WO2012176866A1 - Multistage supercharging system - Google Patents

Multistage supercharging system Download PDF

Info

Publication number
WO2012176866A1
WO2012176866A1 PCT/JP2012/065958 JP2012065958W WO2012176866A1 WO 2012176866 A1 WO2012176866 A1 WO 2012176866A1 JP 2012065958 W JP2012065958 W JP 2012065958W WO 2012176866 A1 WO2012176866 A1 WO 2012176866A1
Authority
WO
WIPO (PCT)
Prior art keywords
supercharger
valve body
exhaust gas
stopper
supercharging system
Prior art date
Application number
PCT/JP2012/065958
Other languages
French (fr)
Japanese (ja)
Inventor
大博 本間
謙治 文野
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2012176866A1 publication Critical patent/WO2012176866A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/004Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust drives arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • F02B37/186Arrangements of actuators or linkage for bypass valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a multistage supercharging system.
  • This application claims priority based on Japanese Patent Application No. 2011-138310 filed in Japan on June 22, 2011, the contents of which are incorporated herein by reference.
  • a two-stage supercharging system (multi-stage supercharging system) having two (or a plurality) superchargers has been proposed.
  • Such a two-stage supercharging system includes two superchargers having different capacities, and changes the supply state of exhaust gas to the two superchargers according to the flow rate of exhaust gas supplied from the internal combustion engine. To generate compressed air efficiently.
  • the two-stage turbocharging system includes, for example, a low-pressure supercharger (first supercharger) to which exhaust gas discharged from an internal combustion engine is supplied, and an upstream side of the low-pressure supercharger. And a bypass passage for supplying exhaust gas discharged from the internal combustion engine to the low pressure turbocharger by bypassing the turbine impeller of the high pressure turbocharger And an exhaust bypass valve device that opens and closes.
  • a low-pressure supercharger first supercharger
  • a bypass passage for supplying exhaust gas discharged from the internal combustion engine to the low pressure turbocharger by bypassing the turbine impeller of the high pressure turbocharger
  • an exhaust bypass valve device that opens and closes.
  • the exhaust bypass valve device disclosed in Patent Document 2 can be applied.
  • the exhaust gas When the bypass passage is closed by the exhaust bypass valve device, the exhaust gas is supplied to the high pressure supercharger, and when the bypass passage is opened by the exhaust bypass valve device, the exhaust gas is supplied to the low pressure stage supercharger. It is comprised so that it may be supplied to.
  • the exhaust bypass valve device includes a valve body that directly opens and closes the bypass flow path.
  • the valve body is connected to the actuator via a mediating member such as a link plate or an attachment portion, and is configured to open and close when the power of the actuator is transmitted.
  • the valve body when assembling a two-stage supercharging system, for example, the valve body is connected to the actuator by welding and joining the mediating members.
  • the relationship between the maximum displacement of the actuator and the maximum opening of the valve body after the valve body is installed due to individual differences in the actuator and mounting errors of the valve body and the mediating member. If the relationship between the maximum displacement of the actuator and the maximum opening of the valve body varies, the maximum opening of the valve body varies. For this reason, the flow rate of the exhaust gas flowing through the bypass flow path, that is, the flow rate of the exhaust gas supplied to the low-pressure supercharger changes for each individual two-stage turbocharging system, resulting in performance variations in the internal combustion engine.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to stabilize the flow rate of exhaust gas flowing through a bypass passage in a multistage supercharging system.
  • the present invention adopts the following configuration as means for solving the above-described problems.
  • a first supercharger to which exhaust gas discharged from an internal combustion engine is supplied, and a second supercharger disposed on the upstream side of the exhaust gas flow from the first supercharger.
  • a valve body that adjusts an opening degree of a bypass passage that bypasses the turbine impeller of the second supercharger and supplies the exhaust gas discharged from the internal combustion engine to the first supercharger.
  • the supercharging system is configured to include a stopper that defines the maximum opening of the valve body.
  • the second invention employs a configuration in which, in the first invention, the stopper is attached to the turbine housing and the attachment position with respect to the turbine housing is adjustable.
  • a third invention is the screw according to the second invention, further comprising a link plate for transmitting the power of the actuator to the valve body, wherein the stopper is screwed to the turbine housing and contacts the link plate.
  • the structure of being a member is adopted.
  • the protrusion in the first aspect of the present invention, includes a mounting portion that is rotated by the actuator and to which the valve body is mounted, and the stopper is provided on the mounting portion and contacts the turbine housing.
  • the configuration of being is adopted.
  • regulating the maximum opening degree of a valve body is provided separately. Since this stopper is used only for defining the maximum opening of the valve body, the maximum opening of the valve body can be defined without affecting other functions. Therefore, according to the present invention, it is possible to install the stopper so that individual differences of actuators and valve body mounting errors are cancelled. In addition, it is possible to prevent variation in the relationship between the maximum displacement of the actuator and the maximum opening of the valve body. Therefore, the maximum opening of the valve body when the actuator is displaced to the maximum is always the same, and the flow rate of the exhaust gas flowing through the bypass passage can be stabilized.
  • FIG. 1 It is a schematic diagram including the two-stage supercharging system in 1st Embodiment of this invention. It is principal part sectional drawing containing the two-stage supercharging system in 1st Embodiment of this invention. It is a disassembled perspective view containing the valve assembly and attachment plate with which the two-stage supercharging system in 1st Embodiment of this invention is provided. It is a side view containing the valve assembly and attachment plate with which the two-stage supercharging system in 1st Embodiment of this invention is provided. It is a perspective view containing the valve assembly and attachment plate with which the two-stage supercharging system in 2nd Embodiment of this invention is provided. It is a side view containing the valve assembly and attachment plate with which the two-stage supercharging system in 2nd Embodiment of this invention is provided.
  • Drawing 1A is a mimetic diagram showing a schematic structure of engine system 100 provided with two-stage supercharging system 1 of this embodiment.
  • the engine system 100 is mounted on a vehicle or the like, and includes a two-stage turbocharging system 1, an engine 101 (internal combustion engine), an intercooler 102, an EGR (Exhaust Gas Recirculation) valve 103, an EGR cooler 104, and an ECU (Engine). Control Unit) 105.
  • the two-stage supercharging system 1 collects energy contained in exhaust gas discharged from the engine 101 as rotational power, and generates compressed air to be supplied to the engine 101 by the rotational power.
  • the two-stage supercharging system 1 will be described in detail later with reference to the drawings.
  • the engine 101 functions as a power source for the vehicle on which it is mounted, and generates power by burning a mixture of compressed air and fuel supplied from the two-stage supercharging system 1, and exhaust generated by the combustion of the mixture Gas is supplied to the two-stage supercharging system 1.
  • the intercooler 102 cools the compressed air supplied from the two-stage supercharging system 1 to the engine 101 and is disposed between the two-stage supercharging system 1 and the intake port of the engine 101.
  • the EGR valve 103 opens and closes a return flow path for returning a part of the exhaust gas discharged from the engine 101 to the intake side of the engine 101, and its opening degree is adjusted by the ECU 105.
  • the EGR cooler 104 cools the exhaust gas that is returned to the intake side of the engine 101 via the return flow path, and is disposed on the upstream side of the EGR valve 103.
  • the ECU 105 controls the entire engine system 100.
  • the ECU 105 controls the above-described EGR valve 103 and an exhaust bypass valve device 5 described later in accordance with the rotational speed of the engine 101 (that is, the exhaust gas flow rate).
  • the engine system 100 having the above-described configuration, when the exhaust gas in which the air-fuel mixture is combusted in the engine 101 is exhausted, a part of the exhaust gas is returned to the intake side of the engine 101 via the EGR cooler 104, Most of the exhaust gas is supplied to the two-stage supercharging system 1. Then, compressed air is generated in the two-stage supercharging system 1, and the compressed air is cooled by the intercooler 102 and then supplied to the engine 101.
  • a two-stage supercharging system 1 includes a low-pressure supercharger 2 (first supercharger), a high-pressure supercharger 3 (second supercharger), a check valve 4, The exhaust bypass valve device 5 and the waste gate valve 6 are provided.
  • the low-pressure stage supercharger 2 is arranged downstream of the high-pressure stage supercharger 3 in the exhaust gas flow direction, and is configured to be larger than the high-pressure stage supercharger 3.
  • the low-pressure supercharger 2 includes a low-pressure compressor 2a and a low-pressure turbine 2b.
  • the low-pressure compressor 2a includes a compressor impeller and a compressor housing that surrounds the compressor impeller and has an air flow path formed therein.
  • the low-pressure turbine 2b includes a turbine impeller and a turbine housing that surrounds the turbine impeller and has an exhaust gas passage formed therein.
  • the compressor impeller and the turbine impeller are connected by a shaft, and the turbine impeller is rotationally driven by the exhaust gas, whereby the compressor impeller is rotationally driven to generate compressed air.
  • the high-pressure supercharger 3 is arranged upstream of the low-pressure supercharger 2 in the exhaust gas flow direction.
  • the high-pressure supercharger 3 includes a high-pressure compressor 3a and a high-pressure turbine 3b.
  • the high-pressure compressor 3a includes a compressor impeller and a compressor housing that surrounds the compressor impeller and has an air passage formed therein.
  • the high-pressure turbine 3b includes a turbine impeller and a turbine housing that surrounds the turbine impeller and has an exhaust gas passage formed therein.
  • the compressor impeller and the turbine impeller are connected by a shaft, and the turbine impeller is rotationally driven by the exhaust gas, whereby the compressor impeller is rotationally driven to generate compressed air.
  • the turbine housing 2c of the low-pressure stage turbine 2b and the turbine housing 3c of the high-pressure stage turbine 3b are joined to each other by abutting flanges.
  • an exhaust passage 3d for discharging exhaust gas that has passed through the turbine impeller of the high-pressure turbine 3b, and for supplying the low-pressure turbine 2b without passing through the turbine impeller.
  • a bypass channel 3e is provided inside the turbine housing 3c of the high-pressure turbine 3b.
  • a supply flow path 2e for supplying exhaust gas to the turbine impeller 2d of the low-pressure turbine 2b is provided inside the turbine housing 2c of the low-pressure turbine 2b.
  • the turbine housing 2c of the low-pressure turbine 2b and the turbine housing 3c of the high-pressure turbine 3b are joined to connect the exhaust passage 3d, the bypass passage 3e, and the supply passage 2e.
  • the check valve 4 generates high-pressure compressed air discharged from the low-pressure stage compressor 2 a of the low-pressure supercharger 2 when the high-pressure stage compressor 3 a of the high-pressure supercharger 3 is not driven. It is provided in a bypass flow path that supplies the intake side of the engine 101 without going through the stage compressor 3a. As shown in FIG. 1A, the check valve 4 allows the flow of compressed air from the low-pressure stage compressor 2a side to the engine 101 side and the backflow of compressed air from the engine 101 side to the low-pressure stage compressor 2a side. Is configured to prevent.
  • the exhaust bypass valve device 5 opens and closes a bypass flow path 3 e for supplying exhaust gas discharged from the engine 101 to the low pressure turbocharger 2 by bypassing the turbine impeller of the high pressure turbocharger 3.
  • the exhaust bypass valve device 5 includes a valve assembly 51, a mounting plate 52 (mounting portion), a link plate assembly 53, and an actuator 54.
  • FIG. 2A is an exploded perspective view including the valve assembly 51, the mounting plate 52, and the link plate assembly 53.
  • FIG. 2B is an enlarged view of a main part of the turbine housing 3 c including the valve assembly 51, the mounting plate 52, and the link plate assembly 53.
  • the valve assembly 51 has a configuration in which a valve body 51a that opens and closes an opening of the bypass passage 3e and a washer 51b that fixes the valve body 51a to the mounting plate 52 are connected via a shaft portion 51c. have.
  • the valve assembly 51 is rotatable so as to open and close the opening of the bypass passage 3e in the boundary region between the turbine housing 2c of the low-pressure turbine 2b and the turbine housing 3c of the high-pressure turbine 3b. ing.
  • a through hole is provided at the center of the washer 51b, and the shaft 51c is inserted into the through hole of the washer 51b from above the valve body 51a, so that the tip of the shaft 51c protrudes from the washer 51b.
  • the shaft 51c and the washer 51b are fixed by welding the tip of the shaft 51c and the washer 51b.
  • the mounting plate 52 has a through hole through which the shaft portion 51c is inserted.
  • the shaft portion 51c is inserted through the through hole, and is sandwiched between the valve body 51a and the washer 51b.
  • the mounting plate 52 includes a fitting hole 52a into which a stem 53b of a link plate assembly 53 described later is inserted.
  • the link plate assembly 53 includes a link plate 53a whose one end is rotatably connected to the actuator rod 54a, and a stem 53b fixed to the other end of the link plate 53a.
  • the stem 53 b penetrates the turbine housing 3 c and is welded to the mounting plate 52 of the valve assembly 51 at the tip.
  • the two-stage turbocharging system 1 of the present embodiment includes a stopper 10 attached to the turbine housing 3c.
  • the stopper 10 prescribes
  • the stopper 10 is constituted by a screw member that is fixed by being screwed to the turbine housing 3c. The stopper 10 abuts against the link plate 53a and rotates the link plate 53a. By restricting the movement, the maximum rotation angle of the link plate 53a (that is, the maximum opening of the valve body 51a) is defined.
  • the stopper 10 is screwed into the turbine housing 3c via a nut 11, and can be moved in the left-right direction in FIG. 2B by rotating the nut 11. That is, in this embodiment, the stopper 10 is attached to the turbine housing 3c and the attachment position relative to the turbine housing 3c is adjustable. By changing the attachment position of the stopper 10 with respect to the turbine housing 3c, the contact position between the stopper 10 and the link plate 53a changes, and the maximum opening degree of the valve body 51a can be adjusted.
  • a negative pressure operating actuator when assembling the two-stage turbocharging system 1 of the present embodiment, first, a set pressure for fully closing the valve body 51a is applied to the actuator 54. After that, the valve assembly 51, the mounting plate 52, and the link plate assembly 53 are connected by welding or the like. Thereafter, the pressure applied to the actuator 54 is gradually released, and the mounting position of the stopper 10 is adjusted so that the rotation angle of the valve body 51a becomes the maximum angle required in advance.
  • the wastegate valve 6 uses the exhaust gas discharged from the high-pressure supercharger 3 or a part of the exhaust gas discharged via the bypass flow passage 3 e to convert the turbine impeller of the low-pressure supercharger 2. Bypassing without passing through 2d, the opening degree is adjusted by the supercharging pressure of the ECU 105 or the low-pressure compressor 2a.
  • the stopper 10 for defining the maximum opening degree of the valve body 51a is provided as a separate body. Since the stopper 10 is used only for defining the maximum opening of the valve body 51a, the maximum opening of the valve body 51a can be defined without affecting other functions. Therefore, according to the two-stage supercharging system 1 of the present embodiment, the stopper 10 can be installed so that individual differences of the actuators 54 and mounting errors of the valve body 51a can be canceled, and the maximum displacement amount ( It is possible to prevent variation in the relationship between the stroke amount of the actuator rod 54a) and the maximum opening of the valve body 51a. Therefore, the maximum opening degree of the valve body 51a when the actuator 54 is displaced to the maximum is always the same, and the flow rate of the exhaust gas flowing through the bypass passage 3e can be stabilized.
  • the attachment position with respect to the turbine housing 3c of the stopper 10 can be adjusted. For this reason, by finely adjusting the position of the stopper 10 at the time of assembly, it is possible to more reliably prevent variations in the relationship between the maximum displacement amount of the actuator 54 and the maximum opening degree of the valve body 51a.
  • the structure which the stopper 10 consists of a bolt member was employ
  • the stopper 10 since the stopper 10 is attached to the outside of the turbine housing 3c, the stopper 10 is prevented from touching the exhaust gas, and corrosion of the stopper 10 is prevented. be able to.
  • FIG. 3A is a perspective view of the valve assembly 51 and the mounting plate 52 provided in the two-stage supercharging system of the present embodiment.
  • FIG. 3B is a side view including the valve assembly 51, the mounting plate 52, and a part of the turbine housing 3c included in the two-stage turbocharging system of the present embodiment.
  • the two-stage turbocharging system of the present embodiment includes a stopper 20 provided on the mounting plate 52 in place of the stopper 10 of the first embodiment.
  • the stopper 20 is formed of a protruding portion that comes into contact with the built-up portion 3c1 provided in the turbine housing 3c, and regulates the maximum opening of the valve body 51a by coming into contact with the built-up portion 3c1.
  • the stopper 20 for defining the maximum opening degree of the valve body 51a is provided as a separate body. Since the stopper 20 is used only for defining the maximum opening of the valve body 51a, the maximum opening of the valve body 51a can be defined without affecting other functions. According to the two-stage supercharging system of the present embodiment, the stopper 20 can be installed so that individual differences of the actuators 54 and mounting errors of the valve body 51a are cancelled. In addition, it is possible to prevent variation in the relationship between the maximum displacement amount of the actuator 54 (stroke amount of the actuator rod 54a) and the maximum opening degree of the valve body 51a. Therefore, the maximum opening degree of the valve body 51a when the actuator 54 is displaced to the maximum is always the same, and the flow rate of the exhaust gas flowing through the bypass passage 3e can be stabilized.
  • the configuration including two superchargers has been described.
  • the present invention is not limited to this, and a configuration including a plurality of superchargers can also be employed.
  • the maximum opening of the valve body can be defined without affecting other functions, so that individual differences of actuators and valve body mounting errors are cancelled.
  • a stopper can be installed. Further, it is possible to prevent variation in the relationship between the maximum displacement amount of the actuator and the maximum opening degree of the valve body, and it is possible to stabilize the flow rate of the exhaust gas flowing through the bypass passage.

Abstract

The present invention pertains to a multistage supercharging system provided with: a first supercharger (2) to which exhaust gas discharged from an internal combustion engine (101) is supplied; a second supercharger (3) disposed on the upstream side of the first supercharger (2) with respect to the flow of exhaust gas; a valve body (51a) that adjusts the degree of opening of a bypass duct (3e) that supplies the exhaust gas discharged from the internal combustion engine (101) to the first supercharger (2) bypassing the turbine impeller (2d) of the second supercharger (3); and a stopper (10) that delineates the maximum degree of opening of the valve body (51a).

Description

多段過給システムMultistage supercharging system
 本発明は、多段過給システムに関する。本願は、2011年6月22日に、日本に出願された特願2011-138310号に基づき優先権を主張し、それらの内容をここに援用する。 The present invention relates to a multistage supercharging system. This application claims priority based on Japanese Patent Application No. 2011-138310 filed in Japan on June 22, 2011, the contents of which are incorporated herein by reference.
 従来から、2つ(又は複数)の過給機を備える二段過給システム(多段過給システム)が提案されている。このような二段過給システムは、容量の異なる2つの過給機を備えており、内燃機関から供給される排気ガスの流量に応じて、2つの過給機に対する排気ガスの供給状態を変化させることで効率的に圧縮空気を生成する。 Conventionally, a two-stage supercharging system (multi-stage supercharging system) having two (or a plurality) superchargers has been proposed. Such a two-stage supercharging system includes two superchargers having different capacities, and changes the supply state of exhaust gas to the two superchargers according to the flow rate of exhaust gas supplied from the internal combustion engine. To generate compressed air efficiently.
 より詳細には、二段過給システムは、例えば、内燃機関から排出される排気ガスが供給される低圧段過給機(第1過給機)と、前記低圧段過給機よりも上流側に配置される高圧段過給機(第2過給機)と、内燃機関から排出される排気ガスを高圧段過給機のタービンインペラをバイパスして低圧段過給機に供給するバイパス流路の開閉を行う排気バイパスバルブ装置とを備えている。
 このような排気バイパスバルブ装置としては、例えば、特許文献2に開示された排気バイパスバルブ装置を応用することができる。
More specifically, the two-stage turbocharging system includes, for example, a low-pressure supercharger (first supercharger) to which exhaust gas discharged from an internal combustion engine is supplied, and an upstream side of the low-pressure supercharger. And a bypass passage for supplying exhaust gas discharged from the internal combustion engine to the low pressure turbocharger by bypassing the turbine impeller of the high pressure turbocharger And an exhaust bypass valve device that opens and closes.
As such an exhaust bypass valve device, for example, the exhaust bypass valve device disclosed in Patent Document 2 can be applied.
 そして、排気バイパスバルブ装置によってバイパス流路を閉鎖する場合には排気ガスが高圧段過給機に供給され、排気バイパスバルブ装置によってバイパス流路を開放する場合には排気ガスが低圧段過給機に供給されるように構成されている。 When the bypass passage is closed by the exhaust bypass valve device, the exhaust gas is supplied to the high pressure supercharger, and when the bypass passage is opened by the exhaust bypass valve device, the exhaust gas is supplied to the low pressure stage supercharger. It is comprised so that it may be supplied to.
日本国特開2009-92026号公報Japanese Unexamined Patent Publication No. 2009-92026 日本国特表2002-508473号公報Japan Special Table 2002-508473
 排気バイパスバルブ装置は、バイパス流路の開閉を直接的に行う弁体を備えている。この弁体は、リンク板や取付部等の仲介部材を介してアクチュエータと接続されており、アクチュエータの動力が伝達されることによって開閉するように構成されている。 The exhaust bypass valve device includes a valve body that directly opens and closes the bypass flow path. The valve body is connected to the actuator via a mediating member such as a link plate or an attachment portion, and is configured to open and close when the power of the actuator is transmitted.
 従来、二段過給システムを組み立てる際には、例えば仲介部材同士を溶接接合等することによって弁体をアクチュエータに対して接続している。
 ところが、アクチュエータにおける個体差や、弁体や仲介部材の取付誤差によって、弁体設置後における、アクチュエータの最大変位量と弁体の最大開度との関係にばらつきが生じる場合がある。
 アクチュエータの最大変位量と弁体の最大開度との関係がばらつくと、弁体の最大開度にばらつきが生じることになる。このため、二段過給システムの個体ごとにバイパス流路を流れる排気ガスの流量、すなわち低圧段過給機に供給される排気ガスの流量が変化し、内燃機関に性能ばらつきが生じる。
Conventionally, when assembling a two-stage supercharging system, for example, the valve body is connected to the actuator by welding and joining the mediating members.
However, there may be variations in the relationship between the maximum displacement of the actuator and the maximum opening of the valve body after the valve body is installed due to individual differences in the actuator and mounting errors of the valve body and the mediating member.
If the relationship between the maximum displacement of the actuator and the maximum opening of the valve body varies, the maximum opening of the valve body varies. For this reason, the flow rate of the exhaust gas flowing through the bypass flow path, that is, the flow rate of the exhaust gas supplied to the low-pressure supercharger changes for each individual two-stage turbocharging system, resulting in performance variations in the internal combustion engine.
 本発明は、上述する問題点に鑑みてなされたもので、多段過給システムにおいて、バイパス流路を流れる排気ガスの流量を安定化させることを目的とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to stabilize the flow rate of exhaust gas flowing through a bypass passage in a multistage supercharging system.
 本発明は、上記課題を解決するための手段として、以下の構成を採用する。 The present invention adopts the following configuration as means for solving the above-described problems.
 第1の発明は、内燃機関から排出される排気ガスが供給される第1過給機と、前記第1過給機よりも上記排気ガスの流れの上流側に配置される第2過給機と、上記内燃機関から排出される上記排気ガスを上記第2過給機のタービンインペラをバイパスして上記第1過給機に供給するバイパス流路の開度を調節する弁体とを備える多段過給システムであって、上記弁体の最大開度を規定するストッパを備えるという構成を採用する。 According to a first aspect of the present invention, there is provided a first supercharger to which exhaust gas discharged from an internal combustion engine is supplied, and a second supercharger disposed on the upstream side of the exhaust gas flow from the first supercharger. And a valve body that adjusts an opening degree of a bypass passage that bypasses the turbine impeller of the second supercharger and supplies the exhaust gas discharged from the internal combustion engine to the first supercharger. The supercharging system is configured to include a stopper that defines the maximum opening of the valve body.
 第2の発明は、上記第1の発明において、上記ストッパが、タービンハウジングに対して取り付けられると共に上記タービンハウジングに対する取付位置を調節可能とされているという構成を採用する。 The second invention employs a configuration in which, in the first invention, the stopper is attached to the turbine housing and the attachment position with respect to the turbine housing is adjustable.
 第3の発明は、上記第2の発明において、アクチュエータの動力を上記弁体に伝達するリンク板を備え、上記ストッパが、上記タービンハウジングに対して螺合されると共に上記リンク板に当接するネジ部材であるという構成を採用する。 A third invention is the screw according to the second invention, further comprising a link plate for transmitting the power of the actuator to the valve body, wherein the stopper is screwed to the turbine housing and contacts the link plate. The structure of being a member is adopted.
 第4の発明は、上記第1の発明において、アクチュエータによって回動されると共に上記弁体が取り付けられる取付部を備え、上記ストッパが、上記取付部に設けられると共に上記タービンハウジングに当接する突起部であるという構成を採用する。 According to a fourth aspect of the present invention, in the first aspect of the present invention, the protrusion includes a mounting portion that is rotated by the actuator and to which the valve body is mounted, and the stopper is provided on the mounting portion and contacts the turbine housing. The configuration of being is adopted.
 本発明によれば、弁体の最大開度を規定するためのストッパが別途設けられている。このストッパは、弁体の最大開度を規定するためのみに用いられるため、他の機能に影響を与えることなく、弁体の最大開度を規定することができる。
 よって、本発明によれば、アクチュエータの個体差や弁体の取付誤差がキャンセルされるようにストッパを設置することができる。また、アクチュエータの最大変位量と弁体の最大開度と関係にばらつきが生じることを防止することができる。したがって、アクチュエータを最大変位させた際の弁体の最大開度が常に同一となり、バイパス流路を流れる排気ガスの流量を安定化させることが可能となる。
According to this invention, the stopper for prescribing | regulating the maximum opening degree of a valve body is provided separately. Since this stopper is used only for defining the maximum opening of the valve body, the maximum opening of the valve body can be defined without affecting other functions.
Therefore, according to the present invention, it is possible to install the stopper so that individual differences of actuators and valve body mounting errors are cancelled. In addition, it is possible to prevent variation in the relationship between the maximum displacement of the actuator and the maximum opening of the valve body. Therefore, the maximum opening of the valve body when the actuator is displaced to the maximum is always the same, and the flow rate of the exhaust gas flowing through the bypass passage can be stabilized.
本発明の第1実施形態における二段過給システムを含む模式図である。It is a schematic diagram including the two-stage supercharging system in 1st Embodiment of this invention. 本発明の第1実施形態における二段過給システムを含む要部断面図である。It is principal part sectional drawing containing the two-stage supercharging system in 1st Embodiment of this invention. 本発明の第1実施形態における二段過給システムが備えるバルブアッセンブリ及び取付板を含む分解斜視図である。It is a disassembled perspective view containing the valve assembly and attachment plate with which the two-stage supercharging system in 1st Embodiment of this invention is provided. 本発明の第1実施形態における二段過給システムが備えるバルブアッセンブリ及び取付板を含む側面図である。It is a side view containing the valve assembly and attachment plate with which the two-stage supercharging system in 1st Embodiment of this invention is provided. 本発明の第2実施形態における二段過給システムが備えるバルブアッセンブリ及び取付板を含む斜視図である。It is a perspective view containing the valve assembly and attachment plate with which the two-stage supercharging system in 2nd Embodiment of this invention is provided. 本発明の第2実施形態における二段過給システムが備えるバルブアッセンブリ及び取付板を含む側面図である。It is a side view containing the valve assembly and attachment plate with which the two-stage supercharging system in 2nd Embodiment of this invention is provided.
 以下、図面を参照して、本発明に係る多段過給システムの一実施形態について説明する。なお、以下の図面において、各部材を認識可能な大きさとするために、各部材の縮尺を適宜変更している。また、以下の説明においては、多段過給システムの一例として、2つの過給機を備える二段過給システムについて説明する。 Hereinafter, an embodiment of a multistage turbocharging system according to the present invention will be described with reference to the drawings. In the following drawings, the scale of each member is appropriately changed in order to make each member a recognizable size. Moreover, in the following description, a two-stage supercharging system including two superchargers will be described as an example of a multistage supercharging system.
(第1実施形態)
 図1Aは、本実施形態の二段過給システム1を備えるエンジンシステム100の概略構成を示す模式図である。
 エンジンシステム100は、車両等に搭載され、二段過給システム1と、エンジン101(内燃機関)と、インタークーラ102と、EGR(Exhaust Gas Recirculation)バルブ103と、EGRクーラ104と、ECU(Engine Control Unit)105とを備えている。
(First embodiment)
Drawing 1A is a mimetic diagram showing a schematic structure of engine system 100 provided with two-stage supercharging system 1 of this embodiment.
The engine system 100 is mounted on a vehicle or the like, and includes a two-stage turbocharging system 1, an engine 101 (internal combustion engine), an intercooler 102, an EGR (Exhaust Gas Recirculation) valve 103, an EGR cooler 104, and an ECU (Engine). Control Unit) 105.
 二段過給システム1は、エンジン101から排出される排気ガスに含まれるエネルギを回転動力として回収し、前記回転動力によってエンジン101に供給する圧縮空気を生成する。
 二段過給システム1については、後に図面を参照して詳説する。
The two-stage supercharging system 1 collects energy contained in exhaust gas discharged from the engine 101 as rotational power, and generates compressed air to be supplied to the engine 101 by the rotational power.
The two-stage supercharging system 1 will be described in detail later with reference to the drawings.
 エンジン101は、搭載された車両の動力源として機能し、二段過給システム1から供給される圧縮空気と燃料との混合気を燃焼して動力を生成し、混合気の燃焼により発生した排気ガスを二段過給システム1に供給する。 The engine 101 functions as a power source for the vehicle on which it is mounted, and generates power by burning a mixture of compressed air and fuel supplied from the two-stage supercharging system 1, and exhaust generated by the combustion of the mixture Gas is supplied to the two-stage supercharging system 1.
 インタークーラ102は、二段過給システム1からエンジン101に供給される圧縮空気を冷却し、二段過給システム1とエンジン101の吸気口との間に配設されている。 The intercooler 102 cools the compressed air supplied from the two-stage supercharging system 1 to the engine 101 and is disposed between the two-stage supercharging system 1 and the intake port of the engine 101.
 EGRバルブ103は、エンジン101から排出された排気ガスの一部をエンジン101の吸気側に戻す返流流路の開閉を行い、ECU105によってその開度が調節される。 The EGR valve 103 opens and closes a return flow path for returning a part of the exhaust gas discharged from the engine 101 to the intake side of the engine 101, and its opening degree is adjusted by the ECU 105.
 EGRクーラ104は、返流流路を介してエンジン101の吸気側に戻される排気ガスを冷却し、EGRバルブ103の上流側に配置されている。 The EGR cooler 104 cools the exhaust gas that is returned to the intake side of the engine 101 via the return flow path, and is disposed on the upstream side of the EGR valve 103.
 ECU105は、エンジンシステム100の全体を制御する。
 そして、本エンジンシステム100においてECU105は、エンジン101の回転数(すなわち排気ガスの流量)に応じて、上述のEGRバルブ103と、後述の排気バイパスバルブ装置5を制御する。
The ECU 105 controls the entire engine system 100.
In the engine system 100, the ECU 105 controls the above-described EGR valve 103 and an exhaust bypass valve device 5 described later in accordance with the rotational speed of the engine 101 (that is, the exhaust gas flow rate).
 上記した構成を有するエンジンシステム100においては、エンジン101にて混合気が燃焼された排気ガスが排気されると、排気ガスの一部がEGRクーラ104を介してエンジン101の吸気側に返送され、排気ガスの大部分が二段過給システム1に供給される。そして、二段過給システム1において圧縮空気が生成され、前記圧縮空気がインタークーラ102で冷却された後にエンジン101に供給される。 In the engine system 100 having the above-described configuration, when the exhaust gas in which the air-fuel mixture is combusted in the engine 101 is exhausted, a part of the exhaust gas is returned to the intake side of the engine 101 via the EGR cooler 104, Most of the exhaust gas is supplied to the two-stage supercharging system 1. Then, compressed air is generated in the two-stage supercharging system 1, and the compressed air is cooled by the intercooler 102 and then supplied to the engine 101.
 次に、二段過給システム1について詳説する。
 図1Aに示すように、二段過給システム1は、低圧段過給機2(第1過給機)と、高圧段過給機3(第2過給機)と、逆止弁4と、排気バイパスバルブ装置5と、ウエストゲートバルブ6とを備えている。
Next, the two-stage supercharging system 1 will be described in detail.
As shown in FIG. 1A, a two-stage supercharging system 1 includes a low-pressure supercharger 2 (first supercharger), a high-pressure supercharger 3 (second supercharger), a check valve 4, The exhaust bypass valve device 5 and the waste gate valve 6 are provided.
 低圧段過給機2は、排気ガスの流れ方向において高圧段過給機3よりも下流側に配置されており、高圧段過給機3よりも大きく構成されている。
 低圧段過給機2は、低圧段コンプレッサ2aと、低圧段タービン2bとを備えている。
 低圧段コンプレッサ2aは、コンプレッサインペラと、前記コンプレッサインペラを囲うと共にその内部に空気流路が形成されたコンプレッサハウジングとを備えている。
 また、低圧段タービン2bは、タービンインペラと、前記タービンインペラを囲うと共にその内部に排気ガス流路が形成されたタービンハウジングとを備えている。
 コンプレッサインペラとタービンインペラとが軸によって連結され、タービンインペラが排気ガスで回転駆動されることによってコンプレッサインペラが回転駆動されて圧縮空気が生成される。
The low-pressure stage supercharger 2 is arranged downstream of the high-pressure stage supercharger 3 in the exhaust gas flow direction, and is configured to be larger than the high-pressure stage supercharger 3.
The low-pressure supercharger 2 includes a low-pressure compressor 2a and a low-pressure turbine 2b.
The low-pressure compressor 2a includes a compressor impeller and a compressor housing that surrounds the compressor impeller and has an air flow path formed therein.
The low-pressure turbine 2b includes a turbine impeller and a turbine housing that surrounds the turbine impeller and has an exhaust gas passage formed therein.
The compressor impeller and the turbine impeller are connected by a shaft, and the turbine impeller is rotationally driven by the exhaust gas, whereby the compressor impeller is rotationally driven to generate compressed air.
 高圧段過給機3は、排気ガスの流れ方向において低圧段過給機2よりも上流側に配置されている。
 高圧段過給機3は、高圧段コンプレッサ3aと、高圧段タービン3bとを備えている。
 高圧段コンプレッサ3aは、コンプレッサインペラと、前記コンプレッサインペラを囲うと共にその内部に空気流路が形成されたコンプレッサハウジングとを備えている。
 また、高圧段タービン3bは、タービンインペラと、前記タービンインペラを囲うと共にその内部に排気ガス流路が形成されたタービンハウジングとを備えている。
 コンプレッサインペラとタービンインペラとが軸によって連結され、タービンインペラが排気ガスで回転駆動されることによってコンプレッサインペラが回転駆動されて圧縮空気が生成される。
The high-pressure supercharger 3 is arranged upstream of the low-pressure supercharger 2 in the exhaust gas flow direction.
The high-pressure supercharger 3 includes a high-pressure compressor 3a and a high-pressure turbine 3b.
The high-pressure compressor 3a includes a compressor impeller and a compressor housing that surrounds the compressor impeller and has an air passage formed therein.
The high-pressure turbine 3b includes a turbine impeller and a turbine housing that surrounds the turbine impeller and has an exhaust gas passage formed therein.
The compressor impeller and the turbine impeller are connected by a shaft, and the turbine impeller is rotationally driven by the exhaust gas, whereby the compressor impeller is rotationally driven to generate compressed air.
 なお、図1Bに示すように、低圧段タービン2bのタービンハウジング2cと、高圧段タービン3bのタービンハウジング3cとは、互いが有するフランジを突き合わせて接合されている。 As shown in FIG. 1B, the turbine housing 2c of the low-pressure stage turbine 2b and the turbine housing 3c of the high-pressure stage turbine 3b are joined to each other by abutting flanges.
 高圧段タービン3bのタービンハウジング3cの内部には、高圧段タービン3bのタービンインペラを通過した排気ガスを排出する排気流路3dと、前記タービンインペラを介さずに低圧段タービン2bに供給するためのバイパス流路3eとが設けられている。 Inside the turbine housing 3c of the high-pressure turbine 3b is an exhaust passage 3d for discharging exhaust gas that has passed through the turbine impeller of the high-pressure turbine 3b, and for supplying the low-pressure turbine 2b without passing through the turbine impeller. A bypass channel 3e is provided.
 また、低圧段タービン2bのタービンハウジング2cの内部には、低圧段タービン2bのタービンインペラ2dに排気ガスを供給するための供給流路2eが設けられている。 Also, a supply flow path 2e for supplying exhaust gas to the turbine impeller 2d of the low-pressure turbine 2b is provided inside the turbine housing 2c of the low-pressure turbine 2b.
 低圧段タービン2bのタービンハウジング2cと高圧段タービン3bのタービンハウジング3cとが接合されることによって、排気流路3d及びバイパス流路3eと供給流路2eとが接続される。 The turbine housing 2c of the low-pressure turbine 2b and the turbine housing 3c of the high-pressure turbine 3b are joined to connect the exhaust passage 3d, the bypass passage 3e, and the supply passage 2e.
 図1Aに戻り、逆止弁4は、高圧段過給機3の高圧段コンプレッサ3aが駆動されていない場合に、低圧段過給機2の低圧段コンプレッサ2aから排出された圧縮空気を、高圧段コンプレッサ3aを介さずにエンジン101の吸気側に供給するバイパス流路に設けられている。そして、図1Aに示すように、逆止弁4は、低圧段コンプレッサ2a側からエンジン101側への圧縮空気の流れを許容すると共に、エンジン101側から低圧段コンプレッサ2a側への圧縮空気の逆流を防止するように構成されている。 Returning to FIG. 1A, the check valve 4 generates high-pressure compressed air discharged from the low-pressure stage compressor 2 a of the low-pressure supercharger 2 when the high-pressure stage compressor 3 a of the high-pressure supercharger 3 is not driven. It is provided in a bypass flow path that supplies the intake side of the engine 101 without going through the stage compressor 3a. As shown in FIG. 1A, the check valve 4 allows the flow of compressed air from the low-pressure stage compressor 2a side to the engine 101 side and the backflow of compressed air from the engine 101 side to the low-pressure stage compressor 2a side. Is configured to prevent.
 排気バイパスバルブ装置5は、エンジン101から排出される排気ガスを高圧段過給機3のタービンインペラをバイパスして低圧段過給機2に供給するためのバイパス流路3eの開閉を行う。
 排気バイパスバルブ装置5は、図1Bに示すように、バルブアッセンブリ51と、取付板52(取付部)と、リンク板アッセンブリ53と、アクチュエータ54とを備えている。
The exhaust bypass valve device 5 opens and closes a bypass flow path 3 e for supplying exhaust gas discharged from the engine 101 to the low pressure turbocharger 2 by bypassing the turbine impeller of the high pressure turbocharger 3.
As shown in FIG. 1B, the exhaust bypass valve device 5 includes a valve assembly 51, a mounting plate 52 (mounting portion), a link plate assembly 53, and an actuator 54.
 図2Aは、バルブアッセンブリ51と取付板52とリンク板アッセンブリ53とを含む分解斜視図である。
 また、図2Bは、バルブアッセンブリ51と取付板52とリンク板アッセンブリ53とを含むタービンハウジング3cの要部拡大図である。
FIG. 2A is an exploded perspective view including the valve assembly 51, the mounting plate 52, and the link plate assembly 53.
FIG. 2B is an enlarged view of a main part of the turbine housing 3 c including the valve assembly 51, the mounting plate 52, and the link plate assembly 53.
 図2Aに示すように、バルブアッセンブリ51は、バイパス流路3e開口を開閉する弁体51aと弁体51aを取付板52に対して固定する座金51bとが軸部51cを介して連結された構成を有している。
 バルブアッセンブリ51は、図1Bに示すように、低圧段タービン2bのタービンハウジング2cと高圧段タービン3bのタービンハウジング3cとの境界領域において、バイパス流路3e開口を開閉するように回動可能とされている。
As shown in FIG. 2A, the valve assembly 51 has a configuration in which a valve body 51a that opens and closes an opening of the bypass passage 3e and a washer 51b that fixes the valve body 51a to the mounting plate 52 are connected via a shaft portion 51c. have.
As shown in FIG. 1B, the valve assembly 51 is rotatable so as to open and close the opening of the bypass passage 3e in the boundary region between the turbine housing 2c of the low-pressure turbine 2b and the turbine housing 3c of the high-pressure turbine 3b. ing.
 なお、座金51bの中央部に貫通孔が設けられており、軸部51cが弁体51aの上部から座金51bの貫通孔に挿通されることで、軸部51cの先端が座金51bから突出して配置されている。
 軸部51cの先端と座金51bとが溶接接合されることによって、軸部51cと座金51bとが固定されている。
A through hole is provided at the center of the washer 51b, and the shaft 51c is inserted into the through hole of the washer 51b from above the valve body 51a, so that the tip of the shaft 51c protrudes from the washer 51b. Has been.
The shaft 51c and the washer 51b are fixed by welding the tip of the shaft 51c and the washer 51b.
 取付板52は、軸部51cが挿通される貫通孔を有しており、前記貫通孔に軸部51cが挿通され、弁体51aと座金51bとで狭持されている。
 また、図2Aに示すように、取付板52には、後述するリンク板アッセンブリ53のステム53bが挿入される嵌合穴52aを備えている。
The mounting plate 52 has a through hole through which the shaft portion 51c is inserted. The shaft portion 51c is inserted through the through hole, and is sandwiched between the valve body 51a and the washer 51b.
As shown in FIG. 2A, the mounting plate 52 includes a fitting hole 52a into which a stem 53b of a link plate assembly 53 described later is inserted.
 リンク板アッセンブリ53は、図2Aに示すように、一端側が回動可能にアクチュエータロッド54aに接続されるリンク板53aと、リンク板53aの他端側に固定されるステム53bとを備えている。
 ステム53bは、タービンハウジング3cを貫通して先端がバルブアッセンブリ51の取付板52に溶接されている。
As shown in FIG. 2A, the link plate assembly 53 includes a link plate 53a whose one end is rotatably connected to the actuator rod 54a, and a stem 53b fixed to the other end of the link plate 53a.
The stem 53 b penetrates the turbine housing 3 c and is welded to the mounting plate 52 of the valve assembly 51 at the tip.
 アクチュエータロッド54aが図2Bに示す左右方向に移動すると、アクチュエータロッド54aに回動可能に接続されたリンク板53aがステム53bを中心として回動し、リンク板53aの回動によってステム53b及び取付板52が回動され、さらにバルブアッセンブリ51も回動される。 When the actuator rod 54a moves in the left-right direction shown in FIG. 2B, the link plate 53a pivotably connected to the actuator rod 54a rotates about the stem 53b, and the stem 53b and the mounting plate are rotated by the rotation of the link plate 53a. 52 is rotated, and the valve assembly 51 is also rotated.
 本実施形態の二段過給システム1は、図2Bに示すように、タービンハウジング3cに対して取り付けられるストッパ10を備えている。
 ストッパ10は、リンク板53aの最大回動角度を規定し、これによって弁体51aの最大開度を規定する。
 本実施形態においてストッパ10は、図2Bに示すように、タービンハウジング3cに螺合されることによって固定されるネジ部材によって構成されており、先端がリンク板53aに当接してリンク板53aの回動を規制することによって、リンク板53aの最大回動角度(すなわち弁体51aの最大開度)を規定する。
As shown in FIG. 2B, the two-stage turbocharging system 1 of the present embodiment includes a stopper 10 attached to the turbine housing 3c.
The stopper 10 prescribes | regulates the maximum rotation angle of the link board 53a, and prescribes | regulates the maximum opening degree of the valve body 51a by this.
In this embodiment, as shown in FIG. 2B, the stopper 10 is constituted by a screw member that is fixed by being screwed to the turbine housing 3c. The stopper 10 abuts against the link plate 53a and rotates the link plate 53a. By restricting the movement, the maximum rotation angle of the link plate 53a (that is, the maximum opening of the valve body 51a) is defined.
 なお、ストッパ10は、タービンハウジング3cにナット11を介して螺合されており、ナット11を回転させることによって、図2Bにおける左右方向に移動可能とされている。
 つまり、本実施形態においては、ストッパ10は、タービンハウジング3cに対して取り付けられると共にタービンハウジング3cに対する取付位置が調節可能とされている。
 ストッパ10のタービンハウジング3cに対する取付位置が変化することによって、ストッパ10とリンク板53aとの当接位置が変化し、弁体51aの最大開度を調節することが可能となる。
The stopper 10 is screwed into the turbine housing 3c via a nut 11, and can be moved in the left-right direction in FIG. 2B by rotating the nut 11.
That is, in this embodiment, the stopper 10 is attached to the turbine housing 3c and the attachment position relative to the turbine housing 3c is adjustable.
By changing the attachment position of the stopper 10 with respect to the turbine housing 3c, the contact position between the stopper 10 and the link plate 53a changes, and the maximum opening degree of the valve body 51a can be adjusted.
 なお、アクチュエータ54として負圧作動アクチュエータを用いる場合には、本実施形態の二段過給システム1を組み立てる際に、まずアクチュエータ54に対して弁体51aを全閉とするためのセット圧を印加した後に、バルブアッセンブリ51、取付板52及びリンク板アッセンブリ53を溶接等によって接続する。その後、アクチュエータ54に印加した圧力を徐々に開放し、弁体51aの回動角度が予め要求される最大角度となるようにストッパ10の取付位置を調節する。 When a negative pressure operating actuator is used as the actuator 54, when assembling the two-stage turbocharging system 1 of the present embodiment, first, a set pressure for fully closing the valve body 51a is applied to the actuator 54. After that, the valve assembly 51, the mounting plate 52, and the link plate assembly 53 are connected by welding or the like. Thereafter, the pressure applied to the actuator 54 is gradually released, and the mounting position of the stopper 10 is adjusted so that the rotation angle of the valve body 51a becomes the maximum angle required in advance.
 図1Aに戻り、ウエストゲートバルブ6は、高圧段過給機3から排出された排気ガスあるいはバイパス流路3eを介して排出された排気ガスの一部を、低圧段過給機2のタービンインペラ2dを介することなくバイパスするものであり、ECU105または、低圧段コンプレッサ2aの過給圧によって開度を調節される。 Returning to FIG. 1A, the wastegate valve 6 uses the exhaust gas discharged from the high-pressure supercharger 3 or a part of the exhaust gas discharged via the bypass flow passage 3 e to convert the turbine impeller of the low-pressure supercharger 2. Bypassing without passing through 2d, the opening degree is adjusted by the supercharging pressure of the ECU 105 or the low-pressure compressor 2a.
 以上のような本実施形態の二段過給システム1によれば、弁体51aの最大開度を規定するためのストッパ10が別体として設けられている。ストッパ10は、弁体51aの最大開度を規定するためのみに用いられることから、他の機能に影響を与えることなく、弁体51aの最大開度を規定することができる。
 よって、本実施形態の二段過給システム1によれば、アクチュエータ54の個体差や弁体51aの取付誤差がキャンセルされるようにストッパ10を設置することができ、アクチュエータ54の最大変位量(アクチュエータロッド54aのストローク量)と弁体51aの最大開度と関係にばらつきが生じることを防止することができる。したがって、アクチュエータ54を最大変位させた際の弁体51aの最大開度が常に同一となり、バイパス流路3eを流れる排気ガスの流量を安定化させることが可能となる。
According to the two-stage supercharging system 1 of the present embodiment as described above, the stopper 10 for defining the maximum opening degree of the valve body 51a is provided as a separate body. Since the stopper 10 is used only for defining the maximum opening of the valve body 51a, the maximum opening of the valve body 51a can be defined without affecting other functions.
Therefore, according to the two-stage supercharging system 1 of the present embodiment, the stopper 10 can be installed so that individual differences of the actuators 54 and mounting errors of the valve body 51a can be canceled, and the maximum displacement amount ( It is possible to prevent variation in the relationship between the stroke amount of the actuator rod 54a) and the maximum opening of the valve body 51a. Therefore, the maximum opening degree of the valve body 51a when the actuator 54 is displaced to the maximum is always the same, and the flow rate of the exhaust gas flowing through the bypass passage 3e can be stabilized.
 また、本実施形態の二段過給システム1においては、ストッパ10のタービンハウジング3cに対する取付位置を調節可能とされている。
 このため、組立て時にストッパ10の位置を微調整することによって、アクチュエータ54の最大変位量と弁体51aの最大開度と関係にばらつきが生じることをより確実に防止することができる。
Moreover, in the two-stage supercharging system 1 of this embodiment, the attachment position with respect to the turbine housing 3c of the stopper 10 can be adjusted.
For this reason, by finely adjusting the position of the stopper 10 at the time of assembly, it is possible to more reliably prevent variations in the relationship between the maximum displacement amount of the actuator 54 and the maximum opening degree of the valve body 51a.
 また、本実施形態の二段過給システム1においては、ストッパ10がボルト部材からなる構成を採用した。
 このため、ナット11を回転させることによって、容易にストッパ10の位置調節を行うことが可能となる。
Moreover, in the two-stage supercharging system 1 of this embodiment, the structure which the stopper 10 consists of a bolt member was employ | adopted.
For this reason, it is possible to easily adjust the position of the stopper 10 by rotating the nut 11.
 また、本実施形態の二段過給システム1においては、ストッパ10がタービンハウジング3cの外側に取り付けられていることから、ストッパ10が排気ガスに触れることを防止し、ストッパ10の腐食を防止することができる。 Further, in the two-stage turbocharging system 1 of the present embodiment, since the stopper 10 is attached to the outside of the turbine housing 3c, the stopper 10 is prevented from touching the exhaust gas, and corrosion of the stopper 10 is prevented. be able to.
(第2実施形態)
 次に、本発明の第2実施形態について説明する。なお、本実施形態の説明において、上記第1実施形態と同様の部分については、その説明を省略あるいは簡略化する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. In the description of the present embodiment, the description of the same parts as those of the first embodiment is omitted or simplified.
 図3Aは、本実施形態の二段過給システムが備えるバルブアッセンブリ51と取付板52の斜視図である。
 また、図3Bは、本実施形態の二段過給システムが備えるバルブアッセンブリ51と取付板52とタービンハウジング3cの一部とを含む側面図である。
FIG. 3A is a perspective view of the valve assembly 51 and the mounting plate 52 provided in the two-stage supercharging system of the present embodiment.
FIG. 3B is a side view including the valve assembly 51, the mounting plate 52, and a part of the turbine housing 3c included in the two-stage turbocharging system of the present embodiment.
 図3A及び図3Bに示すように、本実施形態の二段過給システムは、第1実施形態のストッパ10に換えて、取付板52に設けられるストッパ20を備えている。
 本実施形態においてストッパ20は、タービンハウジング3cに設けられた肉盛部3c1に当接する突起部からなっており、肉盛部3c1に当接することによって弁体51aの最大開度を規定する。
As shown in FIGS. 3A and 3B, the two-stage turbocharging system of the present embodiment includes a stopper 20 provided on the mounting plate 52 in place of the stopper 10 of the first embodiment.
In the present embodiment, the stopper 20 is formed of a protruding portion that comes into contact with the built-up portion 3c1 provided in the turbine housing 3c, and regulates the maximum opening of the valve body 51a by coming into contact with the built-up portion 3c1.
 上記構成を有する本実施形態の二段過給システムにおいても、弁体51aの最大開度を規定するためのストッパ20が別体として設けられている。ストッパ20は、弁体51aの最大開度を規定するためのみに用いられることから、他の機能に影響を与えることなく、弁体51aの最大開度を規定することができる。
 本実施形態の二段過給システムによれば、アクチュエータ54の個体差や弁体51aの取付誤差がキャンセルされるようにストッパ20を設置することができる。また、アクチュエータ54の最大変位量(アクチュエータロッド54aのストローク量)と弁体51aの最大開度と関係にばらつきが生じることを防止することができる。したがって、アクチュエータ54を最大変位させた際の弁体51aの最大開度が常に同一となり、バイパス流路3eを流れる排気ガスの流量を安定化させることが可能となる。
Also in the two-stage supercharging system of the present embodiment having the above-described configuration, the stopper 20 for defining the maximum opening degree of the valve body 51a is provided as a separate body. Since the stopper 20 is used only for defining the maximum opening of the valve body 51a, the maximum opening of the valve body 51a can be defined without affecting other functions.
According to the two-stage supercharging system of the present embodiment, the stopper 20 can be installed so that individual differences of the actuators 54 and mounting errors of the valve body 51a are cancelled. In addition, it is possible to prevent variation in the relationship between the maximum displacement amount of the actuator 54 (stroke amount of the actuator rod 54a) and the maximum opening degree of the valve body 51a. Therefore, the maximum opening degree of the valve body 51a when the actuator 54 is displaced to the maximum is always the same, and the flow rate of the exhaust gas flowing through the bypass passage 3e can be stabilized.
 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は、上記実施形態に限定されないことは言うまでもない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の趣旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to the above-described embodiments. Various shapes, combinations, and the like of the constituent members shown in the above-described embodiments are examples, and various modifications can be made based on design requirements and the like without departing from the spirit of the present invention.
 例えば、上記実施形態においては、過給機を2つ備える構成について説明した。
 しかしながら、本発明はこれに限定されるものではなく、さらに複数の過給機を備える構成を採用することも可能である。
For example, in the above embodiment, the configuration including two superchargers has been described.
However, the present invention is not limited to this, and a configuration including a plurality of superchargers can also be employed.
 本発明の多段過給システムによれば、他の機能に影響を与えることなく、弁体の最大開度を規定することができ、アクチュエータの個体差や弁体の取付誤差がキャンセルされるようにストッパを設置することができる。また、アクチュエータの最大変位量と弁体の最大開度と関係にばらつきが生じることを防止することができ、バイパス流路を流れる排気ガスの流量を安定化させることができる。 According to the multi-stage turbocharging system of the present invention, the maximum opening of the valve body can be defined without affecting other functions, so that individual differences of actuators and valve body mounting errors are cancelled. A stopper can be installed. Further, it is possible to prevent variation in the relationship between the maximum displacement amount of the actuator and the maximum opening degree of the valve body, and it is possible to stabilize the flow rate of the exhaust gas flowing through the bypass passage.
 1……二段過給システム(多段過給システム)、2……低圧段過給機(第1過給機)、2c……タービンハウジング、2d……タービンインペラ、3……高圧段過給機(第2過給機)、3c……タービンハウジング、3e……バイパス流路、5……排気バイパスバルブ装置、51……バルブアッセンブリ、51a……弁体、51b……座金、51c……軸部、52……取付板(取付部)、53……リンク板アッセンブリ、53a……リンク板、10,20……ストッパ、11……ナット、101……エンジン(内燃機関) 1 …… Two-stage supercharging system (multi-stage supercharging system), 2 …… Low pressure supercharger (first supercharger), 2c …… Turbine housing, 2d …… Turbine impeller, 3 …… High pressure supercharger Machine (second turbocharger), 3c... Turbine housing, 3e .. bypass passage, 5 .. exhaust bypass valve device, 51... Valve assembly, 51a .. valve body, 51b. Shaft portion, 52... Mounting plate (mounting portion), 53... Link plate assembly, 53 a... Link plate, 10, 20... Stopper, 11.

Claims (4)

  1.  内燃機関から排出される排気ガスが供給される第1過給機と、前記第1過給機よりも前記排気ガスの流れの上流側に配置される第2過給機と、前記内燃機関から排出される前記排気ガスを前記第2過給機のタービンインペラをバイパスして前記第1過給機に供給するバイパス流路の開度を調節する弁体とを備える多段過給システムであって、
     前記弁体の最大開度を規定するストッパを備える多段過給システム。
    A first supercharger to which exhaust gas discharged from the internal combustion engine is supplied; a second supercharger disposed upstream of the flow of the exhaust gas from the first supercharger; and the internal combustion engine A multistage supercharging system comprising: a valve body that adjusts an opening degree of a bypass passage that bypasses a turbine impeller of the second supercharger and supplies the exhaust gas to be discharged to the first supercharger. ,
    A multi-stage supercharging system comprising a stopper for defining the maximum opening of the valve body.
  2.  前記ストッパは、タービンハウジングに対して取り付けられると共に前記タービンハウジングに対する取付位置を調節可能とされている請求項1に記載の多段過給システム。 The multistage turbocharging system according to claim 1, wherein the stopper is attached to the turbine housing and the attachment position relative to the turbine housing is adjustable.
  3.  アクチュエータの動力を前記弁体に伝達するリンク板を備え、
     前記ストッパは、前記タービンハウジングに対して螺合されると共に前記リンク板に当接するネジ部材である請求項2に記載の多段過給システム。
    A link plate for transmitting the power of the actuator to the valve body;
    The multistage supercharging system according to claim 2, wherein the stopper is a screw member that is screwed to the turbine housing and abuts against the link plate.
  4.  アクチュエータによって回動されると共に前記弁体が取り付けられる取付部を備え、
     前記ストッパは、前記取付部に設けられると共に前記タービンハウジングに当接する突起部である請求項1に記載の多段過給システム。
     
     
     
     
     
    An attachment portion to which the valve body is attached while being rotated by an actuator;
    The multistage supercharging system according to claim 1, wherein the stopper is a protrusion provided on the mounting portion and abutting against the turbine housing.




PCT/JP2012/065958 2011-06-22 2012-06-22 Multistage supercharging system WO2012176866A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011138310A JP2013007265A (en) 2011-06-22 2011-06-22 Multistage supercharging system
JP2011-138310 2011-06-22

Publications (1)

Publication Number Publication Date
WO2012176866A1 true WO2012176866A1 (en) 2012-12-27

Family

ID=47422694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065958 WO2012176866A1 (en) 2011-06-22 2012-06-22 Multistage supercharging system

Country Status (2)

Country Link
JP (1) JP2013007265A (en)
WO (1) WO2012176866A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107035510A (en) * 2016-01-29 2017-08-11 大众汽车有限公司 Exhaust-driven turbo-charger exhaust-gas turbo charger for internal combustion engine
CN113339127A (en) * 2021-05-10 2021-09-03 重庆长安汽车股份有限公司 Waste gas bypass valve assembly for supercharger and vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6954471B2 (en) 2018-07-10 2021-10-27 株式会社Ihi Tamper-proof structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193136U (en) * 1986-05-29 1987-12-08
JPH0725248U (en) * 1993-10-01 1995-05-12 富士重工業株式会社 Supercharged engine
WO2007058017A1 (en) * 2005-11-18 2007-05-24 Isuzu Motors Limited Two-stage supercharging system for internal combustion engine
JP2011021504A (en) * 2009-07-14 2011-02-03 Isuzu Motors Ltd Multi-stage supercharging apparatus
JP2012140889A (en) * 2010-12-28 2012-07-26 Isuzu Motors Ltd Turbo-system of switching type two-stage supercharger

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2605721Y2 (en) * 1993-09-29 2000-08-07 富士重工業株式会社 Engine with turbocharger
JPH1122833A (en) * 1997-07-03 1999-01-26 Kubota Corp Butterfly valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193136U (en) * 1986-05-29 1987-12-08
JPH0725248U (en) * 1993-10-01 1995-05-12 富士重工業株式会社 Supercharged engine
WO2007058017A1 (en) * 2005-11-18 2007-05-24 Isuzu Motors Limited Two-stage supercharging system for internal combustion engine
JP2011021504A (en) * 2009-07-14 2011-02-03 Isuzu Motors Ltd Multi-stage supercharging apparatus
JP2012140889A (en) * 2010-12-28 2012-07-26 Isuzu Motors Ltd Turbo-system of switching type two-stage supercharger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107035510A (en) * 2016-01-29 2017-08-11 大众汽车有限公司 Exhaust-driven turbo-charger exhaust-gas turbo charger for internal combustion engine
CN113339127A (en) * 2021-05-10 2021-09-03 重庆长安汽车股份有限公司 Waste gas bypass valve assembly for supercharger and vehicle

Also Published As

Publication number Publication date
JP2013007265A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
US8695338B2 (en) Exhaust gas control apparatus for engine
KR101794365B1 (en) Fresh gas supply device for an internal combustion engine and method for operating said type of fresh gas supply device
US8074628B2 (en) Air intake device for a heat engine with a cooled main circulation system and a bypass system equipped with a heating mechanism
US20130025576A1 (en) Multifunction valve
JP2010014271A (en) Valve regulation assembly
US20130309106A1 (en) Turbocharger
JP5919663B2 (en) Multistage supercharging system
WO2012176866A1 (en) Multistage supercharging system
US8069664B2 (en) Integrated inlet and bypass throttle for positive-displacement supercharged engines
JP5728943B2 (en) Turbo system and switchable two-stage turbocharger turbo system
WO2007089737A1 (en) Combination variable geometry compressor, throttle valve, and recirculation valve
JP5845650B2 (en) Wastegate valve
US9708970B2 (en) Housing for turbocharger
JP2015059506A (en) Valve device
KR20150132219A (en) A compact rotary wastegate valve
EP1620638A1 (en) Control valve and parts of a turbocharger and a turbocharger boosting system comprising the same
US10316738B2 (en) Turbocharger engine
US9169906B2 (en) Link apparatus
US20140165561A1 (en) Supercharger Turbocharger Bypass Back Draft Inlet Damper for Series Operation
WO2021070463A1 (en) Supercharger
US9243568B2 (en) Housing of a fresh gas supply device for an internal combustion engine and fresh gas supply device
WO2011072041A2 (en) Low pressure exhaust gas recirculation valve
JP2009108773A (en) Engine system
JP2013019337A (en) Multistage supercharging system
JP5967027B2 (en) Butterfly valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803378

Country of ref document: EP

Kind code of ref document: A1