JP5651829B2 - Friction reduction ship and micro bubble generation pump - Google Patents

Friction reduction ship and micro bubble generation pump Download PDF

Info

Publication number
JP5651829B2
JP5651829B2 JP2010255487A JP2010255487A JP5651829B2 JP 5651829 B2 JP5651829 B2 JP 5651829B2 JP 2010255487 A JP2010255487 A JP 2010255487A JP 2010255487 A JP2010255487 A JP 2010255487A JP 5651829 B2 JP5651829 B2 JP 5651829B2
Authority
JP
Japan
Prior art keywords
pump
flow
impeller
ship
hull
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010255487A
Other languages
Japanese (ja)
Other versions
JP2012106542A (en
Inventor
雅 田篭
雅 田篭
Original Assignee
雅 田篭
雅 田篭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 雅 田篭, 雅 田篭 filed Critical 雅 田篭
Priority to JP2010255487A priority Critical patent/JP5651829B2/en
Publication of JP2012106542A publication Critical patent/JP2012106542A/en
Application granted granted Critical
Publication of JP5651829B2 publication Critical patent/JP5651829B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Description

本発明は、船首側の水面下において大量のマイクロバブル(微細気泡)を発生させ、船の底面および側面の水に接する外板表面を微細気泡で覆うことによって、航行時の船体の摩擦抵抗を低減し、高い省エネ効果を得る装置に関する。   The present invention generates a large amount of microbubbles (fine bubbles) under the water surface on the bow side and covers the outer plate surface in contact with water on the bottom and side surfaces of the ship with fine bubbles, thereby reducing the frictional resistance of the hull during navigation. The present invention relates to a device that reduces and obtains a high energy saving effect.

従来は、船体の表面をマイクロバブルで覆って摩擦抵抗を低減させるための手段として、船首側に設けた細いスリットや多数の噴出口およびノズルにより空気を吹き出させる方法などがある。例えば、吹き出し口がスリット形状では特許文献1、多数の噴出口形状では特許文献2や特許文献3、ノズル形状では特許文献4などが開示されている。   Conventionally, as means for reducing the frictional resistance by covering the surface of the hull with microbubbles, there is a method in which air is blown out by thin slits provided on the bow side, a large number of jets and nozzles. For example, Patent Document 1 discloses that the outlet is slit-shaped, Patent Document 2 and Patent Document 3 that disclose many nozzle shapes, and Patent Document 4 that discloses the nozzle shape.

空気吹き出し口の形状は種々あるが、いずれも吐き出される気泡径は微小とは言い難く、浮上速度の影響が大きいこと、また吹き出しによる流れは乱れが大きく、剥離などを起こし、船体に沿って流れ難いなどの問題がる。特に船の側面に噴出口がある場合、吹き出される気泡は、浮力の影響や乱れの影響もあり、安定して船尾まで船の側面を気泡流で覆うことは困難である。従ってマイクロバブルによる顕著な省エネ効果は得られ難い。 There are various shapes of air outlets, but in any case, the diameter of the discharged air bubbles is not very small, and the influence of the ascending speed is large, and the flow caused by the blowout is turbulent, causing separation and flowing along the hull. There are problems such as difficulty. In particular, when there is a spout on the side of the ship, the blown out bubbles are also affected by buoyancy and turbulence, and it is difficult to stably cover the side of the ship with the bubble flow to the stern. Accordingly, it is difficult to obtain a remarkable energy saving effect by microbubbles.

非特許文献1によれば、吹き出し気泡群の粒子径を微小にすることが難しいため、気泡群の浮力の影響が大きいこと、船首側の船底に設けた細いスリットからの空気気吹き出し法では、吹き出し気泡は不安定で剥離なども生じるため、船尾まで船底を安定して覆うのは困難などの理由から、船底外板の外側に端板を設けて船底の側面からの気泡の流出を抑える手法を示している。     According to Non-Patent Document 1, since it is difficult to make the particle size of the blowing bubbles small, the influence of the buoyancy of the bubbles is large. In the air blowing method from a thin slit provided on the bow on the bow side, Because the blown bubbles are unstable and may cause separation, it is difficult to stably cover the bottom of the ship to the stern. For this reason, an end plate is provided on the outside of the bottom shell plate to suppress the outflow of bubbles from the side of the bottom. Is shown.

特開平9−156576号公報JP-A-9-156576 特開平9−207873号公報Japanese Patent Laid-Open No. 9-207873 特開平11−49080号公報Japanese Patent Laid-Open No. 11-49080 特開2008−18781号公報JP 2008-18781 A 児玉良明「空気潤滑法による船舶の抵抗低減技術の実用化にむけて」日本機械学会誌,112−1086(2009−5),46−49.Kodama Yoshiaki “Toward the Practical Use of Ship Lubrication Reduction Technology by Air Lubrication”, Journal of the Japan Society of Mechanical Engineers, 112-1086 (2009-5), 46-49.

従来のマイクロバブルの生成技術では、気泡の微細化が不十分であり、浮上速度が速く効率が悪い。また、安定した微細気泡流が得られない。これらの問題点を解決するためには、さらに微細化した気泡が得られる発生装置とともに気泡流を船体表面に沿う流れとして安定的に供給できる摩擦低減技術が求められる。   In the conventional microbubble generation technology, the bubbles are not sufficiently refined, the flying speed is high, and the efficiency is low. In addition, a stable microbubble flow cannot be obtained. In order to solve these problems, a friction reduction technique capable of stably supplying a bubble flow as a flow along the surface of the hull together with a generator capable of obtaining finer bubbles is required.

本発明は従来技術の問題点を解決するために、マイクロバブル発生用に開発した新規の貫流ポンプ(クロスフロ−ポンプ)を船首側の水面下に設置したものである。貫流ポンプ内部で発生させた大量の微小気泡は、ポンプ内部で流れに一様に混入しながら吐き出される。この微小気泡を大量に含む吐出し気泡流は、貫流ポンプ特有の流れの特性により、吐出し部において一様で乱れの少ない幅広の層状的な流れとなり、その流れは船体表面に沿って船尾に向かって安定した流れを形成し、船体を微小バブルで覆うことになる。このようにして、効率良く摩擦低減を図ることができる。   In the present invention, in order to solve the problems of the prior art, a novel once-through pump (cross flow pump) developed for generating microbubbles is installed under the water surface on the bow side. A large amount of microbubbles generated inside the once-through pump is discharged while being uniformly mixed in the flow inside the pump. Due to the flow characteristics unique to the once-through pump, this discharge bubble flow containing a large amount of microbubbles becomes a wide, laminar flow that is uniform and less disturbed at the discharge part, and the flow flows to the stern along the hull surface. A stable flow is formed and the hull is covered with microbubbles. In this way, friction can be reduced efficiently.

図1に本特許で開発した貫流ポンプ本体の断面図を示す。(a)は貫流ポンプ(クロスフロ−ポンプ)本体50の断面図、(b)は(a)のY−Y矢視断面図でマイクロバブル発生ポンプ55を示す。貫流ポンプ本体50は、基本的には円筒状の多翼羽根車7を収容したケ−シング30と流れを制御する舌部8および散気孔5を有する中空回転軸3からなる。マイクロバブル発生ポンプ55は貫流ポンプ本体50にエアなどを供給するためにホ−ス13により接続されたエアポンプ11と液体ポンプ11bおよび該中空回転軸3に接続した駆動用モ−タ12からなる。 FIG. 1 shows a cross-sectional view of a cross-flow pump main body developed in this patent. (A) is a cross-sectional view of a cross-flow pump (cross-flow pump) main body 50, and (b) is a cross-sectional view taken along the line YY of (a), showing a microbubble generating pump 55. The cross-flow pump body 50 basically includes a casing 30 that houses a cylindrical multi-blade impeller 7, and a hollow rotary shaft 3 that has a tongue 8 that controls the flow and a diffuser hole 5. The microbubble generating pump 55 includes an air pump 11 and a liquid pump 11 b connected by a hose 13 for supplying air and the like to the cross-flow pump body 50, and a driving motor 12 connected to the hollow rotary shaft 3.

流れは図1(a)のポンプ断面図に示すように吸込み側9から吐出し側10に向って2回羽根6を通過する。即ち流れは吸込み側9では、羽根車7の外側から内側へ、吐出し側10では内側から外側へ流出して羽根車7を横断する。羽根車7は幅方向に長くとれること、また、流れが羽根車に接線方向に吐出されることから、吐出し流れは従来技術と異なり、幅広のシ−ト状で乱れも少なく、拡散せずに遠くまで達することができるので、船首側から船尾に向かって全体的に微小気泡の流れが船体表面に沿って行き渡る。 The flow passes through the blade 6 twice from the suction side 9 toward the discharge side 10 as shown in the pump sectional view of FIG. That is, the flow flows from the outside of the impeller 7 to the inside on the suction side 9 and flows out from the inside to the outside on the discharge side 10 to cross the impeller 7. Since the impeller 7 can be long in the width direction, and the flow is discharged tangentially to the impeller, the discharge flow is a wide sheet, less turbulent, and does not diffuse, unlike the prior art. Therefore, the flow of micro bubbles spreads along the hull surface from the bow side toward the stern.

また、吸込み側における羽根6の入口と出口が吐出し側では逆になるため、物が羽根間に詰まりにくい構造であることは運転上、優れた強みである。 Further, since the inlet and outlet of the blade 6 on the suction side are reversed on the discharge side, it is an excellent strength in operation that an object is not easily clogged between the blades.

微細気泡を発生させる構造は、図1の(a)、(b)に示すように羽根車7内の中空回転軸3の外周面に多数の散気孔5を窄孔、あるいは追加の多孔質材を貼り付け、中空回転軸3を通して羽根車外部のホ−ス13に接続したエアポンプ11および液体ポンプ11bにより、気体や液体を供給できるようになっている。外部から羽根車内に供給された気体が該中空回転軸3の散気孔5からSで示される噴出によって気泡となって放出されることになるが、気泡は回転を伴って散気孔5から放出されるため、回転を伴う効果により気泡は微小径となり、さらに回転する羽根6の間を通過することにより細分化され、理想的な微小気泡となって吐出し水流とともに船体表面に沿って吐出される。回転数は大きいほど微細化される。このように回転する羽根車7内の中空シャフト3の散気孔5からの気泡供給方法は、一様で均一な微細気泡を得るための手法として優れている。 As shown in FIGS. 1 (a) and 1 (b), the structure for generating fine bubbles is such that a large number of diffused holes 5 are constricted on the outer peripheral surface of the hollow rotary shaft 3 in the impeller 7, or an additional porous material. Gas and liquid can be supplied by the air pump 11 and the liquid pump 11b connected to the hose 13 outside the impeller through the hollow rotating shaft 3. The gas supplied from the outside into the impeller is discharged as a bubble by the ejection indicated by S from the diffuser hole 5 of the hollow rotary shaft 3, but the bubble is discharged from the diffuser hole 5 with rotation. Therefore, the bubbles have a minute diameter due to the effect accompanying rotation, and are further subdivided by passing between the rotating blades 6 to be discharged as ideal minute bubbles and discharged along the hull surface together with the water flow. . The smaller the number of revolutions, the finer. The method for supplying bubbles from the diffuser holes 5 of the hollow shaft 3 in the rotating impeller 7 is excellent as a method for obtaining uniform and uniform fine bubbles.

液体ポンプ11bは貫流ポンプに貝などが附着するのを防ぐために薬液を注入したり、ポンプ内部を洗浄するときに洗浄液を注入するためのものである。 The liquid pump 11b is for injecting a chemical solution in order to prevent shells or the like from attaching to the once-through pump, or for injecting a cleaning solution when cleaning the inside of the pump.

図2はポンプ吸込み側9にエア分散発生器17を設置した場合の例を示す。気体は前述の図1と同様にエアポンプ11によりエア分散発生器17に供給される。この場合、エア分散発生器17から放出された気泡の大部分は流れと共に、吸込み側9から吐出し側10に向って2度、羽根6を通過して羽根車7を横断することになる。気泡は回転する羽根6を通過する毎に細分化されるために、吐出し側では微細化した気泡が得られる。エア分散発生器17はポンプの吐出側に取付けたり、ケ−シング壁面に取り付けてもても良いが均一な微細気泡が得られ難い。 FIG. 2 shows an example in which an air dispersion generator 17 is installed on the pump suction side 9. The gas is supplied to the air dispersion generator 17 by the air pump 11 as in FIG. In this case, most of the bubbles released from the air dispersion generator 17 pass through the blades 6 and cross the impeller 7 twice from the suction side 9 toward the discharge side 10 together with the flow. Since the bubbles are subdivided every time they pass through the rotating blade 6, fine bubbles are obtained on the discharge side. The air dispersion generator 17 may be attached to the discharge side of the pump or attached to the casing wall surface, but it is difficult to obtain uniform fine bubbles.

図3と図4は散気孔5から放出される気泡径をさらに小さくするための手法を示す。図3は貫流ポンプ羽根車7の散気孔を有する中空回転軸3の外周面に多数の棒状の小さな突起28を放射状に突き出した構造、図4は中空回転軸3の外周面の外側に隙間を空けて数本の細長パイプ状の棒29を中空回転軸3に平行で略同芯状に配列して羽根車幅方向に差し渡した構造であることを特徴とする。羽根車の回転に伴い、前記2種の棒状体の後流乱れが散気孔5から放出された気泡を局部的に乱すことによってさらに微細化した状態でポンプ吐出し口から船体表面に沿って放出されることになる。 3 and 4 show a technique for further reducing the diameter of the bubbles released from the air holes 5. FIG. FIG. 3 shows a structure in which a large number of small rod-shaped protrusions 28 protrude radially on the outer peripheral surface of the hollow rotary shaft 3 having the air diffusion holes of the once-through pump impeller 7, and FIG. It is characterized in that it has a structure in which several elongated pipe-shaped rods 29 are arranged in parallel and substantially concentric with the hollow rotary shaft 3 and are arranged in the impeller width direction. Along with the rotation of the impeller, the wake turbulence of the two kinds of rod-shaped bodies is further miniaturized by locally disturbing the bubbles released from the diffuser holes 5 and discharged along the hull surface from the pump discharge port. Will be.

摩擦抵抗を低減させるためには、基本的には、水面下の船体表面の薄い境界層を微小気泡で覆えば良い。本発明では、微小気泡を含む吐出し流れを船体表面に沿ってシ−ト状に供給できるのとコアンダ効果(流れが物体表面の曲面に沿って流れる効果)により、確実に境界層を覆うことができるので効率が良い。また、貫流ポンプ本体の吸込み口と吐出し口を含むケ−シング形状や舌部の構造を適切にアレンジすることによって船体の形状あった流れの状態を得ることが出来るという優れた特徴を持っている。   In order to reduce the frictional resistance, basically, a thin boundary layer on the surface of the hull below the water surface may be covered with microbubbles. In the present invention, the boundary layer is reliably covered by the Coanda effect (the effect that the flow flows along the curved surface of the object surface) and the discharge flow including the microbubbles can be supplied in a sheet shape along the surface of the hull. Can be efficient. In addition, it has the excellent feature that the shape of the hull shape can be obtained by appropriately arranging the casing shape and the tongue structure including the suction port and discharge port of the cross-flow pump body. Yes.

また、ポンプからの微細気泡を含む吐出し流れは、船の推進にも寄与することが出来るので無駄がない。 Moreover, since the discharge flow including fine bubbles from the pump can contribute to the propulsion of the ship, there is no waste.

本発明のマイクロバブル発生ポンプによれば従来の技術では得られなかった微細気泡を含む幅広でシ−ト状の安定した流れを船体表面に沿って供給することが出来るため、航行時の船の摩擦抵抗を効率良く減らすための技術として貢献できる。 According to the microbubble generating pump of the present invention, it is possible to supply a wide, sheet-like and stable flow including fine bubbles, which cannot be obtained by the prior art, along the hull surface. It can contribute as a technology to reduce frictional resistance efficiently.

図1は本発明のマイクロバブル発生ポンプの基本的構造を示す。(a)は貫流ポンプ本体の構造を示す断面図、(b)は(a)のY−Y矢視のマイクロバブル発生ポンプの断面図である。FIG. 1 shows the basic structure of a microbubble generating pump according to the present invention. (A) is sectional drawing which shows the structure of a once-through pump main body, (b) is sectional drawing of the micro bubble generation | occurrence | production pump of the (Y) arrow YY. 図2は図1とは異なる別形態のマイクロバブル発生ポンプの基本的構造を示す。(a)は貫流ポンプ本体の構造を示す断面図、(b)は(a)のY−Y矢視のマイクロバブル発生ポンプの断面図である。FIG. 2 shows a basic structure of a microbubble generating pump of another form different from FIG. (A) is sectional drawing which shows the structure of a once-through pump main body, (b) is sectional drawing of the micro bubble generation | occurrence | production pump of the (Y) arrow YY. 図3(a)は羽根車の散気孔を有する中空回転軸の外周表面に多数の棒状の小突起を放射状に突き出した構造を示す断面図、(b)は(a)のY−Y矢視の羽根車断面図である。FIG. 3A is a cross-sectional view showing a structure in which a large number of rod-like small protrusions protrude radially on the outer peripheral surface of a hollow rotary shaft having an air diffuser hole of an impeller, and FIG. 3B is a view taken along the line YY in FIG. FIG. 図4(a)は数本の細長パイプ状の棒を回転軸に平行で略同芯状に配列して羽根車幅方向に差し渡した構造を示す断面図、(b)は(a)のY−Y矢視の羽根車断面図である。4A is a cross-sectional view showing a structure in which several elongated pipe-like rods are arranged in a substantially concentric manner parallel to the rotation axis and are passed in the width direction of the impeller, and FIG. It is impeller sectional drawing of -Y arrow. 図5はマイクロバブル発生ポンプを船首部の船の側面と底面に複数台連結して設置した場合の摩擦低減船の据付け状態を示す。(a)はポンプからの吐出し気泡流が船体の表面に沿って流れる状態を示す平面断面図、(b)は側面図である。(実施例1)FIG. 5 shows an installed state of the friction-reducing ship when a plurality of microbubble generating pumps are connected to the side and bottom of the ship at the bow. (A) is a plane sectional view showing the state where the bubble flow discharged from the pump flows along the surface of the hull, and (b) is a side view. Example 1 図6は図5(a)のマイクロバブル発生ポンプ55bのポンプ部の拡大断面図で、微細気泡を含む流れの状態を示す。FIG. 6 is an enlarged cross-sectional view of the pump portion of the microbubble generating pump 55b shown in FIG. 図7は図5(b)のマイクロバブル発生ポンプ55cのポンプ部の拡大断面図で、微細気泡を含む流れの状態を示す。FIG. 7 is an enlarged cross-sectional view of the pump portion of the microbubble generating pump 55c in FIG. 図8は図5の実施例1とは異なる別形態の船71にマイクロバブル発生ポンプを複数台連結して設置した場合の摩擦低減船の形態を示す。(a)は船体の表面に沿って流れる気泡流の状態を示す平面断面図、(b)は側面図である。(実施例2)FIG. 8 shows a form of a friction reducing ship when a plurality of microbubble generating pumps are connected to a ship 71 having a different form from that of the first embodiment shown in FIG. (A) is a plane sectional view showing the state of bubble flow which flows along the surface of a hull, and (b) is a side view. (Example 2) 図9は図8(a)のマイクロバブル発生ポンプ55dのポンプ部の拡大断面図で、微細気泡を含む流れの状態を示す。FIG. 9 is an enlarged sectional view of the pump portion of the microbubble generating pump 55d shown in FIG. 図10は図8(b)のマイクロバブル発生ポンプ55eのポンプ部の拡大断面図で、微細気泡を含む流れの状態を示す。FIG. 10 is an enlarged cross-sectional view of the pump portion of the microbubble generating pump 55e shown in FIG. 図11は羽根車を4個連結した一体型のマイクロバブル発生ポンプを、船の側面と底面に設置した形態を示す。(a)はポンプからの吐出し気泡流が船体の表面に沿って流れる状態を示す平面断面図、(b)は側面図である。(実施例3)FIG. 11 shows a form in which four integrated microbubble generating pumps connected with impellers are installed on the side and bottom of the ship. (A) is a plane sectional view showing the state where the bubble flow discharged from the pump flows along the surface of the hull, and (b) is a side view. (Example 3) 図12は図11のマイクロバブル発生ポンプ55f(55g)のポンプ部の拡大図を示す。FIG. 12 shows an enlarged view of the pump portion of the microbubble generating pump 55f (55g) of FIG. 図13はポンプを3台連結したマイクロバブル発生ポンプ55hを本体装置は船内に据付け、取水口と吐出し口を船腹外板を通して外部に開口した構成示す。(a)は微細気泡を含む流れの状態を示す平面断面図、(b)は側面図である。(実施例4)FIG. 13 shows a configuration in which a micro-bubble generating pump 55h in which three pumps are connected is installed in the ship, and a water intake port and a discharge port are opened to the outside through the hull outer plate. (A) is a plane sectional view showing the state of the flow containing fine bubbles, and (b) is a side view. Example 4 図14はマイクロバブル発生ポンプ55iを本体装置は船内底部に据付け、取水口と吐出し口を船底外板を通して外部に開口した構成示す。(a)は装置の据付け状態と微細気泡を含む流れの状態を示す断面図、(b)はY−Y矢視図である。(実施例5)FIG. 14 shows a configuration in which the microbubble generating pump 55i is installed on the bottom of the ship, and the water intake and discharge are opened to the outside through the ship bottom outer plate. (A) is sectional drawing which shows the installation state of an apparatus and the state of the flow containing a microbubble, (b) is a YY arrow directional view. (Example 5)

以下に本発明の実施の形態を図5〜図14を参照して説明する。 Embodiments of the present invention will be described below with reference to FIGS.

図5は本発明の第1実施例で、請求項1に記載のマイクロバブル発生ポンプ55bを船70にセットし、一体化したときの摩擦低減船80の形態を示す。(a)は平面断面図、(b)は側面図である。本発明では船首部の水面下の船の左舷と右舷の外板にポンプを2台接続したマイクロバブル発生ポンプ55b、船底外板に水中モ−タ12bの両端軸にポンプを2台ずつ接続したマイクロバブル発生ポンプ55cを設置している。図6と図7にマイクロバブル発生ポンプの55bと55cの拡大断面図を示す。図5並びに図6、図7の拡大図により大量の微小気泡を含む流れが船体表面に沿って流れる状態を示す。エアは前述の図1と同様にエアポンプ11からホ−ス13により、図6と図7に示すマイクロバブル発生ポンプ55bと55cの中空回転軸3に供給され、羽根車7の内部において、中空回転軸外周部に穿孔された散気孔5から回転を伴いながら微細気泡となって放出され、流れとともに吐出し気泡流として供給される。 FIG. 5 is a first embodiment of the present invention, and shows a form of a friction reducing ship 80 when the microbubble generating pump 55b according to claim 1 is set on the ship 70 and integrated. (A) is a plane sectional view, (b) is a side view. In the present invention, two micro-bubble generating pumps 55b in which two pumps are connected to the port and starboard skins of the ship under the water surface of the bow, and two pumps are connected to both ends of the underwater motor 12b on the ship's outer skin. A microbubble generating pump 55c is installed. 6 and 7 show enlarged sectional views of the microbubble generating pumps 55b and 55c. The enlarged view of FIGS. 5, 6, and 7 shows a state in which a flow including a large amount of microbubbles flows along the hull surface. Air is supplied from the air pump 11 to the hollow rotating shaft 3 of the microbubble generating pumps 55b and 55c shown in FIGS. 6 and 7 as in FIG. The air bubbles 5 are perforated on the outer periphery of the shaft and are discharged as fine bubbles while rotating, discharged together with the flow, and supplied as a bubble flow.

この実施の形態によれば、図5(a)に示すように船首部の左舷と右舷の外板に設置したマイクロバブル発生ポンプ55bのポンプ内で生成された微小気泡を含む吐出し流れがコアンダ効果(流れが物体表面に沿って流れる)によって曲率のある船体表面に沿って流れる。微細気泡を含む吐出し流れは、貫流ポンプの特性により、幅広のシ−ト状で乱れも少なく、また拡散することなく、一様な流れとなって遠くまで達することができる。従って船首側から船尾まで船体表面を微細気泡で覆うことが出来るので、効率よく摩擦抵抗を低減できる。船底の外板に設置したマイクロバブル発生ポンプ55cのポンプから吐き出される微細気泡を含む流れも同様の手法で船体表面を微細気泡流で覆うことができる。 According to this embodiment, as shown in FIG. 5 (a), the discharge flow containing the microbubbles generated in the pump of the microbubble generating pump 55b installed on the port side and the outer shell of the starboard is the Coanda. The effect (the flow flows along the surface of the object) flows along the curved hull surface. Due to the characteristics of the once-through pump, the discharge flow containing fine bubbles can be extended to a long distance as a uniform flow without diffusing due to its wide sheet shape. Therefore, since the hull surface can be covered with fine bubbles from the bow side to the stern, the frictional resistance can be reduced efficiently. A flow including fine bubbles discharged from the pump of the microbubble generating pump 55c installed on the outer plate of the ship bottom can cover the surface of the hull with the fine bubble flow in the same manner.

摩擦抵抗低減のためには、前述のように基本的には船体表面が水と接する薄い境界層を気泡で覆えばよく、厚い層で覆う必要はない。従って、貫流ポンプの吐出し流れDは前述のように幅広のシ−ト状で乱れも少なく、また拡散することなく、一様な流れとなって遠くまで達することができるので都合がよい。ポンプ吐出し口からの流出速度はポンプの回転数を変えることによって増減できるので、外流F(船体近傍を通り過ぎる流れで、船の速度や海流に関係)との関係で吐き出し流れが最も拡散し難い速度に設定すれば良い。いずれにしても、コアンダ効果を有効にするために、吐出し流れDの流速は外流Fの速度よりも速くする必要がある。 In order to reduce the frictional resistance, basically, the thin boundary layer where the hull surface is in contact with water may be covered with bubbles as described above, and it is not necessary to cover with a thick layer. Accordingly, the discharge flow D of the once-through pump is convenient because it is wide as described above and is less disturbed and can reach a long distance as a uniform flow without spreading. The outflow speed from the pump discharge port can be increased or decreased by changing the number of revolutions of the pump, so the discharge flow is most difficult to diffuse in relation to the external flow F (the flow passing through the vicinity of the hull and related to the ship speed and ocean current). Set to speed. In any case, in order to make the Coanda effect effective, the flow velocity of the discharge flow D needs to be higher than the velocity of the external flow F.

図5に描いたマイクロバブル発生ポンプ55bと55cの大きさは分かりやすく説明するために実際とは異なり船体に対して大きな比率で描いている。基本的には船体表面の薄い境界層を微小気泡で覆えばよいので、ポンプの羽根径の大きさは船の大きさにもよるが、10cm〜20cm程度でよいと考えられる。ポンプの大きさや台数と駆動用モ−タの組み合わせは、船の大きさによって異なる。 The sizes of the microbubble generating pumps 55b and 55c depicted in FIG. 5 are depicted at a large ratio with respect to the hull, unlike the actual case, for easy understanding. Basically, since the thin boundary layer on the surface of the hull may be covered with microbubbles, the size of the blade diameter of the pump is considered to be about 10 cm to 20 cm although it depends on the size of the ship. The size and number of pumps and the combination of driving motors vary depending on the size of the ship.

液体ポンプ11bは前述のようにポンプに貝などが附着するのを防いだり、ポンプ内部を洗浄したりするときにホ−ス13を通じて薬液や洗浄液をホ−ス13によって、ポンプ内に供給するときに使用する。 When the liquid pump 11b prevents shells from attaching to the pump as described above, or when cleaning the inside of the pump, the liquid pump 11b supplies chemical liquid or cleaning liquid through the hose 13 into the pump. Used for.

図8は本発明の第2実施例で、請求項1に記載のマイクロバブル発生ポンプを船にセットし、一体化したときの摩擦低減船81の形態を示す。(a)は平面断面図、(b)は側面図である。船の構造は船体の外板にマイクロバブル発生ポンプ55d、55eを収容して設置するための窪み75、75bを設けた構造になっている。ポンプ55dは船首部の左舷と右舷の水面下の窪み75の外板にポンプ2台を連結して設置したもの、ポンプ55eは船底の窪み75bの外板に水中モ−タ12bの両端軸にポンプを2台ずつ連結して設置した場合を示す。ポンプ台数やモ−タ台数との組合わせは船の大きさによって異なる。 FIG. 8 is a second embodiment of the present invention, and shows a form of a friction reducing ship 81 when the microbubble generating pump according to claim 1 is set on a ship and integrated. (A) is a plane sectional view, (b) is a side view. The structure of the ship is such that depressions 75 and 75b for housing and installing the microbubble generating pumps 55d and 55e are provided on the outer plate of the hull. The pump 55d is installed by connecting two pumps to the outer plate of the depression 75 on the port side of the bow and starboard, and the pump 55e is attached to the outer plate of the depression 75b on the bottom of the boat on both ends of the underwater motor 12b. The case where two pumps are connected and installed is shown. The combination of the number of pumps and the number of motors varies depending on the size of the ship.

ポンプの吸込み口のすぐ上流側には、ゴミ除け用のスクリ−ン35を設置している。前述のように、貫流ポンプでは、構造上羽根間に物が詰り難い構造なので、スクリーンの網目はある程度粗くて良い。以後の実施例では、ゴミ除けスクリ−ンは省略している。 A screen 35 for dust removal is installed immediately upstream of the suction port of the pump. As described above, the once-through pump has a structure in which things are not easily clogged between the blades, so that the screen mesh may be rough to some extent. In the following embodiments, the dust screen is omitted.

この実施の形態によれば、マイクロバブル発生ポンプの55dと55eが船体外板から突出していないため、ポンプ本体が流れの障害物になることもないので微細気泡の流れを船体表面に沿ってスム−ズに流すことが出来る。また、スクリ−ン35によってゴミやクラゲなどの浮遊物の吸込み口への侵入を防ぐことが出来る。スクリ−ン35を船体に沿って斜めに取り付けているのは、ゴミなどが後方に流れやすくするためである。 According to this embodiment, since the microbubble generating pumps 55d and 55e do not protrude from the hull outer plate, the pump body does not become an obstacle to the flow, so that the flow of fine bubbles is smooth along the hull surface. -It can be flushed. Further, the screen 35 can prevent the floating material such as dust and jellyfish from entering the suction port. The reason why the screen 35 is attached obliquely along the hull is to make it easier for dust to flow backward.

なお、船腹部の外板に設置したマイクロバブル発生ポンプ55bはタンカーなど船体の長さが大きい場合に、途中で微細気泡を増強するためのものであるが、ポンプを窪みに設置していないため、ポンプ本体が外板から突出している。この場合は接岸時などの損傷を防ぐための補強枠が必要である。 Note that the microbubble generating pump 55b installed on the outer plate of the ship's abdomen is for enhancing fine bubbles in the middle when the length of the hull such as a tanker is large, but the pump is not installed in the recess. The pump body protrudes from the outer plate. In this case, a reinforcement frame is required to prevent damage such as when the ship is on the shore.

図9と図10はマイクロバブル発生ポンプの55dと55eの据付け状態と微細気泡含む流れが船体表面に沿って流出する状態を示す拡大断面図である。いずれもポンプの吸込み口と吐出し口の方向を船体に沿うようにケ−シング形状をアレンジしている。特に吐出し口からの流出方向は微細気泡を含む流れが船体表面に沿うように細心の注意を払う必要がある。また、前述のようにポンプ吐出し流れDの流速は外流Fよりも速くする必要がある。吐出し流速はポンプの回転数を変えることによって行う。微細気泡の発生メカニズムは、前述の実施例1と同様である。 9 and 10 are enlarged cross-sectional views showing a state where the microbubble generating pumps 55d and 55e are installed and a state in which a flow including fine bubbles flows out along the hull surface. In both cases, the casing shape is arranged so that the direction of the suction port and the discharge port of the pump is along the hull. In particular, it is necessary to pay close attention to the flow direction from the discharge port so that the flow containing fine bubbles follows the hull surface. Further, the flow rate of the pump discharge flow D needs to be faster than that of the external flow F as described above. The discharge flow rate is performed by changing the rotation speed of the pump. The generation mechanism of the fine bubbles is the same as in the first embodiment.

図11は本発明の第3実施例で、第1実施例とは異なり羽根車7を4個連続して一体化したマイクロバブル発生ポンプ55fと55gを船首側の船の側面と底面の外板に設置したときの摩擦低減船82の形態を示す。(a)は平面断面図、(b)は側面図である。ポンプ吐出し口の形状と方向は微細気泡を含む流れが船体表面に沿って流れるようにアレンジしている。図12はマイクロバブル発生ポンプ55f(55g)の構造を示す拡大図である。微細気泡の発生メカニズムと微細気泡を含む流れが船体表面に沿って放出される状態は実施例1と同様である。 FIG. 11 shows a third embodiment of the present invention. Unlike the first embodiment, the microbubble generating pumps 55f and 55g, in which four impellers 7 are integrated continuously, are connected to the ship side and bottom skins on the bow side. The form of the friction reduction ship 82 when installed in FIG. (A) is a plane sectional view, (b) is a side view. The shape and direction of the pump outlet are arranged so that a flow containing fine bubbles flows along the hull surface. FIG. 12 is an enlarged view showing the structure of the microbubble generating pump 55f (55g). The generation mechanism of the fine bubbles and the state in which the flow including the fine bubbles is released along the surface of the hull are the same as in the first embodiment.

図13は本発明の第4実施例で、ポンプを3台連結したマイクロバブル発生ポンプ55hの本体は船内に据付け、取水口42と吐出し口43を船腹外板を通して外部に開口した構成示す。(a)は平面断面図、(b)は側面図である。図(a)に示すように船外から取水口42を通してタンク40に流れを取り込み、タンク40に接続したマイクロバブル発生ポンプ55hを通して吐出し口43より船外へ吐き出される構造になっている。微細気泡は前述のように羽根車7の内部で生成され、吐出しダクト47を通して吐出し口43から微細気泡を含む流れが船体表面に沿って流出するようになっている。吐出しダクト47および吐出し口43の形状は微細気泡を含む流れが船体表面に沿って流れるように調整している。本構造では、ポンプが船内に設置されているため、流れの障害とならず、ゴミなどの影響を直接受けないこと、またポンプのメンテナンスにも都合が良い。 FIG. 13 shows a fourth embodiment of the present invention, in which the main body of a micro-bubble generating pump 55h connected with three pumps is installed in a ship, and a water intake 42 and a discharge opening 43 are opened to the outside through a shipboard outer plate. (A) is a plane sectional view, (b) is a side view. As shown in FIG. 5A, the flow is taken into the tank 40 from the outside of the ship through the water intake port 42 and discharged from the discharge port 43 through the microbubble generation pump 55h connected to the tank 40. The fine bubbles are generated inside the impeller 7 as described above, and the flow containing the fine bubbles flows out from the discharge port 43 through the discharge duct 47 along the surface of the hull. The shapes of the discharge duct 47 and the discharge port 43 are adjusted so that a flow including fine bubbles flows along the hull surface. In this structure, since the pump is installed in the ship, it does not hinder the flow, is not directly affected by dust, and is convenient for maintenance of the pump.

図14は本発明の第5実施例で、マイクロバブル発生ポンプ55iの本体は船内底部に据付け、取水口42と吐出し口43を船底外板を通して外部に開口した構造を示す。(a)は装置の据付け状態を示す断面図、(b)はY−Y矢視図で、対称図面の半分を描いた平面図である。装置の構成は図13の実施例4と基本的に同じで、船外から取水口42を通してタンク40bに流れを取り込み、タンク40bに接続したマイクロバブル発生ポンプ55iから吐出しダクト47を通して吐出し口43より、船外へ吐き出す構造になっている。本実施例では船底において、吐出し口43から微細気泡を含む流れが船体表面に沿って流れることによって、船底表面を微細気泡で覆うことができる。 FIG. 14 shows a fifth embodiment of the present invention, in which the main body of the microbubble generating pump 55i is installed on the bottom of the ship, and the water intake 42 and the discharge port 43 are opened to the outside through the ship bottom outer plate. (A) is sectional drawing which shows the installation state of an apparatus, (b) is a YY arrow directional view, and is the top view which drew half of the symmetrical drawing. The configuration of the apparatus is basically the same as that of the fourth embodiment shown in FIG. 13. The flow is taken into the tank 40 b from the outside through the water intake 42, discharged from the microbubble generation pump 55 i connected to the tank 40 b, and discharged through the duct 47. From 43, it is structured to discharge out of the ship. In the present embodiment, on the bottom of the ship, a flow including fine bubbles flows from the discharge port 43 along the surface of the hull so that the ship bottom surface can be covered with the fine bubbles.

本発明のマイクロバブル発生ポンプの技術は、羽根車内中空回転軸の散気孔を通して生成される大量の微細気泡を含む流れを船体表面に沿って幅広でシ−ト状の安定した吐出し流れとして供給し、船体表面を微小気泡で覆うことができることから、船舶航行時の摩擦低減に有効である。   The technology of the microbubble generating pump of the present invention supplies a flow including a large amount of fine bubbles generated through the air diffuser of the hollow rotating shaft in the impeller as a wide and sheet-like stable discharge flow along the hull surface. In addition, since the surface of the hull can be covered with microbubbles, it is effective for reducing friction during navigation of the ship.

3 散気孔を有する羽根車中空回転軸
5、5b 散気孔
6 羽根
7 貫流ポンプ羽根車
8 ケ−シング舌部
9 ポンプ吸込側
10 ポンプ吐出側
11 エアポンプ
11b 液体ポンプ
12 駆動用モ−タ
12b 駆動用水中モ−タ
13 ホ−ス
14 水面
17 エア分散発生器
28 中空回転軸3の外周面から放射状に突き出した棒状の小突起
29 中空回転軸3に平行で羽根車幅に渡って設置した細長パイプ状の棒
30,30b ポンプケ−シング
35 ゴミ除けスクリ−ン
40,40b タンク
41 取水パイプ
42 取水口
43 ポンプ吐出し口
45 取水バルブ
46 吐出しバルブ
47 吐出しダクト
50 貫流ポンプ本体
55、55b、55c、55d、55e、55f、55g、55h、55i マイ
クロバブル発生ポンプ
70,71 船
75 スクリュ−
80,81,82,83,84 摩擦低減船
B 微小気泡
D ポンプ吐出し口から船体表面に沿って流出する微小気泡を含む流れ
F 外流(船の速度や海流に関係する船体近傍を通り過ぎる流れ)
S 散気孔5および散気孔5bから微細気泡(液体)となって噴出する流れ
3 Impeller hollow rotary shafts 5, 5 b having air diffusion holes 6 Air diffusion holes 6 Blades 7 Cross-flow pump impeller 8 Casing tongue 9 Pump suction side 10 Pump discharge side 11 Air pump 11 b Liquid pump 12 Motor 12 b Drive water Medium motor 13 Hose 14 Water surface 17 Air dispersion generator 28 Rod-shaped small protrusions 29 projecting radially from the outer peripheral surface of the hollow rotating shaft 3 Elongated pipes installed across the width of the impeller parallel to the hollow rotating shaft 3 Shaped rods 30, 30b Pump casing 35 Dust removal screen 40, 40b Tank 41 Water intake pipe 42 Water intake port 43 Pump discharge port
45 Water intake valve 46 Discharge valve 47 Discharge duct 50 Cross-flow pump body 55, 55b, 55c, 55d, 55e, 55f, 55g, 55h, 55i Micro bubble generating pump
70,71 ship 75 screw
80, 81, 82, 83, 84 Friction reduction ship
B Microbubble
D Flow containing microbubbles flowing out from the pump discharge port along the hull surface
F Outer current (flow past the hull near the ship's speed and current)
S Flow that flows out as fine bubbles (liquid) from the diffuser holes 5 and 5b

Claims (1)

羽根車形状が円筒状で多翼の貫流ポンプ(クロスフロ−ポンプ)羽根車の回転軸を中空にして、羽根車内回転軸の外周面に多数の散気孔を穿孔、あるいは追加の多孔質材を貼付けた構造とし、羽根車外部より該中空回転軸へ接続したホ−スを通して空気を羽根車内中心部に供給できるようにし、該散気孔より回転を伴いながら羽根車内に微細気泡を噴出させる構造のマイクロバブル発生機構付き貫流ポンプを船首側水面下の船体の側面や底面の外板に設置し、微細気泡を含む吐出し流れが船尾に向かって船体表面に沿うように吸込み口を含む吐出しケ−シング形状をアレンジしたことを特徴とする摩擦低減船およびマイクロバブル発生ポンプ
Flow pump multiblade impeller shape is cylindrical (Kurosufuro - pump) and the axis of rotation of the impeller into the hollow, piercing a large number of diffusing pores on the outer peripheral surface of the impeller in the rotation axis, or the additional porous material The structure is affixed so that air can be supplied from the outside of the impeller through the hose connected to the hollow rotating shaft to the center of the impeller, and fine bubbles are ejected into the impeller while rotating from the air diffuser . A once-through pump with a micro-bubble generating mechanism is installed on the outer plate on the side or bottom of the hull under the water surface on the bow side, and the discharge tank including the suction port is placed so that the discharge flow containing fine bubbles follows the hull surface toward the stern. -Friction-reducing ship and micro-bubble generating pump characterized by the arrangement of a single shape
JP2010255487A 2010-11-16 2010-11-16 Friction reduction ship and micro bubble generation pump Expired - Fee Related JP5651829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010255487A JP5651829B2 (en) 2010-11-16 2010-11-16 Friction reduction ship and micro bubble generation pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010255487A JP5651829B2 (en) 2010-11-16 2010-11-16 Friction reduction ship and micro bubble generation pump

Publications (2)

Publication Number Publication Date
JP2012106542A JP2012106542A (en) 2012-06-07
JP5651829B2 true JP5651829B2 (en) 2015-01-14

Family

ID=46492685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010255487A Expired - Fee Related JP5651829B2 (en) 2010-11-16 2010-11-16 Friction reduction ship and micro bubble generation pump

Country Status (1)

Country Link
JP (1) JP5651829B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6103517B2 (en) * 2012-11-14 2017-03-29 雅 田篭 Cross-flow pump ultrafine bubble flow supply device
JP6011802B2 (en) * 2013-03-19 2016-10-19 雅 田篭 Microbubble generating once-through pump device for friction reduction ship
CN110962991A (en) * 2019-12-28 2020-04-07 大连渔轮有限公司 Method and device for reducing wave-making resistance and friction force of ship during navigation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819914B2 (en) * 1989-05-09 1996-03-04 二國機械工業株式会社 Vortex pump
JPH07156859A (en) * 1993-05-11 1995-06-20 Yoji Kato Method to reduce friction of sailing body and friction reducing sailing body and generating method of microbubble used to reduce friction and device thereof
WO1994026583A1 (en) * 1993-05-11 1994-11-24 Ishikawajima-Harima Heavy Industries Co., Ltd. Method of reducing friction on cruising body, cruising body with reduced friction, method of and apparatus for generating microbubbles for use in reduction of friction
JP3104115B2 (en) * 1994-10-31 2000-10-30 株式会社クボタ Pump with mixed pressure chamber
JPH08225094A (en) * 1995-02-21 1996-09-03 Yoji Kato Microbubble generating device
JP2001082393A (en) * 1999-09-17 2001-03-27 Kubota Corp Outer rotor motor pump
JP4607278B2 (en) * 2000-03-24 2011-01-05 株式会社鶴見製作所 Gate built-in pump equipment
JP2008273493A (en) * 2007-05-07 2008-11-13 San World:Kk Minute bubble generating device and hull resistance reduction vessel
JP2011011699A (en) * 2009-07-06 2011-01-20 Anlet Co Ltd Microscopic bubble generator in hull
JP4503688B1 (en) * 2009-10-05 2010-07-14 正明 佐藤 Friction resistance reduction device for ships

Also Published As

Publication number Publication date
JP2012106542A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
JP6103517B2 (en) Cross-flow pump ultrafine bubble flow supply device
JP2009160576A (en) Fine air bubble generator
JP2014097449A5 (en)
JP2013022477A5 (en)
JP2013022477A (en) Microbubble generation flowing pump
KR20200059846A (en) Rudder including duct having coanda effect
US4522141A (en) Shipboard ice lubrication system and jet pump for use therein
JP2007307450A (en) Bubble generating device
JP5651829B2 (en) Friction reduction ship and micro bubble generation pump
US4543900A (en) Shipboard ice lubrication system and jet pump for use therein
JP2012125690A (en) Through-flow pump aeration apparatus
JP2013146702A (en) Microbubble generator using through-flow pump
JP5975363B2 (en) Hull fluid resistance reduction device
JP2002002582A (en) Friction resistance reducing ship
JP4070385B2 (en) Friction resistance reduction ship
JP6873459B2 (en) Ship
RU2299152C1 (en) Two-mode water scoop of hovercraft water-jet propeller
JP2011173076A (en) Rotary blade type bubble generator
KR20020020624A (en) Method of reducing frictional resistance of a hull, and frictional resistance reducing vessel
JP6011802B2 (en) Microbubble generating once-through pump device for friction reduction ship
JPH10216794A (en) Water area purifying device
JP2001106171A (en) Frictional resistance reduced-ship and method of reducing frictional resistance of hull
JP2001328584A (en) Frictional resistance-reduced ship
WO2016042746A1 (en) Hull fluid resistance reduction device
JP2024043622A (en) Energy-saving ship with reduced fluid resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141008

R150 Certificate of patent or registration of utility model

Ref document number: 5651829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees