JP6040918B2 - EGR valve device - Google Patents

EGR valve device Download PDF

Info

Publication number
JP6040918B2
JP6040918B2 JP2013241888A JP2013241888A JP6040918B2 JP 6040918 B2 JP6040918 B2 JP 6040918B2 JP 2013241888 A JP2013241888 A JP 2013241888A JP 2013241888 A JP2013241888 A JP 2013241888A JP 6040918 B2 JP6040918 B2 JP 6040918B2
Authority
JP
Japan
Prior art keywords
intake
egr
flow path
valve
throttle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013241888A
Other languages
Japanese (ja)
Other versions
JP2015101987A (en
Inventor
勇一朗 守谷
勇一朗 守谷
徳幸 稲垣
徳幸 稲垣
宮崎 真輔
真輔 宮崎
考司 橋本
考司 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013241888A priority Critical patent/JP6040918B2/en
Priority to DE102014116974.3A priority patent/DE102014116974A1/en
Publication of JP2015101987A publication Critical patent/JP2015101987A/en
Application granted granted Critical
Publication of JP6040918B2 publication Critical patent/JP6040918B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/16Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
    • F16K1/18Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
    • F16K1/22Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/21Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system with EGR valves located at or near the connection to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/53Systems for actuating EGR valves using electric actuators, e.g. solenoids
    • F02M26/54Rotary actuators, e.g. step motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/64Systems for actuating EGR valves the EGR valve being operated together with an intake air throttle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/20Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0276Throttle and EGR-valve operated together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/70Flap valves; Rotary valves; Sliding valves; Resilient valves

Description

本発明は、自動車のごとき車両に搭載される内燃機関(以下、エンジンともいう。)のEGR装置、例えば、吸排気系に過給機を搭載するエンジンに適用され、このエンジンの排気通路に設けられる排気浄化装置を通過した排気ガスの一部をEGRガスとして過給機のコンプレッサより上流側の吸気通路に再循環させるEGR装置において、特に、バルブを集約しているEGRバルブ装置に関する。   The present invention is applied to an EGR device of an internal combustion engine (hereinafter also referred to as an engine) mounted on a vehicle such as an automobile, for example, an engine in which a supercharger is mounted in an intake / exhaust system, and is provided in an exhaust passage of the engine. More particularly, the present invention relates to an EGR valve device that collects valves in an EGR device that recirculates a part of exhaust gas that has passed through an exhaust gas purification device as an EGR gas to an intake passage upstream of a compressor of a supercharger.

従来、エンジンの排気ガスに含まれるNOx(窒素酸化物)を抑制する手段として、排気ガスの一部をEGRガスとして吸気に再循環させるEGR技術が公知である。
このEGR技術は、EGRガスの量を増やすことでNOxの量を減らすことができる反面、EGRガスを過剰に再循環させると、粒子状物質である黒鉛(PM)が発生しやすくなるため、近年、高圧系と低圧系のEGR装置を組み合わせることで、黒鉛の発生を抑制しつつ、NOxを削減する方式が賞用されている。
Conventionally, as a means for suppressing NOx (nitrogen oxide) contained in engine exhaust gas, an EGR technique in which a part of the exhaust gas is recirculated to the intake air as EGR gas is known.
Although this EGR technique can reduce the amount of NOx by increasing the amount of EGR gas, if EGR gas is recirculated excessively, particulate matter (PM) is likely to be generated in recent years. A method of reducing NOx while suppressing the generation of graphite by combining a high-pressure system and a low-pressure EGR apparatus has been used.

かかる方式の場合、とりわけ、低圧系のEGR装置には種々の工夫を要する。つまり、このEGR装置は、排気圧が比較的低い運転領域から吸気負圧の発生が低い運転領域にEGRガスを戻すシステム構成にならざるを得ないため、少量のEGRガスをエンジンに戻すことは可能であるが、多量のEGRガスをエンジンに戻すことが困難となる。
そこで、図6に示すように、EGR流路100との合流部より吸気上流側の吸気流路110に吸気(新気)制御用の吸気絞りバルブ120を配置することで、多量のEGRガスをエンジンに戻すことが要求される運転領域では、図示矢印のごとく、吸気絞りバルブ120を閉じる方向、つまり、吸気負圧が大きくなる方向に吸気絞りバルブ120の開度を制御し、EGRバルブ130の開度に応じてEGRガスを還流するEGR装置が提案されている。
In the case of such a system, various ideas are required especially for the low-pressure EGR apparatus. In other words, this EGR device must have a system configuration in which the EGR gas is returned from the operation region where the exhaust pressure is relatively low to the operation region where the intake negative pressure is low, and therefore a small amount of EGR gas cannot be returned to the engine. Although possible, it becomes difficult to return a large amount of EGR gas to the engine.
Therefore, as shown in FIG. 6, by arranging an intake throttle valve 120 for intake (fresh air) control in the intake flow path 110 on the intake upstream side from the junction with the EGR flow path 100, a large amount of EGR gas is generated. In the operation region where it is required to return to the engine, as shown by the arrow in the figure, the opening degree of the intake throttle valve 120 is controlled in the direction in which the intake throttle valve 120 is closed, that is, the intake negative pressure is increased. An EGR device that recirculates EGR gas according to the opening degree has been proposed.

〔従来技術の問題点〕
しかしながら、かかるEGR装置にあっては、EGRバルブおよびこのバルブを開閉駆動する電動アクチュエータのごとき駆動手段のほかに、吸気絞りバルブおよびこのバルブを開閉駆動する同様な駆動手段を必要とするために、システム全体が必然的に大型化し、車両搭載上の制約を余儀なくされることである。
このため、EGRバルブと吸気絞りバルブとの両バルブを共通のバルブハウジングに設置してEGRバルブ装置として1ユニット化すること、および、この両バルブの開閉制御を共通の駆動手段(電動アクチュエータ)で行うことが考えられ、実用に供されつつある(例えば、特許文献1参照)。
この特許文献1に記載のEGRバルブ装置によれば、吸気絞りバルブをバルブハウジングの合流部分に配設することで、EGR装置全体のコンパクト化を図れ、車両搭載上の制約が緩和されるため、これからのEGR装置向けとして有望視されている。
[Problems of the prior art]
However, in such an EGR device, in addition to the drive means such as an EGR valve and an electric actuator for opening and closing the valve, an intake throttle valve and a similar drive means for opening and closing the valve are required. The entire system will inevitably become larger, and restrictions on vehicle mounting will be forced.
For this reason, both the EGR valve and the intake throttle valve are installed in a common valve housing to form one unit as an EGR valve device, and the opening / closing control of both valves is performed by a common driving means (electric actuator). It is considered to be performed and is being put to practical use (for example, see Patent Document 1).
According to the EGR valve device described in Patent Document 1, by arranging the intake throttle valve at the merging portion of the valve housing, the EGR device as a whole can be made compact, and restrictions on vehicle mounting are eased. Promising for future EGR devices.

特開2012−177314号公報JP 2012-177314 A

ところで、車両を取り巻く環境が年々厳しさを増しており、これに伴なって、この種EGR装置にもより一層の小型化・高性能化が待望されている。したがって、機能的にも体格的にも当該EGR装置の中枢を担うEGRバルブ装置に関し、エンジンの高性能化に追従して好適なEGR性能を発揮するように如何にマッチングさせていくかが、当業者にとっての当面の課題である。   By the way, the environment surrounding the vehicle is becoming more severe year by year, and accordingly, this type of EGR apparatus is expected to be further reduced in size and performance. Therefore, regarding the EGR valve device that plays a central role in the EGR device, both functionally and physically, how to match the EGR performance so as to exhibit suitable EGR performance following the high performance of the engine. This is an immediate problem for the contractor.

本発明者らは、このマッチング技術の更なる向上を目指し、数多の実験・研究を重ねてきたが、このたび使用実態を精査したところ、次のような問題点が内在していることを突き止めた。
(1)かつてのこの種EGR装置においては、上述のごとく、吸気絞りバルブを閉じることにより、合流部に大きな吸気負圧を発生させ、多量のEGRガスをエンジンに戻すことであった。
(2)ところが、エンジンの高出力化に伴なって、吸気絞りバルブを全開にした状態でEGRバルブを全開(もしくはそれに近い中間開度)にしてできるだけ多くのEGRガスをエンジンに戻すことが必要な運転領域が生じてきた。
(3)この運転領域において、吸気絞りバルブを全開位置状態にし、EGRバルブを全開(もしくは所望も中間開度)にしても、意外なことに所望のEGRガス量が還流しないことが確認された。その原因を究明したところ、吸気絞りバルブを合流部に配設することで、充分なEGR機能が発揮されるものと考えられていたが、吸気絞りバルブを全開状態にすると、その弁体がEGRガスの流通を一部阻害するためにEGR機能が損なわれることが判明した。
The present inventors have made many experiments and researches with the aim of further improving the matching technology.However, after examining the actual usage, it has been found that the following problems are inherent. I found it.
(1) In this type of EGR device, as described above, by closing the intake throttle valve, a large negative intake pressure is generated at the junction, and a large amount of EGR gas is returned to the engine.
(2) However, as the output of the engine increases, it is necessary to return the EGR valve to the engine as much as possible by fully opening the EGR valve (or an intermediate opening close to it) with the intake throttle valve fully opened. A new operating area has arisen.
(3) In this operating range, it was confirmed that the desired amount of EGR gas does not recirculate unexpectedly even when the intake throttle valve is fully opened and the EGR valve is fully opened (or the desired opening is also an intermediate opening). . As a result of investigating the cause, it was thought that a sufficient EGR function was exhibited by disposing the intake throttle valve at the junction. However, when the intake throttle valve is fully opened, the valve body becomes EGR. It has been found that the EGR function is impaired because the gas flow is partially inhibited.

本発明は、上記の事情に鑑みてなされたものであって、その目的は、コンパクトな構成でありながら、エンジンの要求性能に適合したEGR性能を発揮することができるEGRバルブ装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an EGR valve device capable of exhibiting EGR performance suitable for engine performance while having a compact configuration. It is in.

〔請求項1の手段〕
請求項1に記載のEGRバルブ装置は、エンジンへの吸気を供給する吸気流路、この吸気流路にエンジンの排気ガスをEGRガスとして導くEGR流路、および吸気流路における吸気上流側と吸気下流側との間にEGR流路をT字状に合流させる合流部を具有するバルブハウジングと、このバルブハウジングに設けられ、EGR流路の開度調整を行うEGRバルブと、合流部に配設され、吸気流路の開度調整を行うとともに合流部に吸気負圧を発生させる吸気絞りバルブとを備えることを基本構成とするものであって、
バルブハウジングは、合流部における吸気絞りバルブの配設位置より吸気下流側において、吸気絞りバルブの全開位置とEGR流路の合流側開口部との間で形成される最小有効流通面積を、吸気絞りバルブの全開時における吸気流路の最大有効流通面積の1/2以上にする拡大流路部を有していることを特徴としている。
[Means of Claim 1]
The EGR valve device according to claim 1 is an intake passage that supplies intake air to the engine, an EGR passage that guides engine exhaust gas to the intake passage as EGR gas, and an intake upstream side and intake air in the intake passage A valve housing having a merging portion for joining the EGR flow path in a T-shape with the downstream side, an EGR valve provided in the valve housing for adjusting the opening degree of the EGR flow path, and a merging portion The basic configuration includes an intake throttle valve that adjusts the opening degree of the intake flow path and generates intake negative pressure at the merging portion,
The valve housing has a minimum effective flow area formed between the fully open position of the intake throttle valve and the merging side opening of the EGR flow path on the downstream side of the intake side of the intake throttle valve at the merging portion. It is characterized by having an enlarged flow path portion that makes the intake channel more than 1/2 of the maximum effective flow area when the valve is fully opened.

上記構成のEGRバルブ装置によれば、吸気絞りバルブの全開位置状態の時には吸気絞りバルブの全開位置とEGR流路の合流側開口部との間には充分な流通面積を確保することができるため、EGRバルブを全開にすると、吸気絞りバルブに何ら阻害されることなく充分な量のEGRガスを還流することができる。
しかも、拡大流路部を設けるだけの簡単な構成であり、バルブハウジング自体も従来通り簡単に(切削加工を特別に要することなく)作製することもできる。
したがって、コンパクトな1ユニット構成でありながら、エンジンの要求性能に適合したEGR性能を発揮することができるEGRバルブ装置を提供することができる。
According to the EGR valve device having the above configuration, when the intake throttle valve is in the fully open position, a sufficient flow area can be ensured between the fully open position of the intake throttle valve and the merging side opening of the EGR flow path. When the EGR valve is fully opened, a sufficient amount of EGR gas can be recirculated without being obstructed by the intake throttle valve.
In addition, it is a simple configuration in which only the enlarged flow path portion is provided, and the valve housing itself can be easily manufactured as usual (without special cutting work).
Therefore, it is possible to provide an EGR valve device capable of exhibiting EGR performance adapted to the required performance of the engine while having a compact one-unit configuration.

〔請求項2の手段〕
請求項2に記載のEGRバルブ装置は、吸気流路の流通面積に関係なく適用するものであって、バルブハウジングは、合流部における吸気絞りバルブの配設位置より吸気下流側において、吸気絞りバルブの全開位置とEGR流路の合流側開口部との間で形成される最小有効流通面積を、EGRバルブの全開時におけるEGR流路のバルブ開口面積以上に拡開する拡大流路部を有していることを特徴としている。
[Means of claim 2]
The EGR valve device according to claim 2 is applied regardless of the flow area of the intake flow path, and the valve housing is arranged at the intake downstream side of the intake throttle valve at the merging portion. An expanded flow path portion that expands the minimum effective flow area formed between the fully opened position of the EGR flow path and the merge side opening of the EGR flow path to be larger than the valve opening area of the EGR flow path when the EGR valve is fully opened It is characterized by having.

かかるEGRバルブ装置においては、吸気流路の流通面積の大小にかかわらず、吸気絞りバルブの全開位置における所望のEGRガス流通面積を確保でき、バルブハウジング自体も従来通り簡単に作製することができるため、上記請求項1の手段と同様の効果を得ることができる。   In such an EGR valve device, a desired EGR gas flow area at the fully open position of the intake throttle valve can be secured regardless of the flow area of the intake flow path, and the valve housing itself can be easily manufactured as usual. The effect similar to that of the means of claim 1 can be obtained.

本発明を適用したEGRバルブ装置の第1実施形態の説明に供するもので、EGRバルブが全開位置および吸気絞りバルブが全閉位置の状態時における模式的構成図である(実施例1)。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram when an EGR valve is in a fully open position and an intake throttle valve is in a fully closed position for explaining the first embodiment of an EGR valve device to which the present invention is applied (Example 1). 上記EGRバルブ装置における主としてバルブハウジングの構造説明に供するもので、EGRバルブが中間開度位置および吸気絞りバルブが全開位置の状態時における模式的断面図である(実施例1)。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view when the EGR valve is in an intermediate opening position and the intake throttle valve is in a fully open position, mainly for explaining the structure of a valve housing in the EGR valve device (Example 1). 上記バルブハウジングの作製例を示す断面図である。It is sectional drawing which shows the example of preparation of the said valve housing. 本発明を適用したEGRバルブ装置の第2実施形態を示すもので、主としてバルブハウジングの構造説明に供するものであり、EGRバルブが中間開度位置および吸気絞りバルブが全開位置の状態時における模式的断面図である(実施例2)。FIG. 2 shows a second embodiment of an EGR valve device to which the present invention is applied, which is mainly used for explaining the structure of the valve housing, and is a schematic view when the EGR valve is in an intermediate opening position and the intake throttle valve is in a fully open position. (Example 2) which is sectional drawing. エンジンの吸排気システムの全体構成を概略的に示す模式図である。It is a mimetic diagram showing roughly the whole composition of an engine intake-exhaust system. 従来のEGR装置における低圧EGRバルブと吸気絞り弁との関係を示す模式的断面図である(従来技術)。It is typical sectional drawing which shows the relationship between the low pressure EGR valve and the intake throttle valve in the conventional EGR apparatus (prior art).

以下、本発明を実施するための最良の形態を、図面に示す2つの実施例にしたがって詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail according to two embodiments shown in the drawings.

各実施例は、本発明を適用するEGRバルブ装置の代表例として、吸排気系に過給機を搭載する内燃機関(エンジン)に好適なEGRバルブ装置を示しており、以下の説明では、まず、エンジンの吸排気システムの基本的な構成を概説したのち、本発明の各実施例における特徴点および本発明の基本的機能について順次説明し、最後に本発明の特徴点毎の作用効果を要約列挙する。
なお、各実施例において、同一または均等部分には、同一符号を付し、重複説明を省略することとする。
Each embodiment shows an EGR valve device suitable for an internal combustion engine (engine) in which a supercharger is mounted in an intake / exhaust system, as a representative example of an EGR valve device to which the present invention is applied. After reviewing the basic configuration of the intake / exhaust system of the engine, the features of each embodiment of the present invention and the basic functions of the present invention will be described in order, and finally the effects of the features of the present invention will be summarized. Enumerate.
In each embodiment, the same or equivalent parts are denoted by the same reference numerals, and redundant description is omitted.

[実施例1]
〔吸排気システムの基本構成〕
本発明を適用するエンジンの吸排気システムの全体構成について、図5に基づいて説明する。
エンジン1は、例えば、燃料に軽油を使用するディーゼルエンジン、あるいは、ガソリンを使用するガソリンエンジンであり、吸入空気(吸気、新気)をエンジン1の気筒内に導入する吸気流路2と、気筒内で燃料の燃焼によって発生した排気ガスを大気に排出する排気流路3とを備える。
過給機Kは、例えば、エンジン1より排出される排気ガスのエネルギを回転力に変換する排気タービン4と、この排気タービン4と同軸に連結されるコンプレッサ5とを有し、このコンプレッサ5の回転によって吸気を圧縮して吸気流路2からエンジン1へ供給するターボチャージャである。
[Example 1]
[Basic structure of intake and exhaust system]
The overall configuration of an intake / exhaust system for an engine to which the present invention is applied will be described with reference to FIG.
The engine 1 is, for example, a diesel engine that uses light oil as a fuel or a gasoline engine that uses gasoline, and an intake passage 2 that introduces intake air (intake air, fresh air) into the cylinder of the engine 1, and a cylinder And an exhaust passage 3 for exhausting the exhaust gas generated by the combustion of the fuel to the atmosphere.
The supercharger K includes, for example, an exhaust turbine 4 that converts energy of exhaust gas discharged from the engine 1 into rotational force, and a compressor 5 that is coaxially connected to the exhaust turbine 4. A turbocharger that compresses intake air by rotation and supplies the compressed air to the engine 1 from the intake passage 2.

吸気流路2には、吸気口6aより取り込んだ外気に含まれる砂埃などの異物を取り除くエアクリーナ6、上記のコンプレッサ5、このコンプレッサ5で圧縮された吸気を冷却するインタークーラ7、吸気量を調整するスロットルバルブ8を組み込んだスロットルボディ9、および、所定の容積室を形成するサージタンク10等が配設されている。
排気流路3には、上記の排気タービン4、排気ガスに含まれる粒子状物質(PM)を補集するDPF11(ディーゼルパティキュレートフィルターの略)等が設けられている。
なお、DPF11は、排気浄化装置の一例である。
In the intake passage 2, an air cleaner 6 that removes foreign matters such as dust contained in the outside air taken in from the intake port 6 a, the compressor 5, the intercooler 7 that cools the intake air compressed by the compressor 5, and the intake air amount are adjusted. A throttle body 9 incorporating a throttle valve 8 and a surge tank 10 forming a predetermined volume chamber are disposed.
The exhaust passage 3 is provided with the exhaust turbine 4 and the DPF 11 (abbreviation of diesel particulate filter) that collects particulate matter (PM) contained in the exhaust gas.
The DPF 11 is an example of an exhaust purification device.

〔EGR装置の基本構成〕
次に、EGR装置について説明する。
エンジン1の吸排気系には、高圧EGR装置と低圧EGR装置とが設けられている。
[Basic configuration of EGR equipment]
Next, the EGR device will be described.
The intake and exhaust system of the engine 1 is provided with a high pressure EGR device and a low pressure EGR device.

高圧EGR装置は、エンジン1から排出された直後の比較的高温および高圧の排気ガスの一部を高圧EGRガスとして吸気側へ還流させる高圧系の排気還流装置である。
この高圧EGR装置は、図5の上方に示しているように、排気タービン4より排気上流側の排気流路3とスロットルバルブ8より吸気下流側の吸気流路2(本実施例ではサージタンク10)とを接続する高圧EGR流路12と、この高圧EGR流路12を通って吸気側へ還流する高圧EGRガスの流量を調整する高圧EGRバルブ13と、吸気側へ還流する高圧EGRガスを冷却する高圧EGRクーラ14と、この高圧EGRクーラ14をバイパスするバイパスEGR流路15と、高圧EGRガスが高圧EGRクーラ14を経由して吸気側に還流するEGR経路とバイパスEGR流路15を通って吸気側に還流するEGR経路とを切り替えるEGR流路切替バルブ16とを備える。
The high-pressure EGR device is a high-pressure exhaust gas recirculation device that recirculates a part of relatively high-temperature and high-pressure exhaust gas immediately after being discharged from the engine 1 to the intake side as high-pressure EGR gas.
As shown in the upper part of FIG. 5, this high pressure EGR device has an exhaust passage 3 upstream of the exhaust turbine 4 and an intake passage 2 downstream of the throttle valve 8 (in this embodiment, a surge tank 10 ), A high pressure EGR valve 13 that adjusts the flow rate of the high pressure EGR gas that recirculates to the intake side through the high pressure EGR flow passage 12, and the high pressure EGR gas that recirculates to the intake side. A high pressure EGR cooler 14 that bypasses the high pressure EGR cooler 14, a bypass EGR flow path 15 that bypasses the high pressure EGR cooler 14, an EGR path through which the high pressure EGR gas recirculates to the intake side via the high pressure EGR cooler 14, and a bypass EGR flow path 15. And an EGR flow path switching valve 16 for switching an EGR path that recirculates to the intake side.

低圧EGR装置は、比較的低温および低圧の排気ガスの一部を低圧EGRガスとして吸気側へ還流させる低圧系の排気還流装置である。
この低圧EGR装置は、図5の下方に示しているように、排気タービン4より排気下流側(本実施例ではDPF11の排気下流側)の排気流路3とコンプレッサ5より吸気上流側の吸気流路2とを接続する低圧EGR流路17と、この低圧EGR流路17を通って吸気側へ還流する低圧EGRガスの流量を調整する低圧EGRバルブ18と、吸気側へ還流する低圧EGRガスを冷却する低圧EGRクーラ19と、低圧EGRバルブ18が低圧EGR流路17を開閉する動作に連動して吸気流路2の開度を調整する吸気絞りバルブ20とを備える。
The low-pressure EGR device is a low-pressure exhaust gas recirculation device that recirculates a part of relatively low-temperature and low-pressure exhaust gas to the intake side as low-pressure EGR gas.
As shown in the lower part of FIG. 5, this low-pressure EGR device has an intake air flow upstream of the exhaust flow path 3 and the compressor 5 on the exhaust downstream side of the exhaust turbine 4 (in this embodiment, the downstream side of the exhaust of the DPF 11). A low pressure EGR flow path 17 that connects the passage 2, a low pressure EGR valve 18 that adjusts the flow rate of the low pressure EGR gas that recirculates to the intake side through the low pressure EGR flow path 17, and a low pressure EGR gas that recirculates to the intake side A low pressure EGR cooler 19 that cools and an intake throttle valve 20 that adjusts the opening degree of the intake flow path 2 in conjunction with the operation of the low pressure EGR valve 18 opening and closing the low pressure EGR flow path 17 are provided.

続いて、本発明に係る低圧EGRバルブ18と吸気絞りバルブ20との基本的な連携関係について、主として図1を参照しながら説明する。
なお、以下の説明では、各機能要素が低圧系に係るものであるため、特別な場合を除き、「低圧EGR流路17および低圧EGRバルブ18」等の低圧系機能要素を、それぞれ単に「EGR流路17およびEGRバルブ18」等と略称することする。
Next, a basic cooperative relationship between the low pressure EGR valve 18 and the intake throttle valve 20 according to the present invention will be described mainly with reference to FIG.
In the following description, since each functional element relates to a low pressure system, except for special cases, the low pressure system functional elements such as “low pressure EGR flow path 17 and low pressure EGR valve 18” are simply referred to as “EGR”. These are abbreviated as “channel 17 and EGR valve 18”.

EGRバルブ18と吸気絞りバルブ20は、後述する連動機構と共に、1つのバルブハウジングVHに集約され、EGRバルブユニットUとして一体的に構成されている。なお、このEGRバルブユニットUが本発明のEGRバルブ装置を構成するものであって、バルブハウジングVHには、吸気流路2の一部およびEGR流路17の一部がT字状に配設されている。   The EGR valve 18 and the intake throttle valve 20 are integrated into one valve housing VH together with an interlocking mechanism to be described later, and are integrally configured as an EGR valve unit U. The EGR valve unit U constitutes the EGR valve device of the present invention, and a part of the intake passage 2 and a part of the EGR passage 17 are arranged in a T shape in the valve housing VH. Has been.

EGRバルブ18は、円板状の弁体18aがシャフト18bと一体に回転するバタフライバルブであり、吸気流路2に接続されるEGR流路17の出口(図2の合流側開口部17a)付近に配置される。なお、図1に示す吸気流路2は、図示左側がエアクリーナ6側、図示右側がエンジン1側である。
このEGRバルブ18は、弁体18aの開度が最小となる全閉位置と、弁体18aの開度が最大となる全開位置(図1に示す破線位置)との間でシャフト18bを中心として回動可能に設けられ、電動アクチュエータ(図示せず)に発生する回転力が動力伝達装置(以下に説明する)を介してシャフト18bに伝達されることで回動変位する。
The EGR valve 18 is a butterfly valve in which a disc-like valve body 18a rotates integrally with a shaft 18b, and is near the outlet (the confluence-side opening 17a in FIG. 2) of the EGR passage 17 connected to the intake passage 2. Placed in. 1, the left side in the drawing is the air cleaner 6 side, and the right side in the drawing is the engine 1 side.
The EGR valve 18 is centered on a shaft 18b between a fully closed position where the opening degree of the valve body 18a is minimum and a fully open position (a broken line position shown in FIG. 1) where the opening degree of the valve body 18a is maximum. It is provided so as to be able to rotate, and a rotational force generated in an electric actuator (not shown) is transmitted to the shaft 18b via a power transmission device (described below), thereby being rotationally displaced.

電動アクチュエータは、例えば、直流モータを使用したバルブ駆動手段であり、EGRバルブ18の回動位置をバルブ角度として検出するバルブ角度センサ(図示せず)の検出角度が、エンジン1の運転状態に応じて設定される制御目標値と一致するように、電子制御装置であるECU(図示せず)によってフィードバック制御される。
動力伝達装置は、直流モータの回転速度を減速して駆動トルクを増幅する歯車列によって構成される。この歯車列は、直流モータの出力軸に取り付けられるピニオン21と、このピニオン21に噛み合う減速ギヤ22と、この減速ギヤ22と共通の中心軸22aに支持されて減速ギヤ22と一体に回転する小径ギヤ23と、この小径ギヤ23に噛み合うバルブギヤ24とで構成され、このバルブギヤ24がEGRバルブ18のシャフト18bに固定されている。
The electric actuator is, for example, valve driving means using a DC motor, and the detection angle of a valve angle sensor (not shown) that detects the rotation position of the EGR valve 18 as the valve angle depends on the operating state of the engine 1. Feedback control is performed by an ECU (not shown), which is an electronic control device, so as to coincide with the control target value set in the above.
The power transmission device includes a gear train that decelerates the rotational speed of the DC motor and amplifies the drive torque. The gear train includes a pinion 21 that is attached to the output shaft of the DC motor, a reduction gear 22 that meshes with the pinion 21, and a small diameter that is supported by a central shaft 22 a that is common to the reduction gear 22 and rotates integrally with the reduction gear 22. The gear 23 and a valve gear 24 that meshes with the small-diameter gear 23 are configured. The valve gear 24 is fixed to the shaft 18 b of the EGR valve 18.

吸気絞りバルブ20は、EGRバルブ18と同様に、円板状の弁体20aがシャフト20bと一体に回転するバタフライバルブであり、EGR流路17からEGRガスが流れ込む吸気流路2のEGRガス流入部(EGR流路17との接続部=図2の合流部C)に配置されている。
この吸気絞りバルブ20は、以下に説明する連動機構を介してEGRバルブ18に連結され、標準作動として、EGRバルブ18がEGR流路17を開く開弁動作に連動して吸気流路2の開度を絞ることにより、吸気流路2に還流するEGRガスの流量を増加させる働きを行う。
連動機構は、スクリュ25によりバルブギヤ24に固定されてEGRバルブ18と一体に回転する駆動プレート26と、吸気絞りバルブ20のシャフト20bに固定されて吸気絞りバルブ20と一体に回転する従動プレート27と、駆動プレート26の回転を従動プレート27に伝達するカム手段(以下に説明する)とで構成される。
As with the EGR valve 18, the intake throttle valve 20 is a butterfly valve in which a disc-shaped valve body 20 a rotates integrally with the shaft 20 b, and the EGR gas inflow of the intake flow path 2 through which EGR gas flows from the EGR flow path 17. It is arranged in the part (connection part with EGR channel 17 = confluence part C in FIG. 2).
The intake throttle valve 20 is connected to the EGR valve 18 through an interlocking mechanism described below, and, as a standard operation, the intake passage 2 is opened in conjunction with the opening operation of the EGR valve 18 opening the EGR passage 17. By reducing the degree, the flow rate of the EGR gas returning to the intake passage 2 is increased.
The interlocking mechanism includes a drive plate 26 that is fixed to the valve gear 24 by the screw 25 and rotates integrally with the EGR valve 18, and a driven plate 27 that is fixed to the shaft 20 b of the intake throttle valve 20 and rotates integrally with the intake throttle valve 20. And cam means (described below) for transmitting the rotation of the drive plate 26 to the driven plate 27.

カム手段は、駆動プレート26に形成されたカム溝28と、従動プレート27に取り付けられるローラ29とで構成され、このローラ29がカム溝28に収容されている。
カム溝28は、カムプロフィールが異なる第1のカム面28aと第2のカム面28bとを有しているが、このカムプロフィールは、標準作動の場合、例えば次のように設定されている。つまり、第1のカム面28aは、EGRバルブ18が全閉位置から中間開度(例えば全閉位置と全開位置との間の所望位置、例えば図2の実線位置)まで回転する間、吸気絞りバルブ20が全開位置(図2に示す位置)に保持されるように、駆動プレート26の回転中心から同一長さの円弧によってカムプロフィールが形成されている。第2のカム面28bは、第1のカム面28aから連続して設けられ、EGRバルブ18が中間開度から図1に示す全開位置まで回転する時に、吸気絞りバルブ20を全閉位置まで駆動するカムプロフィールが形成されている。
The cam means includes a cam groove 28 formed in the drive plate 26 and a roller 29 attached to the driven plate 27, and this roller 29 is accommodated in the cam groove 28.
The cam groove 28 has a first cam surface 28a and a second cam surface 28b having different cam profiles. This cam profile is set as follows in the case of standard operation, for example. That is, the first cam surface 28a is configured to reduce the intake throttle while the EGR valve 18 rotates from the fully closed position to an intermediate opening (for example, a desired position between the fully closed position and the fully open position, for example, the solid line position in FIG. 2). A cam profile is formed by an arc of the same length from the rotation center of the drive plate 26 so that the valve 20 is held in the fully open position (position shown in FIG. 2 ). The second cam surface 28b is provided continuously from the first cam surface 28a, and drives the intake throttle valve 20 to the fully closed position when the EGR valve 18 rotates from the intermediate opening to the fully opened position shown in FIG. A cam profile is formed.

ローラ29は、従動プレート27に設けられるアーム部27aに回転自在に支持されている。
従動プレート27は、外周形状が略円形状に設けられ、径方向の中心部を挿通するシャフト20aに固定されている。ローラ29を支持するアーム部27aは、従動プレート27の周方向の一部に設けられて、従動プレート27の径方向外側へ突き出ている。また、アーム部27aの先端形状は、一定の曲率を有する円弧状に形成されている。
上記のカム手段は、EGRバルブ18と一体に駆動プレート26が回転すると、駆動プレート26に形成されたカム溝28のカムプロフィールにローラ29が追従しながらカム溝28内を移動することで、駆動プレート26の回動が従動プレート27に伝達されて、従動プレート27と一体に吸気絞りバルブ20が回動する。
The roller 29 is rotatably supported by an arm portion 27 a provided on the driven plate 27.
The driven plate 27 is provided with a substantially circular outer peripheral shape, and is fixed to a shaft 20a that passes through a central portion in the radial direction. The arm portion 27 a that supports the roller 29 is provided in a part of the driven plate 27 in the circumferential direction, and protrudes outward in the radial direction of the driven plate 27. In addition, the tip shape of the arm portion 27a is formed in an arc shape having a certain curvature.
When the drive plate 26 rotates integrally with the EGR valve 18, the above cam means is driven by the roller 29 moving in the cam groove 28 while following the cam profile of the cam groove 28 formed in the drive plate 26. The rotation of the plate 26 is transmitted to the driven plate 27, and the intake throttle valve 20 rotates together with the driven plate 27.

スプリング30は、EGRバルブ18の開弁動作に連動して吸気絞りバルブ20が吸気流路2を閉じる方向へ回転する時の閉弁方向とは逆方向、つまり、図1において時計回転方向へ吸気絞りバルブ20を付勢している。 The spring 30 performs intake in the direction opposite to the valve closing direction when the intake throttle valve 20 rotates in the direction to close the intake flow path 2 in conjunction with the opening operation of the EGR valve 18 , that is, in the clockwise direction in FIG. The throttle valve 20 is energized.

〔本実施例の特徴〕
本発明のEGRバルブ装置(EGRバルブユニットU)は、とりわけ、バルブハウジングVHにおける流路構成と吸気絞りバルブ20の配置関係に特徴を有するもので、図2をも参照しながら詳細に説明する。
[Features of this embodiment]
The EGR valve device (EGR valve unit U) of the present invention is particularly characterized by the flow path configuration in the valve housing VH and the arrangement relationship of the intake throttle valve 20, and will be described in detail with reference to FIG.

バルブハウジングVHは、3つの接続口VH1〜VH3を有する全体としてT字形を呈している。対向する2つの接続口VH1、2には、エンジン1への吸気を供給する吸気流路2が設けられており、この吸気流路2にエンジン1の排気ガスをEGRガスとして導くEGR流路17が、残りの接続口VH3に設けられている。また、バルブハウジングVHの中央部分には、吸気流路2における吸気上流側2a(エアクリーナ6側)と吸気下流側2b(エンジン1側)との間にEGR流路17をT字状に合流させる合流部Cを有している。
吸気流路2において、吸気上流側2aと吸気下流側2bとは、合流部Cを除き、基本的には同一径の横断面円形の流通面積を有している。
そして、バルブハウジングVHには、EGR流路17の開度調整を行うEGRバルブ18と、吸気流路2の開度調整を行う吸気絞りバルブ20とが装着されている。
The valve housing VH has a T shape as a whole having three connection ports VH1 to VH3. An intake passage 2 for supplying intake air to the engine 1 is provided at the two opposing connection ports VH1 and 2, and an EGR passage 17 for guiding exhaust gas of the engine 1 to the intake passage 2 as EGR gas. Is provided in the remaining connection port VH3. Further, in the central portion of the valve housing VH, the EGR flow path 17 is joined in a T shape between the intake upstream side 2a (air cleaner 6 side) and the intake downstream side 2b (engine 1 side) of the intake flow path 2. It has a junction C.
In the intake flow path 2, the intake upstream side 2 a and the intake downstream side 2 b basically have a circular cross-sectional area of the same diameter except for the merging portion C.
The valve housing VH is equipped with an EGR valve 18 that adjusts the opening degree of the EGR flow path 17 and an intake throttle valve 20 that adjusts the opening degree of the intake flow path 2.

吸気絞りバルブ20は、合流部Cに配設されており、吸気流路2の開度調整を行うとともに、吸気流路2の流通面積を絞る(閉じていく)ことで、合流部Cに吸気負圧を発生させる。図1の破線で示す全閉位置から図2の実線で示す全開位置まで回動変位するが、配設位置の関係上、全開位置では弁体20aがEGR流路17の合流側開口部17aと完全に対向することになる。   The intake throttle valve 20 is disposed in the merging portion C, adjusts the opening degree of the intake passage 2, and restricts (closes) the flow area of the intake passage 2, thereby sucking air into the merging portion C. Generate negative pressure. 1 is rotated and displaced from the fully closed position indicated by the broken line in FIG. 1 to the fully open position indicated by the solid line in FIG. 2, but due to the arrangement position, the valve body 20a and the merging side opening 17a of the EGR flow path 17 are located at the fully open position. It will be completely opposite.

そこで、バルブハウジングVHには、合流部Cにおける吸気絞りバルブ20の配設位置より吸気下流側2bに、EGR流路17の合流側開口部17aと吸気流路2の吸気下流側2bとを連接する拡大流路部CXを設けている。この拡大流路部CXが本発明の特徴とするところである。   In view of this, the valve housing VH is connected to the intake downstream side 2b of the intake throttle valve 20 in the merging portion C with the merging side opening 17a of the EGR flow path 17 and the intake downstream side 2b of the intake flow path 2. An enlarged flow path portion CX is provided. This enlarged flow path portion CX is a feature of the present invention.

本実施例においては、この拡大流路部CXとして、EGR流路17の合流側開口部17aを吸気下流側2bに向かって拡開させながら吸気流路2の吸気下流側2bに連通させる傾斜状の合流路C1を設けている。換言すれば、合流部Cにおいて、EGR流路17の合流側開口部17aと吸気流路2の吸気下流側2bとがなす角部(破線で示す)C0を削り取って当該両流路17a、2bが斜めに且つ円滑に連なるがごとき形状を呈している。   In the present embodiment, as the expanded flow path portion CX, an inclined shape that allows the merge side opening 17a of the EGR flow path 17 to communicate with the intake downstream side 2b of the intake flow path 2 while expanding toward the intake downstream side 2b. The combined flow path C1 is provided. In other words, at the merging portion C, a corner C0 (shown by a broken line) formed by the merging side opening 17a of the EGR flow channel 17 and the intake downstream side 2b of the intake flow channel 2 is scraped to remove both the flow channels 17a, 2b. Are diagonally and smoothly connected to each other, but have a shape like this.

そして、この合流路C1を設けることにより、バルブハウジングVH内の流路構成を次のような流通面積に設定している。
吸気流路2において、この吸気流路2の有効最大流通面積は、吸気上流側2aの流通面積を最大限に活用する場合であって、吸気絞りバルブ20の弁体20aを全開位置にしたときの吸気上流側2aの最大有効流通面積に該当し、これをSと呼ぶ。一方、EGR流路17の最大有効流通面積は、合流側開口部17aの開口面積を最大限に活用する場合であって、EGRバルブ18の弁体18aを全開位置にしたときのバルブ開口面積(R1+R2)に該当するが、吸気絞りバルブ20の全開位置では弁体20aがEGR流路17の合流側開口部17aと完全に対向することになるため、吸気絞りバルブ20の全開位置に制約されることになる。そこで、吸気絞りバルブ20の弁体20aの下面(EGR流路17との対向面)周縁と、EGR流路17の合流側開口部17aとで形成される流通面積を、最小有効流通面積Tと呼ぶとき、T≧S/2の関係を満足するように、合流路C1(拡大流路部CX)を形成している。
And by providing this combined flow path C1, the flow path configuration in the valve housing VH is set to the following flow area.
In the intake flow path 2, the effective maximum flow area of the intake flow path 2 is when the flow area on the intake upstream side 2a is utilized to the maximum, and when the valve body 20a of the intake throttle valve 20 is in the fully open position. This corresponds to the maximum effective flow area on the intake upstream side 2a of the engine, and is referred to as S. On the other hand, the maximum effective flow area of the EGR flow path 17 is a case where the opening area of the merging side opening 17a is utilized to the maximum, and the valve opening area when the valve body 18a of the EGR valve 18 is fully opened ( R1 + R2), but when the intake throttle valve 20 is fully opened, the valve body 20a is completely opposed to the merging side opening 17a of the EGR flow path 17, so that the intake throttle valve 20 is restricted to the fully open position. It will be. Therefore, the flow area formed by the peripheral edge of the lower surface of the valve body 20a of the intake throttle valve 20 (the surface facing the EGR flow path 17) and the merging side opening 17a of the EGR flow path 17 is defined as the minimum effective flow area T. When called, the combined flow path C1 (enlarged flow path portion CX) is formed so as to satisfy the relationship of T ≧ S / 2.

なお、破線で示す角部C0が存在する場合には、吸気絞りバルブ20の全開時にここを通過するEGRガスの有効流通面積T0は弁体20aの板厚等を考慮すると、最大でも吸気流路2の有効最大流通面積Sの1/2未満(T0<S/2)であった。   When the corner portion C0 indicated by the broken line exists, the effective flow area T0 of the EGR gas passing through the intake throttle valve 20 when the intake throttle valve 20 is fully opened takes into account the intake passage at the maximum in consideration of the plate thickness of the valve body 20a and the like. The effective maximum distribution area S of 2 was less than 1/2 (T0 <S / 2).

ここで、本発明の要である流通面積を決定するS、T、(R1+R2)の大小関係について補足すると、一般的なEGR装置の場合には、吸気流路2の流通面積がEGR流路17の流通面積に対して充分に大きく、S>2×(R1+R2)の関係にあることから、上記のごとく、T≧S/2に設定したが、例えば、両者の流通面積がS<2×(R1+R2)のごとく逆関係になる場合には、吸気流路2の流通面積の如何にかかわらず、T≧(R1+R2)に設定することは勿論である。   Here, supplementing the magnitude relationship of S, T, and (R1 + R2) that determines the flow area, which is the key of the present invention, in the case of a general EGR device, the flow area of the intake flow path 2 is equal to the EGR flow path 17. Since it is sufficiently large with respect to the distribution area of S and has a relationship of S> 2 × (R1 + R2), T ≧ S / 2 is set as described above. For example, the distribution area of both is S <2 × ( In the case of an inverse relationship such as (R1 + R2), it is a matter of course that T ≧ (R1 + R2) is set regardless of the flow area of the intake flow path 2.

かくして、合流路C1を設けることにより、吸気絞りバルブ20の全開状態時において、EGRバルブ18を全開位置にしたときは、EGR流路17の合流側開口部17aから合流部Cへ流出するEGRガスを、最小有効流通面積Tを最大限活用して(吸気絞りバルブ20の弁体20aとの干渉を回避して)、吸気下流側2bへ供給することができる。   Thus, by providing the merge channel C1, when the EGR valve 18 is in the fully opened position when the intake throttle valve 20 is fully opened, the EGR gas flowing out from the merge side opening 17a of the EGR channel 17 to the merge portion C Can be supplied to the intake downstream side 2b by making maximum use of the minimum effective flow area T (avoid interference with the valve body 20a of the intake throttle valve 20).

〔本実施例の効果〕
EGR装置は、標準的にはエンジン1の出力性能を犠牲にできる運転領域で使用されるものであり、前述したように、EGRバルブ18が例えば図2に示す所望の中間開度から図1に示す全開位置まで回転する時に、吸気絞りバルブ20を全閉位置まで駆動するようにしているが、近年、エンジン1に高出力性能を確保しながら、つまり、吸気絞りバルブ20を全開にした状態で、最大限のEGRガスを還流させる特殊運転領域が出現するようになってきた。
このような特殊運転領域において、上記構成のEGRバルブ装置(EGRバルブユニットU)は、次のような作用効果を奏する。
(1)吸気絞りバルブ20の全開状態時においては、ここを通過するEGRガスの有効流通面積(吸気絞りバルブ20の弁体20aの下面周縁と、EGR流路17の合流側開口部17aとで形成される流通面積)を、最小でもT0より大きい流通面積T(≧S/2)を確保することができるため、EGRバルブ18の開度に応じて、例えば、図2の所望の中間開度位置から図1の全開位置までの範囲においても、白抜き矢印のごとく所望量のEGRガスを還流させることができる。
[Effect of this embodiment]
The EGR device is typically used in an operation region in which the output performance of the engine 1 can be sacrificed. As described above, the EGR valve 18 is changed from the desired intermediate opening shown in FIG. The intake throttle valve 20 is driven to the fully closed position when rotating to the fully open position shown in the drawing. However, in recent years, the engine 1 is secured with high output performance, that is, with the intake throttle valve 20 fully opened. A special operation region for recirculating the maximum amount of EGR gas has appeared.
In such a special operation region, the EGR valve device (EGR valve unit U) configured as described above has the following operational effects.
(1) When the intake throttle valve 20 is fully opened, the effective flow area of the EGR gas passing therethrough (the lower peripheral edge of the valve body 20a of the intake throttle valve 20 and the merging side opening 17a of the EGR flow path 17) 2 can be ensured at least as a distribution area T (≧ S / 2) larger than T0, so that, for example, the desired intermediate opening degree of FIG. Even in the range from the position to the fully open position in FIG. 1, a desired amount of EGR gas can be recirculated as indicated by the white arrow.

(2)拡大流路部CXとして、特に、傾斜状の合流路C1を採用しており、この合流部C1は、関係する両流路、即ちEGR流路17の合流側開口部17aと吸気流路2の吸気下流側2bとを斜めに且つ円滑に連ねているため、EGRガスの流れが滑らかになり(流通抵抗が低減し)、EGRガスの還流量を増量できる。
(3)バルブハウジングVHに拡大流路部CXとして傾斜状の合流路C1を付加するだけの簡単な構成であり、EGRバルブ装置として、コンパクトな1ユニット化を実現することができる。
(2) In particular, an inclined combined flow path C1 is adopted as the expanded flow path section CX, and the combined flow section C1 is connected to both related flow paths, that is, the merge-side opening 17a of the EGR flow path 17 and the intake air flow. Since the intake downstream side 2b of the passage 2 is connected smoothly and diagonally, the flow of the EGR gas becomes smooth (flow resistance is reduced), and the amount of recirculation of the EGR gas can be increased.
(3) It is a simple configuration in which an inclined combined channel C1 is added to the valve housing VH as the expanded channel CX, and a compact one unit can be realized as an EGR valve device.

〔バルブハウジングVHの製造方法〕
次に、上記実施例1に係るバルブハウジングVHの製造方法の一例について、図3を参照しながら説明する。
バルブハウジングVHは、全体としてT字状を呈しており、成型材料により形成される成型品であって、素材の成型材料としては、アルミニウム合金のごとき軽合金、あるいは、ポリイミド樹脂のごとき耐熱樹脂が用いられ、ダイキャスト(金型鋳造)や射出成形等の成型手段で作製されるものである。
本実施例においては、内部流路構成として拡大流路部CXを備えているが、拡大流路部CXを傾斜状の合流路C1で形成しているため、いずれの成型手段を採用したとしても、図3に3種類のハッチングX、Y、Zで示すごとく、3つの接続口VH1〜VH3、つまり、T字状の3方向から型抜きして作製することができる。
したがって、拡大流路部CX(傾斜状の合流路C1)を設けるために、切削加工等の特別な加工を一切要しない。
[Method of manufacturing valve housing VH]
Next, an example of a method for manufacturing the valve housing VH according to the first embodiment will be described with reference to FIG.
The valve housing VH has a T-shape as a whole, and is a molded product formed of a molding material. As a molding material of the material, a light alloy such as an aluminum alloy or a heat resistant resin such as a polyimide resin is used. It is used and produced by molding means such as die casting (mold casting) or injection molding.
In the present embodiment, the expanded flow path portion CX is provided as the internal flow path configuration, but since the expanded flow path portion CX is formed by the inclined combined flow path C1, no matter which molding means is adopted, As shown by three types of hatching X, Y, and Z in FIG. 3, the three connection ports VH1 to VH3, that is, T-shaped three directions can be punched out.
Therefore, no special processing such as cutting is required to provide the enlarged flow path portion CX (inclined combined flow path C1).

[実施例2]
次に、本発明の第2実施形態について、上述の実施例1との相違点を中心に図4に基づいて説明する。
EGR流路17の合流側開口部17aと吸気流路2の吸気下流側2bとを連接する拡大流路部CXとして、上述の実施例1ではEGR流路17の合流側開口部17aを吸気下流側2bに向かって拡開させながら吸気流路2の吸気下流側2bに連通させる傾斜状の合流路C1を採用したが、この実施例2はバルブハウジングVHの組付け手段がパイプ嵌合方式ではなくフランジ締結方式である場合に好適な適用例を示すものである。
[Example 2]
Next, a second embodiment of the present invention will be described based on FIG. 4 with a focus on differences from the first embodiment.
In the first embodiment, the merging side opening 17a of the EGR channel 17 is connected to the intake downstream side as the enlarged channel CX connecting the merging side opening 17a of the EGR channel 17 and the intake downstream side 2b of the intake channel 2 to each other. The inclined joint channel C1 that communicates with the intake downstream side 2b of the intake channel 2 while being expanded toward the side 2b is adopted. In this second embodiment, however, the assembly means of the valve housing VH is the pipe fitting method. This is an example of application suitable for the flange fastening method.

図4に示すように、バルブハウジングVHは、エンジン1側の接続口VH2にフランジVFが設けられており、このフランジVFでエンジン1からの配管(図5のコンプレッサ5の吸入側の配管)PのフランジPFと締結されている。
本実施例においては、EGR流路17の合流側開口部17aと吸気流路2の吸気下流側2bとを連接する拡大流路部CXとして、拡径状の合流路C2を備えている。
この拡径状の合流路C2は、吸気通路2の吸気下流側2b全体を、吸気上流側2aに対し所定量Qだけ径の大きい大径部C21にするとともに、EGR流路17の合流側開口部17aに欠円状切欠きC22を設けて、EGR流路17の合流側開口部17aと吸気流路2の吸気下流側2bとを段差的に連接している。
なお、(R1+R2)は、EGRバルブ18の弁体18aを全開位置にしたときのバルブ開口面積を示している。
かくして、吸気絞りバルブ20の全開位置とEGR流路17の合流側開口部17aとの間で形成される最小有効流通面積Tを、上記バルブ面積(R1+R2)以上、または、吸気流路2の有効最大流通面積Sの1/2以上にしている。
As shown in FIG. 4, the valve housing VH is provided with a flange VF at the connection port VH2 on the engine 1 side, and a pipe (pipe on the suction side of the compressor 5 in FIG. 5) P is connected from the engine 1 by this flange VF. It is fastened with the flange PF.
In this embodiment, an expanded diameter flow path C2 is provided as an expanded flow path portion CX that connects the merge side opening 17a of the EGR flow path 17 and the intake downstream side 2b of the intake flow path 2.
The expanded diameter combined flow path C2 makes the entire intake downstream side 2b of the intake passage 2 a large diameter portion C21 having a diameter larger than the intake upstream side 2a by a predetermined amount Q, and also opens the merge side opening of the EGR flow path 17. A notch C22 is provided in the portion 17a, and the confluence side opening 17a of the EGR flow path 17 and the intake downstream side 2b of the intake flow path 2 are connected stepwise.
Note that (R1 + R2) indicates the valve opening area when the valve element 18a of the EGR valve 18 is in the fully open position.
Thus, the minimum effective flow area T formed between the fully opened position of the intake throttle valve 20 and the merge side opening 17a of the EGR flow path 17 is equal to or greater than the valve area (R1 + R2), or the intake flow path 2 is effective. It is set to 1/2 or more of the maximum distribution area S.

上記構成によれば、吸気絞りバルブ20の全開状態時においては、ここを通過するEGRガスの有効流通面積(吸気絞りバルブ20の弁体20aの下面周縁と、EGR流路17の合流側開口部17aとで形成される流通面積)を、最小でもT0より大きい流通面積T〔T≧(R1+R2)もしくはT≧S/2〕を確保することができるため、EGRバルブ18を全開位置にすることにより、所望のEGRガスを還流させることができる。
また、吸気通路2の吸気下流側2b全体を大径部C21にするだけであるため、バルブハウジングVHは、3つの接続口VH1〜VH3、つまり、T字状の3方向から型抜きすることができる。
したがって、本実施例においても、上記実施例1と同様の効果を得ることができる。
なお、本実施例によれば、接続口VH2の口径(拡径量Q)の調整で拡大流路部CXの流通面積を自由に選定することができ、しかも、接続口VH2の口径と配管Pとの孔径の相違を、フランジVF、PFによって調整することができるため、拡大流路部CXの流通面積の設計自由度が向上する。
According to the above configuration, when the intake throttle valve 20 is fully opened, the effective flow area of the EGR gas passing therethrough (the lower peripheral edge of the valve body 20a of the intake throttle valve 20 and the merging side opening of the EGR flow path 17) 17a), the flow area T [T ≧ (R1 + R2) or T ≧ S / 2] larger than T0 can be secured at least, so that the EGR valve 18 is set to the fully open position. The desired EGR gas can be refluxed.
In addition, since the entire intake downstream side 2b of the intake passage 2 is merely the large-diameter portion C21, the valve housing VH can be die-cut from the three connection ports VH1 to VH3, that is, three T-shaped directions. it can.
Therefore, also in the present embodiment, the same effect as in the first embodiment can be obtained.
According to the present embodiment, the flow area of the enlarged flow path portion CX can be freely selected by adjusting the diameter (expansion amount Q) of the connection port VH2, and the diameter of the connection port VH2 and the pipe P Can be adjusted by the flanges VF and PF, so that the degree of freedom in designing the flow area of the enlarged flow path portion CX is improved.

〔変形例〕
以上本発明の実施形態を2つの実施例について詳述してきたが、本発明の精神を逸脱しない範囲で種々変形することが可能であり、その変形例を例示する。
[Modification]
Although the embodiment of the present invention has been described in detail with reference to two examples, various modifications can be made without departing from the spirit of the present invention, and modifications thereof will be exemplified.

(1)実施例1、2では、EGR流路17が吸気流路2に対し直角に合流する正T字状にしたが、図6あるいは特許文献1のごとくEGR流路17が斜めに合流する変則T字状タイプであっても良く、この変則T字状タイプも、本発明の特許請求の範囲に記載の「T字状」に包含されることは勿論である。
(2)実施例2において、拡径状の合流部C2は、吸気通路2の吸気下流側2b全体を大径部C21に形成することによって設けたが、吸気上流側2aと同一径の吸気下流側2bに所定量Qだけ膨出させる断面U字状の拡径部を追加形成したダルマ型にしても良い。
(1) In the first and second embodiments, the EGR flow path 17 is formed in a normal T shape that merges at a right angle to the intake flow path 2, but the EGR flow path 17 merges obliquely as shown in FIG. An irregular T-shaped type may be used, and this irregular T-shaped type is also included in the “T-shaped” recited in the claims of the present invention.
(2) In the second embodiment, the enlarged diameter confluence portion C2 is provided by forming the entire intake downstream side 2b of the intake passage 2 in the large diameter portion C21, but the intake downstream of the same diameter as the intake upstream side 2a. You may make it the dharma type which additionally formed the diameter-expanded part of the cross-sectional U character made to bulge only the predetermined amount Q on the side 2b.

(3)本実施形態では低圧側のEGR装置に対し本発明を適用したが、高圧側のEGR装置にも吸気絞りバルブが装備される場合には本発明のEGRバルブ装置を同様に適用することができる。
(4)また、本実施形態では、吸排気系にターボチャージャを搭載したエンジン1に本発明のEGRバルブ装置を適用した一例を示したが、ターボチャージャに限定されるものではなく、例えば、吸気通路2に配置されるコンプレッサ5をエンジン1によって駆動するスーパチャージャを搭載したエンジン1に本発明を適用することもできる。この場合、低圧RGR通路17の上流端(低圧EGRガスの取入口)は、排気浄化装置(実施例1ではDPF11)より下流側の排気通路3に接続され、排気浄化装置で浄化された排気ガスの一部が低圧EGRガスとして吸気通路2に還流する。
(3) In the present embodiment, the present invention is applied to the low pressure side EGR device. However, when the high pressure side EGR device is also equipped with an intake throttle valve, the EGR valve device of the present invention is similarly applied. Can do.
(4) Further, in the present embodiment, an example in which the EGR valve device of the present invention is applied to the engine 1 in which the turbocharger is mounted in the intake and exhaust systems has been shown. However, the present invention is not limited to the turbocharger. The present invention can also be applied to the engine 1 equipped with a supercharger that drives the compressor 5 disposed in the passage 2 by the engine 1. In this case, the upstream end of the low pressure RGR passage 17 (intake of the low pressure EGR gas) is connected to the exhaust passage 3 downstream of the exhaust purification device (DPF 11 in the first embodiment), and the exhaust gas purified by the exhaust purification device. Part of the gas flows back to the intake passage 2 as low-pressure EGR gas.

以上詳述してきた本発明の特徴点および特記すべき作用効果を、特許請求の範囲において従属項として記載した各手段にしたがって構造面および方法面の両面から要約列挙すれば、次の通りである。   The features and effects of the present invention that have been described in detail above are summarized and listed from both the structural and method aspects according to the respective means described as the dependent claims in the claims. .

(特徴点1=請求項3の手段)
請求項1または2に記載のEGRバルブ装置において、拡大流路部CXは、合流部Cにおける吸気絞りバルブ20の配設位置より吸気下流側2bに、EGR流路17の合流側開口部17aを吸気下流側2bに向かって拡開させながら吸気流路2の吸気下流側2bに連接する傾斜状の合流路C1で形成されていることを特徴としている(実施例1)。
上記手段によれば、特に、傾斜状の合流路C1を採用しており、この合流部C1は、関係する両流路、即ちEGR流路17の合流側開口部17aと吸気流路2の吸気下流側2bとを斜めに且つ円滑に連ねているため、EGRガスの流れが滑らかになり、EGRガスの還流量を増量できる。
(Feature 1 = Means of claim 3)
3. The EGR valve device according to claim 1, wherein the expanded flow path portion CX has a merge side opening 17 a of the EGR flow path 17 on the intake downstream side 2 b from the position where the intake throttle valve 20 is disposed in the merge section C. The first embodiment is characterized in that it is formed by an inclined combined flow path C1 that is connected to the intake downstream side 2b of the intake flow path 2 while being expanded toward the intake downstream side 2b (Example 1).
According to the above means, in particular, the inclined joining channel C1 is adopted, and this joining part C1 is the two related passages, that is, the joining side opening 17a of the EGR passage 17 and the intake air of the intake passage 2. Since the downstream side 2b is connected obliquely and smoothly, the flow of EGR gas becomes smooth, and the amount of reflux of EGR gas can be increased.

(特徴点2=請求項4の手段)
請求項1または2に記載のEGRバルブ装置において、拡大流路部CXは、合流部Cにおける吸気絞りバルブ20の配設位置より吸気下流側2bに、吸気流路2の吸気下流側流路断面積を拡大し、EGR流路17の合流側開口部17aと吸気流路2の吸気下流側2bとを段差的に連接する拡径状の合流路C2で形成されていることを特徴としている(実施例2)。
上記手段によれば、特に、拡径状の合流路C2を採用しており、この合流部C2は、関係する両流路、即ちEGR流路17の合流側開口部17aと吸気流路2の吸気下流側2bとを段差的に連ねているため、拡径量Qの調整で合流路C2の流通面積を自由に選定することができ、設計自由度が増す。
(Feature point 2 = Means of claim 4)
3. The EGR valve device according to claim 1, wherein the expanded flow path portion CX is connected to the intake downstream side 2 b from the position where the intake throttle valve 20 is disposed in the merging portion C, and the intake downstream side flow path disconnection of the intake flow path 2. The area is enlarged, and it is characterized in that it is formed by an enlarged diameter confluence passage C2 that connects the confluence side opening 17a of the EGR passage 17 and the intake downstream side 2b of the intake passage 2 in a stepwise manner ( Example 2).
According to the above means, in particular, the enlarged diameter confluence channel C2 is employed, and this confluence portion C2 is formed by both related flow passages, that is, the confluence side opening 17a of the EGR flow passage 17 and the intake flow passage 2. Since the intake downstream side 2b is connected stepwise, the flow area of the combined flow path C2 can be freely selected by adjusting the diameter expansion amount Q, and the degree of freedom in design increases.

(特徴点3=請求項5の手段)
請求項3または4に記載のEGRバルブ装置において、バルブハウジングVHは成型材料によりT字状に形成される成型品であって、T字状の3方向から型抜きされて作製されていることを特徴としている。
上記手段によれば、拡大流路部CX(傾斜状の合流路C1、拡径状の合流路C2)を設けるために、切削加工等の特別な加工を一切要しない。
(Feature point 3 = Means of claim 5)
5. The EGR valve device according to claim 3, wherein the valve housing VH is a molded product formed in a T shape from a molding material, and is manufactured by being die-cut from three directions of the T shape. It is a feature.
According to the above means, no special processing such as cutting is required in order to provide the enlarged flow path portion CX (inclined combined flow path C1, expanded diameter combined flow path C2).

1…エンジン(内燃機関)、2…吸気流路、2a…吸気上流側、2b…吸気下流側、17…低圧EGR流路(EGR流路)、17a…合流側開口部、18…EGRバルブ、20…吸気絞りバルブ、C…合流部、CX…拡大流路部、R1、R2…バルブ開口面積、S…最大有効流通面積、T…最小有効流通面積、U…EGRバルブユニット(EGRバルブ装置)、VH…バルブハウジング。   DESCRIPTION OF SYMBOLS 1 ... Engine (internal combustion engine), 2 ... Intake flow path, 2a ... Intake upstream side, 2b ... Intake downstream side, 17 ... Low-pressure EGR flow path (EGR flow path), 17a ... Confluence side opening, 18 ... EGR valve, DESCRIPTION OF SYMBOLS 20 ... Intake throttle valve, C ... Merging part, CX ... Enlarged flow path part, R1, R2 ... Valve opening area, S ... Maximum effective flow area, T ... Minimum effective flow area, U ... EGR valve unit (EGR valve device) , VH: Valve housing.

Claims (5)

内燃機関(1)への吸気を供給する吸気流路(2)、この吸気流路(2)に前記内燃機関(1)の排気ガスをEGRガスとして導くEGR流路(17)、および前記吸気流路(2)における吸気上流側(2a)と吸気下流側(2b)との間に前記EGR流路(17)をT字状に合流させる合流部(C)を具有するバルブハウジング(VH)と、
前記バルブハウジング(VH)に設けられ、前記EGR流路(17)の開度調整を行うEGRバルブ(18)と、
前記合流部(C)に配設され、前記吸気流路(2)の開度調整を行うとともに前記合流部(C)に吸気負圧を発生させる吸気絞りバルブ(20)と、
を備えており、
前記バルブハウジング(VH)は、前記合流部(C)における前記吸気絞りバルブ(20)の配設位置より吸気下流側(2b)において、前記吸気絞りバルブ(20)の全開位置と前記EGR流路(17)の合流側開口部(17a)との間で形成される最小有効流通面積(T)を、前記吸気絞りバルブ(20)の全開時における前記吸気流路(2)の最大有効流通面積(S)の1/2以上にする拡大流路部(CX)を有していることを特徴とするEGRバルブ装置。
An intake passage (2) for supplying intake air to the internal combustion engine (1), an EGR passage (17) for guiding exhaust gas of the internal combustion engine (1) as EGR gas to the intake passage (2), and the intake air A valve housing (VH) having a merging portion (C) for joining the EGR flow path (17) in a T shape between the intake upstream side (2a) and the intake downstream side (2b) in the flow path (2). When,
An EGR valve (18) that is provided in the valve housing (VH) and adjusts the opening of the EGR flow path (17);
An intake throttle valve (20) that is disposed in the merging portion (C), adjusts the opening of the intake passage (2), and generates an intake negative pressure in the merging portion (C);
With
The valve housing (VH) has a fully opened position of the intake throttle valve (20) and the EGR flow path on the downstream side (2b) of the intake throttle valve (20) in the merging portion (C). The minimum effective flow area (T) formed between the merging side opening (17a) of (17) is the maximum effective flow area of the intake flow path (2) when the intake throttle valve (20) is fully opened. An EGR valve device having an enlarged flow path portion (CX) that is ½ or more of (S).
内燃機関(1)への吸気を供給する吸気流路(2)、この吸気流路(2)に前記内燃機関(1)の排気ガスをEGRガスとして導くEGR流路(17)、および前記吸気流路(2)における吸気上流側(2a)と吸気下流側(2b)との間に前記EGR流路(17)をT字状に合流させる合流部(C)を具有するバルブハウジング(VH)と、
前記バルブハウジング(VH)に設けられ、前記EGR流路(17)の開度調整を行うEGRバルブ(18)と、
前記合流部(C)に配設され、前記吸気流路(2)の開度調整を行うとともに前記合流部(C)に吸気負圧を発生させる吸気絞りバルブ(20)と、
を備えており、
前記バルブハウジング(VH)は、前記合流部(C)における前記吸気絞りバルブ(20)の配設位置より吸気下流側(2b)において、前記吸気絞りバルブ(20)の全開位置と前記EGR流路(17)の合流側開口部(17a)との間で形成される最小有効流通面積(T)を、前記EGRバルブ(18)の全開時における前記EGR流路(17)のバルブ開口面積(R1+R2)以上に拡開する拡大流路部(CX)を有していることを特徴とするEGRバルブ装置。
An intake passage (2) for supplying intake air to the internal combustion engine (1), an EGR passage (17) for guiding exhaust gas of the internal combustion engine (1) as EGR gas to the intake passage (2), and the intake air A valve housing (VH) having a merging portion (C) for joining the EGR flow path (17) in a T shape between the intake upstream side (2a) and the intake downstream side (2b) in the flow path (2). When,
An EGR valve (18) that is provided in the valve housing (VH) and adjusts the opening of the EGR flow path (17);
An intake throttle valve (20) that is disposed in the merging portion (C), adjusts the opening of the intake passage (2), and generates an intake negative pressure in the merging portion (C);
With
The valve housing (VH) has a fully opened position of the intake throttle valve (20) and the EGR flow path on the downstream side (2b) of the intake throttle valve (20) in the merging portion (C). The minimum effective flow area (T) formed between the merging side opening (17a) of (17) is defined as the valve opening area (R1 + R2) of the EGR flow path (17) when the EGR valve (18) is fully opened. ) An EGR valve device having an enlarged flow path portion (CX) that expands as described above.
請求項1または2に記載のEGRバルブ装置において、
前記拡大流路部(CX)は、前記合流部(C)における前記吸気絞りバルブ(20)の配設位置より吸気下流側(2b)において、前記EGR流路(17)の合流側開口部(17a)を吸気下流側(2b)に向かって拡開させながら前記吸気流路(2)の吸気下流側(2b)に連接する傾斜状の合流路(C1)で形成されていることを特徴とするEGRバルブ装置。
The EGR valve device according to claim 1 or 2,
The enlarged flow path portion (CX) is formed on the merging side opening (of the EGR flow path (17)) on the intake downstream side (2b) from the arrangement position of the intake throttle valve (20) in the merging portion (C). and characterized in that it is formed by 17a) intake downstream (inclined in the combined channel to be connected to the intake downstream side (2b) of the intake passage while expanding toward 2b) (2) (C1) EGR valve device.
請求項1または2に記載のEGRバルブ装置において、
前記拡大流路部(CX)は、前記合流部(C)における前記吸気絞りバルブ(20)の配設位置より吸気下流側(2b)において、前記吸気流路(2)の吸気下流側流路断面積を拡大し、前記EGR流路(17)の合流側開口部(17a)と前記吸気流路(2)の吸気下流側(2b)とを段差的に連接する拡径状の合流路(C2)で形成されていることを特徴とするEGRバルブ装置。
The EGR valve device according to claim 1 or 2,
The enlarged flow path portion (CX) is a flow path on the intake downstream side of the intake flow path (2) on the intake downstream side (2b) from the arrangement position of the intake throttle valve (20) in the merging section (C). A cross-sectional area is enlarged, and the diameter-increased combined flow path (steps) connecting the confluence-side opening (17a) of the EGR flow path (17) and the intake downstream side (2b) of the intake flow path (2) in steps. The EGR valve device is formed by C2).
請求項3または4に記載のEGRバルブ装置において、
前記バルブハウジング(VH)は成型材料によりT字状に形成される成型品であって、
T字状の3方向から型抜きされて作製されていることを特徴とするEGRバルブ装置。
The EGR valve device according to claim 3 or 4,
The valve housing (VH) is a molded product formed in a T shape from a molding material,
An EGR valve device, wherein the EGR valve device is manufactured by being die-cut from three T-shaped directions.
JP2013241888A 2013-11-22 2013-11-22 EGR valve device Expired - Fee Related JP6040918B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013241888A JP6040918B2 (en) 2013-11-22 2013-11-22 EGR valve device
DE102014116974.3A DE102014116974A1 (en) 2013-11-22 2014-11-20 EGR control valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013241888A JP6040918B2 (en) 2013-11-22 2013-11-22 EGR valve device

Publications (2)

Publication Number Publication Date
JP2015101987A JP2015101987A (en) 2015-06-04
JP6040918B2 true JP6040918B2 (en) 2016-12-07

Family

ID=53045628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013241888A Expired - Fee Related JP6040918B2 (en) 2013-11-22 2013-11-22 EGR valve device

Country Status (2)

Country Link
JP (1) JP6040918B2 (en)
DE (1) DE102014116974A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101948520B1 (en) 2017-06-16 2019-02-15 이래에이엠에스 주식회사 Integrated back pressure and egr valve module
KR101953040B1 (en) * 2017-12-29 2019-02-27 주식회사 현대케피코 EGR valve unit
JPWO2022102561A1 (en) * 2020-11-13 2022-05-19

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10213019A (en) * 1996-05-14 1998-08-11 Nippon Soken Inc Exhaust gas recirculating device
JPH1030504A (en) * 1996-05-14 1998-02-03 Nippon Soken Inc Exhaust gas recirculator
JP3890669B2 (en) * 1997-05-12 2007-03-07 株式会社日本自動車部品総合研究所 Exhaust gas recirculation device
JP2002371920A (en) * 2001-06-18 2002-12-26 Toyota Motor Corp Exhaust gas recirculation device
IT1396027B1 (en) * 2009-10-19 2012-11-09 Dellorto Spa EGR VALVE FOR LOW PRESSURE TYPE APPLICATIONS, IN THE TECHNIQUE OF CONTROLLED RECIRCULATION OF COMBUSTIAL GASES IN INTERNAL COMBUSTION ENGINES.
JP5651979B2 (en) * 2010-03-30 2015-01-14 いすゞ自動車株式会社 EGR device
GB2484481B (en) * 2010-10-12 2015-03-04 Gm Global Tech Operations Inc EGR valve assembly for internal combustion engines
JP2012177314A (en) 2011-02-25 2012-09-13 Denso Corp Exhaust device of internal combustion engine
JP5273203B2 (en) * 2011-05-25 2013-08-28 株式会社デンソー Gear subassembly and exhaust gas recirculation device

Also Published As

Publication number Publication date
JP2015101987A (en) 2015-06-04
DE102014116974A1 (en) 2015-05-28

Similar Documents

Publication Publication Date Title
JP5287953B2 (en) Low pressure EGR device
US9145841B2 (en) Low-pressure exhaust gas recirculation system
EP2558752B1 (en) Multifunction valve
JP5304949B2 (en) Turbocharger
JP5986578B2 (en) Exhaust turbocharger turbine
JP4924741B2 (en) Valve drive device
JP2012057519A (en) Exhaust system device of vehicle
JP5273203B2 (en) Gear subassembly and exhaust gas recirculation device
WO2011030739A1 (en) Internal combustion engine with supercharger
JP5699662B2 (en) Exhaust device for internal combustion engine
JP2013108479A (en) Diesel engine
JP6040918B2 (en) EGR valve device
JP2017008870A (en) Low-pressure egr device
JP5299390B2 (en) Turbocharger
JP2007127070A (en) Internal combustion engine with supercharger
US9708970B2 (en) Housing for turbocharger
JP2015059506A (en) Valve device
JP2012177314A (en) Exhaust device of internal combustion engine
JP5905093B2 (en) Supercharged internal combustion engine
JP2013024139A (en) Exhaust device for internal combustion engine
JP5146556B2 (en) Low pressure EGR valve unit
EP1923550A2 (en) Bypass assembly for a charge-air cooler
JP5760382B2 (en) Engine supercharger
CN109268150B (en) Engine air intake and exhaust system and control valve thereof
KR102000758B1 (en) Integrated back pressure and egr valve module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161024

R151 Written notification of patent or utility model registration

Ref document number: 6040918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees