JP4070385B2 - Friction resistance reduction ship - Google Patents

Friction resistance reduction ship Download PDF

Info

Publication number
JP4070385B2
JP4070385B2 JP2000101069A JP2000101069A JP4070385B2 JP 4070385 B2 JP4070385 B2 JP 4070385B2 JP 2000101069 A JP2000101069 A JP 2000101069A JP 2000101069 A JP2000101069 A JP 2000101069A JP 4070385 B2 JP4070385 B2 JP 4070385B2
Authority
JP
Japan
Prior art keywords
water
hull
negative pressure
bubbles
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000101069A
Other languages
Japanese (ja)
Other versions
JP2001278178A (en
Inventor
祐一 村井
義明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAND ENGINEERING, INC.
Original Assignee
LAND ENGINEERING, INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAND ENGINEERING, INC. filed Critical LAND ENGINEERING, INC.
Priority to JP2000101069A priority Critical patent/JP4070385B2/en
Priority to US09/822,942 priority patent/US6789491B2/en
Priority to KR10-2001-0017483A priority patent/KR100441723B1/en
Publication of JP2001278178A publication Critical patent/JP2001278178A/en
Application granted granted Critical
Publication of JP4070385B2 publication Critical patent/JP4070385B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Description

【0001】
【発明の属する技術分野】
本発明は、摩擦抵抗低減船に係り、特に、水中に気泡を効率よく放出することにより、総合エネルギ効率を向上させるものである。
【0002】
【従来の技術】
従来より、船舶等の航行時のエネルギ消費を節減することを目的として、水中に気体を送り込み、船体外板の表面(没水表面)の近傍に多数の気泡を介在させて、船体と水との摩擦抵抗を低減する方法が提案されている。
【0003】
水中に気泡を発生させる技術としては、特開昭50−83992号、特開昭53−136289号、特開昭60−139586号、特開昭61−71290号、実開昭61−39691号、実開昭61−128185号が提案されている。
【0004】
これらの技術では、水中に気泡を発生させる方法として、ポンプやブロアなどの装置によって加圧した気体を船体に設けられた複数の孔や多孔板から水中に噴出している。
【0005】
【発明が解決しようとする課題】
しかしながら、加圧した気体を水中に噴出する方法であると、加圧用の装置を稼動するエネルギが必要となり、摩擦抵抗の低減によって減少したエネルギの節約分が目減りしてしまう。特に、大型船の船底など、比較的水深の大きい箇所において水中に気体を噴出する際には、水圧(静水圧)に対応して高い圧力に気体を加圧する必要があり、多大なエネルギを消費してしまう。また、加圧用の装置を船体に設置するにあたり、設備コストや施工コストなど多大なコストが生じてしまう。
【0006】
本発明は、このような事情に鑑みてなされたものであり、以下の点を目的とするものである。
(1)少ないエネルギ消費で摩擦抵抗低減を行って、航行時のエネルギ消費を効果的に節減すること。
(2)水中に気泡を効率よく混入させ、効果的な摩擦抵抗低減を実施すること。
(3)船体の建造コストを低減すること。
【0007】
【課題を解決するための手段】
上記課題を解決するため、請求項1に係る発明は、船体の没水表面に気泡を放出して船体の摩擦抵抗を低減する方法であって、船体の航行に伴って気体空間に対して低圧となる負圧箇所を水中に形成し、気体空間から水中の負圧箇所に気体を導くとともに、局所的に渦度が大きい水の流れを形成する技術が採用される。
請求項2に係る発明は、船体の没水表面に気泡を放出して船体の摩擦抵抗を低減する摩擦抵抗低減船であって、気体空間に対して低圧となる負圧箇所を水中に形成するための負圧形成部と、気体空間から水中の負圧箇所に気体を導くための流体通路と、局所的に渦度が大きい水の流れを形成する離脱促進部とを備える技術が採用される。
また、請求項3に係る発明は、請求項2に記載の摩擦抵抗低減船において、前記負圧形成部は、船体の没水表面から水中に向かって突出して配される翼と、該翼を支持するストラットと、前記翼に対して船体側に配される流水案内体とを備える技術が採用される。
また、請求項4に係る発明は、請求項3に記載の摩擦抵抗低減船において、前記離脱促進部は、船体側に凸となるように形成された前記翼と、該翼形状に沿うように形成された前記流水案内体とにより形成される技術が採用される。
【0008】
【作用】
一般に、流体はその周囲に圧力勾配が生じると、高圧側から低圧側に向けて力(圧力勾配力)を受け、流動が誘起される。したがって、気体空間に対して低圧となる負圧箇所を水中に形成し、気体空間の気体を水中の負圧箇所に導くことにより、圧力勾配力を利用して、所定の深さの水中に気体を送り込むことが可能となる。
【0009】
図2は、水中に負圧箇所を形成するための負圧形成部を備えた摩擦抵抗低減船を模式的に示している。船体1が所定の船速Vsで航行すると、船体1に対して相対的な水の流れ2が形成される。このとき、例えば負圧形成部3によって水の流路が狭められると、水の流速が大きくなり、局所的に静水圧Pwaが下がる(ベルヌーイの定理)。このとき、水の流速をVwa、気体空間の圧力(大気圧)をPa、水の密度をρ、重力加速度をg、水深をHwaとすると、静水圧Pwaは、
Pwa=Pa+ρ・g・Hwa−ρ・(Vwa2 −Vs2 )/2 (1)
で表される。この式(1)から明らかなように、水の流速Vwaが次式を満たすことにより、水中に大気圧Paに比べて低圧となる負圧箇所4が形成される。
ρ・g・Hwa−(Vwa2−Vs2)/2 < 0 (2)
【0010】
負圧箇所4が形成されると、圧力勾配力により、気体が流体通路5内を流動し、水中に送り込まれる。
【0011】
負圧箇所4を形成して水中に気体を送り込む場合(負圧方式)、気体を加圧する必要がないため、従来の加圧方式に比べ、水中に気体を送り込むときに消費されるエネルギが少ない。
【0012】
また、水中に送り込まれた気体を気泡6として水に混入させ、多数の気泡6を船体1の没水表面に介在させることにより、船体の摩擦抵抗が低減される。
【0013】
ところで、水中の気泡6には、水の流れにより様々な力が作用する。その力の一例を表1に示す。
【0014】
【表1】

Figure 0004070385
【0015】
例えば図2に示すように、負圧形成部3が船底から突出して形成されている場合、流体通路5内を流動した気体は、気体と液体(水)との境界面7(気液界面)に到達した後、負圧箇所4による圧力勾配力と、次に説明する揚力との作用を受けて気泡6として水中に移動し、その後、抗力(粘性力)により水に乗って流れると考えられる。
【0016】
揚力(Lift Force)は、気泡6の周囲の水の流れ2が渦度を有するときに生じるものであり、その力の方向は、渦度ベクトル(Vorticity Vector of Liquid)ω と気液相対速度ベクトル(Relative Velocity Vector)us との外積によって得られるベクトルの逆方向である。また、その大きさは気泡の体積Avと液体の密度ρとに比例する。すなわち揚力Lfは、次式によって表される。
Lf=−ρ・Av・(us×ω) (3)
ただし、これは Auton の慣性揚力であり、低レイノルズ数時には Saffman の揚力が作用し、渦度の 1/2乗に比例するようになる。なお、両者とも作用方向は同じである。
【0017】
船底の境界層には、一般に、渦度を有する流れが船体外板の表面近傍に集中しており、上述した各ベクトルは図3に示す向きとなる。この図3から分かるように、船底における揚力Lfは、船体外板から離れる方向、すなわち気液界面7から水中に気泡6が離脱する方向に作用する。
【0018】
ところが、負圧形成部の形状によっては、気泡に対して、気液界面に押し戻す方向に比較的大きな力(抵抗力)が作用することがある。
【0019】
例えば、図2に示す負圧形成部3に沿って水が流れる場合、水中の気泡6に対する抵抗力として、次に説明する付加慣性力と圧力勾配力とが作用する。
【0020】
付加慣性力は、液体(水)中に置かれた気泡の付加質量による慣性力であり、気液の密度差を 1/800とすると、気泡内の気体質量自体に作用する慣性力に比べて400倍の大きさとなる。また、水の慣性力と比べたとき、気泡の慣性力+付加慣性力は、1/2 の大きさである。このことから、同じ外力が作用したとき、気泡は水の1+1/(1/2)=3倍の加速度を生じることになる(ただし、抗力を無視したときの最大値)。
【0021】
すなわち、図4に示すように、湾曲した物体表面8に沿って水及び気泡6が流れる場合、凹部である箇所PA1で水の流れ2が下向きに変わるとき、気泡6は水の3倍の加速度で下降する。また、凸部である箇所PA2で水の流れ2が上向きに変わるとき、気泡6は水の3倍の加速度で上昇する。
【0022】
したがって、前述した図2の負圧形成部3に沿って水が流れる場合、負圧形成部3の頂部の曲率(凸部)により、負圧箇所4において水の流れ2が上向きに変わるのに伴い、気泡6に対して、気液界面7に押し戻す方向に付加慣性力が作用する。
【0023】
また、この図2の場合、負圧箇所4が水中の他の箇所に比べて低圧であることから、負圧箇所4に位置する気泡6に対して、気液界面7に押し戻す方向に圧力勾配力が作用する。
【0024】
そして、このような気液界面に押し戻す方向の力(抵抗力)が、気泡に対して大きく作用すると、気液界面から水中に気泡が離脱しにくくなり、水に混入される気泡の量が抑制されて、船体の摩擦抵抗が効果的に低減しなくなる恐れがある。
【0025】
そこで、気液界面から水中に気泡が移動するように水の流れを形成して、気泡の離脱に対して抵抗となる力を小さくすることにより、気液界面から気泡が容易に離脱し、水に混入される気泡の量が増える。
【0026】
すなわち、局所的に渦度が大きい水の流れを形成することにより、気泡に対して、揚力が離脱方向に作用するようになり、気液界面からの気泡の離脱が促進される。
【0027】
【発明の実施の形態】
以下、本発明に係る船体の摩擦抵抗低減方法及び摩擦抵抗低減船を、タンカーやコンテナ船等の肥大船に適用した一実施形態について、図面を参照して説明する。図5において、符号Mは摩擦抵抗低減船、10は船体、11は気泡発生装置、12は船体外板(没水表面)、13は推進器、14は舵、15は水面(喫水線)を示している。
【0028】
前記摩擦抵抗低減船Mとしての肥大船は、例えばVLCC(Very Large Crude Oil Carrier)といったものがこれに該当し、他の種類の船舶に比べて、喫水線15下の船体外板12(没水表面)において船底の面積が船側に対して比較的大きく形成されている。さらに、船体10の前方に、気泡発生装置11が配されている。
【0029】
前記気泡発生装置11は、図5(b)に示すように、船体10の没水表面12に配される負圧形成部20と、船体10を貫通しかつ喫水線15の上下において内部空間が開放される流体通路21とを備えている。
【0030】
前記負圧形成部20は、航行時における船体10に対する相対的な水の流れを利用して、所定の船速Vsにおいて気体空間(大気)に対して低圧となる負圧箇所を水中に形成するためのものである。ここでは、負圧形成部20は、後述するように気液界面からの気泡の離脱を促進する離脱促進部としての機能も有しており、船底における水の相対速度を特定箇所で大きくするとともに、鉛直方向上向きに凸となる湾曲した水の流れを形成するように構成されている。
【0031】
この負圧形成部20の詳細について説明すると、負圧形成部20は、図6に示すように、船体の没水表面から水中に向かって突出して配されるとともに、没水表面12に対して所定の間隔で略平行に配される翼30と、翼30を支持するために翼30と船体外板12との間に配されるストラット31,32と、翼30に対して船体側(本実施形態では船体内側)に配される流水案内体33とを備えている。
【0032】
前記翼30の形状は、NACA翼型、オジバル翼型など様々な翼型が適用可能であり、船体の形状及び船速に応じて定められる。ここでは、翼30は船体側に凸となるように形成される。また、翼30は、前縁30a及び後縁30bを船体の進行方向Dveに向け、翼面30c,30dを上下方向に向け、さらに、航行時において翼30に対して揚力が上向きに作用する(航行時において、上方を臨む翼面30c側の流速が下方を臨む翼面30d側の流速に比べて大きくなる)ように配置されている。
【0033】
前記ストラット31,32は、水平断面形状が水の流れに対して抵抗が少ない例えば翼型などの形状であり、前記翼30と没水表面12との間隔を規定するために所定の高さHstで形成されている。さらに、一方の端面が船体外板12に当接され他方の端面が翼30に当接されて取り付けられる。
【0034】
前記流水案内体33は、航行中における水の流れを曲線状(湾曲状)に案内するためのものであり、一面が開放されたボックス状に構成され、船体外板12に設けられた開口12aを船体10の内側から覆うように、開放端33aを船体外板12に当接状態に固定される。また、流水案内体33は、翼30の形状に沿うように形成されており、船体10の幅方向(水平面内で船体10の進行方向Dveに略垂直な方向)に平行かつ船体外板12からの高さが船体10の進行方向Dveに沿って凸状に変化する(すなわち、鉛直方向上向きに凸状に湾曲する)湾曲面33bを有している。さらに、この湾曲面33bの中央付近において、貫通孔からなる排出口33cが設けられている。
【0035】
これらにより、負圧形成部20には、図5(b)に示すように、船体の進行方向Dveに沿って、離脱促進部として、鉛直方向上向きに凸となる湾曲した水路34が形成される。
【0036】
また、負圧形成部20の各構成部材の形状や配置位置は、航行時に負圧形成部20における水の流れが所望の状態になるように、数値流体力学(CFD:Computational Fluid Dynamics)による流場解析によって設計されている。ここでは、所定の船速Vsでの航行時において、負圧形成部20付近における水の流れが、次の(a)〜(d)の条件を満たすように定められる。
・条件(a):水路34における水の流速(絶対値)が船速Vsに比べて大きくなり、かつ、水路34の中央部34b(図5(b)参照)における平均流速Vwaが前述した式(2)を満たす(このとき、式(2)におけるρは海水の密度、Hwaは喫水線から水路34までの距離(水深)とする)こと。
・条件(b):流水案内体33の排出口33c近傍に比べて翼面30c近傍の水の流速が大きくなること。
・条件(c):排出口33cから下降する水の流れを有すること。
・条件(d):水路における水の流れに局所的に大きな渦度を有すること。
【0037】
上述した条件(a)を満たすために、負圧形成部20の各構成部材の形状や配置位置は、例えば、水路34の入り口における流路断面積に比べて内部(前部34a、中央部34b、後部34c)の流路断面積が狭く、さらに、前部34a及び後部34cに比べて中央部34bの流路断面積が狭くなるように定められる。
また、上述した条件(b)を満たすために、例えば、流水案内体33の湾曲面33bに比べて翼面30cの全体的な曲率が小さくなる(曲率半径が大きくなる)ように定められる。
また、上述した条件(c)を満たすために、例えば、排出口33c近傍の湾曲面33bに上向きに凸となるような曲面を有するように定められる。
また、上述した条件(d)を満たすために、例えば、水路34の流路断面積や形状が局所的に変化するように定められる。
【0038】
一方、前記流体通路21は、前記負圧形成部20における流水案内体33に接続される気体導入管35の内部空間36からなっている。すなわち、流体通路21は、一端が気体導入管35の空気取入れ口37を介して気体空間(大気中)に開放されるとともに、他端が前記流水案内体33の排出口33cを介して水中に開放されるようになっている。
【0039】
前記気体導入管(AIP:Air Induction Pipe)35は、船体10に貫通状態に、かつ負圧形成部20における流水案内体33に接続状態に敷設され、少ない圧力損失で所望の流量の流体が流動するように、その内部の断面積や形状が定められている。また、空気取入れ口37は、船体10における甲板の前部に配される。
【0040】
なお、負圧形成部20及び気体導入管35の材質としては、例えば耐食処理された金属、あるいは樹脂など、主として表面が海水に対して耐食性を有し、さらに海成生物が表面に付着しにくいものが好ましく用いられる。
【0041】
また、負圧形成部20は、船底の広さに応じて1つまたは複数配置され、これに応じて気体導入管35の配設状態が定められる。
【0042】
このように構成される摩擦抵抗低減船Mによる船体の摩擦抵抗低減方法について、図1を参照して以下説明する。
停船状態においては、流体通路21内に、船体10の周囲とほぼ同じ水位まで水(海水)が入り込んでいる。推進器13(図5参照)の推力により船体10が航行状態になると、図1(a)に示すように、船体10に対して相対的な水の流れ40が形成される。
【0043】
航行状態において、船底では、負圧形成部20の翼30に沿って水が流れ、湾曲した水路34においてその流路が狭められることにより、水路34を流れる水の流速が大きくなり、静水圧が局所的に低下する。
【0044】
そして、船体10の航行速度が所定の船速Vs(例えば標準航行速度)に達すると、水路34の中央部34bにおいて、大気に対して低圧となる負圧箇所41が形成される(条件(a)より)。
【0045】
この場合にあって、空気取入れ口37における圧力に比べ、負圧箇所41に面した排出口33c付近の圧力が低いために、流体通路21内の流体(海水及び空気)に対して圧力勾配力Pf1が作用し、流体通路21から海水が排出された後、空気取入れ口37から流入した空気が、流体通路21を流動して水中に送り込まれる。
【0046】
そして、水中に送り込まれた気体が気泡42として水に混入し、船体10の没水表面12の近傍に多数の気泡42が介在することにより、船体10の摩擦抵抗が低減される。
【0047】
水中に空気を送り込むために必要なエネルギは、主として気体の位置を変化させるためのエネルギである。このエネルギは、負圧形成部20により水の流動状態を変化させることで得られるものであり、気体を加圧して水中に噴出する場合に消費されるエネルギに比べて少ない。そのため、船体10の摩擦抵抗低減により、航行時のエネルギ消費が効果的に低減される。
【0048】
さらに、負圧箇所41の形成には、負圧形成部20の形状やレイノルズ数が主な支配因子となり、水深による不利が生じにくいと考えられるため、本発明に係る技術は、大型船への適用にも有利である。
【0049】
また、気泡発生装置11は簡素な構成であり、気体を加圧するための装置が不要であることから、船体10の建造コストが少なくて済むことはいうまでもない。
【0050】
この場合にあって、図1(b)に示すように、水路34により、上向きに凸となる湾曲した流れが形成されるために、排出口33cを通過した水は気液界面43から離れる方向に流れの向きを変えて下降する(条件(c)より)。このとき、気泡42は水よりも大きな加速度で排出口33cから離れる運動をする。すなわち、気液界面43から気泡42が離脱する方向(離脱方向)に、気泡42に対して付加質量による慣性力(付加慣性力)が作用する。
【0051】
さらに、水路34における翼面30c近傍を流れる水の流速が、流水案内体33の排出口33c近傍の水の流速に比べて大きい(条件(b)より)ために、水中の負圧箇所41における圧力が気液界面43から水中に向かって低くなる。そのため、気泡42に対して、離脱方向に圧力勾配力Pf2が作用する。
【0052】
また、水路34の流路断面積(およびその形状)が局部ごとに変化するために、水路34の水の流れ40は局所的に大きな渦度を有する(条件(d)より)。このとき、水の流れ40は、流線の曲がりが大きい水路34の中央部34bにおいて大きな渦度を有する。そのため、気泡42に対して、流線が曲げられた向きと反対方向である下向き(離脱方向)に、気泡42に対して揚力Lf1が作用する。
【0053】
そして、こうした離脱方向の力(付加慣性力Af、圧力勾配力Pf2、揚力Lf1)により、気泡42に対して抵抗となる力が小さくなり、気液界面43からの気泡42の離脱が促進されるとともに、水中に空気を送り込むためのエネルギが少なくて済む。
すなわち、翼30と流水案内体33とにより離脱促進部としての水路34が形成され、この水路34によって、局所的な渦度を有しかつ湾曲した水の流れが形成されることにより、揚力Lf1に加え、圧力勾配力Pf2、付加慣性力Afが作用し、気液界面43からの気泡42の離脱が促進され、水に混入される気泡の量が増える。
【0054】
また、水の流れ40により、翼30に対して上向きの揚力が作用するために、例えば船体10における船首側が上昇し、船体10の浸水面積が減少し、摩擦抵抗が減少しやすくなる。
【0055】
負圧形成部20のストラット31,32は、水路34の流路断面積を狭めるとともに、流線を変化させるために、負圧箇所41が形成される水路34の中央部34bにおいて上述した離脱方向の力を増加させるように有利に働く。
【0056】
負圧箇所41において発生する気泡42の量は、その付近の環境条件から定まる飽和蒸気圧に影響を受ける。すなわち、水に溶け込める気体の量よりも多いものが気泡42として水中に存在することになる。したがって、気液界面43からの気泡42の離脱が促進されることにより、気液界面43の近くに停滞する気泡42が少なくなり、所望の量の気泡42が安定して水中に混入され、効果的な摩擦抵抗低減が確実に実施される。
【0057】
なお、水中に混入された気泡42は、水深に応じた静水圧よりも低い内圧で形成されるため、一定の水深で気泡42が移動するとき(例えば船底に沿って気泡が移動するとき)に、負圧箇所41から離れるに従って気泡42に大きな水圧が作用し、徐々に気泡42の大きさが小さくなる。本出願人らのこれまでの研究によれば、比較的小さい気泡のほうが船体の摩擦抵抗を低減するのに好ましいとされている。したがって、負圧によって発生した気泡は、この点からも摩擦抵抗の低減に有利に働く。
【0058】
図7は、本発明に係る摩擦抵抗低減船の他の実施形態を示している。
この摩擦抵抗低減船M2は、上述した実施形態と異なり、気泡発生装置における負圧形成部が上下方向に移動するように構成されている。
【0059】
気泡発生装置50は、船体に固定状態に敷設される外筒51と、該外筒51内に着脱自在に、かつ軸方向(上下方向)に移動自在に収容される気体導入管(AIP)としての内筒52と、外筒51に対する内筒52の軸方向の位置(高さ)を調節するための位置調節部53とを備えている。
【0060】
内筒52は、一端に設けられた負圧形成部54を下方に向けた状態で外筒51の上端部の開口から挿入される。
【0061】
負圧形成部54は、図8に示すように、管状部材60の端部を塞ぐように配設される板状部材61と、この板状部材61に対して所定の間隔で略平行に配される翼62と、翼62を支持するストラット63,64と、前記板状部材61に設けられた排出口としての開口65を管状部材60の内側から覆うように配設される湾曲板66とを備えている。
【0062】
これらにより、負圧形成部20には、船体の進行方向に沿って、鉛直方向上向きに凸となる湾曲した離脱促進部としての水路67が形成される。
【0063】
また、流体通路68として、内筒52の内部空間は、湾曲板66と板状部材61との間隙69と前記排出口65とを介して下方に開放される。
【0064】
図7に戻り、位置調節部53は、航行状態に応じて、負圧形成部54の船底からの突出状態(突出高さ)を調節するためのものであり、内筒52を所定の位置に移動させるためのモータ等の図示しない駆動部、所定の位置に内筒52を固定するための図示しない固定部、等を含んで構成されている。
【0065】
こうした構成の気泡発生装置50を備える摩擦抵抗低減船M2は、航行状態に応じて位置調節部53により負圧形成部54の突出高さを変化させ、これにより負圧形成部54による抗力の増加を適切に抑制するとともに、負圧形成部54の近傍の水の流れを所望の状態に調節する。
【0066】
例えば気泡による摩擦抵抗の低減効果が小さい停船中や低速航行時には、図9(a)に示すように、負圧形成部54を船体の内側(没水表面の内側)に配することにより、負圧形成部54による抗力の増加を抑制する。
【0067】
一方、所定の船速での航行時には、図9(b)及び(c)に示すように、負圧形成部54を船底から水中に(下方に)突出させ、水中に気泡70を発生させて船体の摩擦抵抗を低減する。
【0068】
負圧形成部54の突出高さが変化すると、負圧形成部54の水路67に流入する時間あたりの水量が変化し、水路67における水の流速が変化する。これにより、負圧箇所71の状態(静水圧など)や気液界面からの離脱方向の力の大きさが変化し、水に混入される気泡70の量が変化する。
【0069】
すなわち、負圧形成部54の突出高さを変化させることにより、負圧箇所71の圧力や負圧箇所71近傍の水の流れ72を制御し、気泡70の発生量を調節する。そして、船速に応じた適切な量の気泡70により摩擦抵抗低減が効果的に実施される。
【0070】
さらに、気泡発生装置50は、メンテナンス時において、内筒52を外筒51から取り外し、清掃設備の整った環境のもとで内筒52の清掃を行うとともに、外筒51の内壁面の清掃を行う。そのため、気泡発生装置50のメンテナンスに伴う手間が少ない。
【0071】
なお、上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。例えば下記のような変更も含まれる。
【0072】
上述した実施形態では、負圧形成部20は、負圧箇所を水中に形成するとともに、離脱方向の力を発生させる水の流れを形成するという2つの機能を有し、少ないスペースで効率的に気泡を水に混入させることができるという利点がある。しかしながら、負圧箇所を形成する機能(負圧形成部)と離脱を促進させる水の流れを形成する機能(離脱促進部)とを別々の手段に分けてもよい。機能別に手段を分けることにより、水中に混入される気泡の量が制御しやすくなる。
【0073】
また、負圧形成部の翼の形状は、水中に対する抗力の増加をなるべく抑制するように設計される。したがって、上述した実施形態で示した翼は、翼面の平面形状が矩形のものに限らず、例えば三角形の翼面など、他の形状でもよい。
【0074】
また、上述した実施形態では、本発明を肥大船に適用した例を示したが、これに限るものではなく、高速船など他の船にも適用可能である。なお、負圧形成部の大きさや数、その配置場所といったものは、船体の形状に応じて適宜設定される。
【0075】
【発明の効果】
以上説明したように、この発明によれば以下の効果を得ることができる。
請求項1に係る船体の摩擦抵抗低減方法によれば、水中に負圧箇所を形成することにより、圧力勾配力を利用して、気体を加圧する場合に比べて少ないエネルギ消費で水中に気体を送り込み、摩擦抵抗低減を行うことができる。また、局所的に渦度が大きい水の流れを形成することにより、揚力を利用して、境界面からの気泡の離脱を促進させ、水に混入される気泡の量を増やすことができる。したがって、効果的な摩擦抵抗低減を実施し、航行時のエネルギ消費を節減することができる。
請求項2から請求項4に係る摩擦抵抗低減船によれば、負圧形成部を備えることにより、水中に負圧箇所を形成し、圧力勾配力を利用して、気体を加圧する場合に比べて少ないエネルギ消費で水中に気体を送り込み、摩擦抵抗低減を行うことができる。また、離脱促進部により形成される水の流れにより、揚力を利用して、境界面からの気泡の離脱を促進させ、水に混入される気泡の量を増やすことができる。したがって、効果的な摩擦抵抗低減を実施し、航行時のエネルギ消費を節減することができる。さらに、気体を加圧する装置が不要となり、船体の建造コストを容易に低減することができる。
【図面の簡単な説明】
【図1】 本発明に係る船体の摩擦抵抗低減方法の一例を示す概念図である。
【図2】 水中に気泡を発生させる方法の一例を示す概念図である。
【図3】 船底における気泡に作用する力を示す模式図である。
【図4】 曲面に沿って水と気泡とが流れる様子を示す模式図である。
【図5】 本発明に係る船体の摩擦抵抗低減方法を船舶に適用した一実施形態を概略的に示す構成図である。
【図6】 図1に示す負圧形成部の構成を概略的に示す斜視図である。
【図7】 本発明に係る船体の摩擦抵抗低減方法を船舶に適用した他の実施形態を概略的に示す構成図である。
【図8】 図7に示す負圧形成部の構成を概略的に示す斜視図である。
【図9】 図7に示す負圧形成部の配置位置と水の流れとの関係を示す状態図である。
【符号の説明】
M,M2 摩擦抵抗低減船
1,10 船体
2,40 水の流れ
3,20,54 負圧形成部
4,41 負圧箇所
5,21 流体通路
7,43 気液界面(境界面)
11,50 気泡発生装置
12 船体外板(没水表面)
15 水面(喫水線)
30 翼
31,32 ストラット
33 流水案内体
33b 湾曲面
33c 排出口
34,67 水路(離脱促進部)
35 気体導入管
37 空気取入れ口
42 気泡
51 外筒
52 内筒
53 位置調節部[0001]
BACKGROUND OF THE INVENTION
The present invention Friction resistance reduction ship In particular, the overall energy efficiency is improved by efficiently discharging bubbles into water.
[0002]
[Prior art]
Conventionally, in order to reduce energy consumption during navigation of ships, etc., gas is sent into the water, and a large number of air bubbles are interposed near the surface of the hull skin (submerged surface). A method for reducing the frictional resistance has been proposed.
[0003]
As a technique for generating bubbles in water, JP-A-50-83992, JP-A-53-136289, JP-A-60-139586, JP-A-61-71290, JP-A-61-39691, Japanese Utility Model Publication No. 61-128185 has been proposed.
[0004]
In these techniques, as a method of generating bubbles in water, gas pressurized by a device such as a pump or blower is jetted into water from a plurality of holes or perforated plates provided in the hull.
[0005]
[Problems to be solved by the invention]
However, in the method of jetting pressurized gas into water, energy for operating the pressurizing device is required, and the energy savings reduced by reducing the frictional resistance is reduced. In particular, when gas is jetted into water at a relatively large depth, such as the bottom of a large ship, it is necessary to pressurize the gas to a high pressure corresponding to the water pressure (hydrostatic pressure), which consumes a great deal of energy. Resulting in. Moreover, when installing the apparatus for pressurization in a hull, great costs, such as an installation cost and construction cost, will arise.
[0006]
This invention is made | formed in view of such a situation, and aims at the following points.
(1) To reduce frictional resistance with less energy consumption and to effectively save energy consumption during navigation.
(2) Effectively reduce frictional resistance by efficiently mixing bubbles in water.
(3) To reduce hull construction costs.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 is a method for reducing the frictional resistance of the hull by discharging bubbles to the submerged surface of the hull, and the pressure of the gas space is reduced with the navigation of the hull. A technique is adopted in which a negative pressure location is formed in water, gas is guided from the gas space to the negative pressure location in water, and a flow of water having a large vorticity is locally formed.
The invention according to claim 2 is a frictional resistance-reducing ship that discharges bubbles to the submerged surface of the hull to reduce the frictional resistance of the hull, and forms a negative pressure portion in the water that is at a low pressure relative to the gas space. A technique is adopted that includes a negative pressure forming unit for forming a fluid, a fluid passage for guiding gas from the gas space to a negative pressure location in water, and a separation promoting unit that locally forms a flow of water having a large vorticity. .
Further, the invention according to claim 3 is the frictional resistance-reducing ship according to claim 2, wherein the negative pressure forming portion includes a wing that projects from the submerged surface of the hull toward the water, and the wing. A technique including a supporting strut and a running water guide arranged on the hull side with respect to the wing is employed.
According to a fourth aspect of the present invention, in the frictional resistance-reducing ship according to the third aspect, the detachment promoting portion is formed so as to follow the wing formed to be convex toward the hull side and the wing shape. A technique formed by the formed flowing water guide body is employed.
[0008]
[Action]
In general, when a pressure gradient occurs around the fluid, the fluid receives a force (pressure gradient force) from the high pressure side toward the low pressure side, thereby inducing a flow. Therefore, by forming a negative pressure location in the water that has a low pressure relative to the gas space and guiding the gas in the gas space to the negative pressure location in the water, the gas is introduced into the water at a predetermined depth by utilizing the pressure gradient force. Can be sent.
[0009]
FIG. 2 schematically shows a frictional resistance reduction ship provided with a negative pressure forming portion for forming a negative pressure portion in water. When the hull 1 navigates at a predetermined ship speed Vs, a flow 2 of water relative to the hull 1 is formed. At this time, for example, when the flow path of the water is narrowed by the negative pressure forming unit 3, the flow rate of the water increases, and the hydrostatic pressure Pwa locally decreases (Bernoulli's theorem). At this time, when the water flow velocity is Vwa, the gas space pressure (atmospheric pressure) is Pa, the water density is ρ, the gravitational acceleration is g, and the water depth is Hwa, the hydrostatic pressure Pwa is
Pwa = Pa + ρ · g · Hwa−ρ · (Vwa 2 -Vs 2 ) / 2 (1)
It is represented by As is clear from this equation (1), when the water flow velocity Vwa satisfies the following equation, a negative pressure portion 4 having a lower pressure than the atmospheric pressure Pa is formed in the water.
ρ · g · Hwa- (Vwa 2 -Vs 2 ) / 2 <0 (2)
[0010]
When the negative pressure portion 4 is formed, the gas flows in the fluid passage 5 by the pressure gradient force and is sent into the water.
[0011]
When the gas is sent into the water by forming the negative pressure portion 4 (negative pressure method), there is no need to pressurize the gas, so less energy is consumed when sending the gas into the water than the conventional pressurization method. .
[0012]
Moreover, the frictional resistance of the hull is reduced by mixing the gas sent into the water into the water as bubbles 6 and interposing many bubbles 6 on the submerged surface of the hull 1.
[0013]
By the way, various forces act on the underwater bubbles 6 due to the flow of water. An example of the force is shown in Table 1.
[0014]
[Table 1]
Figure 0004070385
[0015]
For example, as shown in FIG. 2, when the negative pressure forming part 3 is formed so as to protrude from the ship bottom, the gas flowing in the fluid passage 5 is the boundary surface 7 (gas-liquid interface) between the gas and the liquid (water). It is considered that the pressure gradient force due to the negative pressure portion 4 and the lift force described below move to the water as bubbles 6 and then flow on the water by drag (viscous force). .
[0016]
Lift force is generated when the water flow 2 around the bubble 6 has vorticity, and the direction of the force is vorticity vector of liquid ω and gas-liquid relative velocity vector. (Relative Velocity Vector) The reverse direction of the vector obtained by the outer product with us. The size is proportional to the bubble volume Av and the liquid density ρ. That is, the lift Lf is expressed by the following equation.
Lf = −ρ · Av · (us × ω) (3)
However, this is Auton's inertial lift, and at low Reynolds numbers, Saffman's lift acts and is proportional to the 1/2 power of vorticity. In both cases, the direction of action is the same.
[0017]
In the boundary layer at the bottom of the ship, a flow having vorticity is generally concentrated in the vicinity of the surface of the hull outer plate, and the above-described vectors are oriented as shown in FIG. As can be seen from FIG. 3, the lift Lf at the bottom of the ship acts in a direction away from the hull outer plate, that is, in a direction in which the bubbles 6 leave the water from the gas-liquid interface 7.
[0018]
However, depending on the shape of the negative pressure forming portion, a relatively large force (resistance force) may act on the bubbles in the direction of pushing back to the gas-liquid interface.
[0019]
For example, when water flows along the negative pressure forming unit 3 shown in FIG. 2, an additional inertia force and a pressure gradient force described below act as a resistance force against the bubbles 6 in the water.
[0020]
The added inertial force is the inertial force due to the added mass of bubbles placed in the liquid (water). If the density difference between gas and liquid is 1/800, the added inertial force is compared to the inertial force acting on the gas mass itself in the bubbles. The size is 400 times. When compared with the inertial force of water, the inertial force + additional inertial force of the bubbles is 1/2. From this, when the same external force is applied, the bubbles generate 1 + 1 / (1/2) = 3 times the acceleration of water (however, the maximum value when the drag is ignored).
[0021]
That is, as shown in FIG. 4, when water and bubbles 6 flow along the curved object surface 8, when the flow 2 of water changes downward at the concave portion PA 1, the bubbles 6 accelerate three times as much as water. To descend. Moreover, when the flow 2 of water changes upwards at the location PA2 which is a convex part, the bubble 6 rises with the acceleration of 3 times of water.
[0022]
Therefore, when water flows along the negative pressure forming portion 3 of FIG. 2 described above, the water flow 2 changes upward at the negative pressure portion 4 due to the curvature (convex portion) of the top of the negative pressure forming portion 3. Along with this, an additional inertial force acts on the bubbles 6 in the direction of pushing back to the gas-liquid interface 7.
[0023]
In the case of FIG. 2, since the negative pressure portion 4 has a lower pressure than the other portions of the water, the pressure gradient in the direction in which the bubbles 6 located in the negative pressure portion 4 are pushed back to the gas-liquid interface 7. Force acts.
[0024]
And if such a force (resistance force) in the direction of pushing back to the gas-liquid interface acts on the bubbles greatly, the bubbles are less likely to leave the water from the gas-liquid interface, and the amount of bubbles mixed into the water is suppressed. As a result, the frictional resistance of the hull may not be effectively reduced.
[0025]
Therefore, by forming a flow of water so that the bubbles move from the gas-liquid interface into the water, and reducing the force that resists the bubbles detachment, the bubbles easily detach from the gas-liquid interface. Increases the amount of air bubbles mixed in.
[0026]
That is, by forming a flow of water having a large local vorticity, lift acts on the bubbles in the direction of separation, and the separation of the bubbles from the gas-liquid interface is promoted.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment in which a method for reducing frictional resistance of a hull and a ship with reduced frictional resistance according to the present invention are applied to an enlarged ship such as a tanker or a container ship will be described with reference to the drawings. In FIG. 5, the symbol M is a frictional resistance reduction ship, 10 is a hull, 11 is a bubble generating device, 12 is a hull outer plate (submerged surface), 13 is a propulsion device, 14 is a rudder, and 15 is a water surface (draft). ing.
[0028]
The enlargement ship as the frictional resistance reduction ship M corresponds to, for example, a VLCC (Very Large Crude Oil Carrier), and the hull outer plate 12 (submerged surface) below the water line 15 as compared with other types of ships. ), The area of the bottom of the ship is relatively large with respect to the ship side. Further, a bubble generating device 11 is arranged in front of the hull 10.
[0029]
As shown in FIG. 5 (b), the bubble generating device 11 has a negative pressure forming portion 20 disposed on the submerged surface 12 of the hull 10 and an internal space that opens through the hull 10 and above and below the water line 15. The fluid passage 21 is provided.
[0030]
The negative pressure forming unit 20 uses the flow of water relative to the hull 10 at the time of navigation to form a negative pressure portion in the water that has a low pressure relative to the gas space (atmosphere) at a predetermined ship speed Vs. Is for. Here, the negative pressure forming part 20 also has a function as a detachment promoting part that promotes detachment of bubbles from the gas-liquid interface, as will be described later, and increases the relative speed of water at the ship bottom at a specific location. It is configured to form a curved water flow that is convex upward in the vertical direction.
[0031]
The details of the negative pressure forming portion 20 will be described. As shown in FIG. 6, the negative pressure forming portion 20 is arranged so as to protrude from the submerged surface of the hull toward the water, and also against the submerged surface 12. Wings 30 arranged substantially in parallel at predetermined intervals, struts 31 and 32 arranged between the wings 30 and the hull outer plate 12 to support the wings 30, and the hull side (main In the embodiment, a running water guide 33 is provided on the inner side of the hull.
[0032]
As the shape of the wing 30, various wing shapes such as a NACA wing shape and an Ogibal wing shape are applicable, and are determined according to the shape and speed of the hull. Here, the wing 30 is formed to be convex toward the hull side. Further, the wing 30 has the front edge 30a and the rear edge 30b directed in the advancing direction Dve of the hull, the wing surfaces 30c and 30d are directed in the vertical direction, and the lift acts upward on the wing 30 during navigation ( During navigation, the flow velocity on the blade surface 30c side facing upward is higher than the flow velocity on the blade surface 30d side facing downward.
[0033]
The struts 31 and 32 have a horizontal cross-sectional shape having a low resistance to the flow of water, for example, a wing shape, and have a predetermined height Hst to define the distance between the wing 30 and the submerged surface 12. It is formed with. Furthermore, one end face is in contact with the hull outer plate 12 and the other end face is in contact with the wing 30 for attachment.
[0034]
The flowing water guiding body 33 is for guiding the flow of water during navigation in a curved shape (curved shape), is configured in a box shape with one surface open, and is provided with an opening 12 a provided in the hull outer plate 12. The open end 33a is fixed in contact with the hull outer plate 12 so as to cover the hull 10 from the inside of the hull 10. The running water guide 33 is formed so as to follow the shape of the wing 30, and is parallel to the width direction of the hull 10 (a direction substantially perpendicular to the traveling direction Dve of the hull 10 in the horizontal plane) and from the hull outer plate 12. Has a curved surface 33b that changes in a convex shape along the traveling direction Dve of the hull 10 (that is, curves in a convex shape upward in the vertical direction). Further, a discharge port 33c made of a through hole is provided near the center of the curved surface 33b.
[0035]
As a result, as shown in FIG. 5B, the negative pressure forming unit 20 is formed with a curved water channel 34 that protrudes upward in the vertical direction as a detachment promoting unit along the traveling direction Dve of the hull. .
[0036]
In addition, the shape and arrangement position of each constituent member of the negative pressure forming unit 20 are such that the flow of water in the negative pressure forming unit 20 is in a desired state at the time of navigation by flow by computational fluid dynamics (CFD). Designed by field analysis. Here, the water flow in the vicinity of the negative pressure forming unit 20 is determined so as to satisfy the following conditions (a) to (d) during navigation at a predetermined ship speed Vs.
Condition (a): The flow velocity (absolute value) of water in the water channel 34 is larger than the ship speed Vs, and the average flow velocity Vwa in the central portion 34b of the water channel 34 (see FIG. 5B) is the formula described above. (2) is satisfied (in this case, ρ in equation (2) is the density of seawater, and Hwa is the distance (water depth) from the water line to the waterway 34).
Condition (b): The flow velocity of water in the vicinity of the blade surface 30c is larger than that in the vicinity of the discharge port 33c of the flowing water guide 33.
Condition (c): having a flow of water descending from the discharge port 33c.
Condition (d): The water flow in the water channel has a locally large vorticity.
[0037]
In order to satisfy the above-described condition (a), the shape and the arrangement position of each component of the negative pressure forming unit 20 are, for example, the inside (front part 34a, center part 34b) compared to the channel cross-sectional area at the entrance of the water channel 34. The channel cross-sectional area of the rear part 34c) is narrow, and the channel cross-sectional area of the central part 34b is narrower than that of the front part 34a and the rear part 34c.
Further, in order to satisfy the condition (b) described above, for example, the overall curvature of the blade surface 30c is set to be smaller (the curvature radius is larger) than the curved surface 33b of the flowing water guide 33.
Further, in order to satisfy the condition (c) described above, for example, the curved surface 33b in the vicinity of the discharge port 33c is defined to have a curved surface that is convex upward.
Further, in order to satisfy the above-described condition (d), for example, the channel cross-sectional area and shape of the water channel 34 are determined to change locally.
[0038]
On the other hand, the fluid passage 21 includes an internal space 36 of a gas introduction pipe 35 connected to the flowing water guide 33 in the negative pressure forming unit 20. That is, one end of the fluid passage 21 is opened to the gas space (in the atmosphere) via the air intake port 37 of the gas introduction pipe 35, and the other end is brought into the water via the discharge port 33 c of the flowing water guide 33. It is designed to be opened.
[0039]
The Air Induction Pipe (AIP) 35 is laid in a state of penetrating the hull 10 and connected to a flowing water guide 33 in the negative pressure forming unit 20, and a fluid having a desired flow rate flows with a small pressure loss. As such, the internal cross-sectional area and shape are determined. The air intake 37 is disposed at the front of the deck of the hull 10.
[0040]
In addition, as a material of the negative pressure formation part 20 and the gas introduction pipe | tube 35, for example, the surface mainly has corrosion resistance with respect to seawater, such as a metal or resin subjected to corrosion resistance, and marine organisms hardly adhere to the surface. Those are preferably used.
[0041]
One or a plurality of the negative pressure forming portions 20 are arranged according to the width of the ship bottom, and the arrangement state of the gas introduction pipe 35 is determined according to this.
[0042]
A method for reducing the frictional resistance of the hull by the frictional resistance reducing ship M configured as described above will be described below with reference to FIG.
In the stoppage state, water (seawater) has entered the fluid passage 21 up to almost the same water level as the periphery of the hull 10. When the hull 10 is in a sailing state by the thrust of the propulsion device 13 (see FIG. 5), a water flow 40 relative to the hull 10 is formed as shown in FIG.
[0043]
In the sailing state, water flows along the wings 30 of the negative pressure forming unit 20 at the bottom of the ship, and the flow rate of the water flowing through the water channel 34 increases because the flow channel is narrowed in the curved water channel 34, and the hydrostatic pressure is increased. Locally decreases.
[0044]
Then, when the navigation speed of the hull 10 reaches a predetermined ship speed Vs (for example, standard navigation speed), a negative pressure portion 41 having a low pressure relative to the atmosphere is formed in the central portion 34b of the water channel 34 (condition (a )Than).
[0045]
In this case, since the pressure in the vicinity of the discharge port 33c facing the negative pressure portion 41 is lower than the pressure at the air intake port 37, the pressure gradient force is exerted on the fluid (seawater and air) in the fluid passage 21. After Pf1 acts and seawater is discharged from the fluid passage 21, the air flowing in from the air intake 37 flows through the fluid passage 21 and is fed into the water.
[0046]
And the gas sent in water mixes in water as the bubble 42, and the frictional resistance of the hull 10 is reduced by interposing many bubbles 42 in the vicinity of the submerged surface 12 of the hull 10.
[0047]
The energy required for sending air into the water is mainly energy for changing the position of the gas. This energy is obtained by changing the flow state of water by the negative pressure forming unit 20, and is less than the energy consumed when the gas is pressurized and ejected into water. Therefore, energy consumption at the time of navigation is effectively reduced by reducing the frictional resistance of the hull 10.
[0048]
Furthermore, in forming the negative pressure portion 41, the shape and Reynolds number of the negative pressure forming portion 20 are the main controlling factors, and it is considered that disadvantages due to water depth are unlikely to occur. It is also advantageous for application.
[0049]
Further, since the bubble generating device 11 has a simple configuration and does not require a device for pressurizing the gas, it goes without saying that the construction cost of the hull 10 can be reduced.
[0050]
In this case, as shown in FIG. 1B, a curved flow that is convex upward is formed by the water channel 34, so that the water that has passed through the discharge port 33 c is away from the gas-liquid interface 43. Change the flow direction to descend (from condition (c)). At this time, the bubbles 42 move away from the discharge port 33c with a larger acceleration than water. That is, an inertial force (additional inertial force) due to the additional mass acts on the bubbles 42 in the direction in which the bubbles 42 separate from the gas-liquid interface 43 (detachment direction).
[0051]
Furthermore, since the flow velocity of the water flowing in the vicinity of the blade surface 30c in the water channel 34 is larger than the flow velocity of the water in the vicinity of the discharge port 33c of the flowing water guide 33 (from the condition (b)), The pressure decreases from the gas-liquid interface 43 toward the water. Therefore, the pressure gradient force Pf2 acts on the bubble 42 in the separation direction.
[0052]
Moreover, since the channel cross-sectional area (and its shape) of the water channel 34 changes locally, the water flow 40 in the water channel 34 has a locally large vorticity (from condition (d)). At this time, the water flow 40 has a large vorticity in the central portion 34b of the water channel 34 with a large streamline curve. Therefore, the lift Lf1 acts on the bubbles 42 in the downward direction (withdrawal direction) that is the direction opposite to the direction in which the streamline is bent.
[0053]
The force in the detachment direction (additional inertial force Af, pressure gradient force Pf2, lift Lf1) reduces the force acting as a resistance against the bubble 42 and promotes the detachment of the bubble 42 from the gas-liquid interface 43. At the same time, less energy is required to send air into the water.
That is, the wing 30 and the flowing water guiding body 33 form a water channel 34 as a separation promoting portion, and the water channel 34 forms a curved water flow having a local vorticity, thereby increasing the lift Lf1. In addition, the pressure gradient force Pf2 and the additional inertial force Af act to promote the separation of the bubbles 42 from the gas-liquid interface 43, and the amount of bubbles mixed into the water increases.
[0054]
Further, since upward lift acts on the wing 30 due to the flow of water 40, for example, the bow side of the hull 10 rises, the inundated area of the hull 10 decreases, and the frictional resistance easily decreases.
[0055]
The struts 31 and 32 of the negative pressure forming unit 20 narrow the flow passage cross-sectional area of the water channel 34 and change the streamline, and the above-described separation direction in the central portion 34b of the water channel 34 where the negative pressure point 41 is formed. It works favorably to increase the power of.
[0056]
The amount of bubbles 42 generated at the negative pressure location 41 is affected by the saturated vapor pressure determined from the environmental conditions in the vicinity thereof. That is, more than the amount of gas that can be dissolved in water exists as bubbles 42 in the water. Therefore, by promoting the separation of the bubbles 42 from the gas-liquid interface 43, the number of bubbles 42 stagnating near the gas-liquid interface 43 is reduced, and a desired amount of bubbles 42 is stably mixed into the water. Reduction of frictional resistance is ensured.
[0057]
Since the air bubbles 42 mixed in the water are formed with an internal pressure lower than the hydrostatic pressure corresponding to the water depth, when the air bubbles 42 move at a constant water depth (for example, when the air bubbles move along the ship bottom). As the distance from the negative pressure portion 41 increases, a large water pressure acts on the bubbles 42, and the size of the bubbles 42 gradually decreases. According to applicants' previous work, relatively small bubbles are preferred for reducing the frictional resistance of the hull. Therefore, the bubbles generated by the negative pressure are advantageous for reducing the frictional resistance from this point.
[0058]
FIG. 7 shows another embodiment of the frictional resistance reduction ship according to the present invention.
Unlike the above-described embodiment, the frictional resistance reduction ship M2 is configured such that the negative pressure forming portion in the bubble generating device moves in the vertical direction.
[0059]
The bubble generating device 50 includes an outer cylinder 51 laid in a fixed state on the hull, and a gas introduction pipe (AIP) accommodated in the outer cylinder 51 so as to be detachable and movable in the axial direction (vertical direction). The inner cylinder 52 and a position adjusting unit 53 for adjusting the axial position (height) of the inner cylinder 52 with respect to the outer cylinder 51 are provided.
[0060]
The inner cylinder 52 is inserted from the opening at the upper end of the outer cylinder 51 with the negative pressure forming portion 54 provided at one end facing downward.
[0061]
As shown in FIG. 8, the negative pressure forming portion 54 is arranged in parallel with a plate member 61 disposed so as to close the end portion of the tubular member 60, and at a predetermined interval with respect to the plate member 61. Wings 62, struts 63 and 64 that support the wings 62, and a curved plate 66 disposed so as to cover an opening 65 provided as an outlet provided in the plate-like member 61 from the inside of the tubular member 60. It has.
[0062]
As a result, the negative pressure forming portion 20 is formed with a water channel 67 as a curved detachment promoting portion that protrudes upward in the vertical direction along the traveling direction of the hull.
[0063]
Further, as the fluid passage 68, the internal space of the inner cylinder 52 is opened downward through the gap 69 between the curved plate 66 and the plate-like member 61 and the discharge port 65.
[0064]
Returning to FIG. 7, the position adjusting unit 53 is for adjusting the protruding state (projecting height) of the negative pressure forming unit 54 from the ship bottom in accordance with the navigation state, and the inner cylinder 52 is brought to a predetermined position. A driving unit (not shown) such as a motor for moving, a fixing unit (not shown) for fixing the inner cylinder 52 at a predetermined position, and the like are included.
[0065]
The frictional resistance reduction ship M2 including the bubble generating device 50 having such a configuration changes the protrusion height of the negative pressure forming unit 54 by the position adjusting unit 53 according to the navigation state, thereby increasing the drag by the negative pressure forming unit 54. The water flow in the vicinity of the negative pressure forming unit 54 is adjusted to a desired state.
[0066]
For example, when stopping at low speeds or sailing at low speed, where the effect of reducing frictional resistance due to air bubbles is small, as shown in FIG. 9 (a), the negative pressure forming portion 54 is placed inside the hull (inside the submerged surface), thereby reducing the negative pressure. The increase of the drag by the pressure forming part 54 is suppressed.
[0067]
On the other hand, when navigating at a predetermined ship speed, as shown in FIGS. 9B and 9C, the negative pressure forming portion 54 protrudes into the water (downward) from the bottom of the ship to generate bubbles 70 in the water. Reduce the frictional resistance of the hull.
[0068]
When the protruding height of the negative pressure forming portion 54 changes, the amount of water per hour flowing into the water channel 67 of the negative pressure forming portion 54 changes, and the flow rate of water in the water channel 67 changes. As a result, the state of the negative pressure location 71 (hydrostatic pressure, etc.) and the magnitude of the force in the direction of separation from the gas-liquid interface change, and the amount of bubbles 70 mixed in the water changes.
[0069]
That is, by changing the protruding height of the negative pressure forming portion 54, the pressure at the negative pressure location 71 and the water flow 72 near the negative pressure location 71 are controlled, and the amount of bubbles 70 generated is adjusted. The frictional resistance is effectively reduced by an appropriate amount of bubbles 70 corresponding to the ship speed.
[0070]
Furthermore, the bubble generating device 50 removes the inner cylinder 52 from the outer cylinder 51 during the maintenance, cleans the inner cylinder 52 in an environment where cleaning facilities are prepared, and cleans the inner wall surface of the outer cylinder 51. Do. Therefore, the labor involved in maintenance of the bubble generating device 50 is small.
[0071]
The various shapes and combinations of the constituent members shown in the above-described embodiments are merely examples, and various changes can be made based on design requirements and the like without departing from the gist of the present invention. For example, the following changes are also included.
[0072]
In the embodiment described above, the negative pressure forming unit 20 has two functions of forming a negative pressure portion in the water and forming a flow of water that generates a force in the separation direction, and efficiently in a small space. There is an advantage that air bubbles can be mixed in water. However, the function of forming a negative pressure location (negative pressure forming portion) and the function of forming a water flow for promoting detachment (detachment promoting portion) may be divided into different means. By dividing the means according to function, the amount of bubbles mixed in water can be easily controlled.
[0073]
Moreover, the shape of the wing | blade of a negative pressure formation part is designed so that the increase in the drag with respect to water may be suppressed as much as possible. Therefore, the wing shown in the above-described embodiment is not limited to the rectangular plane shape of the wing surface, and may be another shape such as a triangular wing surface.
[0074]
Moreover, although the example which applied this invention to the enlargement ship was shown in embodiment mentioned above, it is not restricted to this, It can apply also to other ships, such as a high-speed ship. Note that the size and number of the negative pressure forming portions and the arrangement location thereof are appropriately set according to the shape of the hull.
[0075]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
According to the method for reducing the frictional resistance of a hull according to claim 1, by forming a negative pressure portion in the water, the gas is submerged in the water with less energy consumption than when the gas is pressurized using the pressure gradient force. Infeed and frictional resistance can be reduced. Further, by forming a flow of water having a large local vorticity, it is possible to promote the detachment of bubbles from the boundary surface by using lift, and to increase the amount of bubbles mixed in water. Therefore, effective frictional resistance reduction can be implemented and energy consumption during navigation can be saved.
According to the frictional resistance reduction ship according to claim 2 to claim 4, as compared with the case where the negative pressure forming portion is provided, the negative pressure portion is formed in the water, and the gas is pressurized using the pressure gradient force. Friction resistance can be reduced by sending gas into water with low energy consumption. In addition, the flow of water formed by the detachment promoting portion can utilize the lift force to promote the detachment of bubbles from the boundary surface, and increase the amount of bubbles mixed into the water. Therefore, effective frictional resistance reduction can be implemented and energy consumption during navigation can be saved. Furthermore, a device for pressurizing the gas becomes unnecessary, and the construction cost of the hull can be easily reduced.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an example of a hull frictional resistance reduction method according to the present invention.
FIG. 2 is a conceptual diagram showing an example of a method for generating bubbles in water.
FIG. 3 is a schematic diagram showing forces acting on bubbles at the bottom of the ship.
FIG. 4 is a schematic diagram showing how water and bubbles flow along a curved surface.
FIG. 5 is a configuration diagram schematically showing an embodiment in which a method for reducing frictional resistance of a hull according to the present invention is applied to a ship.
6 is a perspective view schematically showing a configuration of a negative pressure forming unit shown in FIG. 1. FIG.
FIG. 7 is a configuration diagram schematically showing another embodiment in which the hull frictional resistance reducing method according to the present invention is applied to a ship.
8 is a perspective view schematically showing a configuration of a negative pressure forming portion shown in FIG. 7. FIG.
9 is a state diagram showing the relationship between the arrangement position of the negative pressure forming portion shown in FIG. 7 and the flow of water.
[Explanation of symbols]
M, M2 Friction resistance reduction ship
1,10 hull
2,40 Water flow
3, 20, 54 Negative pressure forming part
4,41 Negative pressure point
5,21 Fluid passage
7,43 Gas-liquid interface (boundary surface)
11,50 Bubble generator
12 Hull skin (submerged surface)
15 Water surface (draft)
30 wings
31, 32 struts
33 Running water guide
33b Curved surface
33c outlet
34,67 waterway (withdrawal promotion part)
35 Gas introduction pipe
37 Air intake
42 Bubbles
51 outer cylinder
52 inner cylinder
53 Position adjuster

Claims (1)

船体の没水表面に気泡を放出して船体の摩擦抵抗を低減する摩擦抵抗低減船であって、
船体内に設けられ、一端が大気中に開放されると共に他端が船体の没水表面に開放される流体通路と、
大気に比べて低圧となる負圧箇所を前記没水表面に形成すると共に、前記流体通路を介して前記負圧箇所に送り込まれた空気に、気泡として水中に向けて離脱する方向の揚力を水中に形成される渦及び流水に基づいて発生させることにより負圧箇所における空気の離脱を促進する負圧形成部とを備え、
前記負圧形成部は、船体側に凸となるように形成されると共に船体の没水表面に略平行かつ所定の間隔をあけて配される翼と、該翼を支持するストラットと、前記翼に対向して船体側に配され、前記翼の形状に沿うように形成される流水案内体とからなることを特徴とする摩擦抵抗低減船。
A friction resistance reducing ship that releases bubbles on the submerged surface of the hull to reduce the friction resistance of the hull,
A fluid passage provided in the hull, one end open to the atmosphere and the other open to the submerged surface of the hull ;
A negative pressure portion that is lower in pressure than the atmosphere is formed on the submerged surface, and the lift force in the direction of detaching into the water as bubbles is submerged in the air sent to the negative pressure portion through the fluid passage. A negative pressure forming portion that promotes the detachment of air at the negative pressure location by generating based on the vortex and running water formed in the
The negative pressure forming portion is formed so as to be convex toward the hull side, and is disposed on the submerged surface of the hull so as to be substantially parallel and spaced apart from each other, a strut that supports the wing, and the wing A ship with reduced frictional resistance, characterized by comprising a running water guide body that is arranged on the hull side so as to face the wing and is formed along the shape of the wing .
JP2000101069A 2000-04-03 2000-04-03 Friction resistance reduction ship Expired - Lifetime JP4070385B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000101069A JP4070385B2 (en) 2000-04-03 2000-04-03 Friction resistance reduction ship
US09/822,942 US6789491B2 (en) 2000-04-03 2001-03-30 Friction reducing ship and method for reducing frictional resistance
KR10-2001-0017483A KR100441723B1 (en) 2000-04-03 2001-04-02 Friction-reducing ship and method for reducing skin friction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000101069A JP4070385B2 (en) 2000-04-03 2000-04-03 Friction resistance reduction ship

Publications (2)

Publication Number Publication Date
JP2001278178A JP2001278178A (en) 2001-10-10
JP4070385B2 true JP4070385B2 (en) 2008-04-02

Family

ID=18615185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000101069A Expired - Lifetime JP4070385B2 (en) 2000-04-03 2000-04-03 Friction resistance reduction ship

Country Status (1)

Country Link
JP (1) JP4070385B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128210A1 (en) * 2008-04-17 2009-10-22 Takahashi Yoshiaki Frictional resistance reduced ship and method of operating thereof
WO2009139132A1 (en) * 2008-05-12 2009-11-19 Takahashi Yoshiaki Ship with reduced frictional resistance and method of operating the same
WO2010010649A1 (en) * 2008-07-23 2010-01-28 Takahashi Yoshiaki Frictional-resistance reduced ship, and method for steering the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002002583A (en) * 2000-06-22 2002-01-09 Ishikawajima Harima Heavy Ind Co Ltd Friction resistance reducing ship, and friction resistance reducing method for hull
JP5787263B2 (en) * 2013-06-28 2015-09-30 国立研究開発法人海上技術安全研究所 Ship bubble holding device
JP6253073B1 (en) * 2017-06-19 2017-12-27 佐藤 正明 Friction resistance reduction device for ships
JP2022518332A (en) * 2018-11-19 2022-03-15 エデュアルド アークシン カルロス A bow and / or stern device that reduces the resistance of the ship's hull during navigation
CN113650721B (en) * 2020-12-02 2022-12-02 中国科学院理化技术研究所 Universal cylinder surface cavity bubble air film forming, regulating and controlling and drag reducing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128210A1 (en) * 2008-04-17 2009-10-22 Takahashi Yoshiaki Frictional resistance reduced ship and method of operating thereof
WO2009139132A1 (en) * 2008-05-12 2009-11-19 Takahashi Yoshiaki Ship with reduced frictional resistance and method of operating the same
WO2010010649A1 (en) * 2008-07-23 2010-01-28 Takahashi Yoshiaki Frictional-resistance reduced ship, and method for steering the same
US7677191B2 (en) 2008-07-23 2010-03-16 Yoshiaki Takahashi Frictional resistance reduction ship and operation method

Also Published As

Publication number Publication date
JP2001278178A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
KR100441723B1 (en) Friction-reducing ship and method for reducing skin friction
KR100424543B1 (en) Frictional resistance reducing vessel
EP2817208B1 (en) Air lubrication system
EP2915735A1 (en) Air lubrication system and vessel comprising such a system.
US8763547B2 (en) Apparatus for lowering drag on a moving nautical vessel
JP2009274705A (en) Frictional resistance reduction ship and method for operating the same
EP1984235B1 (en) Apparatus and method for reducing fluid drag on a submerged surface
JP4070385B2 (en) Friction resistance reduction ship
JP5311541B2 (en) Ship bubble holding device
JP2001055189A (en) Friction resistance reducing method of hull and friction resistance reduced ship
JP2002002582A (en) Friction resistance reducing ship
KR20020020624A (en) Method of reducing frictional resistance of a hull, and frictional resistance reducing vessel
JP2016064812A (en) Hull fluid resistance reduction device
JP5651829B2 (en) Friction reduction ship and micro bubble generation pump
JP5799982B2 (en) Ship bubble holding device
JP2002079986A (en) Ship reduced in friction resistance
JP2001278179A (en) Method of reducing frictional resistance of hull, and frictional resistance reduced ship
JP2002002583A (en) Friction resistance reducing ship, and friction resistance reducing method for hull
JP2001278177A (en) Method of reducing frictional resistance of hull, and frictional resistance reduced ship
JP2001328584A (en) Frictional resistance-reduced ship
JP2001278176A (en) Frictional resistance reduced ship
JP2001341689A (en) Ship reduced in frictional resistance
JP2002079987A (en) Method for reducing friction resistance of hull, and ship reduced in friction resistance
JP2002068073A (en) Frictional resistance reducing ship and method of reducing frictional resistance of hull
JP5787263B2 (en) Ship bubble holding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20050225

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4070385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term