JP6007783B2 - Welding method and welding apparatus - Google Patents

Welding method and welding apparatus Download PDF

Info

Publication number
JP6007783B2
JP6007783B2 JP2012279401A JP2012279401A JP6007783B2 JP 6007783 B2 JP6007783 B2 JP 6007783B2 JP 2012279401 A JP2012279401 A JP 2012279401A JP 2012279401 A JP2012279401 A JP 2012279401A JP 6007783 B2 JP6007783 B2 JP 6007783B2
Authority
JP
Japan
Prior art keywords
welding
electrode
storage device
heating
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012279401A
Other languages
Japanese (ja)
Other versions
JP2014121723A (en
Inventor
悠史 近藤
悠史 近藤
俊雄 小田切
俊雄 小田切
泰有 秋山
泰有 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2012279401A priority Critical patent/JP6007783B2/en
Publication of JP2014121723A publication Critical patent/JP2014121723A/en
Application granted granted Critical
Publication of JP6007783B2 publication Critical patent/JP6007783B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Resistance Welding (AREA)

Description

本発明は、蓄電装置の電極とその電極との間で電気を授受する導電部材とを抵抗溶接する溶接方法、及び溶接装置に関する。   The present invention relates to a welding method and a welding apparatus for resistance welding an electrode of a power storage device and a conductive member that transmits and receives electricity between the electrode.

EV(Electric Vehicle)やPHV(Plug in Hybrid Vehicle)などの車両には、原動機となる電動機への供給電力を蓄える蓄電装置としてリチウムイオン電池などの二次電池が搭載されている。この種の二次電池は、金属箔に負極活物質を塗布した負極電極と金属箔に正極活物質を塗布した正極電極との間をセパレータで絶縁し、これらを積層して層状とした電極組立体を有し、その電極組立体がケース内に電解液とともに収容されている。電極組立体を構成する各電極は、電極との間で電気を授受する導電部材を介してケース外に露出する正負の電極端子と電気的に接続される。そして、各電極と導電部材の接合は、例えば特許文献1に開示されるような抵抗溶接機を用いた抵抗溶接で行われる。   A vehicle such as an EV (Electric Vehicle) or a PHV (Plug in Hybrid Vehicle) is equipped with a secondary battery such as a lithium ion battery as a power storage device that stores power supplied to an electric motor serving as a prime mover. In this type of secondary battery, a negative electrode with a negative electrode active material applied to a metal foil and a positive electrode with a positive electrode active material applied to a metal foil are insulated by a separator, and these are laminated into a layered electrode assembly. The electrode assembly is accommodated in the case together with the electrolyte. Each electrode constituting the electrode assembly is electrically connected to positive and negative electrode terminals exposed to the outside of the case via a conductive member that exchanges electricity with the electrode. And joining of each electrode and an electrically-conductive member is performed by resistance welding using a resistance welding machine as disclosed by patent document 1, for example.

国際公開WO2010/110316号公報International Publication WO2010 / 110316

抵抗溶接は、接合対象物に正負一対の溶接用電極を接触させて溶接用電極と接合対象物を通電させ、その通電によって生じる抵抗熱で接合対象物を溶融し、溶接する方式である。ところで、抵抗溶接で使用する溶接用電極は、溶接時に通電させることで発熱し、温度上昇を伴うが、溶接が終了すると温度は下降する。このため、溶接用電極には、温度変化に伴う熱衝撃によってクラックが発生する場合があり、クラックが発生した溶接用電極は交換する必要がある。したがって、溶接用電極を頻繁に交換することは、蓄電装置の製造効率を低下させる要因となる。   Resistance welding is a system in which a pair of positive and negative welding electrodes are brought into contact with a joining object, the welding electrode and the joining object are energized, and the joining object is melted and welded by resistance heat generated by the energization. By the way, the welding electrode used in resistance welding generates heat when energized at the time of welding and is accompanied by a rise in temperature. For this reason, a crack may occur in the welding electrode due to a thermal shock accompanying a temperature change, and the welding electrode in which the crack has occurred needs to be replaced. Therefore, frequent replacement of the welding electrode is a factor that decreases the manufacturing efficiency of the power storage device.

この発明は、このような従来の技術に存在する問題点に着目してなされたものであり、その目的は、溶接用電極のクラックの発生を抑制する溶接方法、及び溶接装置を提供することにある。   This invention was made paying attention to the problem which exists in such a prior art, The objective is to provide the welding method and welding apparatus which suppress generation | occurrence | production of the crack of the electrode for welding. is there.

上記課題を解決する溶接方法は、蓄電装置の電極と、前記蓄電装置の電極との間で電気を授受する導電部材と、を抵抗溶接する溶接方法であって、溶接用電極に巻かれている加熱手段により前記溶接用電極を加熱し、その加熱した溶接用電極を前記導電部材及び前記蓄電装置の電極に接触させ、前記溶接用電極、前記導電部材及び前記蓄電装置の電極に通電させて抵抗溶接する。これによれば、溶接用電極を加熱することで、抵抗溶接時における溶接用電極の温度変化を小さくすることができる。したがって、熱衝撃によって溶接用電極にクラックが発生してしまうことを抑制できる。
上記課題を解決する溶接方法は、蓄電装置の電極と、前記蓄電装置の電極との間で電気を授受する導電部材と、を抵抗溶接する溶接方法であって、加熱手段により溶接用電極を加熱し、その加熱した溶接用電極を前記導電部材及び前記蓄電装置の電極に接触させ、前記溶接用電極、前記導電部材及び前記蓄電装置の電極に通電させて抵抗溶接した後に前記加熱手段による加熱を継続した状態で前記溶接用電極、前記導電部材及び前記蓄電装置の電極への通電を停止する。これによれば、溶接用電極を加熱することで、抵抗溶接時における溶接用電極の温度変化を小さくすることができる。したがって、熱衝撃によって溶接用電極にクラックが発生してしまうことを抑制できる。
A welding method for solving the above-described problem is a welding method for resistance-welding an electrode of a power storage device and a conductive member that transmits and receives electricity between the electrode of the power storage device, and is wound around a welding electrode the heating means heats the welding electrode, the heated welding electrodes is brought into contact with the electrodes of the conductive member and the electrical storage device, the welding electrode, by supplying current to the electrodes of the conductive member and the electrical storage device resistance Weld. According to this, the temperature change of the welding electrode at the time of resistance welding can be reduced by heating the welding electrode. Therefore, it is possible to suppress the occurrence of cracks in the welding electrode due to thermal shock.
A welding method that solves the above-described problem is a welding method that resistance-welds an electrode of a power storage device and a conductive member that transfers electricity between the electrode of the power storage device, and heats the welding electrode by a heating unit. The heated welding electrode is brought into contact with the conductive member and the electrode of the power storage device, and the welding electrode, the conductive member and the electrode of the power storage device are energized and subjected to resistance welding, and then heated by the heating means. In a continued state, energization of the welding electrode, the conductive member, and the electrode of the power storage device is stopped. According to this, the temperature change of the welding electrode at the time of resistance welding can be reduced by heating the welding electrode. Therefore, it is possible to suppress the occurrence of cracks in the welding electrode due to thermal shock.

上記溶接方法において、前記抵抗溶接は、前記溶接用電極が保温された状態で行うことが好ましい。これによれば、溶接用電極が保温されていることで、抵抗溶接を繰り返し行うことによる溶接用電極の急激な温度変化を抑制できる。したがって、熱衝撃によって溶接用電極にクラックが発生してしまうことを抑制できる。   In the welding method, the resistance welding is preferably performed in a state where the welding electrode is kept warm. According to this, since the welding electrode is kept warm, a rapid temperature change of the welding electrode due to repeated resistance welding can be suppressed. Therefore, it is possible to suppress the occurrence of cracks in the welding electrode due to thermal shock.

上記溶接方法において、前記溶接用電極は、前記蓄電装置の電極の溶融温度以下の温度に保温することが好ましい。これによれば、溶接用電極を蓄電装置の電極に接触させた場合であっても、溶接用電極の熱によって蓄電装置の電極が溶融してしまうことを抑制できる。したがって、良好な溶接部を得ることができる。   In the welding method, the welding electrode is preferably kept at a temperature equal to or lower than a melting temperature of the electrode of the power storage device. According to this, even when the welding electrode is brought into contact with the electrode of the power storage device, it is possible to prevent the electrode of the power storage device from being melted by the heat of the welding electrode. Therefore, a good weld can be obtained.

上記課題を解決する溶接装置は、蓄電装置の電極と、前記蓄電装置の電極との間で電気を授受する導電部材と、を抵抗溶接する溶接装置であって、前記蓄電装置の電極、及び前記導電部材に通電させる溶接用電極と、前記溶接用電極を前記蓄電装置の電極、及び前記導電部材に接触させる移動機構と、前記溶接用電極を加熱する加熱手段と、を備え、前記加熱手段は、前記溶接用電極に巻かれている。これによれば、溶接用電極を加熱する加熱手段を有し、その加熱手段によって溶接用電極を加熱することで、抵抗溶接時における溶接用電極の温度変化を小さくすることができる。したがって、熱衝撃によって溶接用電極にクラックが発生してしまうことを抑制できる。 A welding apparatus that solves the above problem is a welding apparatus that resistance welds an electrode of a power storage device and a conductive member that transmits and receives electricity between the electrode of the power storage device, the electrode of the power storage device, and the a welding electrode for energizing the conductive member, a moving mechanism for contacting the welding electrode electrode of the electric storage device, and the conductive member, and a heating means for heating the welding electrode, said heating means , Wound around the welding electrode . According to this, the heating means for heating the welding electrode is provided, and the temperature of the welding electrode during resistance welding can be reduced by heating the welding electrode by the heating means. Therefore, it is possible to suppress the occurrence of cracks in the welding electrode due to thermal shock.

上記溶接装置において、前記溶接用電極に電圧を印加する電圧印加手段と、前記加熱手段に加熱用のエネルギーを付与するエネルギー付与手段と、を備えることが好ましい。これによれば、溶接用電極、導電部材及び蓄電装置の電極を通電させる制御と、加熱手段によって溶接用電極を加熱させる制御を個別に行うことができる。したがって、制御を簡素化できる。   The welding apparatus preferably includes voltage applying means for applying a voltage to the welding electrode and energy applying means for applying heating energy to the heating means. According to this, it is possible to individually perform control for energizing the welding electrode, the conductive member, and the electrode of the power storage device, and control for heating the welding electrode by the heating means. Therefore, control can be simplified.

上記課題を解決する溶接装置は、蓄電装置の電極と、前記蓄電装置の電極との間で電気を授受する導電部材と、を抵抗溶接する溶接装置であって、前記蓄電装置の電極、及び前記導電部材に通電させる溶接用電極と、前記溶接用電極を前記蓄電装置の電極、及び前記導電部材に接触させる移動機構と、前記溶接用電極を加熱する加熱手段と、前記加熱手段に加熱用のエネルギーを付与するエネルギー付与手段と、前記溶接用電極に電圧を印加する電圧印加手段とを備え、前記エネルギー付与手段は、前記電圧印加手段による電圧の印加に先立って前記加熱手段に加熱用のエネルギーを付与するものであり、前記電圧印加手段は、前記エネルギー付与手段により前記加熱手段に加熱用のエネルギーが付与された状態にあるときに前記溶接用電極への電圧の印加を開始及び停止するものである。これによれば、溶接用電極を加熱する加熱手段を有し、その加熱手段によって溶接用電極を加熱することで、抵抗溶接時における溶接用電極の温度変化を小さくすることができる。したがって、熱衝撃によって溶接用電極にクラックが発生してしまうことを抑制できる。また、溶接用電極、導電部材及び蓄電装置の電極を通電させる制御と、加熱手段によって溶接用電極を加熱させる制御を個別に行うことができる。したがって、制御を簡素化できる。
上記溶接装置において、前記エネルギー付与手段は、前記加熱手段に電気エネルギーを付与することが好ましい。これによれば、電気エネルギーを熱に変換して溶接用電極を加熱するので、加熱手段の構成を簡素化できる。
A welding apparatus that solves the above problem is a welding apparatus that resistance welds an electrode of a power storage device and a conductive member that transmits and receives electricity between the electrode of the power storage device, the electrode of the power storage device, and the A welding electrode for energizing the conductive member, a moving mechanism for bringing the welding electrode into contact with the electrode of the power storage device and the conductive member, a heating means for heating the welding electrode, and heating means for heating the heating means. Energy applying means for applying energy, and voltage applying means for applying a voltage to the welding electrode, wherein the energy applying means applies heating energy to the heating means prior to voltage application by the voltage applying means. The voltage application means is the welding electrode when the energy application means is in a state where energy for heating is applied to the heating means. It is to start and stop the application of voltage. According to this, the heating means for heating the welding electrode is provided, and the temperature of the welding electrode during resistance welding can be reduced by heating the welding electrode by the heating means. Therefore, it is possible to suppress the occurrence of cracks in the welding electrode due to thermal shock. In addition, control for energizing the welding electrode, the conductive member, and the electrode of the power storage device and control for heating the welding electrode by the heating means can be performed separately. Therefore, control can be simplified.
In the welding apparatus, it is preferable that the energy applying unit applies electric energy to the heating unit. According to this, since the welding electrode is heated by converting electric energy into heat, the configuration of the heating means can be simplified.

上記溶接装置において、前記加熱手段は、前記溶接用電極に巻かれていることが好ましい。これによれば、加熱手段の熱を溶接用電極に直接的に与えることができ、溶接用電極を良好に加熱できる。   In the welding apparatus, it is preferable that the heating means is wound around the welding electrode. According to this, the heat of a heating means can be directly given to the welding electrode, and the welding electrode can be heated satisfactorily.

本発明によれば、溶接用電極のクラックの発生を抑制できる。   According to the present invention, the occurrence of cracks in the welding electrode can be suppressed.

二次電池の一部破断斜視図。The partially broken perspective view of a secondary battery. 電極組立体の構成要素を示す分解斜視図。The disassembled perspective view which shows the component of an electrode assembly. 溶接装置を示す模式図。The schematic diagram which shows a welding apparatus. 電極と導電部材の溶接を行っている状態を示す模式図。The schematic diagram which shows the state which is welding the electrode and the electrically-conductive member.

以下、溶接装置及び溶接方法を具体化した一実施形態を図1〜図4にしたがって説明する。
図1に示すように、蓄電装置としての二次電池10は、ケース本体11aとケース本体11aの開口部を覆う蓋11bで構成された四角箱状のケース11内に、電極組立体12及び電解液(図示せず)が収容されている。電極組立体12には、正極端子13及び負極端子14が電気的に接続されている。正極端子13及び負極端子14は、蓋11bからケース11外に露出している。
Hereinafter, an embodiment embodying a welding apparatus and a welding method will be described with reference to FIGS.
As shown in FIG. 1, a secondary battery 10 as a power storage device includes a case body 11a and a rectangular box-shaped case 11 formed of a lid 11b covering an opening of the case body 11a. A liquid (not shown) is contained. A positive electrode terminal 13 and a negative electrode terminal 14 are electrically connected to the electrode assembly 12. The positive terminal 13 and the negative terminal 14 are exposed outside the case 11 from the lid 11b.

図2に示すように、電極組立体12は、蓄電装置の電極としての正極電極15と、蓄電装置の電極としての負極電極16と、正極電極15及び負極電極16を絶縁するセパレータ17と、を有する。電極組立体12は、複数の正極電極15と複数の負極電極16を交互に積層するとともに、正極電極15と負極電極16の間にセパレータ17を介在した積層構造である。   As shown in FIG. 2, the electrode assembly 12 includes a positive electrode 15 as an electrode of the power storage device, a negative electrode 16 as an electrode of the power storage device, and a separator 17 that insulates the positive electrode 15 and the negative electrode 16. Have. The electrode assembly 12 has a stacked structure in which a plurality of positive electrodes 15 and a plurality of negative electrodes 16 are alternately stacked, and a separator 17 is interposed between the positive electrodes 15 and the negative electrodes 16.

正極電極15は、矩形のシート状であり、正極金属箔(実施形態ではアルミニウム箔)18の両面に正極活物質を含む正極活物質層19を有する。また、正極電極15の一辺には、正極金属箔18からなる正極集電タブ20を有する。負極電極16は、矩形のシート状であり、負極金属箔(実施形態では銅箔)21の両面に負極活物質を含む負極活物質層22を有する。また、負極電極16の一辺には、負極金属箔21からなる負極集電タブ23を有する。   The positive electrode 15 has a rectangular sheet shape, and has a positive electrode active material layer 19 containing a positive electrode active material on both surfaces of a positive electrode metal foil (an aluminum foil in the embodiment) 18. A positive electrode current collecting tab 20 made of a positive electrode metal foil 18 is provided on one side of the positive electrode 15. The negative electrode 16 has a rectangular sheet shape, and has a negative electrode active material layer 22 containing a negative electrode active material on both surfaces of a negative electrode metal foil (copper foil in the embodiment) 21. Further, a negative electrode current collecting tab 23 made of the negative electrode metal foil 21 is provided on one side of the negative electrode 16.

正極端子13と各正極電極15の正極集電タブ20は、各正極電極15との間で電気を授受する正極導電部材(実施形態ではアルミニウム板)24と電気的に接続されている。負極端子14と各負極電極16の負極集電タブ23は、各負極電極16との間で電気を授受する負極導電部材(実施形態では銅板)25と電気的に接続されている。正極集電タブ20と正極導電部材24の接合、及び負極集電タブ23と負極導電部材25の接合には、抵抗溶接が用いられる。抵抗溶接は、例えば、正極集電タブ20と正極導電部材24などの接合対象物を、正負一対の溶接用電極で挟み込んで溶着する方法である。なお、図1の符号「26」は、抵抗溶接によって形成された溶接部である。   The positive electrode current collecting tab 20 of each positive electrode terminal 13 and each positive electrode 15 is electrically connected to a positive electrode conductive member (in the embodiment, an aluminum plate) 24 that exchanges electricity with each positive electrode 15. The negative electrode current collecting tab 23 of each of the negative electrode terminal 14 and each negative electrode 16 is electrically connected to a negative electrode conductive member (a copper plate in the embodiment) 25 that exchanges electricity with each negative electrode 16. Resistance welding is used for joining the positive electrode current collecting tab 20 and the positive electrode conductive member 24 and joining the negative electrode current collecting tab 23 and the negative electrode conductive member 25. Resistance welding is, for example, a method in which an object to be joined such as the positive electrode current collecting tab 20 and the positive electrode conductive member 24 is sandwiched between a pair of positive and negative welding electrodes and welded. In addition, the code | symbol "26" of FIG. 1 is the welding part formed by resistance welding.

図3に示すように、抵抗溶接を行う溶接装置は、棒状の溶接用電極30,31を有する。溶接用電極30,31は、銅やタングステンなどの電気伝導性の良好な金属材料で構成されている。この実施形態において各溶接用電極30,31の周面には、加熱手段としての電熱線(例えば、ニクロム線や鉄クロム線など)32が巻かれている。電熱線32は、絶縁材(例えば、セラミックやガラスなど)で被覆されている。これにより、電熱線32は、各溶接用電極30,31と絶縁された状態となる。   As shown in FIG. 3, a welding apparatus that performs resistance welding includes rod-shaped welding electrodes 30 and 31. The welding electrodes 30 and 31 are made of a metal material having good electrical conductivity such as copper or tungsten. In this embodiment, a heating wire (for example, a nichrome wire or an iron chrome wire) 32 is wound around the peripheral surfaces of the welding electrodes 30 and 31 as heating means. The heating wire 32 is covered with an insulating material (for example, ceramic or glass). Thereby, the heating wire 32 will be in the state insulated with each electrode 30 and 31 for welding.

溶接装置は、各溶接用電極30,31の通電部33と、各溶接用電極30,31に巻かれた電熱線32の通電部34と、を有する。この実施形態において通電部33は、溶接用電極30,31に電圧を印加する電圧印加手段となる。また、この実施形態において通電部34は、電熱線32に電圧を印加することで、加熱用のエネルギーとしての電気エネルギーを付与するエネルギー付与手段となる。また、溶接装置は、溶接用電極31に対して溶接用電極30を接離移動させる移動機構35を有する。移動機構35により、溶接用電極30は、溶接時において接合対象物に接触するように移動され、溶接後において接合対象物から離れるように移動される。   The welding apparatus includes an energization portion 33 of each welding electrode 30, 31 and an energization portion 34 of a heating wire 32 wound around each welding electrode 30, 31. In this embodiment, the energizing portion 33 serves as a voltage applying means for applying a voltage to the welding electrodes 30 and 31. Further, in this embodiment, the energization unit 34 serves as an energy applying unit that applies electric energy as heating energy by applying a voltage to the heating wire 32. Further, the welding apparatus has a moving mechanism 35 that moves the welding electrode 30 toward and away from the welding electrode 31. By the moving mechanism 35, the welding electrode 30 is moved so as to contact the object to be joined at the time of welding and is moved away from the object to be joined after welding.

以下、溶接装置の作用を、正極集電タブ20と正極導電部材24の溶接方法とともに説明する。なお、負極集電タブ23と負極導電部材25の溶接は、以下に説明する正極集電タブ20と正極導電部材24の溶接と同じ方法である。   Hereinafter, the operation of the welding apparatus will be described together with a method for welding the positive electrode current collecting tab 20 and the positive electrode conductive member 24. The welding of the negative electrode current collecting tab 23 and the negative electrode conductive member 25 is the same method as the welding of the positive electrode current collecting tab 20 and the positive electrode conductive member 24 described below.

溶接装置の通電部34は、作業者などの外部操作に基づく予熱開始信号を入力すると、各溶接用電極30,31の電熱線32に電圧を印加する。これにより、各溶接用電極30,31は、電熱線32の発熱によって加熱されるとともに所定の温度に保温される。この実施形態において各溶接用電極30,31は、雰囲気温度以上で、かつ接合対象物の溶融温度以下の温度に保たれる。接合対象物を正極集電タブ20と正極導電部材24とした場合、各溶接用電極30,31は、正極集電タブ20や正極導電部材24の溶融温度以下の温度に保たれる。   The energization part 34 of the welding apparatus applies a voltage to the heating wires 32 of the welding electrodes 30 and 31 when a preheating start signal based on an external operation by an operator or the like is input. Thereby, each welding electrode 30 and 31 is heated by heat_generation | fever of the heating wire 32, and is kept at predetermined temperature. In this embodiment, each welding electrode 30 and 31 is maintained at a temperature not lower than the ambient temperature and not higher than the melting temperature of the objects to be joined. When the objects to be joined are the positive electrode current collector tab 20 and the positive electrode conductive member 24, the welding electrodes 30 and 31 are kept at a temperature equal to or lower than the melting temperature of the positive electrode current collector tab 20 and the positive electrode conductive member 24.

溶接時には、離間した状態の溶接用電極30,31の間に接合対象物を配置する。そして、移動機構35により、溶接用電極30を接合対象物に接触させる。溶接時には、作業者などの外部操作に基づく溶接開始信号を入力した通電部33が電圧を印加させることにより、各溶接用電極30,31と接合対象物の接触によって接合対象物である正極集電タブ20と正極導電部材24に通電される。この通電により、接合対象物は、抵抗熱で加熱されるとともに溶融し、溶接装置からの加圧力を受けて接合される。   At the time of welding, an object to be joined is disposed between the welding electrodes 30 and 31 in a separated state. Then, the welding electrode 30 is brought into contact with the object to be joined by the moving mechanism 35. At the time of welding, the current-carrying unit 33 that has input a welding start signal based on an external operation by an operator or the like applies a voltage, whereby the positive electrode current collector that is the object to be joined is brought into contact with each welding electrode 30, 31 and the object to be joined. The tab 20 and the positive electrode conductive member 24 are energized. By this energization, the objects to be joined are heated by resistance heat and melted, and are joined by receiving a pressing force from the welding apparatus.

溶接終了後、通電部33は、溶接用電極30,31への電圧の印加を停止する。一方、通電部34は、電熱線32に対する電圧の印加を継続し、溶接用電極30,31を保温する。これにより、溶接用電極30,31は、溶接時と非溶接時において温度変化が小さい状態に保たれる。また、抵抗溶接を繰り返す場合、抵抗溶接は、溶接用電極30,31が保温された状態で行われる。   After the end of welding, the energization unit 33 stops applying the voltage to the welding electrodes 30 and 31. On the other hand, the energization unit 34 continues to apply a voltage to the heating wire 32 to keep the welding electrodes 30 and 31 warm. Thereby, the electrodes 30 and 31 for welding are maintained in a state where the temperature change is small during welding and during non-welding. When resistance welding is repeated, resistance welding is performed in a state where the welding electrodes 30 and 31 are kept warm.

したがって、本実施形態によれば、以下に示す効果を得ることができる。
(1)溶接用電極30,31は、溶接時に通電させることで発熱して温度上昇を伴うが、溶接が終了すると温度は下降するというように温度変化が激しい。このため、溶接用電極30,31を加熱することで、溶接時と非溶接時における溶接用電極30,31の温度変化を小さくすることができる。したがって、熱衝撃によって溶接用電極30,31にクラックが発生してしまうことを抑制できる。
Therefore, according to the present embodiment, the following effects can be obtained.
(1) The welding electrodes 30 and 31 generate heat when energized at the time of welding and increase in temperature, but the temperature changes drastically such that the temperature decreases when welding is completed. For this reason, the temperature change of the electrodes 30 and 31 for welding at the time of welding and the time of non-welding can be made small by heating the electrodes 30 and 31 for welding. Therefore, it is possible to suppress the occurrence of cracks in the welding electrodes 30 and 31 due to thermal shock.

(2)これにより、二次電池10の製造において、クラックの発生を要因とする溶接用電極30,31の交換頻度を抑えることができ、二次電池10の製造効率の低下を抑制できる。   (2) Thereby, in the production of the secondary battery 10, the replacement frequency of the welding electrodes 30 and 31 due to the occurrence of cracks can be suppressed, and the reduction in the production efficiency of the secondary battery 10 can be suppressed.

(3)溶接用電極30,31が保温された状態で溶接を行うので、抵抗溶接を繰り返し行うことによる溶接用電極30,31の急激な温度変化を抑制できる。したがって、抵抗溶接を繰り返し行う場合であっても、熱衝撃によって溶接用電極30,31にクラックが発生してしまうことを抑制できる。   (3) Since welding is performed in a state where the welding electrodes 30 and 31 are kept warm, rapid temperature changes of the welding electrodes 30 and 31 due to repeated resistance welding can be suppressed. Therefore, even when resistance welding is repeatedly performed, it is possible to suppress the occurrence of cracks in the welding electrodes 30 and 31 due to thermal shock.

(4)溶接用電極30,31を接合対象物である正極集電タブ20などの溶融温度以下に保温するので、溶接用電極30,31を接合対象物に接触させた場合であっても、溶接用電極30,31の熱によって接合対象物が溶融してしまうことを抑制できる。したがって、良好な溶接部26を得ることができる。   (4) Since the electrodes 30 and 31 for welding are kept below the melting temperature of the cathode current collecting tab 20 or the like that is the object to be joined, even when the electrodes 30 and 31 for welding are brought into contact with the object to be joined, It can suppress that a joining target object melts with the heat of electrodes 30 and 31 for welding. Therefore, a good welded portion 26 can be obtained.

(5)電熱線32へ電圧を印加して溶接用電極30,31を加熱するので、加熱するための構成を簡素化することができる。
(6)そして、電熱線32は、溶接用電極30,31の周面に巻いているので、電熱線32の熱を溶接用電極30,31に直接的に与えることができ、溶接用電極30,31を良好に加熱できる。
(5) Since the welding electrodes 30 and 31 are heated by applying a voltage to the heating wire 32, the configuration for heating can be simplified.
(6) Since the heating wire 32 is wound around the peripheral surfaces of the welding electrodes 30, 31, the heat of the heating wire 32 can be directly applied to the welding electrodes 30, 31. 31 can be heated satisfactorily.

(7)溶接用電極30,31と接合対象物を通電させる場合には通電部33が電圧を印加し、溶接用電極30,31を加熱させる場合には通電部34が電圧を印加する。このため、通電時と加熱時の制御を個別に行うことができ、制御を簡素化できる。   (7) When the welding electrodes 30 and 31 and the object to be joined are energized, the energization unit 33 applies a voltage, and when the welding electrodes 30 and 31 are heated, the energization unit 34 applies a voltage. For this reason, control at the time of energization and heating can be performed separately, and control can be simplified.

なお、上記実施形態は以下のように変更してもよい。
○ 電熱線32の周面に代えて、各溶接用電極30,31の周面を絶縁材で被覆しても良い。また、各溶接用電極30,31の周面と電熱線32の周面の両方を絶縁材で被覆しても良い。
In addition, you may change the said embodiment as follows.
In place of the peripheral surface of the heating wire 32, the peripheral surfaces of the welding electrodes 30, 31 may be covered with an insulating material. Moreover, you may coat | cover both the surrounding surface of each welding electrode 30 and 31 and the surrounding surface of the heating wire 32 with an insulating material.

○ 各溶接用電極30,31の周囲にヒータなどの熱源を配置することで、各溶接用電極30,31を加熱しても良い。この場合、各溶接用電極30,31には、電熱線32が巻かれていても良いし、ヒータなどの熱源のみによって加熱しても良い。   O Each welding electrode 30 and 31 may be heated by arranging a heat source such as a heater around each welding electrode 30 and 31. In this case, a heating wire 32 may be wound around each of the welding electrodes 30 and 31, or may be heated only by a heat source such as a heater.

○ 電熱線32やヒータなどの加熱手段に熱を発生させるために付与するエネルギーを変更しても良い。例えば、ガスを燃焼させたエネルギーや太陽光などのエネルギーを用いて熱を発生させても良い。   O You may change the energy provided in order to generate heat to heating means, such as the heating wire 32 and a heater. For example, heat may be generated using energy such as gas combustion energy or sunlight.

○ 電熱線32やヒータなどの加熱手段は、溶接用電極30,31の全体を加熱するように配置しても良いし、溶接用電極30,31の先端などの局部に熱を与え、その熱を全体に伝えるようにしても良い。   The heating means such as the heating wire 32 and the heater may be arranged so as to heat the entire welding electrodes 30, 31, or heat is applied to local parts such as the tips of the welding electrodes 30, 31, May be communicated throughout.

○ 通電部33,34が電圧を印加するタイミングなどの制御内容を変更しても良い。要は、溶接時に溶接用電極30,31が加熱されていれば良い。
○ 通電部34による電圧の印加は、溶接装置の主電源がONされた時に一義的に行われるようにしても良い。
The control content such as the timing at which the energization units 33 and 34 apply voltage may be changed. In short, it is only necessary that the welding electrodes 30 and 31 are heated during welding.
The voltage application by the energization unit 34 may be uniquely performed when the main power supply of the welding apparatus is turned on.

○ 溶接中は、加熱手段(実施形態では電熱線32)による各溶接用電極30,31の加熱を継続しても良いし、中断させても良い。
○ 二次電池10は、リチウムイオン二次電池に限らず、他の二次電池であっても良い。要は、正極活物質層と負極活物質層との間をイオンが移動するとともに電荷の授受を行うものであれば良い。また、蓄電装置としてキャパシタでも良い。
During heating, heating of the welding electrodes 30 and 31 by the heating means (the heating wire 32 in the embodiment) may be continued or may be interrupted.
The secondary battery 10 is not limited to a lithium ion secondary battery, and may be another secondary battery. In short, any ion may be used as long as ions move between the positive electrode active material layer and the negative electrode active material layer and transfer charge. Further, a capacitor may be used as the power storage device.

○ 実施形態の二次電池10は、車両電源装置として自動車に搭載しても良いし、産業用車両に搭載しても良い。また、定置用の蓄電装置に適用しても良い。
○ 実施形態の溶接装置及び溶接方法は、積層型の二次電池10に限らず、帯状の正極電極と帯状の負極電極を捲回して層状に積層した捲回型の二次電池において電極と導電部材を接合する際に適用しても良い。
(Circle) the secondary battery 10 of embodiment may be mounted in a motor vehicle as a vehicle power supply device, and may be mounted in an industrial vehicle. Further, the present invention may be applied to a stationary power storage device.
The welding apparatus and the welding method of the embodiment are not limited to the laminated secondary battery 10, and the electrode and the conductive material are wound in a wound secondary battery in which a belt-like positive electrode and a belt-like negative electrode are wound and laminated in layers. You may apply when joining a member.

10…二次電池、15…正極電極、16…負極電極、20…正極集電タブ、23…負極集電タブ、24…正極導電部材、25…負極導電部材、30,31…溶接用電極、32…電熱線、33,34…通電部、35…移動機構。   DESCRIPTION OF SYMBOLS 10 ... Secondary battery, 15 ... Positive electrode, 16 ... Negative electrode, 20 ... Positive electrode current collection tab, 23 ... Negative electrode current collection tab, 24 ... Positive electrode conductive member, 25 ... Negative electrode conductive member, 30, 31 ... Electrode for welding, 32 ... heating wire, 33, 34 ... energization part, 35 ... moving mechanism.

Claims (8)

蓄電装置の電極と、
前記蓄電装置の電極との間で電気を授受する導電部材と、を抵抗溶接する溶接方法であって、
溶接用電極に巻かれている加熱手段により前記溶接用電極を加熱し、その加熱した溶接用電極を前記導電部材及び前記蓄電装置の電極に接触させ、前記溶接用電極、前記導電部材及び前記蓄電装置の電極に通電させて抵抗溶接する溶接方法。
An electrode of a power storage device;
It is a welding method for resistance welding a conductive member that exchanges electricity with the electrode of the power storage device,
The heating means is wound to the welding electrode by heating the welding electrode, the heated welding electrodes is brought into contact with the electrodes of the conductive member and the electrical storage device, the welding electrode, the conductive member and said energy storage A welding method in which resistance welding is performed by energizing the electrodes of the apparatus.
蓄電装置の電極と、  An electrode of a power storage device;
前記蓄電装置の電極との間で電気を授受する導電部材と、を抵抗溶接する溶接方法であって、  It is a welding method for resistance welding a conductive member that exchanges electricity with the electrode of the power storage device,
加熱手段により溶接用電極を加熱し、その加熱した溶接用電極を前記導電部材及び前記蓄電装置の電極に接触させ、前記溶接用電極、前記導電部材及び前記蓄電装置の電極に通電させて抵抗溶接した後に前記加熱手段による加熱を継続した状態で前記溶接用電極、前記導電部材及び前記蓄電装置の電極への通電を停止する溶接方法。  The welding electrode is heated by a heating means, the heated welding electrode is brought into contact with the conductive member and the electrode of the power storage device, and the welding electrode, the conductive member and the electrode of the power storage device are energized and resistance welding is performed. A welding method for stopping energization to the welding electrode, the conductive member, and the electrode of the power storage device in a state in which heating by the heating means is continued.
前記抵抗溶接は、前記溶接用電極が保温された状態で行う請求項1又は請求項2に記載の溶接方法。 The welding method according to claim 1, wherein the resistance welding is performed in a state where the welding electrode is kept warm. 前記溶接用電極は、前記蓄電装置の電極の溶融温度以下の温度に保温する請求項に記載の溶接方法。 The welding method according to claim 3 , wherein the welding electrode is kept at a temperature equal to or lower than a melting temperature of the electrode of the power storage device. 蓄電装置の電極と、
前記蓄電装置の電極との間で電気を授受する導電部材と、を抵抗溶接する溶接装置であって、
前記蓄電装置の電極、及び前記導電部材に通電させる溶接用電極と、
前記溶接用電極を前記蓄電装置の電極、及び前記導電部材に接触させる移動機構と、
前記溶接用電極を加熱する加熱手段と、を備え
前記加熱手段は、前記溶接用電極に巻かれている溶接装置。
An electrode of a power storage device;
A welding device for resistance welding a conductive member that exchanges electricity with an electrode of the power storage device;
An electrode for the power storage device, and a welding electrode for energizing the conductive member;
A moving mechanism for bringing the welding electrode into contact with the electrode of the power storage device and the conductive member;
Heating means for heating the welding electrode ,
The heating means is a welding apparatus wound around the welding electrode .
前記溶接用電極に電圧を印加する電圧印加手段と、
前記加熱手段に加熱用のエネルギーを付与するエネルギー付与手段と、を備えた請求項に記載の溶接装置。
Voltage applying means for applying a voltage to the welding electrode;
The welding apparatus according to claim 5 , further comprising: an energy applying unit that applies heating energy to the heating unit.
蓄電装置の電極と、  An electrode of a power storage device;
前記蓄電装置の電極との間で電気を授受する導電部材と、を抵抗溶接する溶接装置であって、  A welding device for resistance welding a conductive member that exchanges electricity with an electrode of the power storage device;
前記蓄電装置の電極、及び前記導電部材に通電させる溶接用電極と、  An electrode for the power storage device, and a welding electrode for energizing the conductive member;
前記溶接用電極を前記蓄電装置の電極、及び前記導電部材に接触させる移動機構と、  A moving mechanism for bringing the welding electrode into contact with the electrode of the power storage device and the conductive member;
前記溶接用電極を加熱する加熱手段と、  Heating means for heating the welding electrode;
前記加熱手段に加熱用のエネルギーを付与するエネルギー付与手段と、  Energy applying means for applying heating energy to the heating means;
前記溶接用電極に電圧を印加する電圧印加手段とを備え、  Voltage application means for applying a voltage to the welding electrode,
前記エネルギー付与手段は、前記電圧印加手段による電圧の印加に先立って前記加熱手段に加熱用のエネルギーを付与するものであり、  The energy application means is for applying energy for heating to the heating means prior to application of voltage by the voltage application means,
前記電圧印加手段は、前記エネルギー付与手段により前記加熱手段に加熱用のエネルギーが付与された状態にあるときに前記溶接用電極への電圧の印加を開始及び停止するものである溶接装置。  The voltage application means is a welding apparatus for starting and stopping application of a voltage to the welding electrode when the energy application means is in a state where energy for heating is applied to the heating means.
前記エネルギー付与手段は、前記加熱手段に電気エネルギーを付与する請求項6又は7に記載の溶接装置。 The welding apparatus according to claim 6 or 7 , wherein the energy applying unit applies electric energy to the heating unit.
JP2012279401A 2012-12-21 2012-12-21 Welding method and welding apparatus Expired - Fee Related JP6007783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012279401A JP6007783B2 (en) 2012-12-21 2012-12-21 Welding method and welding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012279401A JP6007783B2 (en) 2012-12-21 2012-12-21 Welding method and welding apparatus

Publications (2)

Publication Number Publication Date
JP2014121723A JP2014121723A (en) 2014-07-03
JP6007783B2 true JP6007783B2 (en) 2016-10-12

Family

ID=51402683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012279401A Expired - Fee Related JP6007783B2 (en) 2012-12-21 2012-12-21 Welding method and welding apparatus

Country Status (1)

Country Link
JP (1) JP6007783B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6325360B2 (en) * 2014-06-12 2018-05-16 株式会社マキタ Impact tool
KR102030774B1 (en) * 2018-07-20 2019-10-10 부경대학교 산학협력단 Electric resistance spot welding machine with double composite electrodes and induction heating
KR102030782B1 (en) * 2018-07-20 2019-10-10 부경대학교 산학협력단 Electric resistance spot welding machine by induction heating, multi current supply and multy pressure
KR20210127009A (en) * 2020-04-13 2021-10-21 주식회사 엘지에너지솔루션 Battery module and method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117579A (en) * 1978-08-15 1980-09-09 Banyou Kogyo Kk Resistance welding method of annealing portion near weld zone of steel
JP4835025B2 (en) * 2005-04-14 2011-12-14 トヨタ自動車株式会社 Method for manufacturing power storage device
JP5158435B2 (en) * 2008-09-17 2013-03-06 トヨタ自動車株式会社 Battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP2014121723A (en) 2014-07-03

Similar Documents

Publication Publication Date Title
JP6007783B2 (en) Welding method and welding apparatus
JP2015176701A (en) Power storage device and method for manufacturing power storage device
KR20110055255A (en) Bus bar and battery module with the same
JP6274034B2 (en) Power storage device
WO2013191218A1 (en) Process for producing stacked aluminum material, process for producing sealed battery containing same, and sealed battery
WO2014050780A1 (en) Electrical storage apparatus
JP2014524637A (en) Single cell and battery for battery
JPWO2014188774A1 (en) Manufacturing method and manufacturing apparatus for laminate type secondary battery
JP5411764B2 (en) One-side resistance spot welding method and one-side resistance spot welding apparatus
JP2019067570A (en) Welding jig and formation method of weld zone
JP6361322B2 (en) battery
JP2014018810A (en) Resistance welding apparatus and resistance welding method using the same
JP5558878B2 (en) Assembled battery, resistance welding method, and assembled battery manufacturing method
KR102458524B1 (en) Method and system for dissimilar metal resistance welding of secondary battery
JP2016001561A (en) Method and device for manufacturing power storage device
US10062893B2 (en) Connection method in an accumulator and accumulator thus connected
JP5962280B2 (en) Electrode manufacturing method
CN112838275A (en) Battery monomer
US9281542B2 (en) Electricity storage device and welding method
JP2016136512A5 (en)
JP6364972B2 (en) Power storage device and method for manufacturing power storage device
JP2014056672A (en) Power storage device and manufacturing method of power storage device
JP6065610B2 (en) Method for manufacturing power storage device
WO2014178238A1 (en) Laminate-type secondary battery manufacturing device and manufacturing method
JP2015037803A (en) Welding apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160829

R151 Written notification of patent or utility model registration

Ref document number: 6007783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees