JP2002068073A - Frictional resistance reducing ship and method of reducing frictional resistance of hull - Google Patents

Frictional resistance reducing ship and method of reducing frictional resistance of hull

Info

Publication number
JP2002068073A
JP2002068073A JP2000269281A JP2000269281A JP2002068073A JP 2002068073 A JP2002068073 A JP 2002068073A JP 2000269281 A JP2000269281 A JP 2000269281A JP 2000269281 A JP2000269281 A JP 2000269281A JP 2002068073 A JP2002068073 A JP 2002068073A
Authority
JP
Japan
Prior art keywords
negative pressure
hull
frictional resistance
water
ship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000269281A
Other languages
Japanese (ja)
Inventor
Yoshiaki Takahashi
義明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2000269281A priority Critical patent/JP2002068073A/en
Priority to KR10-2001-0012970A priority patent/KR100424543B1/en
Priority to US09/804,887 priority patent/US20010022152A1/en
Publication of JP2002068073A publication Critical patent/JP2002068073A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a frictional resistance reducing ship and a method of reducing the frictional resistance of a hull capable of reducing the frictional resistance with small power consumption, and effectively saving the energy consumption in navigation. SOLUTION: A negative pressure part 51 capable of lowering the pressure with respect to a gas space accompanying with the navigation of the hull 30 is formed in the water, the gas is guided from the gas space to the negative pressure part 51 in the water, and a condition of the negative pressure part 51 is changed on the basis of the change of a ship speed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、船体の摩擦抵抗を
低減する摩擦抵抗低減船に係り、特に、水中に気泡を効
率よく放出することにより、総合エネルギ効率を向上さ
せるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frictional resistance reducing ship for reducing the frictional resistance of a hull, and more particularly to improving the overall energy efficiency by efficiently discharging bubbles into water.

【0002】[0002]

【従来の技術】従来より、船舶等の航行時のエネルギ消
費を節減することを目的として、水中に気体を送り込
み、船体外板の表面(没水表面)の近傍に多数の気泡を
介在させて、船体と水との摩擦抵抗を低減する方法が提
案されている。
2. Description of the Related Art Conventionally, in order to reduce energy consumption during navigation of a ship or the like, a gas is fed into water and a number of air bubbles are interposed near a surface of a hull outer plate (submerged surface). There has been proposed a method of reducing frictional resistance between a hull and water.

【0003】水中に気泡を発生させる技術としては、特
開昭50−83992号、特開昭53−136289
号、特開昭60−139586号、特開昭61−712
90号、実開昭61−39691号、実開昭61−12
8185号が提案されている。
As a technique for generating bubbles in water, Japanese Patent Application Laid-Open Nos. 50-83992 and 53-136289 have been disclosed.
JP-A-60-139586, JP-A-61-712
No. 90, No. 61-39691, No. 61-12
No. 8185 has been proposed.

【0004】これらの技術では、水中に気泡を発生させ
る方法として、ポンプやブロアなどの装置によって加圧
した気体を船体に設けられた複数の孔や多孔板から水中
に噴出している。
In these techniques, as a method of generating bubbles in water, gas pressurized by a device such as a pump or a blower is blown into water through a plurality of holes or a perforated plate provided in a hull.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、加圧し
た気体を水中に噴出する方法であると、加圧用の装置を
稼動するエネルギが必要となり、摩擦抵抗の低減によっ
て減少したエネルギの節約分が目減りしてしまう。特
に、大型船の船底など、比較的水深の深い箇所において
水中に気体を噴出する際には、その箇所の水圧(静水
圧)よりも高い圧力に気体を加圧する必要があり、多大
なエネルギを消費してしまう。また、気体加圧用の装置
を船体に設置するにあたり、設備コストや施工コストな
ど多大なコストが生じてしまう。
However, in the method of injecting pressurized gas into water, energy for operating the pressurizing device is required, and the amount of energy saved by reducing frictional resistance is reduced. Resulting in. In particular, when a gas is blown into water at a relatively deep place such as the bottom of a large ship, it is necessary to pressurize the gas to a pressure higher than the water pressure (hydrostatic pressure) at that place, which consumes a great deal of energy. Consume it. In addition, installation of a gas pressurizing device on a hull involves significant costs such as equipment costs and construction costs.

【0006】本発明は、このような事情に鑑みてなされ
たものであり、以下の点を目的とするものである。 (1)少ないエネルギ消費で摩擦抵抗低減を行って、航
行時のエネルギ消費を効果的に節減すること。 (2)船体の建造コストを低減すること。
The present invention has been made in view of such circumstances, and has the following objects. (1) To reduce frictional resistance with low energy consumption and effectively reduce energy consumption during navigation. (2) To reduce the construction cost of the hull.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、請求項1に係る発明は、船体の没水表面に気泡を放
出して船体の摩擦抵抗を低減する摩擦抵抗低減船におい
て、船体の没水表面から突出して配され、気体空間に対
して低圧となる負圧箇所を水中に形成する負圧形成部
と、前記負圧箇所に向けて気泡を放出するための吹出し
口と、一端が気体空間に開放されるとともに他端が前記
吹出し口を介して水中に開放される流体通路と、前記負
圧形成部の没水表面からの突出状態、前記吹出し口の開
口面積、及び前記流体通路の流路断面積のうち少なくと
も一つを変化させる駆動機構とを備える技術が採用され
る。また、請求項2に係る発明は、請求項1に記載の摩
擦抵抗低減船において、船速の変化に基づいて前記駆動
機構を制御する制御装置を備える技術が採用される。ま
た、請求項3に係る発明は、船体の没水表面に気泡を放
出して船体の摩擦抵抗を低減する方法において、船体の
航行に伴って気体空間に対して低圧となる負圧箇所を水
中に形成し、気体空間から水中の負圧箇所に気体を導く
とともに、船速の変化に基づいて前記負圧箇所の状態を
変化させる技術が採用される。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the invention according to claim 1 is directed to a frictional resistance reducing ship that releases bubbles on a submerged surface of the hull to reduce the frictional resistance of the hull. A negative pressure forming part that is disposed protruding from the submerged surface and forms a negative pressure point that becomes a low pressure with respect to the gas space in the water, an outlet for discharging bubbles toward the negative pressure point, and one end A fluid passage that is open to the gas space and the other end of which is opened to the water through the outlet, a state in which the negative pressure forming part projects from the submerged surface, an opening area of the outlet, and the fluid passage And a driving mechanism for changing at least one of the cross-sectional areas of the flow paths. According to a second aspect of the present invention, in the frictional resistance reducing boat according to the first aspect, a technology including a control device that controls the driving mechanism based on a change in the boat speed is employed. According to a third aspect of the present invention, there is provided a method of reducing frictional resistance of a hull by releasing bubbles on a submerged surface of the hull, wherein a negative pressure portion which becomes low in a gas space as the hull travels is submerged. And a technique of guiding the gas from the gas space to a negative pressure point in the water and changing the state of the negative pressure point based on a change in ship speed is adopted.

【0008】ここで上述した本発明に係る技術によって
船体の摩擦抵抗を低減する作用について説明する。ま
ず、船体の摩擦抵抗を低減する基礎理論について説明す
る。なお、気体を加圧して水中に噴出する従来の船体の
摩擦抵抗低減方法を「正圧方式」、本発明に係る負圧を
利用したものを「負圧方式」と呼ぶことにする。
Here, the operation of reducing the frictional resistance of the hull by the technique according to the present invention will be described. First, a basic theory for reducing the frictional resistance of a hull will be described. The conventional method of reducing frictional resistance of a hull that pressurizes gas and jets it into water will be referred to as “positive pressure method”, and the method using negative pressure according to the present invention will be referred to as “negative pressure method”.

【0009】図1は本発明に係る摩擦抵抗低減船10を
模式的に示す図であり、符号11は船体外板(没水表
面)、12は負圧形成部、13は吹出し口、14は流体
通路、15は水面(喫水線)を示している。また、所定
の船速Vで船体10が航行するのに伴い、船体10に対
して相対的な水の流れ20が形成されるものとする。
FIG. 1 is a diagram schematically showing a frictional resistance reducing ship 10 according to the present invention, in which reference numeral 11 is a hull outer plate (submerged surface), 12 is a negative pressure forming portion, 13 is an outlet, and 14 is an outlet. The fluid passage 15 indicates a water surface (draft line). Further, it is assumed that a water flow 20 relative to the hull 10 is formed as the hull 10 travels at a predetermined boat speed V.

【0010】この摩擦抵抗低減船10は、航行時におい
て、気体空間(大気)に対して低圧(負圧、真空圧)と
なる負圧箇所21を水中に形成する。すなわち、船体外
板11から突出する負圧形成部12によって水の流動状
態を変化させることにより、水中に負圧箇所21を形成
する。このとき、気体空間(大気)に比べて負圧箇所2
1に面した吹出し口13の圧力が低くなり、流体通路1
4内の流体(海水及び空気)に対して圧力勾配力が作用
する。これにより、流体通路14から海水が排出される
とともに、大気中から流入した空気が流体通路14を流
動し、気泡(マイクロバブル)22として水中に送り込
まれる。
[0010] In the frictional resistance reducing ship 10, a negative pressure portion 21 which is low in pressure (negative pressure, vacuum pressure) with respect to a gas space (atmosphere) is formed in water during navigation. That is, the negative pressure portion 21 is formed in the water by changing the flow state of the water by the negative pressure forming portion 12 protruding from the hull outer plate 11. At this time, the negative pressure point 2 compared to the gas space (atmosphere)
The pressure at the outlet 13 facing the fluid passage 1 decreases.
The pressure gradient force acts on the fluid (seawater and air) in 4. As a result, the seawater is discharged from the fluid passage 14, and the air flowing from the atmosphere flows through the fluid passage 14 and is sent into the water as bubbles (microbubbles) 22.

【0011】さて、密度ρの静止液体中において、液面
から深さh(m)の位置に体積Qvの気泡(気泡の密度
はゼロとする)を放出するとき、その放出に要するエネ
ルギEは、 E=(P−Pa)Qv …(1) で表される。ここで、Pa は気体空間の圧力(大気
圧)、Pは気体の放出位置における圧力(=ρgh、g
は重力加速度)である。
[0011] Now, in the still liquid density [rho, when discharging the bubbles volume Q v to the position of the depth h from the liquid surface (m) (density of the bubble is assumed to be zero), the energy E required for the release Is represented by E = (P−P a ) Q v (1). Here, P a is a pressure of the gas space (atmospheric pressure), the pressure in the P is discharged position of the gas (= ρgh, g
Is the gravitational acceleration).

【0012】このとき、船底の吹出し口13付近の流速
をV1 とすると、その箇所での圧力Pは、 P=Pa−ρ(V1 2 −V2 )/2+ρgh …(2) で表される。なお、流速V1 は境界層への空気の放出に
よって変化するがその変化はここでは無視する。
[0012] Table in this case, when the flow velocity in the vicinity of the ship's bottom blowing port 13, V 1, the pressure P at that point is, P = P a -ρ (V 1 2 -V 2) / 2 + ρgh ... (2) Is done. Incidentally, the flow velocity V 1 was varies by the release of air into the boundary layer to ignore the change in this case.

【0013】式(1)から明らかなように、空気の放出
位置における圧力Pが大気圧Pa に比べて低い場合、す
なわちP<Pa のとき、エネルギはマイナス(E<0)
となり、船底へ空気を移動させるための付加的なエネル
ギが不要となる。なお、吹出し口13付近における気泡
には、大気中から流体通路14を介して船底に移動する
ものに加えて、負圧形成部12によって生じるキャビテ
ーションや剥離作用により、飽和蒸気圧に比べて負圧箇
所21の圧力が低くなって発生する気泡も含まれる。
[0013] Equation (1) As is clear from, if the pressure P in the release position of the air is lower than the atmospheric pressure P a, that is, when P <P a, energy is negative (E <0)
This eliminates the need for additional energy to move air to the bottom of the ship. In addition to the bubbles moving from the atmosphere to the bottom of the ship via the fluid passage 14 in addition to the bubbles moving from the atmosphere, the cavitation and peeling action generated by the negative pressure forming section 12 causes the bubbles near the saturated vapor pressure to have a negative pressure. Bubbles generated when the pressure in the portion 21 is reduced are also included.

【0014】このように、本発明に係る摩擦抵抗低減船
10では、負圧形成部12によって水の流動状態を変化
させ、水中に負圧箇所12を形成することにより、加圧
方式に比べて、少ないエネルギで水中に気泡を発生させ
ることができる。
As described above, in the frictional resistance reducing ship 10 according to the present invention, the flow state of the water is changed by the negative pressure forming part 12 to form the negative pressure part 12 in the water, so that compared with the pressurizing method. It is possible to generate bubbles in water with little energy.

【0015】次に、水中に負圧箇所を形成するための構
成要素の形態(負圧形成部12、吹出し口13、及び流
体通路14の各形状など)と、船体の摩擦抵抗の低減効
果との関係について説明する。ここで、各パラメータを
以下のように定義する。 h:負圧箇所21における平均負圧(m) v:流体通路14内の空気の平均流速(m/sec) Q:水中に送られる空気量(m3/sec) d:没水表面11からの負圧形成部12の突出高さ
(m) V:船速(m/sec) V’:吹出し口13付近の気液二相流の流速(m/sec) ΔF:摩擦抵抗低減量(kgf ) ΔR:負圧形成部12による抵抗増加量(kgf ) ΔN=ΔF−ΔR:摩擦抵抗低減効果(Net Gain(kgf
)) ここで、Net Gainは、摩擦抵抗の低減によって得られる
船速の増加分であり、「kgf 」に換算したものである。 ΔNV:船速Vが一定のときのNet Gain ΔNd:負圧形成部12の高さdが一定のときのNet Gai
n α:船速Vが一定のときの抵抗増加係数(kgf/m) β:船速Vが一定のときの摩擦抵抗減少係数(kgf/m) ε:負圧形成部12の高さdが一定のときの抵抗増加係
数(kgf/(m/sec)2) γ:負圧形成部12の高さdが一定のときの船速Vの二
乗に対する摩擦抵抗減少係数(kgf/(m/sec)2) δ:負圧形成部12の高さdが一定のときの船速Vに対
する摩擦抵抗減少係数(kgf/(m/sec)2
Next, the configuration of the components for forming the negative pressure portion in the water (the shapes of the negative pressure forming portion 12, the outlet 13 and the fluid passage 14, etc.), the effect of reducing the frictional resistance of the hull, and Will be described. Here, each parameter is defined as follows. h: average negative pressure at negative pressure point 21 (m) v: average flow velocity of air in fluid passage 14 (m / sec) Q: air volume sent into water (m 3 / sec) d: from submerged surface 11 V: Ship speed (m / sec) V ′: Flow velocity of gas-liquid two-phase flow near the outlet 13 (m / sec) ΔF: Friction resistance reduction (kgf) ΔR: increase in resistance (kgf) by negative pressure forming unit 12 ΔN = ΔF−ΔR: frictional resistance reduction effect (Net Gain (kgf
)) Here, Net Gain is the increase in the ship speed obtained by reducing the frictional resistance, and is converted into “kgf”. ΔN V : Net Gain when ship speed V is constant ΔN d : Net Gai when height d of negative pressure forming section 12 is constant
n α: Coefficient of resistance increase when ship speed V is constant (kgf / m) β: Coefficient of frictional resistance decrease when ship speed V is constant (kgf / m) ε: Height d of negative pressure forming part 12 is Coefficient of resistance increase at constant (kgf / (m / sec) 2 ) γ: Friction resistance reduction coefficient (kgf / (m / sec) with respect to the square of ship speed V when height d of negative pressure forming part 12 is constant ) 2 ) δ: coefficient of frictional resistance reduction with respect to ship speed V when the height d of the negative pressure forming part 12 is constant (kgf / (m / sec) 2 )

【0016】〔平均負圧h(m)と空気量Q(m3/se
c)の関係〕負圧箇所21における平均負圧h(m)は流
体通路(Air Induction Pipe;AIP)内の空気の流速
v(m/sec)の二乗に比例する(h∝v2 )。また、流
体通路の流路断面積が一定のとき、水中に送られる空気
量Q(m3/sec)は空気の流速v(m/sec)に比例する
(Q∝v)。すなわち、h ∝ v2 ∝ Q2 であり、平
均負圧hの増加に対して、空気量Qは平方根で増える。 Q ∝ √h …(3)
[Average negative pressure h (m) and air amount Q (m 3 / se
Relationship of c)] The average negative pressure h (m) at the negative pressure point 21 is proportional to the square of the flow velocity v (m / sec) of the air in the fluid passage (Air Induction Pipe; AIP) (h∝v 2 ). When the cross-sectional area of the fluid passage is constant, the amount of air Q (m 3 / sec) sent into water is proportional to the flow velocity v (m / sec) of the air (Q∝v). That is, h α v 2 α Q 2, with an increase in the average negative pressure h, air quantity Q is increased by the square root. Q ∝ √h ... (3)

【0017】〔空気量Q(m3/sec)と船速V(m/se
c)との関係〕負圧形成部の高さd(m)が一定で、平
均負圧hが吹出し口付近(AIP周り)の気液二相流の
流速V’(m/sec)に比例すると仮定すると、 h ∝ V'2 …(4) であるから、 Q ∝ V' …(5) となる。また、吹出し口付近の気液二相流の流速V’
(m/sec)は、船速V(m/sec)にほぼ比例すると考え
られるから、式(5)より、 Q ∝ V’∝ V …(5)’ となる。
[Air volume Q (m 3 / sec) and ship speed V (m / se
Relationship with c)] The height d (m) of the negative pressure forming part is constant, and the average negative pressure h is proportional to the flow velocity V ′ (m / sec) of the gas-liquid two-phase flow near the outlet (around the AIP). Assuming that h∝V ′ 2 (4), then Q∝V ′ (5). In addition, the flow velocity V ′ of the gas-liquid two-phase flow near the outlet
Since (m / sec) is considered to be substantially proportional to the boat speed V (m / sec), from equation (5), Q∝V'∝V (5) '.

【0018】〔摩擦抵抗低減量ΔF(kgf )と空気量Q
(m3/sec)の関係〕これまでの知見から、 ΔCF ∝ ΔF/V2 ∝ Q/V であると考えられている。これより、 ΔF ∝ QV …(6) また、式(5)’及び式(6)から、 ΔF ∝ V2 …(7) となる。一方、空気量Q(m3/sec)はほぼ一定である
と仮定すると、式(6)から次式が導かれる。 ΔF ∝ V …(8)
[Friction resistance reduction amount ΔF (kgf) and air amount Q
(Relationship of (m 3 / sec)] From the findings so far, it is considered that ΔC F ∝ΔF / V 2 QQ / V. From this, ΔFQQV (6) From equation (5) ′ and equation (6), ΔF∝V 2 (7) is obtained. On the other hand, assuming that the air amount Q (m 3 / sec) is substantially constant, the following expression is derived from Expression (6). ΔF∝V (8)

【0019】〔船速V(m/sec)が一定のときの負圧形
成部の高さd(m)の変化に対する摩擦抵抗低減効果
(Net Gain)〕ここで、負圧形成部の船幅方向の幅は一
定であり、水の流れに対向する領域の面積はその高さd
に比例するとする。このとき、空気量Q(m3/sec)
は、次式(9)に示すように、流体通路内の空気の流速
v(m/sec)と負圧形成部の高さdとの積に比例する。 Q ∝ vd ∝ Vd ∝ √hd …(9) なお、負圧形成部の高さdの変化に伴って負圧箇所の領
域が変化するがその変化はここでは無視する。船速Vが
一定のとき、式(6)及び式(9)より、 ΔF ∝ d …(10) となる。さらに、負圧形成部の幅は一定であるので、抵
抗増加量ΔR(kgf )は負圧形成部の高さdに比例す
る。 ΔR ∝ d …(11) つまり、負圧形成部の幅が一定のとき、ΔNV=ΔF−
ΔRの値が最大となるところで最大の摩擦抵抗低減効果
が得られる。ここで、 ΔF=βd ΔR=αd とすると、 ΔNV=ΔF−ΔR=βd―αd となる。今、ΔNV=y、d=xとすると、 y=(β―α)x …(12) であり、y≧0のとき、Net Gainが得られる。ただし、
式(12)からは負圧形成部の高さdの最適値は決定さ
れない。
[Effect of Net Friction on Variation of Height d (m) of Negative Pressure Forming Unit when Vessel Speed V (m / sec) is Constant] Here, ship width of negative pressure forming unit The width in the direction is constant and the area of the region facing the flow of water is its height d
And proportional to At this time, the air volume Q (m 3 / sec)
Is proportional to the product of the flow velocity v (m / sec) of the air in the fluid passage and the height d of the negative pressure forming portion, as shown in the following equation (9). Q ∝ vd V Vd ∝ √ hd (9) The area of the negative pressure portion changes with the change of the height d of the negative pressure forming portion, but the change is ignored here. When the boat speed V is constant, ΔF∝d (10) is obtained from the equations (6) and (9). Further, since the width of the negative pressure forming portion is constant, the resistance increase amount ΔR (kgf) is proportional to the height d of the negative pressure forming portion. ΔR∝d (11) That is, when the width of the negative pressure forming portion is constant, ΔN V = ΔF−
A maximum frictional resistance reducing effect is obtained where the value of ΔR is maximum. Here, if ΔF = βd and ΔR = αd, then ΔN V = ΔF−ΔR = βd−αd. Now, assuming that ΔN V = y and d = x, y = (β−α) x (12), and when y ≧ 0, a Net Gain is obtained. However,
From the equation (12), the optimum value of the height d of the negative pressure forming portion is not determined.

【0020】〔負圧形成部の高さd(m)が一定のとき
の船速V(m/sec)の変化に対する摩擦抵抗低減効果
(Net Gain)〕式(7)及び式(8)より、 ΔF=γV2 +δV …(13) また、負圧形成部の高さdが一定のとき、抵抗増加量Δ
Rは船速Vの二乗に比例する。 ΔR=εV2 …(14) 式(13)及び式 (14)より、 ΔNd=ΔF−ΔR=(γ−ε)V2 +δV …(15) 今、ΔNd=y、V=x、A=γ−ε、B=δとする
と、 y=Ax2 +Bx …(16)
[Effect of Net Friction on Variation of Vessel Speed V (m / sec) when Height d (m) of Negative Pressure Forming Unit is Constant] From Equations (7) and (8) ΔF = γV 2 + δV (13) When the height d of the negative pressure forming portion is constant, the resistance increase Δ
R is proportional to the square of the ship speed V. ΔR = εV 2 (14) From equations (13) and (14), ΔN d = ΔF−ΔR = (γ−ε) V 2 + δV (15) Now, ΔN d = y, V = x, When A = γ−ε and B = δ, y = Ax 2 + Bx (16)

【0021】ここで、式(12)において、その導出過
程から明らかなように、パラメータα及びパラメータβ
は負圧箇所を形成するための各構成要素の形態(負圧形
成部の突出形状、吹出し口の開口面積、及び流体通路の
流路断面積など)に依存している。また、式(16)に
おいて、パラメータAを構成するγやεは船体の特性
(出力や船体形状など)に、パラメータBを構成するδ
は負圧箇所を形成するための各構成要素の形態に依存し
ている。
Here, in equation (12), as is clear from the derivation process, the parameters α and β
Depends on the form of each component for forming the negative pressure portion (projection shape of the negative pressure forming portion, opening area of the outlet, cross-sectional area of the fluid passage, etc.). In the equation (16), γ and ε constituting the parameter A represent hull characteristics (output, hull shape, etc.) and δ constituting the parameter B.
Depends on the form of each component for forming the negative pressure point.

【0022】つまり、摩擦抵抗低減効果は、式(12)
及び式(16)の各パラメータ、負圧形成部の突出高さ
d、及び船速Vによって変動する。したがって、本発明
に係る摩擦抵抗低減船のように、駆動機構によって、負
圧形成部の没水表面からの突出状態、吹出し口の開口面
積、及び流体通路の流路断面積の各構成要素の形態のう
ち少なくとも一つを変化させることにより、船体の特性
に応じて、水中の負圧箇所の状態を変化させ、効果的な
摩擦抵抗低減を実現することが可能となる。さらに、制
御装置によって、船速の変化に基づいて駆動機構を制御
することにより、摩擦抵抗低減効果が最大となるよう
に、水中の負圧箇所の状態を制御することが可能とな
る。
That is, the effect of reducing the frictional resistance is given by the following equation (12).
And the parameters of the equation (16), the projection height d of the negative pressure forming portion, and the boat speed V. Therefore, like the frictional resistance reducing ship according to the present invention, the driving mechanism causes the components of the negative pressure forming portion to protrude from the submerged surface, the opening area of the outlet, and the cross-sectional area of the flow path of the fluid passage. By changing at least one of the forms, it is possible to change the state of the negative pressure portion in the water according to the characteristics of the hull, and to realize an effective reduction in frictional resistance. Further, by controlling the drive mechanism based on the change in the ship speed by the control device, it is possible to control the state of the negative pressure portion in the water so that the effect of reducing the frictional resistance is maximized.

【0023】[0023]

【発明の実施の形態】以下、本発明に係る摩擦抵抗低減
船の一実施形態について図面を参照して説明する。図2
において、符号Mは摩擦抵抗低減船、30は船体、31
は気泡発生装置、32は船体外板(没水表面)、33は
推進器、34は舵、35は水面(喫水線)を示してい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the frictional resistance reducing ship according to the present invention will be described below with reference to the drawings. FIG.
, The symbol M is a frictional resistance reducing ship, 30 is a hull, 31
Denotes an air bubble generator, 32 denotes a hull shell (submerged surface), 33 denotes a propulsion device, 34 denotes a rudder, and 35 denotes a water surface (waterline).

【0024】摩擦抵抗低減船Mは、例えばVLCC(Ve
ry Large Crude Oil Carrier)といった肥大船であり、
肥大船は、他の種類の船舶に比べて、喫水線15下の船
体外板32(没水表面)における船底の面積が船側に対
して比較的大きく形成されている。なお、本発明を適用
する船舶の種類はこの肥大船に限らず、高速船や漁船な
ど他の形態の船体でもよい。
The ship M for reducing frictional resistance is, for example, a VLCC (Ve
ry Large Crude Oil Carrier)
In the enlarged ship, the area of the bottom of the hull outer plate 32 (submerged surface) below the waterline 15 is formed to be relatively larger than the ship side as compared with other types of ships. The type of the ship to which the present invention is applied is not limited to this enlarged ship, but may be another type of hull such as a high-speed ship or a fishing boat.

【0025】気泡発生装置31は、図2(b)に示すよ
うに、船底に設けられた開口32aに配される気体導入
管40と、気体導入管40を垂直方向に移動自在に支持
しかつ駆動する駆動機構41と、駆動機構41を制御す
る制御装置42とを備えている。
As shown in FIG. 2 (b), the bubble generator 31 supports a gas introduction pipe 40 disposed in an opening 32a provided on the bottom of the ship, and supports the gas introduction pipe 40 movably in a vertical direction. A drive mechanism 41 for driving and a control device 42 for controlling the drive mechanism 41 are provided.

【0026】気体導入管40は、流体の通路となる空間
(流体通路43)を内部に有するように、主として筒状
の部材から構成されている。さらに、下方に配される端
面は、軸方向に対して斜めに形成されており(斜面4
4)、その斜面44には、流体通路43の開口として、
貫通孔からなる吹出し口45が設けられている。なお、
この吹出し口45は後方(船尾側)に向けて配される。
また、流体通路43は、一端が空気取入れ口40aを介
して気体空間(大気)に開放されるとともに、他端が前
述した吹出し口45を介して水中に開放されている。
The gas introduction pipe 40 is mainly formed of a cylindrical member so as to have a space (fluid passage 43) serving as a fluid passage therein. Furthermore, the end face arranged below is formed obliquely to the axial direction (slope 4
4) On the slope 44, as an opening of the fluid passage 43,
An outlet 45 composed of a through hole is provided. In addition,
The outlet 45 is disposed rearward (stern side).
The fluid passage 43 has one end open to the gas space (atmosphere) via the air intake port 40a, and the other end opened to the water via the outlet 45 described above.

【0027】図3は、気体導入管40の断面形状を示し
ており、本実施形態の摩擦抵抗低減船Mでは、図3
(a)に示す円筒形状のもの、図3(b)に示す角筒形
状(四角筒形状)のもの、図3(c)に示す半円筒形状
のもの、などの断面形状が互いに異なる複数種類の気体
導入管40を選択的に用いるようになっている。
FIG. 3 shows the cross-sectional shape of the gas introduction pipe 40. In the frictional resistance reduction ship M of this embodiment, FIG.
A plurality of types having different cross-sectional shapes, such as a cylindrical shape shown in (a), a rectangular cylindrical shape (quadrangular cylindrical shape) shown in FIG. 3B, and a semi-cylindrical shape shown in FIG. Is selectively used.

【0028】図2に戻り、駆動機構41は、駆動モータ
47と、気体導入管40の移動を上下方向に案内する筒
状の収容管48と、駆動モータ47の駆動力を伝達して
気体導入管40を気体導入管40内で上下に移動させる
不図示の伝動部とを備えて構成されている。なお、伝動
部としては、ラック・アンド・ピニオン機構や、リニア
ガイドを用いた直動機構などが適用される。また、収容
管48の上端は、喫水線(水面15)の上に位置するよ
うに配置されるのが好ましい。さらに、複数種類の気体
導入管40を収容管48内に選択的に収容するために気
体導入管40の各断面形状に合わせた取付アダプタを備
えるとよい。
Returning to FIG. 2, the drive mechanism 41 includes a drive motor 47, a cylindrical housing pipe 48 for guiding the movement of the gas introduction pipe 40 in the up-down direction, and a drive force of the drive motor 47 for transmitting the gas. A transmission unit (not shown) that moves the pipe 40 up and down within the gas introduction pipe 40 is provided. Note that a rack and pinion mechanism, a linear motion mechanism using a linear guide, or the like is applied as the transmission unit. Further, it is preferable that the upper end of the housing pipe 48 is disposed so as to be located above the waterline (water surface 15). Furthermore, in order to selectively accommodate a plurality of types of gas introduction tubes 40 in the accommodation tube 48, it is preferable to provide a mounting adapter that is adapted to each cross-sectional shape of the gas introduction tube 40.

【0029】制御装置42は、船体全体を統括的に制御
するものであり、CPU(中央処理装置)、ROM(リ
ード・オンリ・メモリ)、RAM(ランダム・アクセス
・メモリ)等を含むマイクロコンピュータ(又はミニコ
ンピュータ)から構成されている。
The control unit 42 controls the entire hull in a centralized manner, and includes a microcomputer (CPU) including a CPU (central processing unit), a ROM (read only memory), a RAM (random access memory) and the like. Or a minicomputer).

【0030】次に、上述のように構成される摩擦抵抗低
減船Mにおける船体の摩擦抵抗低減方法について説明す
る。停船状態において、流体通路43内には、船体30
の周囲とほぼ同じ水位まで水(海水)が入り込んでい
る。推進器33(図2参照)の推力により船体30が航
行状態になると、図4(a)に示すように、船体30に
対して相対的な水の流れ50が形成される。
Next, a method for reducing the frictional resistance of the hull in the frictional resistance reducing ship M configured as described above will be described. In the stopped state, the hull 30 is
Water (seawater) has penetrated to almost the same water level as the surrounding area. When the hull 30 enters the navigating state by the thrust of the propulsion device 33 (see FIG. 2), a water flow 50 relative to the hull 30 is formed as shown in FIG.

【0031】船体30が所定の船速に達すると、制御装
置42は、図4(b)に示すように、駆動機構41によ
って、気体導入管40の位置(高さ)を調整し、気体導
入管40の側面40b(負圧形成部)を船体の没水表面
32から所定高さdだけ突出させる。
When the hull 30 reaches a predetermined boat speed, the control device 42 adjusts the position (height) of the gas introduction pipe 40 by the drive mechanism 41 as shown in FIG. The side surface 40b (negative pressure forming portion) of the pipe 40 projects from the submerged surface 32 of the hull by a predetermined height d.

【0032】このとき、気体導入管40の側面40bに
よって水の流路が狭められることにより、没水表面32
に沿って流れる水の流速が増すとともに、気体導入管4
0の突出端の鋭い角により、水中に剥離域が形成され
る。さらに、流速の増加に伴う圧力の低下(ベルヌーイ
の定理)や、剥離域における剥離作用やキャビテーショ
ンにより、気体導入管40の斜面44側の水中におい
て、静水圧が局所的に低下し、大気に対して低圧となる
負圧箇所51が形成される。
At this time, the water flow path is narrowed by the side surface 40b of the gas introduction pipe 40, so that the submerged surface 32
The flow velocity of the water flowing along the
Due to the sharp corners of the zero protruding end, a peel zone is formed in the water. Furthermore, due to a decrease in pressure (Bernoulli's theorem) due to an increase in the flow velocity, a separation action or cavitation in the separation area, the hydrostatic pressure locally decreases in the water on the slope 44 side of the gas introduction pipe 40, and the air Thus, a negative pressure portion 51 having a low pressure is formed.

【0033】このとき、空気取入れ口40aにおける圧
力に比べて、負圧箇所51に面した吹出し口45の圧力
が低くなることにより、流体通路43内の流体(海水及
び空気)に対して圧力勾配力が作用し、流体通路43か
ら海水が排出されるとともに、空気取入れ口40aから
流入した空気が、流体通路43を流動して水中に送り込
まれる(負圧方式)。
At this time, since the pressure at the outlet 45 facing the negative pressure point 51 is lower than the pressure at the air inlet 40a, the pressure gradient of the fluid (seawater and air) in the fluid passage 43 is increased. When a force is applied, seawater is discharged from the fluid passage 43, and the air flowing from the air intake port 40a flows through the fluid passage 43 and is sent into the water (negative pressure method).

【0034】そして、水中に送り込まれた空気が気泡5
2として水に混入し、船体の没水表面32の近傍に多数
の気泡52が介在することにより、船体30の摩擦抵抗
が低減される。
Then, the air sent into the water contains bubbles 5
As a result, the frictional resistance of the hull 30 is reduced by being mixed with water as a number 2 and having a large number of bubbles 52 in the vicinity of the submerged surface 32 of the hull.

【0035】ここで、前述したように、水中に空気を送
り込むために必要なエネルギは、気体導入管40によっ
て水の流動状態を変化させることで得られるものであ
り、従来の加圧方式に比べて少ない。そのため、負圧方
式を用いた本実施形態の摩擦抵抗低減船Mでは、従来の
加圧方式に比べて、少ないエネルギ消費で水中に気泡を
発生させることができる。
Here, as described above, the energy required for sending air into the water is obtained by changing the flow state of the water by the gas introduction pipe 40, and is different from the conventional pressurizing method. Less. Therefore, in the frictional resistance reducing ship M of the present embodiment using the negative pressure method, bubbles can be generated in water with less energy consumption than the conventional pressurizing method.

【0036】さらに、前述したように、摩擦抵抗低減効
果は、船体の特性(出力や船体形状など)や負圧箇所5
1を形成する気体導入管40の形態(気体導入管40の
没水表面32からの突出形状、吹出し口45の開口面
積、及び流体通路43の流路断面積など)、及び船速な
どによって変動する。そこで、本発明に係る摩擦抵抗低
減船Mでは、摩擦抵抗低減効果が最大となるように、駆
動機構41によって、気体導入管40の形状、気体導入
管40の没水表面32からの突出高さ、及び船速の少な
くとも一つを変化させる。図5は、その手順の一例を示
すフローチャートである。
Further, as described above, the effect of reducing the frictional resistance depends on the characteristics of the hull (output, hull shape, etc.) and the negative pressure point 5.
1 (the shape of the gas introduction pipe 40 protruding from the submerged surface 32, the opening area of the blow-out port 45, the cross-sectional area of the fluid passage 43, etc.) and the speed of the boat, etc. I do. Therefore, in the frictional resistance reducing ship M according to the present invention, the shape of the gas introduction pipe 40 and the height of the gas introduction pipe 40 protruding from the submerged surface 32 are controlled by the drive mechanism 41 so that the frictional resistance reduction effect is maximized. , And at least one of the ship speeds. FIG. 5 is a flowchart showing an example of the procedure.

【0037】このフローチャートに示すように、まず、
気体導入管40の形状を選択する(ステップ100)。
例えば、異なる形状の複数の気体導入管40を選択的に
用い、そのときの船速の変化を比較することにより、摩
擦抵抗低減に効果的な気体導入管40の形状を決定す
る。
As shown in this flowchart, first,
The shape of the gas introduction pipe 40 is selected (step 100).
For example, a plurality of gas introduction pipes 40 having different shapes are selectively used, and changes in the boat speed at that time are compared to determine a shape of the gas introduction pipe 40 that is effective in reducing frictional resistance.

【0038】より具体的には、推進器33(図2参照)
の回転数を一定にした状態で、例えば図3に示した断面
形状の異なる気体導入管40を、手動もしくは不図示の
駆動機構によって、順に駆動機構41に設置し、気体導
入管40の先端(下端)を船体の没水表面32から同じ
高さdだけ突出させる。このとき、設置される気体導入
管40の形状に応じて、吹出し口45の開口面積、及び
流体通路43の流路断面積が異なるために、負圧箇所5
1の状態が変化する。そこで、そのときの船速の変化
(増減分)を比較し、その比較結果に基づいて船速が最
も増加した気体導入管40を選択する。なお、図3で
は、互いに断面形状が異なる3種類の気体導入管40を
示しているが、これに限らず、選択対象となる気体導入
管40の形状や数は任意である。
More specifically, the propulsion device 33 (see FIG. 2)
In a state where the number of rotations is constant, for example, the gas introduction pipes 40 having different cross-sectional shapes shown in FIG. 3 are sequentially installed on the drive mechanism 41 manually or by a drive mechanism (not shown). (A lower end) protrudes from the submerged surface 32 of the hull by the same height d. At this time, since the opening area of the outlet 45 and the flow path cross-sectional area of the fluid passage 43 differ depending on the shape of the gas introduction pipe 40 installed, the negative pressure point 5
1 changes state. Then, the change (increase / decrease) of the boat speed at that time is compared, and based on the comparison result, the gas inlet pipe 40 with the highest boat speed is selected. Note that FIG. 3 shows three types of gas introduction pipes 40 having different cross-sectional shapes, but the present invention is not limited to this, and the shape and number of the gas introduction pipes 40 to be selected are arbitrary.

【0039】気体導入管40の形状が選択されると、制
御装置42により、気体導入管40の最適な突出状態を
決定する(ステップ101、102)。具体的には、制
御装置42は、推進器33の回転数を一定(例えば標準
航行速度に対応する回転数)にした状態で、駆動機構4
1を制御して、気体導入管40の没水表面32からの突
出高さdを変化させる。そして、そのときの船速の変化
(増減分)から、所定の船速に対して最適な気体導入管
40の突出高さdを求める(ステップ101)。なお、
突出高さdを変化させた際の船速の増減分のデータをも
とに、前述した式(12)におけるパラメータβ及びパ
ラメータαを最小二乗法などにより帰着させてその解を
算出し、式(12)に基づいて最適な突出高さdを求め
るようにするとよい。
When the shape of the gas introduction pipe 40 is selected, the controller 42 determines the optimum projection state of the gas introduction pipe 40 (steps 101 and 102). Specifically, the control device 42 controls the drive mechanism 4 while keeping the rotation speed of the propulsion device 33 constant (for example, the rotation speed corresponding to the standard navigation speed).
By controlling 1, the protruding height d of the gas introduction pipe 40 from the submerged surface 32 is changed. Then, from the change (increase / decrease) in the boat speed at that time, an optimum protruding height d of the gas introduction pipe 40 for a predetermined boat speed is obtained (step 101). In addition,
Based on the data of the increase or decrease of the ship speed when the protrusion height d is changed, the solution is calculated by reducing the parameter β and the parameter α in the above-mentioned equation (12) by the least square method or the like, and The optimum protrusion height d may be obtained based on (12).

【0040】また、制御装置42は、気体導入管40の
突出高さdを一定(例えばステップ102で求めた突出
高さ)にした状態で、推進器33の回転数を変化させ、
そのときの船速の変化(増減分)から、所定の突出高さ
dに対する最適な船速を求める(ステップ102)。な
お、推進器33の回転数(船速)を変化させた際の船速
の増減分のデータをもとに、前述した式(16)におけ
るパラメータA及びパラメータBを最小二乗法などによ
り帰着させてその解を算出し、式(16)に基づいて最
適な船速を求めるようにするとよい。
The control device 42 changes the rotation speed of the propulsion unit 33 while keeping the projection height d of the gas introduction pipe 40 constant (for example, the projection height obtained in step 102).
From the change (increase / decrease) in the boat speed at that time, an optimum boat speed for a predetermined projecting height d is obtained (step 102). The parameters A and B in the above equation (16) are reduced by the least square method or the like based on the data of the increase and decrease of the ship speed when the rotation speed (ship speed) of the propulsion device 33 is changed. It is preferable to calculate the solution and obtain the optimum boat speed based on the equation (16).

【0041】このときに算出される最適な船速が現時点
の船速に近いほど、現時点の突出高さdが摩擦抵抗低減
に対してより効果的であることになる。したがって、制
御装置42は、船速の増加分(摩擦抵抗低減効果;Δ
N)が最大となるように、気体導入管40の突出高さd
と船速とを所定の範囲内で探求的に繰り返し変化させる
(ステップ103)。これにより、所望の船速に対し
て、気体導入管40の突出状態が最適な状態に制御され
る。
The closer the optimum boat speed calculated at this time is to the current boat speed, the more effective the current protrusion height d is in reducing frictional resistance. Therefore, the control device 42 increases the ship speed (frictional resistance reducing effect; Δ
N) is maximized so that the protrusion height d of the gas introduction pipe 40 is maximized.
And the ship speed are explored repeatedly within a predetermined range (step 103). Thus, the protruding state of the gas introduction pipe 40 is controlled to an optimum state for a desired boat speed.

【0042】このように、本実施形態の摩擦抵抗低減船
Mでは、船速の変化に基づいて、気体導入管40の形態
(断面形状及び没水表面32からの突出高さ)を変化さ
せることにより、所望の船速に対して摩擦抵抗低減効果
が最大となるように、水中の負圧箇所51の状態を制御
することができる。したがって、少ないエネルギ消費で
船体の没水表面に多数の気泡を介在させ、船体の摩擦抵
抗を効果的に低減することが可能となる。
As described above, in the frictional resistance reducing ship M of the present embodiment, the form (the cross-sectional shape and the protruding height from the submerged surface 32) of the gas introduction pipe 40 is changed based on the change in the ship speed. Thereby, the state of the negative pressure portion 51 in the water can be controlled such that the effect of reducing the frictional resistance is maximized for a desired ship speed. Therefore, it is possible to effectively reduce the frictional resistance of the hull by interposing a large number of bubbles on the submerged surface of the hull with low energy consumption.

【0043】さらに、気泡発生装置31は簡素な構成で
あり、気体を加圧するための装置が不要であることか
ら、船体30の建造コストが少なくて済むことはいうま
でもない。
Further, since the bubble generating device 31 has a simple configuration and does not require a device for pressurizing gas, it goes without saying that the construction cost of the hull 30 can be reduced.

【0044】また、水中に混入された気泡52は、水深
に応じた静水圧よりも低い内圧で形成されるため、一定
の水深で気泡52が移動するとき(例えば船底に沿って
気泡が移動するとき)に、負圧箇所51から離れるに従
って気泡52に大きな水圧が作用し、徐々に気泡52の
大きさが小さくなる。本出願人らのこれまでの研究によ
れば、比較的小さい気泡のほうが船体の摩擦抵抗を低減
するのに好ましいとされている。したがって、負圧方式
によって発生した気泡は、この点からも摩擦抵抗の低減
に有利に働く。
Since the bubbles 52 mixed in the water are formed at an internal pressure lower than the hydrostatic pressure according to the water depth, when the bubbles 52 move at a constant water depth (for example, the bubbles move along the ship bottom). (Time), a larger water pressure acts on the bubble 52 as the distance from the negative pressure portion 51 increases, and the size of the bubble 52 gradually decreases. Applicants' previous studies indicate that relatively small bubbles are preferred to reduce the frictional resistance of the hull. Therefore, the air bubbles generated by the negative pressure method also work to reduce the frictional resistance.

【0045】なお、上述した実施形態において示した各
構成部材の諸形状や組み合わせ等は一例であって、本発
明の主旨から逸脱しない範囲において設計要求等に基づ
き種々変更可能である。
It should be noted that the shapes, combinations, and the like of the respective constituent members shown in the above-described embodiments are merely examples, and can be variously changed based on design requirements without departing from the gist of the present invention.

【0046】例えば、気泡発生装置31の大きさや数、
その配置場所といったものは、航行時に没水表面32の
開口32a付近の水の流れが所望の状態になるように、
数値流体力学(CFD:Computational Fluid Dynamic
s)による流場解析や航走試験等の結果に基づいて定め
るのがよい。
For example, the size and number of the bubble generator 31
The location and the like are set so that the flow of water near the opening 32a of the submerged surface 32 becomes a desired state during navigation.
Computational Fluid Dynamic (CFD)
It is better to determine based on the results of flow field analysis and cruising test by s).

【0047】また、水中の負圧箇所の状態を変化させる
方法は、上述した実施形態で説明したものに限らず、負
圧形成部の没水表面からの突出状態、吹出し口の開口面
積、及び流体通路の流路断面積のうち少なくとも一つを
変化させればよい。さらに、上述した実施形態では、異
なる形状の複数の気体導入管40を選択的に用いること
により、吹出し口45の開口面積、及び流体通路43の
流路断面積を変化させているが、流体通路43の流路断
面積を変化させる開閉機構を設けて、これを船速の変化
に応じて駆動するように構成してもよい。
Further, the method of changing the state of the negative pressure portion in the water is not limited to the one described in the above embodiment, but the state of the negative pressure forming portion projecting from the submerged surface, the opening area of the outlet, and At least one of the flow path cross-sectional areas of the fluid passages may be changed. Furthermore, in the above-described embodiment, the opening area of the outlet 45 and the cross-sectional area of the fluid passage 43 are changed by selectively using a plurality of gas introduction pipes 40 having different shapes. An opening / closing mechanism for changing the cross-sectional area of the flow path 43 may be provided, and the opening / closing mechanism may be configured to be driven according to a change in the boat speed.

【0048】また、上述した実施形態では、尖形形状の
突起である気体導入管40の先端を船体の没水表面32
から突出して配するので、その後方にはキャビテーショ
ンが生じやすい。キャビテーションが生じると、その攪
拌作用により、気体と水との境界面で気体と水とが積極
的に混合され、気液界面からの気泡52の離脱が促進さ
れるとともに、キャビテーションによる強い負圧作用に
より、流体通路43を介して多量の気体が水中に導かれ
て、多量の気泡52が水中に混入するようになる、とい
う利点を有している。しかしながら、気体導入管40の
形状は図2(b)に示したものに限らず、水中に効果的
に負圧箇所を形成できるように任意に定められる。ま
た、気体導入管40の形状は、空気をできる限り多く取
り入れられるように、流体通路43の流路断面積ができ
るだけ大きく、さらに没水表面32から突出する負圧形
成部としての側面40aによる付加抵抗ができる限り小
さくなるように定めるのが好ましい。
In the above-described embodiment, the tip of the gas introduction pipe 40, which is a pointed projection, is connected to the submerged surface 32 of the hull.
Cavitation is liable to occur behind it. When cavitation occurs, the gas and water are positively mixed at the interface between the gas and water due to the stirring action, and the separation of the bubbles 52 from the gas-liquid interface is promoted, and the strong negative pressure action due to cavitation is caused. Accordingly, there is an advantage that a large amount of gas is guided into the water through the fluid passage 43, and a large amount of bubbles 52 are mixed into the water. However, the shape of the gas introduction pipe 40 is not limited to that shown in FIG. 2B, and is arbitrarily determined so that a negative pressure portion can be effectively formed in water. Further, the shape of the gas introduction pipe 40 is such that the flow passage 43 has a flow passage cross-sectional area as large as possible so that air can be taken in as much as possible, and is additionally provided by a side surface 40 a as a negative pressure forming part projecting from the submerged surface 32. It is preferable to determine the resistance as small as possible.

【0049】[0049]

【発明の効果】以上説明したように、本発明によれば、
負圧形成部の没水表面からの突出状態、吹出し口の開口
面積、及び流体通路の流路断面積のうち少なくとも一つ
を変化させることにより、従来の加圧方式に比べて少な
いエネルギ消費で、しかも船体の摩擦抵抗低減に対して
効果的に、水中に気泡を放出することができる。したが
って、少ないエネルギ消費で摩擦抵抗低減を行って、航
行時のエネルギ消費を効果的に節減することができる。
また、気体を加圧する装置が不要であることから、船体
の建造コストを容易に低減することができる。
As described above, according to the present invention,
By changing at least one of the projecting state of the negative pressure forming part from the submerged surface, the opening area of the outlet, and the flow path cross-sectional area of the fluid passage, the energy consumption is smaller than that of the conventional pressurizing method. In addition, air bubbles can be released into water effectively to reduce the frictional resistance of the hull. Therefore, frictional resistance can be reduced with low energy consumption, and energy consumption during navigation can be effectively reduced.
Further, since a device for pressurizing gas is not required, the construction cost of the hull can be easily reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る摩擦抵抗低減船を模式的に示す
図である。
FIG. 1 is a diagram schematically showing a frictional resistance reducing ship according to the present invention.

【図2】 本発明に係る船体の摩擦抵抗低減方法を船舶
に適用した一実施形態を概略的に示す構成図である。
FIG. 2 is a configuration diagram schematically showing an embodiment in which the method for reducing frictional resistance of a hull according to the present invention is applied to a ship.

【図3】 気体導入管の断面形状を示す図である。FIG. 3 is a view showing a cross-sectional shape of a gas introduction pipe.

【図4】 気体導入管の没水表面からの突出高さを変化
させる様子を説明するための図である。
FIG. 4 is a diagram for explaining how to change the height of the gas introduction tube protruding from the submerged surface.

【図5】 水中の負圧箇所の状態を変化させる手順の一
例を示すフローチャート図である。
FIG. 5 is a flowchart illustrating an example of a procedure for changing a state of a negative pressure point in water.

【符号の説明】 M,10 摩擦抵抗低減船 V 船速 d 突出高さ 11,32 船体外板 12 負圧形成部 13,45 吹出し口 14,43 流体通路 15,35 水面(喫水線) 20,50 水の流れ 21,51 負圧箇所 22,52 気泡 30 船体 31 気泡発生装置 32 没水表面(船体外板) 40 気体導入管(負圧形成部) 40b 側面(負圧形成部) 41 駆動機構 42 制御装置[Description of Signs] M, 10 Vessel with reduced frictional resistance V Vessel speed d Projection height 11, 32 Hull shell 12 Negative pressure forming part 13, 45 Blow-out port 14, 43 Fluid passage 15, 35 Water surface (waterline) 20, 50 Water flow 21, 51 Negative pressure part 22, 52 Bubbles 30 Hull 31 Bubble generator 32 Submerged surface (hull outer plate) 40 Gas introduction pipe (negative pressure forming part) 40b Side surface (negative pressure forming part) 41 Drive mechanism 42 Control device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 船体の没水表面に気泡を放出して船体の
摩擦抵抗を低減する摩擦抵抗低減船において、 船体の没水表面から突出して配され、気体空間に対して
低圧となる負圧箇所を水中に形成する負圧形成部と、 前記負圧箇所に向けて気泡を放出するための吹出し口
と、 一端が気体空間に開放されるとともに他端が前記吹出し
口を介して水中に開放される流体通路と、 前記負圧形成部の没水表面からの突出状態、前記吹出し
口の開口面積、及び前記流体通路の流路断面積のうち少
なくとも一つを変化させる駆動機構とを備えることを特
徴とする摩擦抵抗低減船。
1. A friction-reducing ship that emits air bubbles on the submerged surface of a hull to reduce the frictional resistance of the hull, wherein the negative pressure is arranged to protrude from the submerged surface of the hull and has a low pressure with respect to a gas space. A negative pressure forming part for forming a location in water; an outlet for discharging bubbles toward the negative pressure location; one end opened to the gas space and the other end opened to the water via the outlet. And a drive mechanism that changes at least one of a state of the negative pressure forming portion protruding from the submerged surface, an opening area of the outlet, and a flow path cross-sectional area of the fluid passage. A ship with reduced frictional resistance.
【請求項2】 船速の変化に基づいて前記駆動機構を制
御する制御装置を備えることを特徴とする請求項1に記
載の摩擦抵抗低減船。
2. The frictional resistance reducing ship according to claim 1, further comprising a control device for controlling the driving mechanism based on a change in the ship speed.
【請求項3】 船体の没水表面に気泡を放出して船体の
摩擦抵抗を低減する方法において、 船体の航行に伴って気体空間に対して低圧となる負圧箇
所を水中に形成し、気体空間から水中の負圧箇所に気体
を導くとともに、船速の変化に基づいて前記負圧箇所の
状態を変化させることを特徴とする船体の摩擦抵抗低減
方法。
3. A method of reducing frictional resistance of a hull by releasing air bubbles on a submerged surface of the hull, the method comprising: forming, in water, a negative pressure portion having a low pressure with respect to a gas space with the navigation of the hull; A method for reducing frictional resistance of a hull, comprising guiding gas from a space to a negative pressure point in water and changing the state of the negative pressure point based on a change in ship speed.
JP2000269281A 2000-03-14 2000-09-05 Frictional resistance reducing ship and method of reducing frictional resistance of hull Pending JP2002068073A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000269281A JP2002068073A (en) 2000-09-05 2000-09-05 Frictional resistance reducing ship and method of reducing frictional resistance of hull
KR10-2001-0012970A KR100424543B1 (en) 2000-03-14 2001-03-13 Frictional resistance reducing vessel
US09/804,887 US20010022152A1 (en) 2000-03-14 2001-03-13 Frictional resistance reducing vessel and a method of reducing frictional resistance of a hull

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000269281A JP2002068073A (en) 2000-09-05 2000-09-05 Frictional resistance reducing ship and method of reducing frictional resistance of hull

Publications (1)

Publication Number Publication Date
JP2002068073A true JP2002068073A (en) 2002-03-08

Family

ID=18755920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000269281A Pending JP2002068073A (en) 2000-03-14 2000-09-05 Frictional resistance reducing ship and method of reducing frictional resistance of hull

Country Status (1)

Country Link
JP (1) JP2002068073A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073068A1 (en) * 2004-02-02 2005-08-11 Phipps Gary G B Frictionally reduced hull
KR100708023B1 (en) * 2004-03-23 2007-04-16 닛본 덴끼 가부시끼가이샤 Film-packaged electric device and its manufacturing method
JP4503688B1 (en) * 2009-10-05 2010-07-14 正明 佐藤 Friction resistance reduction device for ships

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073068A1 (en) * 2004-02-02 2005-08-11 Phipps Gary G B Frictionally reduced hull
US7000554B2 (en) 2004-02-02 2006-02-21 Phipps Gary G B Frictionally reduced hull
US7281480B2 (en) 2004-02-02 2007-10-16 Phipps Gary G B Frictionally reduced hull
KR100708023B1 (en) * 2004-03-23 2007-04-16 닛본 덴끼 가부시끼가이샤 Film-packaged electric device and its manufacturing method
JP4503688B1 (en) * 2009-10-05 2010-07-14 正明 佐藤 Friction resistance reduction device for ships
WO2011043146A1 (en) * 2009-10-05 2011-04-14 Sato Tadaaki Device for reducing frictional resistance on ship
JP2011079381A (en) * 2009-10-05 2011-04-21 Masaaki Sato Device for reducing frictional resistance in ship

Similar Documents

Publication Publication Date Title
KR100441723B1 (en) Friction-reducing ship and method for reducing skin friction
KR100424543B1 (en) Frictional resistance reducing vessel
JP4286313B1 (en) Friction resistance reducing ship and its operating method
KR101260122B1 (en) Frictional-resistance reduced ship, and method for steering the same
US8763547B2 (en) Apparatus for lowering drag on a moving nautical vessel
JP4866990B2 (en) Hull frictional resistance reduction device
JPH07156859A (en) Method to reduce friction of sailing body and friction reducing sailing body and generating method of microbubble used to reduce friction and device thereof
JP2002002582A (en) Friction resistance reducing ship
JP2002068073A (en) Frictional resistance reducing ship and method of reducing frictional resistance of hull
JP2001278178A (en) Method of reducing frictional resistance of hull, and frictional resistance reduced ship
KR20020020624A (en) Method of reducing frictional resistance of a hull, and frictional resistance reducing vessel
JP2002079986A (en) Ship reduced in friction resistance
JP2001328584A (en) Frictional resistance-reduced ship
JP2002002580A (en) Frictional resistance reduced ship
JP2001106171A (en) Frictional resistance reduced-ship and method of reducing frictional resistance of hull
JPH10175587A (en) Frictional resistance reducing device for ship
JP2001278179A (en) Method of reducing frictional resistance of hull, and frictional resistance reduced ship
JP2001341689A (en) Ship reduced in frictional resistance
JP2002002581A (en) Friction resistance reducing ship, and friction resistance reducing method for hull
JPH09240571A (en) Frictional resistance reducing device of ship
KR100439003B1 (en) Frictional resistance reducing method, and ship with reduced frictional resistance
JP2002002583A (en) Friction resistance reducing ship, and friction resistance reducing method for hull
JP2010115942A (en) Frictional resistance reduced vessel and its operation method
JPH09207873A (en) Micro-bubble generation device
JP2001341690A (en) Ship reduced in frictional resistance