体の形状あった流れの状態を得ることが出来るという優れた特徴を持っている。 In order to reduce the frictional resistance, basically, a thin boundary layer on the surface of the hull below the water surface may be covered with microbubbles. In the present invention, since the discharge flow including the microbubbles can be supplied in a sheet shape along the hull surface and the Coanda effect can be surely covered the boundary layer, the efficiency is high. In addition, by properly arranging the casing shape including the suction port and the discharge port of the two-dimensional cross-flow pump main body, the structure of the tongue portion 8 and the length of the impeller, the state of the flow corresponding to the shape of the hull It has an excellent feature that can be obtained.

羽根車内に発生するマイクロバブルの発生は図1に示すように気液混合チャンバー40(詳細は後述)で気体と液体を合流させて生成された微小気泡混合液を加圧ポンプ42に取り込んで羽根により回転撹拌しながら気泡を微細化するとともに加圧した微細気泡含有加圧液をパイプ13により図3に示す羽根車内に挿入した散気孔タイプのノズル3に供給する。供給された微細気泡含有加圧液は噴出口よりジェット状の噴流Jとなって回転する羽根車7内に噴出、減圧され、羽根車内の流れとも混合することにより、マイクロバブル化した気泡となって流れとともにポンプ吐出口から船体表面に沿って流出する。 As shown in FIG. 1, the generation of microbubbles generated in the impeller includes a microbubble mixed liquid generated by merging gas and liquid in a gas-liquid mixing chamber 40 (details will be described later) into a pressure pump 42. The microbubble-containing pressurized liquid that is refined and pressurized while rotating and stirring is supplied to the air diffuser type nozzle 3 inserted into the impeller shown in FIG. The supplied pressurized liquid containing fine bubbles is jetted into the rotating impeller 7 from the jet outlet into the rotating impeller 7, depressurized, and mixed with the flow in the impeller to form microbubbles. As a result, it flows out from the pump outlet along the hull surface.

図4は第2実施例で図1の第1実施例とは異なる別形態の装置の全体構成を示す。図5は図4の平面図、図6は図4のポンプ部の拡大断面図である。図4、図5に示すように船首左舷部の船体外板にリニアレール30を上甲板部外板から水面下の船底付近まで垂直に設置し、リニアレール30の上を走行するスライドプレート31にマイクロバブル発生貫流ポンプ51を取り付け、船底部にセットしたものである。ポンプの吸込み口21と吐出し口22のケーシングの形状や方向は図6に示すように流れが船低表面70cに沿うようにアレンジしている。マイクロバブル発生に関する基本的な装置構成は前実施例と同様である。 FIG. 4 shows the overall configuration of another embodiment of the second embodiment which is different from the first embodiment of FIG. 5 is a plan view of FIG. 4, and FIG. 6 is an enlarged cross-sectional view of the pump portion of FIG. As shown in FIGS. 4 and 5, the linear rail 30 is vertically installed on the hull outer plate of the bow port part from the upper deck outer plate to the vicinity of the bottom of the ship below the surface of the water, and on the slide plate 31 that runs on the linear rail 30. A microbubble generating once-through pump 51 is attached and set at the bottom of the ship. The shapes and directions of the casings of the suction port 21 and the discharge port 22 of the pump are arranged so that the flow follows the ship lower surface 70c as shown in FIG. The basic device configuration relating to the generation of microbubbles is the same as in the previous embodiment.

この実施の形態によれば、図4、図6に示すようにマイクロバブル発生貫流ポンプ51から吐出されたマイクロバブルの流れがコアンダ効果によって船底の外板表面70cに沿って流れ、船底表面を覆うため摩擦低減になる。 According to this embodiment, as shown in FIGS. 4 and 6, the flow of microbubbles discharged from the microbubble generating once-through pump 51 flows along the outer plate surface 70 c of the ship bottom by the Coanda effect and covers the ship bottom surface. Therefore, friction is reduced.

上記実施例では、船の側面に対してはマイクロバブル発生貫流ポンプ50、底面に対してはマイクロバブル発生貫流ポンプ51を分けて使用したが、分けなくてもコアンダ効果(流れが船体表面に沿って流れる)を有効に利用できるようにマイクロバブル貫流ポンプを船首部の適当な位置にセットし、ポンプの吐出し方向を変えたり吐出し口近傍の船体表面の形状を局部的に変えるなどの調整をすれば、船の側面と底面の両面を含む船体表面をマイクロバブルで覆うことができる柔軟な対応も可能である。 In the above embodiment, the microbubble generating once-through pump 50 is used separately for the side of the ship, and the microbubble generating once-through pump 51 is used separately for the bottom, but the Coanda effect (flow is along the surface of the hull is not required). The microbubble once-through pump is set at an appropriate position on the bow, and the shape of the hull surface near the discharge port is locally changed. By doing so, it is possible to respond flexibly so that the surface of the hull including both the side surface and the bottom surface of the ship can be covered with microbubbles.

図1〜図6に描いたマイクロバブル発生貫流ポンプ50と51の大きさは分かりやすく説明するために実際とは異なり船体に対して大きな比率で描いている。基本的には前述のように船体表面の薄い境界層を微小気泡流で覆えばよいので、ポンプの羽根車径の大きさは船の大きさにもよるが、8cm〜20cm程度でよいと考えられる。ポンプの大きさや台数は、船の大きさによって異なる。 The sizes of the microbubble generating through-flow pumps 50 and 51 depicted in FIGS. 1 to 6 are depicted at a large ratio with respect to the hull, unlike actual ones, for easy understanding. Basically, it is sufficient to cover the thin boundary layer on the surface of the hull with a microbubble flow as described above, so the size of the impeller diameter of the pump may be about 8 cm to 20 cm, although it depends on the size of the ship. It is done. The size and number of pumps vary depending on the size of the ship.

図7(a)は羽根車部の詳細断面図で、羽根車7内に挿入した散気孔タイプのノズル3に前述の図1、図4に示す加圧ポンプ42により加圧した微細気泡含有加圧液をパイプ13により圧入し、ノズルの小孔5より噴出・拡散する状態を示す。この場合は、前記ノズル3が羽根車中空回転軸16の中に嵌め込まれ、羽根車と一体となって回転するので、回転を伴う噴流の拡散と羽根車内の流れの混合により、効率よく微細化したマイクロバブルが得られる。図(b)は筒型タイプのノズルにおける構成とノズルからの噴出状態J2を示す。この場合の筒型タイプのノズルは回転を伴わないが、基本的なマイクロバブル発生機構は図(a)と同様である。 FIG. 7A is a detailed cross-sectional view of the impeller part. The fine bubble-containing additive pressurized by the pressure pump 42 shown in FIGS. 1 and 4 is applied to the air diffuser type nozzle 3 inserted into the impeller 7. A state in which the pressurized liquid is press-fitted through the pipe 13 and ejected and diffused from the small hole 5 of the nozzle is shown. In this case, since the nozzle 3 is fitted in the impeller hollow rotating shaft 16 and rotates integrally with the impeller, the nozzle 3 is efficiently miniaturized by diffusion of the jet flow accompanied by rotation and mixing of the flow in the impeller. Microbubbles are obtained. FIG. (B) shows the configuration of the cylindrical type nozzle and the ejection state J2 from the nozzle. The cylindrical type nozzle in this case does not rotate, but the basic microbubble generation mechanism is the same as in FIG.

図8は図1、図4に示す気液混合チャンバー40の詳細な構成例を示す。図8(a)は二重管構造タイプの気液混合チャンバー43で、内管44と外管45の隙間に気体を供給し、内管44に開けた多数の小孔46より内管44内を通過する水流に気体を吹き込んで、微小気泡混合液を得ることを基本とする。図8(b)はノズル噴流タイプの気液混合チャンバー47で、上流側縮流部の管中央に挿入したノズル48より気体を水流の中に噴出すことにより微小気液混合液を得ることを基本とする。 FIG. 8 shows a detailed configuration example of the gas-liquid mixing chamber 40 shown in FIGS. FIG. 8A shows a gas-liquid mixing chamber 43 of a double tube structure type, in which gas is supplied to the gap between the inner tube 44 and the outer tube 45, and the inside of the inner tube 44 through a large number of small holes 46 opened in the inner tube 44. Basically, a fine bubble mixture is obtained by blowing gas into the water flow passing through the. FIG. 8 (b) shows a nozzle jet type gas-liquid mixing chamber 47, in which a fine gas-liquid mixture is obtained by jetting gas into the water stream from a nozzle 48 inserted in the center of the pipe of the upstream contraction section. Basic.

本発明のリニアレール上にセットした摩擦低減用マイクロバブル発生貫流ポンプ装置は、既存の船舶にも比較的容易に組込んで設置でき、矩形構造の貫流ポンプ特有の流れ特性による幅広で安定した一様な吐出し流れにより、船体表面をマイクロバブルで効率良く覆うことが出来るので航行時の摩擦低減に効果を発揮する。また、ポンプがレールの上を走行出来るので、据付け位置の調整やメンテナンスにも有利である。 The microbubble generating once-through pump device for friction reduction set on the linear rail of the present invention can be installed and installed relatively easily on existing ships, and it is a wide and stable one due to the flow characteristics peculiar to a rectangular structure once-through pump. With such a discharge flow, the hull surface can be efficiently covered with microbubbles, which is effective in reducing friction during navigation. Further, since the pump can run on the rail, it is advantageous for adjustment of the installation position and maintenance.

3 散気孔タイプのノズル
5 小孔(噴出孔)
6 羽根
7 貫流ポンプ羽根車
8 ケ−シング舌部
10 筒型タイプのノズル
12 水中モ−タ
13 ホ−ス
14 水面
16 羽根車中空回転軸
21 ポンプ吸込みケーシング
22 ポンプ吐出しケーシング
25、26 羽根車中空回転軸用軸受
30 リニアレール
31 スライドプレート
40 気液混合チャンバー
42 加圧ポンプ
43 二重管構造タイプの気液混合チャンバー
44 気液混合チャンバー内管
45 気液混合チャンバー外管
46 小孔(気体吹き込み孔)
47 ノズル噴流タイプの気液混合チャンバー
48 ノズル(気体噴出用)
50、51 マイクロバブル発生貫流ポンプ
70 船
70b 船の側面外板
70c 船底外板
B 微細気泡
D ポンプ吐出し口から船体表面に沿って流出するマイクロバブルの流れ
F 外流(船の速度や海流に関係する船体近傍を通り過ぎる流れ)
J、J2 ノズルより噴出する微細気泡流
3 Nozzle type nozzle 5 Small hole (ejection hole)
6 Blade 7 Cross-flow pump impeller 8 Casing tongue 10 Tubular type nozzle 12 Submersible motor 13 Hose 14 Water surface 16 Impeller hollow rotary shaft 21 Pump suction casing 22 Pump discharge casing 25, 26 Impeller Hollow shaft bearing 30 Linear rail 31 Slide plate 40 Gas-liquid mixing chamber 42 Pressure pump 43 Gas-liquid mixing chamber 44 of double-pipe structure type Gas-liquid mixing chamber inner tube 45 Gas-liquid mixing chamber outer tube 46 Small hole (gas Blow hole)
47 Nozzle jet type gas-liquid mixing chamber 48 Nozzle (for gas ejection)
50, 51 Micro-bubble generating once-through pump
70 Ship 70b Ship side skin 70c Ship bottom skin
B Fine bubbles
D Flow of microbubbles flowing out from the pump outlet along the hull surface
F Outer current (flow past the hull near the ship's speed and current)
J, J2 Fine bubble flow ejected from nozzle

Claims (1)

船首側の側面外板にリニアレールを上甲板部の外板から船底付近の所定の位置まで垂直に設置し、当該レールの上を走行するスライドプレートに、円筒状で多翼の羽根車を有し、羽根車中心部に微細気泡発生機構を有する矩形構造のマイクロバブル発生貫流ポンプを取り付けて上下に走行可能とした装置構成にし、水面下の適正な位置に該ポンプを調整しながらセットすることにより、マイクロバブルの吐出し流れが船体表面に沿って流れるようにしたことを特徴とする摩擦低減船用マイクロバブル発生貫流ポンプ装置
A linear rail is installed vertically on the side shell on the bow side from the outer plate of the upper deck to a predetermined position near the bottom of the ship, and a cylindrical, multi-blade impeller is installed on the slide plate that runs on the rail. Install a rectangular microbubble generating once-through pump having a fine bubble generating mechanism at the center of the impeller so that it can run up and down, and set the pump at an appropriate position below the water surface while adjusting the pump. The microbubble generating once-through pump device for a friction-reducing ship, characterized in that the discharge flow of microbubbles flows along the hull surface
JP2013055978A 2013-03-19 2013-03-19 Microbubble generating once-through pump device for friction reduction ship Expired - Fee Related JP6011802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013055978A JP6011802B2 (en) 2013-03-19 2013-03-19 Microbubble generating once-through pump device for friction reduction ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013055978A JP6011802B2 (en) 2013-03-19 2013-03-19 Microbubble generating once-through pump device for friction reduction ship

Publications (3)

Publication Number Publication Date
JP2014180919A JP2014180919A (en) 2014-09-29
JP2014180919A5 JP2014180919A5 (en) 2015-11-19
JP6011802B2 true JP6011802B2 (en) 2016-10-19

Family

ID=51700040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013055978A Expired - Fee Related JP6011802B2 (en) 2013-03-19 2013-03-19 Microbubble generating once-through pump device for friction reduction ship

Country Status (1)

Country Link
JP (1) JP6011802B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5604736B2 (en) * 2008-04-01 2014-10-15 独立行政法人海上技術安全研究所 Ship frictional resistance reduction device
JP5651829B2 (en) * 2010-11-16 2015-01-14 雅 田篭 Friction reduction ship and micro bubble generation pump

Also Published As

Publication number Publication date
JP2014180919A (en) 2014-09-29

Similar Documents

Publication Publication Date Title
JP6103517B2 (en) Cross-flow pump ultrafine bubble flow supply device
JP5885376B2 (en) Ultra-fine bubble generator
JP5653929B2 (en) Positive pressure microbubble generator
JP2014097449A5 (en)
JP4503688B1 (en) Friction resistance reduction device for ships
WO2013007094A1 (en) Centrifugal combined aeration machine
JP2013022477A5 (en)
JP2013022477A (en) Microbubble generation flowing pump
JP5975363B2 (en) Hull fluid resistance reduction device
JP2009248832A (en) Air-bubble holding device for marine vessel
JP6011802B2 (en) Microbubble generating once-through pump device for friction reduction ship
JP5651829B2 (en) Friction reduction ship and micro bubble generation pump
RU2593605C1 (en) Device for aeration of water
US11319026B2 (en) Hull surface air lubrication structure for marine vehicles
JP2013146702A (en) Microbubble generator using through-flow pump
US20090325430A1 (en) Mechanical fluid dynamic device for the propulsion and flow control in the water-jet propelled boats
JP4070385B2 (en) Friction resistance reduction ship
JP2010208435A (en) Resistance reducing apparatus of ship
WO2016042746A1 (en) Hull fluid resistance reduction device
US7143707B2 (en) Water jet drive for marine vehicles
JP3697009B2 (en) Water purification equipment
RU2299152C1 (en) Two-mode water scoop of hovercraft water-jet propeller
JP5799982B2 (en) Ship bubble holding device
JP2000168673A (en) Frictional resistance reducing ship
JP2024043622A (en) Energy-saving ship with reduced fluid resistance

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160906

R150 Certificate of patent or registration of utility model

Ref document number: 6011802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees