JP6011501B2 - Valve device - Google Patents

Valve device Download PDF

Info

Publication number
JP6011501B2
JP6011501B2 JP2013193783A JP2013193783A JP6011501B2 JP 6011501 B2 JP6011501 B2 JP 6011501B2 JP 2013193783 A JP2013193783 A JP 2013193783A JP 2013193783 A JP2013193783 A JP 2013193783A JP 6011501 B2 JP6011501 B2 JP 6011501B2
Authority
JP
Japan
Prior art keywords
intake
passage
pressure egr
valve
egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013193783A
Other languages
Japanese (ja)
Other versions
JP2015059506A (en
Inventor
岳大 菅原
岳大 菅原
徳幸 稲垣
徳幸 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013193783A priority Critical patent/JP6011501B2/en
Priority to DE201410113302 priority patent/DE102014113302A1/en
Publication of JP2015059506A publication Critical patent/JP2015059506A/en
Application granted granted Critical
Publication of JP6011501B2 publication Critical patent/JP6011501B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/71Multi-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Lift Valve (AREA)

Description

本発明は、吸気通路に接続する低圧EGR通路を開閉する低圧EGRバルブと、吸気通路を開閉する吸気絞り弁とを備えるバルブ装置に関する。   The present invention relates to a valve device including a low pressure EGR valve that opens and closes a low pressure EGR passage connected to an intake passage, and an intake throttle valve that opens and closes the intake passage.

従来より、比較的低圧低温の排気の一部を低圧EGRガスとして吸気通路へ還流させる低圧EGR装置が公知である(例えば、特許文献1、2参照)。
低圧EGR装置は、低圧EGR通路を流れる低圧EGRガスの流量を調整するバタフライ型の低圧EGRバルブと、低圧EGRバルブの開閉操作に連動して低圧EGR通路よりも吸気上流において吸気通路の開度を調整するバタフライ型の吸気絞り弁とを有するバルブ装置を備える。そして、低圧EGRバルブが低圧EGR通路の開度を最大とするときに、吸気絞り弁が吸気通路を最も絞り(この状態を吸気全閉と呼ぶ)、吸気通路へ還流されるEGRガスの流量を増加させる。
2. Description of the Related Art Conventionally, a low pressure EGR device that recirculates a part of a relatively low pressure and low temperature exhaust gas as low pressure EGR gas to an intake passage is known (for example, see Patent Documents 1 and 2).
The low pressure EGR device is a butterfly type low pressure EGR valve that adjusts the flow rate of the low pressure EGR gas flowing through the low pressure EGR passage, and the opening degree of the intake passage upstream of the low pressure EGR passage in conjunction with the opening and closing operation of the low pressure EGR valve. A valve device having a butterfly type intake throttle valve to be adjusted; When the low-pressure EGR valve maximizes the opening of the low-pressure EGR passage, the intake throttle valve restricts the intake passage most (this state is called intake fully closed), and the flow rate of EGR gas recirculated to the intake passage is reduced. increase.

特許文献1、2には、バルブ装置の小型化等の要求から、吸気通路と低圧EGR通路とが直角に接続された技術が開示されている。
そして、特許文献1のバルブ装置では、低圧EGR通路の流路軸と吸気通路の流路軸との交点が回転中心となるように吸気絞り弁が配されている。
Patent Documents 1 and 2 disclose a technique in which an intake passage and a low-pressure EGR passage are connected at a right angle in response to a request for downsizing a valve device or the like.
In the valve device of Patent Document 1, the intake throttle valve is arranged so that the intersection of the flow path shaft of the low pressure EGR passage and the flow passage shaft of the intake passage is the center of rotation.

しかし、この構造の場合、吸気全閉時にEGRガスを吸気通路へ流す流路が、吸気絞り弁の近傍で絞られてしまう。この現象を「EGR絞り現象」と呼ぶ。この「EGR絞り現象」が発生するとEGRガスの流量が低下してしまうという問題が生じる。
一方で、特許文献1のバルブ装置では、吸気全閉時において、吸気絞り弁を吸気通路の流路軸に対して傾斜した状態で存在させることにより、低圧EGR通路から吸気通路の下流側へ流れ込むようにEGRガスの流れをガイドすることができる。この機能を、「EGR流れガイド機能」と呼ぶ。
However, in this structure, the flow path for flowing EGR gas to the intake passage when the intake is fully closed is throttled in the vicinity of the intake throttle valve. This phenomenon is referred to as “EGR aperture phenomenon”. When this “EGR throttling phenomenon” occurs, there arises a problem that the flow rate of EGR gas decreases.
On the other hand, in the valve device of Patent Document 1, when the intake is fully closed, the intake throttle valve is present in an inclined state with respect to the flow axis of the intake passage, thereby flowing from the low pressure EGR passage to the downstream side of the intake passage. Thus, the flow of EGR gas can be guided. This function is called an “EGR flow guide function”.

これに対して、特許文献2のバルブ装置では、低圧EGR通路の接続口が開口する位置よりも十分上流の吸気通路に吸気絞り弁を配している。
しかし、この構造の場合には、「EGR絞り現象」は発生しないものの、「EGR流れガイド機能」が発揮されない。このため、接続口から流出するEGRガスが低圧EGR通路の流路軸に沿って真っ直ぐ進み、吸気通路の流路壁に衝突する等して圧力損失が生じ、結果的にEGRガスの流量が低下してしまうという問題が生じる。
On the other hand, in the valve device of Patent Document 2, the intake throttle valve is arranged in the intake passage sufficiently upstream from the position where the connection port of the low pressure EGR passage opens.
However, in the case of this structure, although the “EGR throttling phenomenon” does not occur, the “EGR flow guide function” is not exhibited. For this reason, the EGR gas flowing out from the connection port advances straight along the flow path axis of the low pressure EGR passage and collides with the flow passage wall of the intake passage to cause pressure loss, resulting in a decrease in the flow rate of the EGR gas. The problem of end up occurs.

そこで、EGRガスの流量を増加させるために、低圧EGR通路の通路径を大きくするという方法があるが、通路径を大きくするとバルブ装置の小型化を阻害することになる。   In order to increase the flow rate of EGR gas, there is a method of increasing the passage diameter of the low pressure EGR passage. However, increasing the passage diameter inhibits the miniaturization of the valve device.

特開2012−237306号公報JP 2012-237306 A 特開2012−127204号公報JP 2012-127204 A

本発明は、上記の問題点を解決するためになされたものであり、その目的は、低圧EGR装置のバルブ装置において、バルブ装置の小型化を図りつつ、EGRガスの流量を増加させることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to increase the flow rate of EGR gas while reducing the size of the valve device in the valve device of the low pressure EGR device. And

本発明のバルブ装置は、排気通路に配される排気タービンと吸気通路に配されるコンプレッサとを有する過給機と、排気の一部を吸気通路へ還流する高圧EGR装置及び低圧EGR装置とを備える内燃機関の吸排気システムにおいて、低圧EGR装置を構成するバルブ装置であって、自身の流路軸yを吸気通路内に延長したときに吸気通路の流路軸xと直交する低圧EGR通路と、低圧EGR通路を開閉するバタフライ型の低圧EGRバルブと、吸気通路に配されて、吸気通路を絞り、吸気通路に導入されるEGRガスの流量を増加させるバタフライ型の吸気絞り弁と、低圧EGRバルブ及び吸気絞り弁の回動中心となるシャフト同士を連動駆動し、低圧EGRバルブが低圧EGR通路の開度を最大とする時に、吸気絞り弁が吸気通路を最も絞った吸気全閉にする連動駆動機構と、吸気全閉時の吸気絞り弁の姿勢であって、回動中心よりも低圧EGR通路の接続口に近い側に吸気絞り弁の上流端が位置し、回動中心よりも接続口から遠い側に吸気絞り弁の下流端が位置するように、吸気通下流端が位置するように、吸気通路の流路軸xに対して傾斜する吸気絞りの姿勢とを備える。 A valve device according to the present invention includes a supercharger having an exhaust turbine disposed in an exhaust passage and a compressor disposed in an intake passage, and a high-pressure EGR device and a low-pressure EGR device that recirculate part of the exhaust to the intake passage. In the intake / exhaust system for an internal combustion engine, a valve device that constitutes a low-pressure EGR device, and a low-pressure EGR passage that is orthogonal to the flow passage axis x of the intake passage when its own flow passage shaft y is extended into the intake passage; A butterfly-type low-pressure EGR valve that opens and closes the low-pressure EGR passage, a butterfly-type intake throttle valve that is disposed in the intake passage, restricts the intake passage, and increases the flow rate of EGR gas introduced into the intake passage, and low-pressure EGR interlocked driven shaft with each other serving as the rotation center of the valve and the intake throttle valve, when the low-pressure EGR valve to maximize the degree of opening of the low-pressure EGR passage, the intake throttle valve is most an intake passage And the intake throttle valve posture when the intake is fully closed, and the upstream end of the intake throttle valve is located closer to the connection port of the low pressure EGR passage than the center of rotation. The attitude of the intake throttle that is inclined with respect to the flow path axis x of the intake passage so that the downstream end of the intake throttle valve is positioned so that the downstream end of the intake throttle valve is positioned farther from the connection port than the rotation center With.

そして、吸気絞り弁の下流端は、吸気全閉時に、吸気通路の流路軸xと低圧EGR通路の流路軸yとの交点oよりも吸気通路の下流側に位置する。
また、吸気全閉時に低圧EGR通路を経て吸気絞り弁下流側の吸気通路へEGRガスが流れる流路において、流路面積が最も小さい箇所が、低圧EGR通路に設けられている。
The downstream end of the intake throttle valve is located downstream of the intersection point o between the flow path axis x of the intake passage and the flow path axis y of the low pressure EGR passage when intake is fully closed.
Further, in the flow path through which the EGR gas flows through the low pressure EGR passage to the intake passage downstream of the intake throttle valve when the intake is fully closed, a portion having the smallest flow path area is provided in the low pressure EGR passage.

これによれば、「EGR絞り現象」が発生させず、かつ、「EGR流れガイド機能」を維持することができるため、低圧EGR通路の通路径を大きくすることなく、EGRガスの流量を増加させることができる。すなわち、バルブ装置の小型化を図りつつ、EGRガスの流量を増加させることができる。   According to this, since the “EGR throttling phenomenon” does not occur and the “EGR flow guide function” can be maintained, the flow rate of the EGR gas is increased without increasing the diameter of the low pressure EGR passage. be able to. That is, the flow rate of the EGR gas can be increased while downsizing the valve device.

内燃機関の吸排気システムの概略図である。It is the schematic of the intake / exhaust system of an internal combustion engine. バルブ装置の基本構成を説明する断面図である。It is sectional drawing explaining the basic composition of a valve apparatus. 実施例のバルブ装置の模式図である。It is a schematic diagram of the valve apparatus of an Example. 従来例のバルブ装置の模式図である。It is a schematic diagram of the valve apparatus of a prior art example. 従来例のバルブ装置の模式図である。It is a schematic diagram of the valve apparatus of a prior art example. 距離Cと流量の関係を示した相関図である。It is the correlation figure which showed the relationship between the distance C and flow volume.

本発明を実施するための形態を以下の実施例により詳細に説明する。   The mode for carrying out the present invention will be described in detail with reference to the following examples.

〔実施例〕
実施例を図1〜6を用いて説明する。
まず、本実施例のバルブ装置が適用される内燃機関の吸排気システムを図1を用いて説明する。
吸排気システムは、エンジン1に吸気を導く吸気通路2と、エンジン1から排気を排出するための排気通路3と、排気通路3に配される排気タービン4と吸気通路2に配されるコンプレッサ5とを有する過給機と、排気の一部を吸気通路2へ還流する高圧EGR装置及び低圧EGR装置とを備える。
〔Example〕
Examples will be described with reference to FIGS.
First, an intake / exhaust system of an internal combustion engine to which the valve device of this embodiment is applied will be described with reference to FIG.
The intake / exhaust system includes an intake passage 2 that guides intake air to the engine 1, an exhaust passage 3 that discharges exhaust from the engine 1, an exhaust turbine 4 that is disposed in the exhaust passage 3, and a compressor 5 that is disposed in the intake passage 2. And a high pressure EGR device and a low pressure EGR device that recirculate a part of the exhaust gas to the intake passage 2.

吸気通路2には、吸気上流側から、吸気の異物を取り除くエアクリーナ8、過給機のコンプレッサ5、コンプレッサ5で圧縮された吸気を冷却するインタークーラ9、吸気量を調整するスロットルバルブ10、所定の容積室を形成するサージタンク11等が配置されている。   In the intake passage 2, an air cleaner 8 that removes foreign matter from intake air from the upstream side of intake air, a compressor 5 of a supercharger, an intercooler 9 that cools intake air compressed by the compressor 5, a throttle valve 10 that adjusts the intake air amount, A surge tank 11 and the like that form a volume chamber are arranged.

排気通路3には、排気上流側から、過給機の排気タービン4、排気に含まれる粒子状物質(PM)を捕集するDPF12等が配されている。   In the exhaust passage 3, an exhaust turbine 4 of a supercharger, a DPF 12 that collects particulate matter (PM) contained in the exhaust, and the like are arranged from the exhaust upstream side.

排気タービン4は、排気のエネルギを回転力に変換するもので、コンプレッサ5は、排気タービン4と同軸に連結され排気タービン4の回転力によって回転して吸気を圧縮するものである。   The exhaust turbine 4 converts exhaust energy into rotational force, and the compressor 5 is coaxially connected to the exhaust turbine 4 and rotates by the rotational force of the exhaust turbine 4 to compress intake air.

高圧EGR装置は、エンジン1から排出された直後の比較的高圧高温の排気の一部を高圧EGRガスとして吸気通路2へ還流させる装置である。
高圧EGR装置は、排気タービン4より排気上流側の排気通路3と、スロットルバルブ10よりも吸気下流側の吸気通路2とを接続する高圧EGR通路13と、高圧EGR通路13を流れる高圧EGRガスの流量を調整する高圧EGRバルブ14と、高圧EGRガスを冷却する高圧EGRクーラ15と、高圧EGRクーラ15を通過する経路と高圧EGRクーラ15をバイパスする経路との間を切り替える切替弁16とを有する。
The high-pressure EGR device is a device that recirculates a portion of the relatively high-pressure and high-temperature exhaust immediately after being discharged from the engine 1 to the intake passage 2 as high-pressure EGR gas.
The high-pressure EGR device includes a high-pressure EGR passage 13 that connects the exhaust passage 3 upstream of the exhaust turbine 4, the intake passage 2 downstream of the throttle valve 10, and high-pressure EGR gas that flows through the high-pressure EGR passage 13. A high-pressure EGR valve that adjusts the flow rate; a high-pressure EGR cooler that cools the high-pressure EGR gas; and a switching valve that switches between a path that passes through the high-pressure EGR cooler and a path that bypasses the high-pressure EGR cooler. .

低圧EGR装置は、比較的低圧低温の排気の一部を低圧EGRガスとして吸気通路2へ還流させる装置である。
低圧EGR装置は、排気タービン4より排気下流側(本実施例では、DPF12の下流側)の排気通路3と、コンプレッサ5より吸気上流側の吸気通路2とを接続する低圧EGR通路20と、低圧EGR通路20を流れる低圧EGRガスの流量を調整する低圧EGRバルブ21と、低圧EGRガスを冷却する低圧EGRクーラ22と、低圧EGRバルブ21の開閉操作に連動して低圧EGR通路20よりも吸気上流において吸気通路2の開度を調整する吸気絞り弁23とを有する。
The low pressure EGR device is a device that recirculates a part of the relatively low pressure and low temperature exhaust gas to the intake passage 2 as low pressure EGR gas.
The low-pressure EGR device includes a low-pressure EGR passage 20 that connects an exhaust passage 3 downstream of the exhaust turbine 4 (in the present embodiment, downstream of the DPF 12) and an intake passage 2 upstream of the compressor 5; A low-pressure EGR valve 21 that adjusts the flow rate of the low-pressure EGR gas that flows through the EGR passage 20, a low-pressure EGR cooler 22 that cools the low-pressure EGR gas, and an intake upstream of the low-pressure EGR passage 20 in conjunction with the opening and closing operation of the low-pressure EGR valve 21 And an intake throttle valve 23 for adjusting the opening of the intake passage 2.

低圧EGRバルブ21と吸気絞り弁23とは1つのアクチュエータによって駆動する1つのバルブ装置24としてユニット化されている。
次にバルブ装置24の基本構成を図2を用いて説明する。
The low pressure EGR valve 21 and the intake throttle valve 23 are unitized as one valve device 24 driven by one actuator.
Next, the basic configuration of the valve device 24 will be described with reference to FIG.

バルブ装置24は、低圧EGR通路20の一部をなすEGR配管20aと、EGR配管20aに配される低圧EGRバルブ21と、吸気通路2の一部をなす吸気配管2aと、吸気配管2aに配される吸気絞り弁23と、低圧EGRバルブ21と吸気絞り弁23とを連動駆動させる連動駆動機構等を備える。   The valve device 24 includes an EGR pipe 20a that forms part of the low-pressure EGR passage 20, a low-pressure EGR valve 21 that is arranged in the EGR pipe 20a, an intake pipe 2a that forms part of the intake passage 2, and an intake pipe 2a. And an interlocking drive mechanism for interlockingly driving the low-pressure EGR valve 21 and the intake throttle valve 23.

EGR配管20aと吸気配管2aとは直角に接続されている。すなわち、図3に示すように、EGR配管20aの流路軸yは、吸気通路内に延長したときに吸気配管2aの流路軸xと直交する。   The EGR pipe 20a and the intake pipe 2a are connected at a right angle. That is, as shown in FIG. 3, the flow path axis y of the EGR pipe 20a is orthogonal to the flow path axis x of the intake pipe 2a when extended into the intake passage.

低圧EGRバルブ21は、バタフライバルブであり、回転中心となるシャフト26はEGR配管20aに回転自在に支持されている。   The low pressure EGR valve 21 is a butterfly valve, and a shaft 26 serving as a rotation center is rotatably supported by the EGR pipe 20a.

吸気絞り弁23は、吸気通路2を絞り、吸気通路2に導入されるEGRガスの流量を増加させるバタフライバルブであり、回転中心となるシャフト27は吸気配管2aに回転自在に支持されている。吸気絞り弁23の構造は後に詳述する。   The intake throttle valve 23 is a butterfly valve that throttles the intake passage 2 and increases the flow rate of EGR gas introduced into the intake passage 2, and a shaft 27 serving as a rotation center is rotatably supported by the intake pipe 2a. The structure of the intake throttle valve 23 will be described in detail later.

連動駆動機構は、回転駆動力を発生するアクチュエータ29と、シャフト26とシャフト27とを連結するリンク機構30とを備える。
アクチュエータ29は、例えば電動モータであり、動力伝達機構を介してシャフト26に回転駆動力を与える。
The interlocking drive mechanism includes an actuator 29 that generates a rotational driving force, and a link mechanism 30 that connects the shaft 26 and the shaft 27.
The actuator 29 is an electric motor, for example, and applies a rotational driving force to the shaft 26 via a power transmission mechanism.

動力伝達機構は、電動モータ30の出力軸に設けられたピニオン31と、ピニオン31に噛み合う減速ギヤ32と、減速ギヤ32と一体に設けられて共通の中心軸周りに回転する小径ギヤ33と、小径ギヤ33と噛み合うバルブギヤ34とで構成される。バルブギヤ34はシャフト26に固定されており、電動モータの回転がシャフト26に伝達される。   The power transmission mechanism includes a pinion 31 provided on the output shaft of the electric motor 30, a reduction gear 32 that meshes with the pinion 31, a small-diameter gear 33 that is provided integrally with the reduction gear 32 and rotates around a common central axis, The valve gear 34 meshes with the small diameter gear 33. The valve gear 34 is fixed to the shaft 26, and the rotation of the electric motor is transmitted to the shaft 26.

低圧EGRバルブ21のシャフト26は、吸気絞り弁23のシャフト27と平行に設けられている。
シャフト26とシャフト27とはリンク機構を介して連結しており、電動モータによってシャフト26が回動するのに伴ってシャフト27が回動するように構成されている。
The shaft 26 of the low pressure EGR valve 21 is provided in parallel with the shaft 27 of the intake throttle valve 23.
The shaft 26 and the shaft 27 are connected via a link mechanism, and the shaft 27 is configured to rotate as the shaft 26 is rotated by the electric motor.

リンク機構30は、シャフト26と一体に回転する駆動プレート38と、シャフト27と一体的に回転する従動プレート39とを有し、駆動プレート38に形成されたカム溝38aと、従動プレート39に形成されたピン39aとの係合によって構成されている。   The link mechanism 30 includes a drive plate 38 that rotates integrally with the shaft 26, and a driven plate 39 that rotates integrally with the shaft 27, and is formed on the cam plate 38 a formed in the drive plate 38 and the driven plate 39. It is comprised by engagement with the pin 39a made.

以上に説明した連動駆動機構によって、低圧EGRバルブ21と吸気絞り弁23とは1つのアクチュエータにより駆動される。そして、低圧EGRバルブ21がEGR配管20aの開度を最大とする時に、吸気絞り弁23が吸気配管2aを最も絞った吸気全閉にする。   The low-pressure EGR valve 21 and the intake throttle valve 23 are driven by a single actuator by the interlock driving mechanism described above. When the low pressure EGR valve 21 maximizes the opening of the EGR pipe 20a, the intake throttle valve 23 fully closes the intake pipe 2a.

低圧EGRバルブ21が低圧EGR通路20を開くと、EGR配管20aの接続口40の位置よりも吸気上流側から流れ込む空気に、EGRガスが合流して、吸気下流へと流れる。   When the low-pressure EGR valve 21 opens the low-pressure EGR passage 20, the EGR gas merges with the air flowing from the intake upstream side of the position of the connection port 40 of the EGR pipe 20a, and flows to the intake downstream.

吸気絞り弁23は、楕円形の板状を呈しており、シャフト27と一体的に回動する。
そして、吸気全閉時において吸気絞り弁23は、流路軸xに対して傾斜した姿勢をとる。すなわち、板厚方向が流路軸xに平行とはなっていない。
図3に示すように、吸気全閉時において吸気絞り弁23は、吸気配管2aの下流に向かって横たわるように傾斜している。すなわち、流路軸yに沿う方向において、回動中心(シャフト27)よりもEGR配管20aの接続口40に近い側に吸気絞り弁23の上流端23aが位置し、回動中心よりも接続口40から遠い側に吸気絞り弁23の下流端23bが位置するように、傾斜している。
The intake throttle valve 23 has an elliptical plate shape and rotates integrally with the shaft 27.
When the intake is fully closed, the intake throttle valve 23 is inclined with respect to the flow path axis x. That is, the plate thickness direction is not parallel to the flow path axis x.
As shown in FIG. 3, when the intake is fully closed, the intake throttle valve 23 is inclined so as to lie toward the downstream side of the intake pipe 2a. That is, in the direction along the flow path axis y, the upstream end 23a of the intake throttle valve 23 is located closer to the connection port 40 of the EGR pipe 20a than the rotation center (shaft 27), and the connection port is located more than the rotation center. It is inclined so that the downstream end 23b of the intake throttle valve 23 is located on the side far from 40.

〔本実施例の特徴及び作用効果〕
本実施例の特徴を図3を用いて説明する。
本実施例の吸気絞り弁23は、吸気全閉時に、下流端23bが流路軸xと流路軸yとの交点oよりも吸気下流側に位置するように配されている。
[Features and effects of this embodiment]
The features of this embodiment will be described with reference to FIG.
The intake throttle valve 23 of this embodiment is arranged so that the downstream end 23b is located on the intake downstream side of the intersection point o between the flow path axis x and the flow path axis y when the intake is fully closed.

ここで、吸気全閉時にEGR配管20aと吸気絞り弁下流の吸気配管2aとにより形成される流路であって、EGR配管20aを経て吸気絞り弁23下流側の吸気配管2aへEGRガス流通可能な流路をEGR合流流路50と呼ぶ。   Here, it is a flow path formed by the EGR pipe 20a and the intake pipe 2a downstream of the intake throttle valve when the intake is fully closed, and the EGR gas can flow through the EGR pipe 20a to the intake pipe 2a downstream of the intake throttle valve 23. Such a flow path is called an EGR merge flow path 50.

本実施例では、このEGR合流流路50において、流路面積が最も小さい箇所が、EGR配管20aに設けられている。すなわち、シャフト27が交点oよりも吸気上流側に位置しており、吸気配管2aのEGR配管20aとの交差部での最小流路面積Aよりも、EGR配管20aの流路面積Bが小さくなっている。   In the present embodiment, in the EGR merging flow channel 50, a portion having the smallest flow channel area is provided in the EGR pipe 20a. That is, the shaft 27 is positioned upstream of the intersection point o, and the flow path area B of the EGR pipe 20a is smaller than the minimum flow path area A at the intersection of the intake pipe 2a and the EGR pipe 20a. ing.

本実施例の作用効果を説明するために、従来のバルブ装置について説明する。
図4で従来例1を、図5で従来例2を説明する。
In order to explain the function and effect of this embodiment, a conventional valve device will be described.
Conventional Example 1 will be described with reference to FIG. 4, and Conventional Example 2 will be described with reference to FIG.

従来例1は、下流端23bが交点oよりも吸気下流側に位置している。このため、「EGR流れガイド機能」が発揮される。すなわち、接続口40から流出するEGRガスが傾斜した吸気絞り弁23にガイドされて、吸気絞り弁23の下流側へスムーズにEGRガスが流れる。   In Conventional Example 1, the downstream end 23b is located on the intake downstream side of the intersection o. For this reason, the “EGR flow guide function” is exhibited. In other words, the EGR gas flowing out from the connection port 40 is guided by the inclined intake throttle valve 23, and the EGR gas flows smoothly downstream of the intake throttle valve 23.

しかし、従来例1では、交差部での最小流路面積Aが、EGR配管20aの流路面積よりも小さい。このため、「EGR絞り現象」が発生する。すなわち、EGR合流流路50が、吸気絞り弁23の存在によって最小流路面積Aの箇所で絞られて、EGRガスの流量が低下する。   However, in Conventional Example 1, the minimum flow path area A at the intersection is smaller than the flow path area of the EGR pipe 20a. For this reason, the “EGR aperture phenomenon” occurs. That is, the EGR merge flow path 50 is throttled at the position of the minimum flow path area A due to the presence of the intake throttle valve 23, and the flow rate of EGR gas is reduced.

一方、従来例2は、吸気絞り弁23の回転中心が交点oよりも吸気上流に位置しており、交差部での最小流路面積がEGR配管20aの流路面積よりも大きく、「EGR絞り現象」は発生しない。   On the other hand, in the prior art example 2, the rotation center of the intake throttle valve 23 is located upstream of the intersection point o, and the minimum flow path area at the intersection is larger than the flow path area of the EGR pipe 20a. The phenomenon does not occur.

しかし、従来例2では、下流端23bが交点oよりも吸気上流側に位置しているため、「EGR流れガイド機能」を奏さない。すなわち、EGR配管20aからのEGRガスは、流路軸yに沿って直進し、接続口40に対向する吸気配管2aの壁面に衝突しやすくなる。このため、圧力損失が大きくなり、結果的にEGRガスの流量が低減してしまう。   However, in the conventional example 2, since the downstream end 23b is located on the intake upstream side with respect to the intersection point o, the “EGR flow guide function” is not achieved. That is, the EGR gas from the EGR pipe 20 a goes straight along the flow path axis y and easily collides with the wall surface of the intake pipe 2 a facing the connection port 40. For this reason, a pressure loss becomes large and the flow volume of EGR gas will reduce as a result.

以上のように、従来例では、「EGR絞り現象」の発生もしくは「EGR流れガイド機能」の消失によって、EGRガスの流量が低減してしまっていた。   As described above, in the conventional example, the flow rate of EGR gas is reduced due to the occurrence of the “EGR throttling phenomenon” or the disappearance of the “EGR flow guide function”.

これに対して、本実施例では、「EGR絞り現象」を発生させず、かつ、「EGR流れガイド機能」を維持できる。
すなわち、本実施例では、吸気絞り弁23の下流端23bが、吸気全閉時に交点oよりも吸気下流側に位置する。このため、接続口40から流出するEGRガスを吸気絞り弁23によって吸気絞り弁23の下流側へガイドすることができる。
In contrast, in this embodiment, the “EGR throttling phenomenon” does not occur and the “EGR flow guide function” can be maintained.
That is, in the present embodiment, the downstream end 23b of the intake throttle valve 23 is located on the intake downstream side of the intersection point o when the intake is fully closed. For this reason, the EGR gas flowing out from the connection port 40 can be guided to the downstream side of the intake throttle valve 23 by the intake throttle valve 23.

また、本実施例では、このEGR合流流路50において、流路面積が最も小さい箇所が、EGR配管20aに設けられている。すなわち、シャフト27が交点oよりも吸気上流側に位置しており、吸気配管2aのEGR配管20aとの交差部での最小流路面積AがEGR配管20aの流路面積Bよりも大きくなっている。
このため、従来例1とは異なって、EGR合流流路50が吸気絞り弁23の存在によって絞られることがない。
In the present embodiment, in the EGR merging flow channel 50, a portion having the smallest flow channel area is provided in the EGR pipe 20a. That is, the shaft 27 is positioned upstream of the intersection point o, and the minimum flow area A at the intersection of the intake pipe 2a with the EGR pipe 20a is larger than the flow area B of the EGR pipe 20a. Yes.
For this reason, unlike the conventional example 1, the EGR merging flow path 50 is not throttled by the presence of the intake throttle valve 23.

ここで、流路軸xに平行な方向での交点oから下流端23bの距離をCとする。交点oをゼロ点として、下流端23bが交点oよりも下流側にある場合はプラス、上流側にある場合はマイナスとする。
図6に距離Cと流量の関係を示す。
Here, C is the distance from the intersection point o in the direction parallel to the flow path axis x to the downstream end 23b. Assume that the intersection point o is a zero point, and that the downstream end 23b is on the downstream side of the intersection point o, it is positive.
FIG. 6 shows the relationship between the distance C and the flow rate.

距離Cがマイナスの領域では、従来例2のように「EGR流れガイド機能」が消失している。このため、圧力損失が大きく、小さい流量しか得られない。
距離Cをプラスにすると、「EGR流れガイド機能」が発揮されるので、圧力損失が小さくなり、流量は増加する。しかし、距離Cが大きすぎると、従来例1のように、吸気絞り弁23によってEGR合流流路50が絞られてしまい、「EGR絞り現象」が生じる。
本実施例の吸気絞り弁23の配置は、「EGR絞り現象」が発生せず、かつ、「EGR流れガイド機能」を維持できる配置であり、EGRガスの流量を大きくすることができる。
In the region where the distance C is negative, the “EGR flow guide function” is lost as in the second conventional example. For this reason, pressure loss is large and only a small flow rate can be obtained.
When the distance C is increased, the “EGR flow guide function” is exhibited, so that the pressure loss is reduced and the flow rate is increased. However, if the distance C is too large, the EGR merging flow path 50 is throttled by the intake throttle valve 23 as in Conventional Example 1, and the “EGR throttle phenomenon” occurs.
The arrangement of the intake throttle valve 23 of the present embodiment is an arrangement in which the “EGR throttle phenomenon” does not occur and the “EGR flow guide function” can be maintained, and the flow rate of the EGR gas can be increased.

以上のように、本実施例によれば、「EGR絞り現象」が発生せず、かつ、「EGR流れガイド機能」を維持することができるため、EGR配管20aの径を大きくすることなく、EGRガスの流量を増加させることができる。すなわち、バルブ装置の小型化を図りつつ、EGRガスの流量を増加させることができる。 As described above, according to the present embodiment, the “EGR throttling phenomenon” does not occur and the “EGR flow guide function” can be maintained, so that the EGR pipe 20a does not have to be increased in diameter without increasing the EGR diameter. The gas flow rate can be increased. That is, the flow rate of the EGR gas can be increased while downsizing the valve device.

2 吸気通路、2a 吸気配管、20 低圧EGR通路、20a EGR配管、21 低圧EGRバルブ、23 吸気絞り弁、23a 吸気絞り弁の上流端、23b 吸気絞り弁の下流端、24 バルブ装置、27 シャフト、29 アクチュエータ、30 リンク機構、40 接続口   2 intake passage, 2a intake piping, 20 low pressure EGR passage, 20a EGR piping, 21 low pressure EGR valve, 23 intake throttle valve, 23a upstream end of intake throttle valve, 23b downstream end of intake throttle valve, 24 valve device, 27 shaft, 29 Actuator, 30 Link mechanism, 40 Connection port

Claims (2)

内燃機関(1)に吸気を導く吸気通路(2)と、前記内燃機関(1)から排気を排出するための排気通路(3)と、前記排気通路(3)に配される排気タービン(4)と前記吸気通路(2)に配されるコンプレッサ(5)とを有する過給機と、排気の一部を前記吸気通路(2)へ還流する高圧EGR装置及び低圧EGR装置とを備え、前記低圧EGR装置が、前記排気タービン(4)より排気下流側の前記排気通路(3)と前記コンプレッサ(5)の吸気上流側の吸気通路(2、2a)とを接続してEGRガスを前記吸気通路(2、2a)へ還流させる構成になっている内燃機関(1)の吸排気システムにおいて、
前記低圧EGR装置を構成するバルブ装置であって、
自身の流路軸yを前記吸気通路(2、2a)内に延長したときに前記吸気通路(2、2a)の流路軸xと直交する低圧EGR通路(20、20a)と、
前記低圧EGR通路(20、20a)を開閉するバタフライ型の低圧EGRバルブ(21)と、
前記吸気通路(2、2a)に配されて、前記吸気通路(2、2a)を絞り、前記吸気通路(2、2a)に導入されるEGRガスの流量を増加させるバタフライ型の吸気絞り弁(23)と、
前記低圧EGRバルブ(21)及び前記吸気絞り弁(23)の回動中心となるシャフト(26、27)同士を連動駆動し、前記低圧EGRバルブ(21)が前記低圧EGR通路(20、20a)の開度を最大とする時に、前記吸気絞り弁(23)が前記吸気通路(2、2a)を最も絞った吸気全閉にする連動駆動機構(29、30)と、
吸気全閉時の前記吸気絞り弁(23)の姿勢であって、前記回動中心(27)よりも前記低圧EGR通路(20、20a)の接続口(40)に近い側に前記吸気絞り弁(23)の上流端(23a)が位置し、前記回動中心(27)よりも前記接続口(40)から遠い側に前記吸気絞り弁(23)の下流端(23b)が位置するように、前記吸気通路(2、2a)の流路軸xに対して傾斜する前記吸気絞り弁(23)の姿勢とを備え、
前記吸気絞り弁(23)の下流端(23b)が、前記吸気全閉時に、前記吸気通路(2、2a)の流路軸xと前記低圧EGR通路(20、20a)の流路軸yとの交点oよりも前記吸気通路(2、2a)の下流側に位置し、
前記吸気全閉時にEGRガスが前記低圧EGR通路(20、20a)を経て前記吸気絞り弁下流側の前記吸気通路(2、2a)へ流れる流路において、流路面積が最も小さい箇所が、前記低圧EGR通路(20、20a)に設けられていることを特徴とするバルブ装置。
An intake passage (2) for guiding intake air to the internal combustion engine (1), an exhaust passage (3) for exhausting exhaust gas from the internal combustion engine (1), and an exhaust turbine (4) disposed in the exhaust passage (3) ) And a compressor (5) disposed in the intake passage (2), and a high-pressure EGR device and a low-pressure EGR device that recirculate a part of the exhaust to the intake passage (2), A low-pressure EGR device connects the exhaust passage (3) on the exhaust downstream side of the exhaust turbine (4) and the intake passage (2, 2a) on the intake upstream side of the compressor (5) to supply EGR gas to the intake air. In the intake and exhaust system of the internal combustion engine (1) configured to recirculate to the passage (2, 2a),
A valve device constituting the low-pressure EGR device ,
A low pressure EGR passage (20, 20a) orthogonal to the flow passage axis x of the intake passage (2, 2a) when its own flow passage axis y is extended into the intake passage (2, 2a);
A butterfly-type low-pressure EGR valve (21) for opening and closing the low-pressure EGR passage (20, 20a);
A butterfly type intake throttle valve (2) disposed in the intake passage (2, 2a) to restrict the intake passage (2, 2a) and increase the flow rate of EGR gas introduced into the intake passage (2, 2a). 23)
The low pressure EGR valve (21) and the shaft (26, 27), which are the rotation centers of the intake throttle valve (23), are driven together, and the low pressure EGR valve (21) is in the low pressure EGR passage (20, 20a). An interlocking drive mechanism (29, 30) that causes the intake throttle valve (23) to fully close the intake passage (2, 2a) when the opening of the intake valve is maximized,
A posture of the intake fully closed the intake throttle valve (23), said rotation center (27) the intake throttle valve on the side closer to the connection port (40) of the low-pressure EGR passage (20, 20a) than The upstream end (23a) of (23) is located, and the downstream end (23b) of the intake throttle valve (23) is located on the side farther from the connection port (40) than the rotation center (27). The posture of the intake throttle valve (23) inclined with respect to the flow path axis x of the intake passage (2, 2a) ,
The downstream end (23b) of the intake throttle valve (23) has a flow path axis x of the intake passage (2, 2a) and a flow path axis y of the low pressure EGR passage (20, 20a) when the intake is fully closed. Is located on the downstream side of the intake passage (2, 2a) from the intersection o of
In the flow path where EGR gas flows through the low pressure EGR passage (20, 20a) to the intake passage (2, 2a) on the downstream side of the intake throttle valve when the intake air is fully closed, the portion with the smallest flow area is the A valve device provided in the low pressure EGR passage (20, 20a).
請求項1に記載のバルブ装置において、
前記回動中心(27)が、前記交点oよりも前記吸気通路(2、2a)の上流側に位置することを特徴とするバルブ装置。
The valve device according to claim 1,
The valve device, wherein the rotation center (27) is located upstream of the intersection point o in the intake passage (2, 2a).
JP2013193783A 2013-09-19 2013-09-19 Valve device Expired - Fee Related JP6011501B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013193783A JP6011501B2 (en) 2013-09-19 2013-09-19 Valve device
DE201410113302 DE102014113302A1 (en) 2013-09-19 2014-09-16 valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013193783A JP6011501B2 (en) 2013-09-19 2013-09-19 Valve device

Publications (2)

Publication Number Publication Date
JP2015059506A JP2015059506A (en) 2015-03-30
JP6011501B2 true JP6011501B2 (en) 2016-10-19

Family

ID=52580115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013193783A Expired - Fee Related JP6011501B2 (en) 2013-09-19 2013-09-19 Valve device

Country Status (2)

Country Link
JP (1) JP6011501B2 (en)
DE (1) DE102014113302A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102136045B1 (en) * 2020-02-06 2020-07-20 임수진 Manufacturing method of multi-stage intaglio-relief pattern on fabric and fabric having the multi-stage intaglio-relief pattern

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6395785B2 (en) * 2016-09-30 2018-09-26 川崎重工業株式会社 Marine engine system
KR101890613B1 (en) * 2016-11-11 2018-08-23 주식회사 현대케피코 Throttle valve of vaporizer for vehicles
KR101948520B1 (en) * 2017-06-16 2019-02-15 이래에이엠에스 주식회사 Integrated back pressure and egr valve module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587848A (en) * 1978-12-25 1980-07-03 Toyota Motor Corp Air intake-egr controller for diesel engine
JPS5654947A (en) * 1979-10-09 1981-05-15 Toyota Motor Corp Intake and egr controller for diesel engine
JP2012177314A (en) * 2011-02-25 2012-09-13 Denso Corp Exhaust device of internal combustion engine
JP5454460B2 (en) 2010-12-13 2014-03-26 株式会社デンソー Exhaust gas recirculation device for an internal combustion engine provided with a valve unit and a valve unit
JP5287953B2 (en) 2011-04-27 2013-09-11 株式会社デンソー Low pressure EGR device
DE102012203156B4 (en) * 2012-02-29 2014-01-09 Continental Automotive Gmbh Mixing valve of an internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102136045B1 (en) * 2020-02-06 2020-07-20 임수진 Manufacturing method of multi-stage intaglio-relief pattern on fabric and fabric having the multi-stage intaglio-relief pattern

Also Published As

Publication number Publication date
JP2015059506A (en) 2015-03-30
DE102014113302A1 (en) 2015-03-19

Similar Documents

Publication Publication Date Title
JP5287953B2 (en) Low pressure EGR device
JP5747483B2 (en) Low pressure loop EGR device
US20130167812A1 (en) Exhaust gas recirculation valve
JP6011501B2 (en) Valve device
JP5986578B2 (en) Exhaust turbocharger turbine
JP2006189049A (en) Device for imparting whirling motion on air flow for supplying turbo-charged internal combustion engine
US20180038290A1 (en) Turbine supercharger and two-stage supercharging system
JP6394621B2 (en) Engine supercharger
JP2008309125A (en) Exhaust gas recirculation system for internal combustion engine
JP5811889B2 (en) Air cooler
US10844778B2 (en) Exhaust-flow-rate control valve, and two-stage supercharging system provided with same
JP6040918B2 (en) EGR valve device
JP6384286B2 (en) Valve unit
JP2008261294A (en) Control device for internal combustion engine with supercharger
JP6642321B2 (en) engine
JP2010216365A (en) Supercharging system for internal combustion engine
WO2012176866A1 (en) Multistage supercharging system
JP2006249949A (en) Exhaust gas recirculation device for internal combustion engine
JP4971242B2 (en) Intake device for internal combustion engine
JP6260430B2 (en) Valve device
JP2009299540A (en) Exhaust gas recirculation device in multi-cylinder internal combustion engine
JP6489266B2 (en) Valve unit
JP6036623B2 (en) Valve device
KR20140111291A (en) Exhaust gas recirculation system with a poppet valve
JP2011058427A (en) Adjusting valve and supercharging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160905

R151 Written notification of patent or utility model registration

Ref document number: 6011501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees