JP2016001561A - Method and device for manufacturing power storage device - Google Patents

Method and device for manufacturing power storage device Download PDF

Info

Publication number
JP2016001561A
JP2016001561A JP2014121224A JP2014121224A JP2016001561A JP 2016001561 A JP2016001561 A JP 2016001561A JP 2014121224 A JP2014121224 A JP 2014121224A JP 2014121224 A JP2014121224 A JP 2014121224A JP 2016001561 A JP2016001561 A JP 2016001561A
Authority
JP
Japan
Prior art keywords
negative electrode
stacked
positive electrode
electrodes
conductive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014121224A
Other languages
Japanese (ja)
Other versions
JP6364985B2 (en
Inventor
真也 奥田
Shinya Okuda
真也 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2014121224A priority Critical patent/JP6364985B2/en
Publication of JP2016001561A publication Critical patent/JP2016001561A/en
Application granted granted Critical
Publication of JP6364985B2 publication Critical patent/JP6364985B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for manufacturing a power storage device, capable of simply and electrically connecting a conductive member and a conductive part group.SOLUTION: Disclosed is a method of manufacturing a secondary battery, in which a conductive member 22 and a negative electrode tab group 14d of an electrode assembly are electrically connected. In a formation process of the manufacturing method, every time one layer is stacked on a negative electrode 14, a negative electrode tab 14c of the stacked negative electrode 14 is welded to the conductive member 22 and the negative electrode tab 14 adjacent to each other.

Description

本発明は、蓄電装置の製造方法、及び蓄電装置の製造装置に関する。   The present invention relates to a method for manufacturing a power storage device and a device for manufacturing a power storage device.

従来から、EV(Electric Vehicle)やPHV(Plug in Hybrid Vehicle)などの車両には、電動機などへの供給電力を蓄える蓄電装置としてリチウムイオン二次電池やニッケル水素二次電池などが搭載されている。この種の二次電池は、タブ状の集電部を有する電極が複数層にわたって層状に重なっている電極組立体を有している。   Conventionally, vehicles such as EVs (Electric Vehicles) and PHVs (Plug in Hybrid Vehicles) have been mounted with lithium-ion secondary batteries or nickel-hydrogen secondary batteries as power storage devices that store power supplied to electric motors and the like. . This type of secondary battery has an electrode assembly in which electrodes having tab-shaped current collectors are stacked in layers over a plurality of layers.

そして、例えば特許文献1に示されるように、各電極の集電部が層状に重なった集電部群と、電極端子などの導電部材とは、レーザ溶接や抵抗溶接により接合されている。特許文献1では、集電部群を複数に分割するとともに、それぞれを導電部材に溶接することで、全ての集電部を一括して導電部材に溶接する場合と比較して溶接強度を向上させている。   For example, as shown in Patent Document 1, a current collecting portion group in which current collecting portions of each electrode overlap each other and a conductive member such as an electrode terminal are joined by laser welding or resistance welding. In patent document 1, while dividing a current collection part group into plurality and welding each to a conductive member, welding strength is improved compared with the case where all the current collection parts are welded to a conductive member collectively. ing.

特開2008−66170号公報JP 2008-66170 A

しかしながら、特許文献1では、電極を層状に重ねて電極組立体を形成してから、さらに集電部群を複数に分割しており、二次電池の製造工程が複雑化したり、集電部群を分割するための冶具や装置などが必要になるなど、製造装置としての構成が複雑化したりする虞がある。   However, in Patent Document 1, the electrode assembly is formed by stacking electrodes in layers, and then the current collecting unit group is further divided into a plurality of parts, and the manufacturing process of the secondary battery becomes complicated, or the current collecting unit group There is a possibility that the structure as a manufacturing apparatus may be complicated, such as requiring a jig or apparatus for dividing the structure.

この発明は、上記従来技術に存在する問題点に着目してなされたものであり、その目的は、簡便に導電部材と集電部群とを電気的に接続できる蓄電装置の製造方法、及び蓄電装置の製造装置を提供することにある。   The present invention has been made paying attention to the problems existing in the above-described prior art, and an object of the present invention is to provide a method of manufacturing a power storage device capable of easily electrically connecting a conductive member and a current collector unit, and a power storage The object is to provide a device manufacturing apparatus.

上記課題を解決する蓄電装置の製造方法は、電極が層状に重なっている電極組立体と、導電部材とを備え、前記電極組立体は、前記電極の集電部が層状に重なっており且つ縁部から突出している集電部群を有しており、前記導電部材と前記集電部群とは電気的に接続されている蓄電装置の製造方法であって、前記電極を1層重ねるごとに、又は前記電極を複数層重ねるごとに、該重ねた電極の集電部を溶接することを要旨とする。   A method of manufacturing a power storage device that solves the above problem includes an electrode assembly in which electrodes are stacked in layers, and a conductive member, and the electrode assembly includes a current collector portion of the electrodes stacked in layers and an edge. A method of manufacturing a power storage device in which the conductive member and the current collector portion group are electrically connected to each other, each time the electrode is stacked one layer. Alternatively, every time a plurality of layers of the electrodes are stacked, the current collector portion of the stacked electrodes is welded.

この構成によれば、電極を1層重ねるごとに、又は電極を複数層重ねるごとに、該重ねた電極の集電部を溶接することから、電極組立体を形成しながら集電部群と導電部材とを電気的に接続できる。このため、電極組立体を形成してから、さらに集電部群を複数に分割して導電部材に溶接する従来の構成と比較して、簡便に導電部材と集電部群とを電気的に接続できる。   According to this configuration, each time one electrode is stacked, or each time a plurality of electrodes are stacked, the current collecting part of the stacked electrodes is welded. The member can be electrically connected. For this reason, the conductive member and the current collecting unit group can be electrically connected more easily than the conventional structure in which the current collecting unit group is further divided into a plurality of parts and welded to the conductive member after the electrode assembly is formed. Can connect.

上記蓄電装置の製造方法について、前記電極を1層重ねるごとに、又は前記電極を複数層重ねるごとに、前記集電部の先端を所定方向へ順にずらして配置するとともに集電部の先端部を溶接することが好ましい。   About the method for manufacturing the power storage device, each time the electrode is stacked one layer or each time the electrode is stacked a plurality of layers, the tip of the current collector is shifted in a predetermined direction in order and the tip of the current collector is It is preferable to weld.

この構成によれば、ずらして配置した集電部の先端部を溶接していくことから、全ての集電部を同じ部分で繰り返し溶接する場合と比較して、溶接に要するエネルギが増大していくことを抑制し、簡便に導電部材と集電部群とを電気的に接続できる。   According to this configuration, since the tip end portion of the current collecting part arranged in a shifted manner is welded, the energy required for welding is increased as compared with the case where all the current collecting parts are repeatedly welded at the same part. It is possible to easily connect the conductive member and the current collecting unit group.

上記蓄電装置の製造方法について、前記電極を1層重ねるごとに、又は前記電極を複数層重ねるごとに、前記集電部の先端を前記集電部の基端へ向かう方向へ順にずらして配置するとともに集電部の先端部をレーザ溶接することが好ましい。   About the manufacturing method of the said electrical storage apparatus, every time the said electrode is piled up one layer, or every time the said electrode is laminated | stacked several layers, the front-end | tip of the said current collection part is shifted and arranged in order toward the base end of the said current collection part. At the same time, it is preferable to laser weld the tip of the current collector.

この構成によれば、ずらして配置した集電部の先端部をレーザ溶接していくことから、全ての集電部を同じ部分で繰り返しレーザ溶接する場合と比較して、溶接に要するレーザの強度が増大していくことを抑制し、簡便に導電部材と集電部群とを電気的に接続できる。   According to this configuration, since the tip of the current collecting part arranged in a shifted manner is laser-welded, the laser intensity required for welding is compared with the case where all the current collecting parts are repeatedly laser-welded at the same part. Can be suppressed, and the conductive member and the current collecting portion group can be electrically connected easily.

この構成によれば、電極が層状に重なっている電極組立体と、導電部材とを備え、前記電極組立体は、前記電極の集電部が層状に重なっており且つ縁部から突出している集電部群を有しており、前記導電部材と前記集電部群とは電気的に接続されている蓄電装置の製造装置であって、前記電極を層状に重ねて電極組立体を形成する形成装置と、前記形成装置により前記電極が1層重ねられるごとに、又は前記電極が複数層重ねられるごとに、該重ねられた電極の集電部を溶接する溶接装置と、を備えたことを要旨とする。   According to this configuration, the electrode assembly includes an electrode assembly in which the electrodes overlap each other in layers, and the conductive member. The electrode assembly includes a collector in which the current collecting portions of the electrodes overlap in layers and protrudes from the edges. A power storage device manufacturing apparatus having a power unit group, wherein the conductive member and the current collector unit group are electrically connected, wherein the electrodes are stacked in layers to form an electrode assembly And a welding device that welds the current collecting portions of the stacked electrodes each time one layer of the electrodes is stacked by the forming device or each time a plurality of layers of the electrodes are stacked. And

この構成によれば、電極を1層重ねるごとに、又は電極を複数層重ねるごとに、該重ねた電極の集電部を溶接できることから、電極組立体を形成しながら集電部群と導電部材とを電気的に接続できる。このため、電極組立体を形成してから、さらに集電部群を複数に分割して導電部材に溶接する従来の構成と比較して、簡便に導電部材と集電部群とを電気的に接続できる。   According to this configuration, since the current collecting part of the stacked electrodes can be welded each time one electrode is stacked or a plurality of electrodes are stacked, the current collecting part group and the conductive member are formed while forming the electrode assembly. Can be electrically connected. For this reason, the conductive member and the current collecting unit group can be electrically connected more easily than the conventional structure in which the current collecting unit group is further divided into a plurality of parts and welded to the conductive member after the electrode assembly is formed. Can connect.

本発明によれば、簡便に導電部材と集電部群とを電気的に接続できる。   According to the present invention, the conductive member and the current collecting unit group can be electrically connected easily.

二次電池を模式的に示す斜視図。The perspective view which shows a secondary battery typically. 分解した電極組立体を模式的に示す斜視図。The perspective view which shows typically the decomposed | disassembled electrode assembly. 図1に示す1−1線断面図。FIG. 1 is a sectional view taken along line 1-1 shown in FIG. (a)は負極タブ群と導電部材との溶接部分を模式的に示す断面図、(b)は(a)の一部を拡大して示す断面図、(c)は(a)の平面図。(A) is sectional drawing which shows typically the welding part of a negative electrode tab group and an electroconductive member, (b) is sectional drawing which expands and shows a part of (a), (c) is a top view of (a). . 二次電池の製造装置を模式的に示す正面図。The front view which shows the manufacturing apparatus of a secondary battery typically. (a)は吸着パットを模式的に示す正面図、(b)は同じく下面図、(c)は積層テーブル上の積層体を示す平面図。(A) is a front view schematically showing an adsorption pad, (b) is also a bottom view, and (c) is a plan view showing a laminated body on a laminated table. (a)及び(b)は形成工程を説明するための模式図。(A) And (b) is a schematic diagram for demonstrating a formation process. (a)及び(b)は形成工程を説明するための模式図。(A) And (b) is a schematic diagram for demonstrating a formation process. (a)及び(b)は形成工程を説明するための模式図。(A) And (b) is a schematic diagram for demonstrating a formation process. (a)及び(b)は形成工程を説明するための模式図。(A) And (b) is a schematic diagram for demonstrating a formation process. (a)及び(b)は別の実施形態における形成工程を説明するための模式図。(A) And (b) is a schematic diagram for demonstrating the formation process in another embodiment. (a)及び(b)は別の実施形態における形成工程を説明するための模式図。(A) And (b) is a schematic diagram for demonstrating the formation process in another embodiment.

以下、二次電池の製造方法、及び二次電池の製造装置の一実施形態について説明する。
図1に示すように、蓄電装置としての二次電池10は、金属製である直方体状のケース11を有する。ケース11は、例えばアルミニウム製やアルミニウム合金製である。ケース11は、有底四角筒状のケース本体11aと、ケース本体11aの開口部を塞ぐ蓋11bとを有する。ケース11には、電極組立体12が収容されている。また、電極組立体12には、図示しない電解質(電解液)が含浸されている。本実施形態の二次電池10は、リチウムイオン二次電池である。
Hereinafter, an embodiment of a secondary battery manufacturing method and a secondary battery manufacturing apparatus will be described.
As shown in FIG. 1, a secondary battery 10 as a power storage device has a rectangular parallelepiped case 11 made of metal. The case 11 is made of, for example, aluminum or aluminum alloy. The case 11 includes a bottomed square cylindrical case main body 11a and a lid 11b that closes an opening of the case main body 11a. An electrode assembly 12 is accommodated in the case 11. The electrode assembly 12 is impregnated with an electrolyte (electrolytic solution) not shown. The secondary battery 10 of this embodiment is a lithium ion secondary battery.

電極組立体12は、その全体が略直方体状であるとともに、正極電極13と負極電極14とが間にセパレータ15を介在させた状態で複数層にわたって交互に重なっている積層型の電極組立体である。正極電極13及び負極電極14は、略矩形のシート状である。正極電極13と負極電極14とは、セパレータ15によって相互に絶縁されている。以下の説明では、電極組立体12において、各電極13,14が重なっている方向を単に「積層方向DS」と示す。   The electrode assembly 12 has a substantially rectangular parallelepiped shape as a whole, and is a stacked electrode assembly in which a positive electrode 13 and a negative electrode 14 are alternately stacked over a plurality of layers with a separator 15 interposed therebetween. is there. The positive electrode 13 and the negative electrode 14 have a substantially rectangular sheet shape. The positive electrode 13 and the negative electrode 14 are insulated from each other by the separator 15. In the following description, the direction in which the electrodes 13 and 14 overlap in the electrode assembly 12 is simply referred to as “stacking direction DS”.

図2に示すように、正極電極13は、略矩形状である正極用の金属箔13aと、その両面の一部をそれぞれ覆うとともに正極用の活物質を含む活物質層13bと、金属箔13aの一縁部(一辺)から突出する集電部としての正極タブ13cとを有する。金属箔13aは、例えばアルミニウム箔である。本実施形態の正極タブ13cは、金属箔13aの一部であって、活物質層13bで覆われていない部分である。電極組立体12を構成する全ての正極電極13は、同一形状及び同一構成である。即ち、各正極電極13の正極タブ13cは、その突出方向D1に沿った長さが同一(又は略同一)である。   As shown in FIG. 2, the positive electrode 13 includes a substantially rectangular metal foil 13a for a positive electrode, an active material layer 13b that covers a part of both surfaces thereof and includes a positive electrode active material, and a metal foil 13a. And a positive electrode tab 13c as a current collector protruding from one edge (one side). The metal foil 13a is, for example, an aluminum foil. The positive electrode tab 13c of this embodiment is a part of the metal foil 13a that is not covered with the active material layer 13b. All the positive electrodes 13 constituting the electrode assembly 12 have the same shape and the same configuration. That is, the length of the positive electrode tab 13c of each positive electrode 13 along the protruding direction D1 is the same (or substantially the same).

また、負極電極14は、略矩形状である金属箔14aと、その両面の一部をそれぞれ覆うとともに負極用の活物質を含む活物質層14bと、金属箔14aの一縁部(一辺)から突出する集電部としての負極タブ14cとを有する。金属箔14aは、例えば銅箔である。本実施形態の負極タブ14cは、金属箔14aの一部であって、活物質層14bに覆われていない部分である。電極組立体12を構成する全ての負極電極14は、同一形状及び同一構成である。即ち、各負極電極14の負極タブ14cは、その突出方向D1に沿った長さが同一(又は略同一)である。   The negative electrode 14 includes a substantially rectangular metal foil 14 a, an active material layer 14 b that covers a part of both surfaces of the metal foil 14 a and contains an active material for the negative electrode, and one edge (one side) of the metal foil 14 a. And a negative electrode tab 14c as a protruding current collector. The metal foil 14a is, for example, a copper foil. The negative electrode tab 14c of the present embodiment is a part of the metal foil 14a that is not covered with the active material layer 14b. All the negative electrodes 14 constituting the electrode assembly 12 have the same shape and the same configuration. That is, the negative electrode tab 14c of each negative electrode 14 has the same (or substantially the same) length along the protruding direction D1.

また、セパレータ15は、矩形シート状のセパレータ15a,15bの縁部を相互に接合した袋状のセパレータであるとともに、正極電極13は、正極タブ13cが突出する状態でセパレータ15に収容されている。   The separator 15 is a bag-like separator in which the edges of the rectangular sheet-like separators 15a and 15b are joined together, and the positive electrode 13 is accommodated in the separator 15 with the positive electrode tab 13c protruding. .

図1に示すように、電極組立体12は、複数の正極電極13が積層されていることによって、電極組立体12の縁部12aから突出し、且つ正極電極13の正極タブ13cが層状に重なっている集電部群としての正極タブ群13dを有する。また、電極組立体12は、複数の負極電極14が積層されていることによって、電極組立体12の縁部12aから突出し、且つ負極電極14の負極タブ14cが層状に重なっている集電部群としての負極タブ群14dを有する。   As shown in FIG. 1, the electrode assembly 12 protrudes from the edge portion 12 a of the electrode assembly 12 by laminating the plurality of positive electrodes 13, and the positive electrode tabs 13 c of the positive electrode 13 overlap each other in layers. A positive electrode tab group 13d as a current collecting unit group. In addition, the electrode assembly 12 has a plurality of negative electrodes 14 stacked so that the electrode assembly 12 protrudes from the edge 12a of the electrode assembly 12 and the negative electrode tabs 14c of the negative electrode 14 overlap each other in layers. As a negative electrode tab group 14d.

また、二次電池10は、ケース11の外側に突出するように蓋11bに固定された正極端子17と、ケース11の外側に突出するように蓋11bに固定された負極端子18とを有する。なお、正極端子17及び負極端子18は、円環状の絶縁部材19によって蓋11bと絶縁されている。   Further, the secondary battery 10 includes a positive electrode terminal 17 fixed to the lid 11 b so as to protrude outside the case 11 and a negative electrode terminal 18 fixed to the lid 11 b so as to protrude outside the case 11. The positive electrode terminal 17 and the negative electrode terminal 18 are insulated from the lid 11b by an annular insulating member 19.

また、図3に示すように、二次電池10は、電極組立体12(負極タブ群14d)と負極端子18とを電気的に接続する金属製の導電部材22を有する。導電部材22は、例えば銅製である。負極端子18と導電部材22とは、導電部材22の基端部で電気的に接続されている。負極タブ群14dは、積層方向DSにおける電極組立体12の両端面のうち一方の端面12b側へ全ての負極タブ14cを寄せ集めた状態であって、且つ縁部12aに沿って延びるように折り曲げられた状態で導電部材22の先端部と溶接されている。   As shown in FIG. 3, the secondary battery 10 includes a metal conductive member 22 that electrically connects the electrode assembly 12 (negative electrode tab group 14 d) and the negative electrode terminal 18. The conductive member 22 is made of, for example, copper. The negative electrode terminal 18 and the conductive member 22 are electrically connected at the base end portion of the conductive member 22. The negative electrode tab group 14d is in a state in which all the negative electrode tabs 14c are gathered to one end surface 12b side of both end surfaces of the electrode assembly 12 in the stacking direction DS and is bent so as to extend along the edge portion 12a. In this state, it is welded to the tip of the conductive member 22.

また、二次電池10は、電極組立体12(正極タブ群13d)と正極端子17とを電気的に接続する金属製の導電部材21を有する。導電部材21は、例えばアルミニウム製である。正極端子17と導電部材21とは、導電部材21の基端部で電気的に接続されている。また、正極タブ群13dは、電極組立体12の端面12b側へ全ての正極タブ13cを寄せ集めた状態であって、且つ縁部12aに沿って延びるように折り曲げられた状態で導電部材21の先端部と溶接されている。   In addition, the secondary battery 10 includes a metal conductive member 21 that electrically connects the electrode assembly 12 (positive electrode tab group 13 d) and the positive electrode terminal 17. The conductive member 21 is made of, for example, aluminum. The positive electrode terminal 17 and the conductive member 21 are electrically connected at the base end portion of the conductive member 21. Further, the positive electrode tab group 13d is a state in which all the positive electrode tabs 13c are gathered to the end surface 12b side of the electrode assembly 12 and is bent so as to extend along the edge portion 12a. It is welded to the tip.

以下、負極タブ群14dと導電部材22との接合構造について詳しく説明する。なお、正極タブ群13dと導電部材21との接合構造については、負極タブ群14d及び導電部材22の場合と同様であるので、その詳細な説明を省略する。   Hereinafter, the joint structure between the negative electrode tab group 14d and the conductive member 22 will be described in detail. Note that the bonding structure between the positive electrode tab group 13d and the conductive member 21 is the same as that of the negative electrode tab group 14d and the conductive member 22, and thus detailed description thereof is omitted.

図4(a)〜(c)に示すように、負極タブ群14dにおいて、各負極タブ14cは、負極タブ群14dの先端部の形状が斜面状、拡大した場合の断面では階段状となるように積層されている。即ち、負極タブ群14dの形状は、1層ごとに負極タブ14cの先端が順に突出方向D1へずれていることにより階段状の形状である。換言すれば、最も突出方向D1に突出する負極タブ14cの先端を基準として、1層ごとに負極タブ14cの先端が順に突出方向D1とは反対方向(縁部12aへ向かう方向)へずれていると把握することもできる。本実施形態では、突出方向D1とは反対方向が所定方向となる。なお、先端部の形状が斜面状(傾斜面)であるとは、各負極タブ14cと接触する仮想平面が傾斜面となることを意味する。   As shown in FIGS. 4A to 4C, in the negative electrode tab group 14d, each negative electrode tab 14c has a sloped shape at the tip of the negative electrode tab group 14d, and a stepped shape in an enlarged cross section. Are stacked. That is, the shape of the negative electrode tab group 14d is a stepped shape because the tip of the negative electrode tab 14c is sequentially shifted in the protruding direction D1 for each layer. In other words, with respect to the tip of the negative electrode tab 14c that protrudes most in the protruding direction D1, the tip of the negative electrode tab 14c is sequentially shifted in the direction opposite to the protruding direction D1 (direction toward the edge 12a) for each layer. It can also be grasped. In the present embodiment, the direction opposite to the protruding direction D1 is the predetermined direction. In addition, that the shape of a front-end | tip part is a slope shape (inclined surface) means that the virtual plane which contacts each negative electrode tab 14c turns into an inclined surface.

そして、各負極タブ14cは、それぞれ先端部で溶接されている。詳しく説明すると、導電部材22に隣接する負極タブ14cは、先端部で導電部材22と溶接されている。また、その他の負極タブ14cは、それぞれ隣り合う負極タブ14cと先端部で溶接されている。後述するように、本実施形態において、各負極タブ14cは、溶接用のレーザを用いて溶接(レーザ溶接)されている。以下の説明では、各負極タブ14cにおいて、隣り合う負極タブ14c又は導電部材22と溶接された部分を溶接部14eと示す。   And each negative electrode tab 14c is welded by the front-end | tip part, respectively. More specifically, the negative electrode tab 14c adjacent to the conductive member 22 is welded to the conductive member 22 at the tip. The other negative electrode tab 14c is welded to the adjacent negative electrode tab 14c at the tip. As will be described later, in the present embodiment, each negative electrode tab 14c is welded (laser welding) using a welding laser. In the following description, in each negative electrode tab 14c, a portion welded to the adjacent negative electrode tab 14c or the conductive member 22 is referred to as a welded portion 14e.

次に、図5を参照して、二次電池10の製造装置30について説明する。本実施形態の製造装置30は、各電極13,14を層状に重ねて電極組立体12を形成する形成装置60と、形成装置60により各電極13,14が1層重ねられるごとに、該重ねられた電極のタブを溶接する溶接装置70と、製造装置30を制御する制御装置80と、を備えている。以下、詳細に説明する。   Next, the manufacturing apparatus 30 for the secondary battery 10 will be described with reference to FIG. The manufacturing apparatus 30 according to this embodiment includes a forming apparatus 60 that forms the electrode assembly 12 by stacking the electrodes 13 and 14 in layers, and each time the electrodes 13 and 14 are stacked by the forming apparatus 60, the stacking is performed. A welding device 70 for welding the tabs of the electrodes, and a control device 80 for controlling the manufacturing device 30. Details will be described below.

形成装置60は、セパレータ15に収容された正極電極13を、正極タブ13cが同じ方向に揃った状態で複数積層して収納する箱状の正極収納部31を備える。また、製造装置30は、複数の負極電極14を、負極タブ14cが同じ方向に揃った状態で積層して収納する箱状の負極収納部32を備える。   The forming apparatus 60 includes a box-shaped positive electrode storage unit 31 that stores a plurality of positive electrodes 13 stored in the separator 15 in a state where the positive electrode tabs 13c are aligned in the same direction. In addition, the manufacturing apparatus 30 includes a box-shaped negative electrode storage portion 32 that stores a plurality of negative electrodes 14 in a stacked state with the negative electrode tabs 14c aligned in the same direction.

形成装置60は、セパレータ15に収容された正極電極13、及び負極電極14が載置される積層テーブル33を備えている。この積層テーブル33は、正極収納部31及び負極収納部32の間に配置されている。また、積層テーブル33は、支持台39上に支持されている。   The forming apparatus 60 includes a stacked table 33 on which the positive electrode 13 and the negative electrode 14 accommodated in the separator 15 are placed. The laminated table 33 is disposed between the positive electrode storage unit 31 and the negative electrode storage unit 32. The laminated table 33 is supported on a support base 39.

なお、図6(c)に示すように、本実施形態において、正極電極13及び負極電極14は、正極タブ13cが積層方向DSに沿って列状に配置され、且つ正極タブ13cと重ならない位置にて負極タブ14cが積層方向DSに沿って列状に配置されるように、積層テーブル33に積層されるようになっている。そして、積層テーブル33では、セパレータ15に収納された正極電極13と、負極電極14とが交互に積層されて積層体23が形成される。   As shown in FIG. 6C, in the present embodiment, the positive electrode 13 and the negative electrode 14 are arranged such that the positive electrode tabs 13c are arranged in a line along the stacking direction DS and do not overlap with the positive electrode tabs 13c. The negative electrode tabs 14c are stacked on the stacking table 33 so as to be arranged in a row along the stacking direction DS. And in the lamination | stacking table 33, the positive electrode 13 accommodated in the separator 15 and the negative electrode 14 are laminated | stacked alternately, and the laminated body 23 is formed.

また、積層テーブル33の上面には、正極タブ13cが積層される位置に対応させて、導電部材21を固定する第1固定部33aが設けられている。また、積層テーブル33の上面には、負極タブ14cが積層される位置に対応させて、導電部材22を固定する第2固定部33bが設けられている。各固定部33a,33bは、例えばそれぞれ導電部材が嵌め込まれる凹部や、各導電部材を移動不能に固定するクランプ機構などである。   In addition, a first fixing portion 33 a that fixes the conductive member 21 is provided on the upper surface of the stacking table 33 so as to correspond to the position where the positive electrode tabs 13 c are stacked. In addition, a second fixing portion 33b for fixing the conductive member 22 is provided on the upper surface of the stacking table 33 so as to correspond to the position where the negative electrode tab 14c is stacked. Each fixing | fixed part 33a, 33b is a clamp mechanism etc. which fix each electroconductive member immovably, for example, the recessed part into which an electroconductive member is each fitted, for example.

また、図5に示すように、正極収納部31と、負極収納部32と、積層テーブル33は、同一直線上に並んでいる。形成装置60は、正極収納部31、負極収納部32、及び積層テーブル33の上方に配置されたガイドレール35を備えている。   Moreover, as shown in FIG. 5, the positive electrode accommodating part 31, the negative electrode accommodating part 32, and the lamination | stacking table 33 are located in a line with the same line. The forming apparatus 60 includes a guide rail 35 disposed above the positive electrode storage unit 31, the negative electrode storage unit 32, and the laminated table 33.

形成装置60は、ガイドレール35に沿って移動可能な正極移送装置40を備えている。正極移送装置40は、セパレータ15と共に正極電極13を吸着する正極用吸着装置41と、該正極用吸着装置41を昇降させる第1正極用昇降装置44aと、を有する。第1正極用昇降装置44aは、例えばエアシリンダなどである。形成装置60では、第1正極用昇降装置44aの動作を制御することにより、正極用吸着装置41が昇降する。また、正極用吸着装置41は、正極用吸着パット42と、正極用吸着パット42に吸引力を発生させる正極用ポンプ43と、を有する。   The forming device 60 includes a positive electrode transfer device 40 that can move along the guide rail 35. The positive electrode transfer device 40 includes a positive electrode adsorption device 41 that adsorbs the positive electrode 13 together with the separator 15, and a first positive electrode elevation device 44 a that raises and lowers the positive electrode adsorption device 41. The first positive / lower lift device 44a is, for example, an air cylinder. In the forming device 60, the positive electrode adsorption device 41 is moved up and down by controlling the operation of the first positive electrode lifting device 44a. The positive electrode adsorption device 41 includes a positive electrode adsorption pad 42 and a positive electrode pump 43 that generates a suction force to the positive electrode adsorption pad 42.

図6(a)及び(b)に示すように、正極用吸着パット42の正極用吸着面42aは矩形状であるとともに、正極用吸着面42aには吸引孔47a〜47eが配設されている。正極用吸着装置41では、正極用ポンプ43を駆動させることにより、吸引孔47a〜47e内を減圧して吸着力を発生させることができる。   As shown in FIGS. 6A and 6B, the positive electrode adsorption surface 42a of the positive electrode adsorption pad 42 has a rectangular shape, and suction holes 47a to 47e are provided in the positive electrode adsorption surface 42a. . In the positive electrode adsorption device 41, by driving the positive electrode pump 43, the suction holes 47a to 47e can be depressurized to generate an adsorption force.

また、図中において二点鎖線で示すように、正極用吸着パット42の縁部には、正極タブ13cを押圧するための正極用タブ押え装置45が配設されている。正極用タブ押え装置45は、正極タブ13cを押圧するタブ押え部46と、該タブ押え部46を正極用吸着パット42に対して昇降させる第2正極用昇降装置44bと、を有する。第2正極用昇降装置44bは、例えばソレノイドなどである。   Further, as indicated by a two-dot chain line in the drawing, a positive electrode tab pressing device 45 for pressing the positive electrode tab 13 c is disposed at the edge of the positive electrode suction pad 42. The positive electrode tab pressing device 45 includes a tab pressing portion 46 that presses the positive electrode tab 13 c and a second positive electrode lifting device 44 b that lifts and lowers the tab pressing portion 46 relative to the positive electrode suction pad 42. The second positive electrode lifting device 44b is, for example, a solenoid.

タブ押え部46は、基端が第2正極用昇降装置44bに連結されており且つ正面視において逆L字型の形状であるアーム部46aと、該アーム部46aの先端に連結されている押え部46bとを有する。平面視において、押え部46bの形状は、正極タブ13cの突出方向D1に沿って延びる四角形の溶接孔46cを有する四角枠状である。   The tab presser portion 46 has a base end connected to the second positive electrode lifting device 44b and an arm portion 46a having a reverse L-shape when viewed from the front, and a presser connected to the distal end of the arm portion 46a. Part 46b. In a plan view, the shape of the pressing portion 46b is a rectangular frame shape having a rectangular weld hole 46c extending along the protruding direction D1 of the positive electrode tab 13c.

平面視にて押え部46bは、突出方向D1と、各方向D1,DSと直交する幅方向D2との両方向において、正極タブ13cよりも大きい。また、平面視にて溶接孔46cは、幅方向D2において正極タブ13cよりも小さい。   In a plan view, the pressing portion 46b is larger than the positive electrode tab 13c in both the protruding direction D1 and the width direction D2 orthogonal to the directions D1 and DS. Moreover, the welding hole 46c is smaller than the positive electrode tab 13c in the width direction D2 by planar view.

また、図5に示すように、形成装置60は、ガイドレール35に沿って移動可能な負極移送装置50を備える。負極移送装置50は、負極電極14を吸着する負極用吸着装置51と、該負極用吸着装置51を昇降させる第1負極用昇降装置54aと、を有する。第1負極用昇降装置54aは、例えばエアシリンダなどである。形成装置60では、第1負極用昇降装置54aの動作を制御することにより、負極用吸着装置51が昇降する。また、負極用吸着装置51は、負極用吸着パット52と、負極用吸着パット52に吸引力を発生させる負極用ポンプ53と、を有する。   As shown in FIG. 5, the forming device 60 includes a negative electrode transfer device 50 that can move along the guide rail 35. The negative electrode transfer device 50 includes a negative electrode adsorption device 51 that adsorbs the negative electrode 14, and a first negative electrode elevating device 54 a that raises and lowers the negative electrode adsorption device 51. The first negative electrode elevating device 54a is, for example, an air cylinder. In the forming device 60, the negative electrode adsorption device 51 is moved up and down by controlling the operation of the first negative electrode lifting device 54a. The negative electrode adsorption device 51 includes a negative electrode adsorption pad 52 and a negative electrode pump 53 that generates a suction force on the negative electrode adsorption pad 52.

図6(a)及び(b)に示すように、正極用吸着パット42と同様に、負極用吸着パット52の負極用吸着面52aは矩形状であり、負極用吸着面52aには吸引孔57a〜57eが配設されている。負極用吸着装置51では、負極用ポンプ53を駆動させることにより、吸引孔57a〜57e内を減圧して吸着力を発生させることができる。   As shown in FIGS. 6A and 6B, similarly to the positive electrode suction pad 42, the negative electrode suction pad 52a has a rectangular shape, and the negative electrode suction surface 52a has a suction hole 57a. -57e are arranged. In the negative electrode adsorption device 51, by driving the negative electrode pump 53, the suction holes 57a to 57e can be depressurized to generate an adsorption force.

また、負極用吸着パット52の縁部には、負極タブ14cを押圧するための負極用タブ押え装置55が配設されている。負極用タブ押え装置55は、負極タブ14cを押圧するタブ押え部56と、該タブ押え部56を負極用吸着パット52に対して昇降させる第2負極用昇降装置54bと、を有する。第2負極用昇降装置54bは、例えばソレノイドである。   In addition, a negative electrode tab pressing device 55 for pressing the negative electrode tab 14 c is disposed at the edge of the negative electrode adsorption pad 52. The negative electrode tab pressing device 55 includes a tab pressing portion 56 that presses the negative electrode tab 14 c, and a second negative electrode lifting device 54 b that lifts and lowers the tab pressing portion 56 relative to the negative electrode suction pad 52. The second negative electrode elevating device 54b is, for example, a solenoid.

タブ押え部56は、基端が第2負極用昇降装置54bに連結されており且つ側面視において逆L字型の形状であるアーム部56aと、該アーム部56aの先端に連結されている押え部56bとを有する。平面視において、押え部56bの形状は、負極タブ14cの突出方向D1に沿って延びる四角形の溶接孔56cを有する四角枠状である。   The tab holding portion 56 has a base end connected to the second negative electrode lifting device 54b and an arm portion 56a having a reverse L-shape when viewed from the side, and a presser connected to the distal end of the arm portion 56a. Part 56b. In plan view, the shape of the presser portion 56b is a rectangular frame shape having a rectangular weld hole 56c extending along the protruding direction D1 of the negative electrode tab 14c.

平面視にて押え部56bは、突出方向D1と幅方向D2との両方向において、負極タブ14cよりも大きい。また、平面視にて溶接孔56cは、幅方向D2において負極タブ14cよりも小さい。   In a plan view, the pressing portion 56b is larger than the negative electrode tab 14c in both the protruding direction D1 and the width direction D2. Further, the weld hole 56c is smaller than the negative electrode tab 14c in the width direction D2 in plan view.

図5に示すように、溶接装置70は、レーザ光71を正極タブ13cや負極タブ14cに照射して溶接可能なレーザ溶接機である。溶接装置70は、例えば内蔵されたミラーを駆動することによりレーザ光71の照射位置を変更可能である。   As shown in FIG. 5, the welding apparatus 70 is a laser welding machine capable of welding by irradiating a laser beam 71 to the positive electrode tab 13 c and the negative electrode tab 14 c. The welding apparatus 70 can change the irradiation position of the laser beam 71 by driving a built-in mirror, for example.

また、制御装置80は、正極用ポンプ43、正極用昇降装置44a,44b、負極用ポンプ53、負極用昇降装置54a,54b、及び溶接装置70の動作を制御する。正極用ポンプ43、正極用昇降装置44a,44b、負極用ポンプ53、負極用昇降装置54a,54b、及び溶接装置70は、制御装置80に信号接続されている。制御装置80は、図示しない記憶部を備えている。この記憶部には、正極用ポンプ43、正極用昇降装置44a,44b、負極用ポンプ53、負極用昇降装置54a,54b、及び溶接装置70の制御プログラムが記憶されている。   The control device 80 controls operations of the positive electrode pump 43, the positive electrode lifting devices 44 a and 44 b, the negative electrode pump 53, the negative electrode lifting devices 54 a and 54 b, and the welding device 70. The positive electrode pump 43, the positive electrode lifting devices 44 a and 44 b, the negative electrode pump 53, the negative electrode lifting devices 54 a and 54 b, and the welding device 70 are signal-connected to the control device 80. The control device 80 includes a storage unit (not shown). In this storage unit, control programs for the positive electrode pump 43, the positive electrode lifting devices 44a and 44b, the negative electrode pump 53, the negative electrode lifting devices 54a and 54b, and the welding device 70 are stored.

次に、製造装置30を用いた二次電池10(電極組立体12)の製造方法について、その作用とともに説明する。二次電池10の製造方法は、複数の正極電極13(セパレータ15で包まれている)、及び複数の負極電極14を積層しつつ溶接して電極組立体12を形成する形成工程を含む。形成工程において、制御装置80は、記憶部に記憶された制御プログラムを実行することにより、正極用ポンプ43、正極用昇降装置44a,44b、負極用ポンプ53、負極用昇降装置54a,54b、及び溶接装置70を動作させる。なお、形成工程を行うにあたって、積層テーブル33の各固定部33a,33bには、それぞれ導電部材を固定する。   Next, a method for manufacturing the secondary battery 10 (electrode assembly 12) using the manufacturing apparatus 30 will be described together with its operation. The manufacturing method of the secondary battery 10 includes a forming step of forming the electrode assembly 12 by laminating and welding a plurality of positive electrodes 13 (encased in a separator 15) and a plurality of negative electrodes 14. In the forming step, the control device 80 executes the control program stored in the storage unit, thereby causing the positive electrode pump 43, the positive electrode lifting devices 44a and 44b, the negative electrode pump 53, the negative electrode lifting devices 54a and 54b, and The welding apparatus 70 is operated. In performing the forming process, conductive members are fixed to the fixing portions 33a and 33b of the stacking table 33, respectively.

形成工程では、負極移送装置50を負極収納部32上に移動させるとともに、第1負極用昇降装置54aにより負極用吸着パット52を下降させて負極収納部32内に移動させる。そして、負極用ポンプ53を駆動させて負極用吸着パット52(吸引孔57a〜57e)に吸引力を発生させ、負極収納部32の最上層の負極電極14を吸着させる。   In the forming step, the negative electrode transfer device 50 is moved onto the negative electrode storage portion 32, and the negative electrode suction pad 52 is lowered by the first negative electrode lifting device 54 a and moved into the negative electrode storage portion 32. Then, the negative electrode pump 53 is driven to generate a suction force on the negative electrode suction pads 52 (suction holes 57 a to 57 e), thereby adsorbing the uppermost negative electrode 14 of the negative electrode storage portion 32.

次に、第1負極用昇降装置54aにより負極用吸着パット52を上昇させ、そのまま負極移送装置50をガイドレール35に沿って積層テーブル33上まで移動させる。次に、第1負極用昇降装置54aにより負極用吸着パット52を積層テーブル33に向けて下降させる。   Next, the negative electrode suction pad 52 is raised by the first negative electrode lifting / lowering device 54 a, and the negative electrode transfer device 50 is moved along the guide rail 35 onto the stacking table 33 as it is. Next, the negative electrode suction pad 52 is lowered toward the laminated table 33 by the first negative electrode lifting device 54 a.

図7(a)及び(b)に示すように、積層テーブル33に対し、1枚目の負極電極14を積層する。そして、第2負極用昇降装置54bにより、タブ押え部56を積層テーブル33に向けて下降させることにより負極タブ14cを押圧し、導電部材22に対して固定する。次に、図中において墨色に着色して示すように、溶接孔56cから負極タブ14cの先端部に対してレーザ光71を照射して溶融及び固化させて溶接部14eを形成し、負極タブ14cと導電部材22とを溶接する。その後、第1負極用昇降装置54aによって負極用吸着パット52を上昇させるとともに、負極移送装置50を積層テーブル33上から移動させる。   As shown in FIGS. 7A and 7B, the first negative electrode 14 is laminated on the lamination table 33. Then, the negative electrode tab 14 c is pressed and fixed to the conductive member 22 by lowering the tab pressing portion 56 toward the laminated table 33 by the second negative electrode lifting device 54 b. Next, as shown in black in the drawing, a laser beam 71 is irradiated from the weld hole 56c to the tip of the negative electrode tab 14c to melt and solidify to form a weld 14e, and the negative electrode tab 14c. And the conductive member 22 are welded. Thereafter, the negative electrode suction pad 52 is raised by the first negative electrode lifting / lowering device 54 a, and the negative electrode transfer device 50 is moved from the stacking table 33.

次に、図5に示すように、積層テーブル33(積層体23)に、セパレータ15に収納された正極電極13を積層する。正極移送装置40において、第1正極用昇降装置44aにより正極用吸着パット42を下降させて正極収納部31内に移動させる。そして、正極用ポンプ43を駆動させて正極用吸着パット42(吸引孔47a〜47e)に吸引力を発生させ、セパレータ15に収納された正極電極13を吸着させる。   Next, as shown in FIG. 5, the positive electrode 13 accommodated in the separator 15 is laminated on the lamination table 33 (lamination body 23). In the positive electrode transfer device 40, the positive electrode suction pad 42 is lowered by the first positive electrode lifting device 44 a and moved into the positive electrode storage portion 31. Then, the positive electrode pump 43 is driven to generate a suction force at the positive electrode suction pads 42 (suction holes 47 a to 47 e), thereby adsorbing the positive electrode 13 accommodated in the separator 15.

次に、第1正極用昇降装置44aにより正極用吸着パット42を上昇させ、そのまま正極移送装置40をガイドレール35に沿って積層テーブル33上まで移動させる。次に、第1正極用昇降装置44aにより正極用吸着パット42を積層テーブル33に向けて下降させる。   Next, the positive electrode suction pad 42 is raised by the first positive electrode lifting / lowering device 44 a, and the positive electrode transfer device 40 is moved along the guide rail 35 onto the stacking table 33 as it is. Next, the positive electrode suction pad 42 is lowered toward the stacking table 33 by the first positive electrode lifting device 44 a.

そして、図8(a)及び(b)に示すように、積層テーブル33上の積層体23に対し、セパレータ15に収納された1枚目の正極電極13を積層する。そして、第2正極用昇降装置44bにより、タブ押え部46を積層テーブル33に向けて下降させることにより正極タブ13cを押圧し、導電部材21に対して固定する。次に、溶接孔46cから正極タブ13cの先端部に対してレーザ光71を照射して溶融及び固化させて溶接部を形成し、正極タブ13cと導電部材21とを溶接する。その後、第1正極用昇降装置44aによって正極用吸着パット42を上昇させるとともに、正極移送装置40を積層テーブル33上から移動させる。   Then, as shown in FIGS. 8A and 8B, the first positive electrode 13 housed in the separator 15 is stacked on the stacked body 23 on the stacking table 33. Then, the positive electrode tab 13 c is pressed and fixed to the conductive member 21 by lowering the tab pressing portion 46 toward the laminated table 33 by the second positive electrode lifting device 44 b. Next, the laser beam 71 is irradiated from the welding hole 46c to the tip of the positive electrode tab 13c to melt and solidify to form a welded portion, and the positive electrode tab 13c and the conductive member 21 are welded. Thereafter, the positive electrode suction pad 42 is raised by the first positive electrode lifting device 44 a and the positive electrode transfer device 40 is moved from the stacking table 33.

次に、1枚目の負極電極14と同様にして、負極移送装置50により2枚目の負極電極14を積層体23に対して積層する。そして、第2負極用昇降装置54bによりタブ押え部56を積層テーブル33に向けて下降させることにより負極タブ14cを押圧し、1枚目の負極タブ14cに対して固定する。   Next, similarly to the first negative electrode 14, the second negative electrode 14 is laminated on the laminate 23 by the negative electrode transfer device 50. And the negative electrode tab 14c is pressed by making the tab holding part 56 descend | fall toward the lamination | stacking table 33 by the raising / lowering apparatus 54b for 2nd negative electrodes, and it fixes with respect to the 1st negative electrode tab 14c.

ここで、積層体23において、負極タブ14cの基端部は、負極電極14の間に正極電極13が積層されていたり、活物質層14bの厚さがあったりすることによって、1枚目の負極タブ14cよりも上方に位置している。このため、2枚目の負極タブ14cがタブ押え部56によって押圧されることで、2枚目の負極タブ14cの先端は、1枚目の負極タブ14cの先端よりも基端側へずれて配置される。   Here, in the laminated body 23, the base end portion of the negative electrode tab 14 c is formed by stacking the positive electrode 13 between the negative electrodes 14 or the thickness of the active material layer 14 b. It is located above the negative electrode tab 14c. For this reason, when the second negative electrode tab 14c is pressed by the tab pressing portion 56, the leading end of the second negative electrode tab 14c is shifted to the proximal side from the leading end of the first negative electrode tab 14c. Be placed.

次に、図中において墨色に着色して示すように、新たに重ねた負極タブ14cの先端部に対してレーザ光71を照射して溶接部14eを形成し、1枚目の負極タブ14cと溶接する。即ち、2枚目の負極タブ14cにおける溶接部14eは、1枚目の負極タブ14cにおける溶接部14eよりも負極タブ14cの基端側にずれる。その後、第1負極用昇降装置54aによって負極用吸着パット52を上昇させるとともに、負極移送装置50を積層テーブル33上から移動させる。   Next, as shown in black in the drawing, a laser beam 71 is applied to the tip of the newly stacked negative electrode tab 14c to form a welded portion 14e, and the first negative electrode tab 14c and Weld. That is, the welded portion 14e in the second negative electrode tab 14c is shifted to the proximal end side of the negative electrode tab 14c with respect to the welded portion 14e in the first negative electrode tab 14c. Thereafter, the negative electrode suction pad 52 is raised by the first negative electrode lifting / lowering device 54 a, and the negative electrode transfer device 50 is moved from the stacking table 33.

次に、1枚目の正極電極13と同様にして、正極移送装置40により2枚目の正極電極13を積層体23に対して積層する。そして、第2正極用昇降装置44bによりタブ押え部46を積層テーブル33に向けて下降させることにより正極電極13を押圧し、1枚目の正極タブ13cに対して固定する。次に、2枚目の負極タブ14cと同様にして、新たに重ねた正極タブ13cの先端部に対してレーザ光71を照射し、1枚目の正極タブ13cにおける溶接部よりも基端側にずれた位置にて溶接部を形成し、1枚目の正極タブ13cと溶接する。   Next, similarly to the first positive electrode 13, the second positive electrode 13 is stacked on the stacked body 23 by the positive electrode transfer device 40. And the positive electrode 13 is pressed by lowering the tab holding part 46 toward the lamination | stacking table 33 by the raising / lowering apparatus 44b for 2nd positive electrodes, and it fixes with respect to the 1st positive electrode tab 13c. Next, in the same manner as the second negative electrode tab 14c, the front end portion of the newly stacked positive electrode tab 13c is irradiated with laser light 71, and the proximal end side of the welded portion of the first positive electrode tab 13c. A welded portion is formed at a position shifted to, and welded to the first positive electrode tab 13c.

以降、図9(a)及び(b)、並びに図10(a)及び(b)に示すように、積層体23に対して、負極電極14と、セパレータ15に包まれた正極電極13とを交互に積層する。このとき、各電極13,14を積層するごとに、積層体23の厚さが負極タブ群14dの厚さよりも次第に厚くなっていくことから、負極タブ14cは、タブ押え部56によって押圧されることで、順に負極タブ14cの基端側へ向かってずれて配置されていく。そして、形成工程では、新たに負極タブ14cを積層するごとに、即ち負極電極14を1層重ねるごとにレーザ光71を照射して、直前に重ねた負極電極14の負極タブ14cに対して先端部を溶接する。このため、新たに形成される溶接部14eは、負極タブ14cの基端側へ向かって順にずれていくことになる。   Thereafter, as shown in FIGS. 9A and 9B and FIGS. 10A and 10B, the negative electrode 14 and the positive electrode 13 wrapped in the separator 15 are attached to the laminate 23. Laminate alternately. At this time, each time the electrodes 13 and 14 are stacked, the thickness of the stacked body 23 becomes gradually thicker than the thickness of the negative electrode tab group 14 d, so that the negative electrode tab 14 c is pressed by the tab pressing portion 56. As a result, the negative electrode tabs 14c are sequentially displaced toward the base end side. In the forming process, each time the negative electrode tab 14c is newly laminated, that is, every time one negative electrode 14 is stacked, the laser beam 71 is irradiated, and the tip of the negative electrode tab 14c of the negative electrode 14 stacked immediately before is irradiated. Weld the parts. For this reason, the newly formed welded portion 14e is sequentially shifted toward the base end side of the negative electrode tab 14c.

ここで、例えば、スポット溶接を用いて負極タブ14cを一括して溶接する場合、負極タブ14cの積層枚数の増加に対しては、電流の増加により対応できる。しかし、熱負荷は電流の自乗に比例する。この為、積層枚数の増加分以上に、溶接時の熱による悪影響が増大する。レーザ溶接でも、同様の問題がある。これに対して、本実施形態の製造装置30では、レーザ光71の強度(出力)として、1枚の負極タブ14cを溶接するのに必要なだけの強度を設定することができる。即ち、例えば全ての負極タブ14cを導電部材22に対して一括して溶接する場合と比較して、レーザ光71の強度を小さく設定できる。このため、レーザ光71の照射による発熱を低減し、レーザ溶接による発熱によって活物質層13b,14bに悪影響を及ぼしてしまうことを抑制できる。   Here, for example, when the negative electrode tabs 14c are collectively welded using spot welding, an increase in the number of stacked negative electrode tabs 14c can be accommodated by an increase in current. However, the thermal load is proportional to the square of the current. For this reason, the bad influence by the heat at the time of welding increases more than the increase in the number of laminated layers. Laser welding has the same problem. On the other hand, in the manufacturing apparatus 30 of the present embodiment, the intensity necessary for welding one negative electrode tab 14 c can be set as the intensity (output) of the laser beam 71. That is, for example, the intensity of the laser light 71 can be set smaller than in the case where all the negative electrode tabs 14c are collectively welded to the conductive member 22. For this reason, the heat_generation | fever by irradiation of the laser beam 71 can be reduced and it can suppress having a bad influence on the active material layers 13b and 14b by the heat_generation | fever by laser welding.

また、多数の負極タブ14cを一括してレーザ溶接した場合、表面側と反対側とで負極タブ14cの溶ける状態が異なり、タブ毎の導電性(電気抵抗)のバラツキが生じやすい。これに対して、本実施形態の製造装置30では、レーザ光71で、負極タブ14cを1枚毎に溶接する為、溶接部の状態にバラツキが生じ難く、電気抵抗のバラツキが生じるリスクを減らすことが出来る。   In addition, when a large number of negative electrode tabs 14c are collectively laser-welded, the state in which the negative electrode tabs 14c melt differs between the surface side and the opposite side, and variations in conductivity (electrical resistance) tend to occur between the tabs. On the other hand, in the manufacturing apparatus 30 of this embodiment, since the negative electrode tabs 14c are welded one by one with the laser beam 71, the state of the welded portion is less likely to vary, and the risk of variation in electrical resistance is reduced. I can do it.

そして、製造装置30では、1枚(1層)の負極電極14を重ねるごとに負極タブ14cを溶接することから、電極組立体12が完成してから負極タブ群14dを複数に分割する従来の構成と比較して、製造工程が煩雑になったり、製造装置30としての構成が複雑化したりすることを抑制できる。なお、正極タブ13cの積層と溶接についても同様であるので、その詳細な説明を省略する。   In the manufacturing apparatus 30, the negative electrode tab 14 c is welded every time one (one layer) of the negative electrode 14 is overlapped, so that the negative electrode tab group 14 d is divided into a plurality of parts after the electrode assembly 12 is completed. Compared with the configuration, it is possible to prevent the manufacturing process from becoming complicated and the configuration as the manufacturing apparatus 30 from becoming complicated. Since the same applies to the lamination and welding of the positive electrode tab 13c, the detailed description thereof is omitted.

そして、正極電極13及び負極電極14が所定枚数積層されて形成工程の全てが完了すると、電極組立体12が完成される。その後、正極タブ群13d及び負極タブ群14dは、電極組立体12の縁部12aに沿って折り曲げられることにより、図1や図3に示す状態となる。また、導電部材21,22は、それぞれ端子17,18と電気的に接続される。そして、電極組立体12は、電解質とともにケース11に収容されて二次電池10が完成される。   Then, when a predetermined number of the positive electrodes 13 and the negative electrodes 14 are laminated and the formation process is completed, the electrode assembly 12 is completed. Thereafter, the positive electrode tab group 13d and the negative electrode tab group 14d are bent along the edge 12a of the electrode assembly 12 to be in the state shown in FIGS. The conductive members 21 and 22 are electrically connected to the terminals 17 and 18, respectively. And the electrode assembly 12 is accommodated in the case 11 with the electrolyte, and the secondary battery 10 is completed.

したがって、上記実施形態によれば、以下に示す効果を得ることができる。
(1)負極電極14を1層重ねるごとに、該重ねた負極電極14の負極タブ14cを溶接することから、電極組立体12を形成しながら負極タブ群14dと導電部材22とを電気的に接続できる。このため、電極組立体12を形成してから、さらに負極タブ群14dを複数に分割して導電部材22に溶接する従来の構成と比較して、簡便に導電部材22と負極タブ群14dとを電気的に接続できる。導電部材21と正極タブ群13dとの接続についても同様である。
Therefore, according to the above embodiment, the following effects can be obtained.
(1) Every time one layer of the negative electrode 14 is stacked, the negative electrode tab 14c of the stacked negative electrode 14 is welded, so that the negative electrode tab group 14d and the conductive member 22 are electrically connected while forming the electrode assembly 12. Can connect. For this reason, the conductive member 22 and the negative electrode tab group 14d can be easily combined with the conventional structure in which the negative electrode tab group 14d is further divided into a plurality of parts and welded to the conductive member 22 after the electrode assembly 12 is formed. Can be connected electrically. The same applies to the connection between the conductive member 21 and the positive electrode tab group 13d.

(2)本実施形態では、ずらして配置した負極タブ14cの先端部を溶接していくことから、全ての負極タブ14cを同じ部分で繰り返し溶接する場合と比較して、溶接に要するエネルギが増大していくことを抑制し、簡便に導電部材22と負極タブ群14dとを電気的に接続できる。導電部材21と正極タブ群13dとの接続についても同様である。   (2) In the present embodiment, since the tip portions of the negative electrode tabs 14c arranged in a shifted manner are welded, the energy required for welding is increased compared to the case where all the negative electrode tabs 14c are repeatedly welded at the same portion. Thus, the conductive member 22 and the negative electrode tab group 14d can be electrically connected easily. The same applies to the connection between the conductive member 21 and the positive electrode tab group 13d.

(3)特に、本実施形態では、ずらして配置した負極タブ14cの先端部をレーザ溶接していくことから、全ての負極タブ14cを同じ部分で繰り返しレーザ溶接する場合と比較して、溶接に要するレーザ光71の強度が増大していくことを抑制し、簡便に導電部材22と負極タブ群14dとを電気的に接続できる。導電部材21と正極タブ群13dとの接続についても同様である。   (3) In particular, in this embodiment, since the tip of the negative electrode tab 14c arranged in a shifted manner is laser-welded, compared to the case where all the negative electrode tabs 14c are repeatedly laser-welded at the same portion, welding is performed. It is possible to suppress the increase in the intensity of the required laser beam 71 and to electrically connect the conductive member 22 and the negative electrode tab group 14d easily. The same applies to the connection between the conductive member 21 and the positive electrode tab group 13d.

(4)製造装置30によれば、負極電極14を1層重ねるごとに、該重ねた負極電極14の負極タブ14cを溶接できることから、電極組立体12を形成しながら負極タブ群14dと導電部材22とを電気的に接続できる。このため、電極組立体12を形成してから、さらに負極タブ群14dを複数に分割して導電部材22に溶接する従来の構成と比較して、簡便に導電部材22と負極タブ群14dとを電気的に接続できる。導電部材21と正極タブ群13dとの接続についても同様である。   (4) According to the manufacturing apparatus 30, since the negative electrode tab 14c of the stacked negative electrode 14 can be welded each time the negative electrode 14 is stacked, the negative electrode tab group 14d and the conductive member are formed while forming the electrode assembly 12. 22 can be electrically connected. For this reason, the conductive member 22 and the negative electrode tab group 14d can be easily combined with the conventional structure in which the negative electrode tab group 14d is further divided into a plurality of parts and welded to the conductive member 22 after the electrode assembly 12 is formed. Can be connected electrically. The same applies to the connection between the conductive member 21 and the positive electrode tab group 13d.

(5)そして、製造装置30によれば、各電極13,14を積層して電極組立体12を形成する装置と、各タブ群13d,14dを集電部材に溶接する装置とを1つの装置とすることができる。また、各タブ群13d,14dを分割する装置が必要なくなる。したがって、二次電池10の製造装置の設置に必要な面積を小さくできる。   (5) Then, according to the manufacturing apparatus 30, one apparatus includes an apparatus for stacking the electrodes 13 and 14 to form the electrode assembly 12, and an apparatus for welding the tab groups 13d and 14d to the current collecting member. It can be. Further, a device for dividing the tab groups 13d and 14d is not necessary. Therefore, an area required for installing the manufacturing apparatus for the secondary battery 10 can be reduced.

実施形態は前記に限定されず、例えば次のような別の実施形態に変更してもよい。
○ 図11(a)及び(b)、並びに図12(a)及び(b)に示すように、負極電極14を1層重ねるごとに、負極タブ14cの先端を負極タブ14cの先端へ向かう方向(突出方向D1)へ順にずらして配置するとともに負極タブ14cの先端部を溶接してもよい。この場合、新たに形成される溶接部14eは、負極タブ14cの先端側へ向かって順にずれていくことになる。また、負極タブ14cは、電極組立体12の端面12bとは反対側の端面側に寄せ集められる。導電部材21と正極タブ群13dとの接続についても同様に変更できる。このように構成しても、簡便に導電部材22と負極タブ群14dとを電気的に接続できる。
The embodiment is not limited to the above, and may be changed to another embodiment as follows, for example.
As shown in FIGS. 11 (a) and 11 (b) and FIGS. 12 (a) and 12 (b), the direction of the tip of the negative electrode tab 14c toward the tip of the negative electrode tab 14c every time one layer of the negative electrode 14 is stacked. The tip of the negative electrode tab 14c may be welded while being shifted in order in the (projection direction D1). In this case, the newly formed welded portion 14e is sequentially shifted toward the tip end side of the negative electrode tab 14c. Further, the negative electrode tab 14 c is gathered together on the end surface side opposite to the end surface 12 b of the electrode assembly 12. The connection between the conductive member 21 and the positive electrode tab group 13d can be similarly changed. Even if comprised in this way, the electrically-conductive member 22 and the negative electrode tab group 14d can be electrically connected simply.

○ さらに、図11(a)及び(b)、並びに図12(a)及び(b)に示すように、溶接装置70は、抵抗溶接機(スポット溶接機)であってもよい。この場合、1層の負極電極14を重ねるごとに、新たに重ねた負極電極14の負極タブ14cの先端部と導電部材22とを一対の溶接用電極棒72で挟持しつつ、溶接用電極棒72の間で通電するとよい。また、積層テーブル33には、溶接用電極棒72を挿入して導電部材22に接触させるための溶接孔33cを設けるとよい。導電部材21と正極タブ群13dとの接続についても同様に変更できる。この構成によれば、溶接用電極棒72の間で流す電流を小さくできることから、溶接用電極棒72の消耗を抑制できる。したがって、溶接用電極棒72の寿命を延長できることに伴って、ランニングコストを低減できる。   Further, as shown in FIGS. 11A and 11B and FIGS. 12A and 12B, the welding apparatus 70 may be a resistance welder (spot welder). In this case, each time one layer of the negative electrode 14 is overlapped, the tip of the negative electrode tab 14 c of the newly stacked negative electrode 14 and the conductive member 22 are sandwiched between the pair of welding electrode rods 72, and the welding electrode rod It is good to energize between 72. The laminated table 33 may be provided with a welding hole 33 c for inserting the welding electrode rod 72 into contact with the conductive member 22. The connection between the conductive member 21 and the positive electrode tab group 13d can be similarly changed. According to this configuration, since the current flowing between the welding electrode rods 72 can be reduced, consumption of the welding electrode rods 72 can be suppressed. Accordingly, the running cost can be reduced as the life of the welding electrode rod 72 can be extended.

○ 上記実施形態について、溶接装置70は、超音波溶接機であってもよい。このような構成であっても、1回の溶接に要するエネルギを低減し、超音波溶接機の溶接冶具(ホーン)の寿命を延長できる。   (Circle) about the said embodiment, the ultrasonic welding machine may be sufficient as the welding apparatus 70. FIG. Even if it is such a structure, the energy required for one welding can be reduced and the lifetime of the welding jig (horn) of an ultrasonic welding machine can be extended.

○ 上記実施形態について、形成工程では、負極電極14を複数層重ねるごとに、負極タブ14cを溶接してもよい。即ち、制御装置80は、負極電極14を複数層重ねるごとに溶接し、複数回の溶接で、負極タブ14c(負極タブ群14d)を溶接するように溶接装置70を制御する。導電部材21と正極タブ群13dとの接続についても同様に変更できる。   In the above embodiment, in the forming step, the negative electrode tab 14c may be welded each time a plurality of layers of the negative electrode 14 are stacked. That is, the control device 80 controls the welding device 70 so that the negative electrode 14 is welded each time a plurality of layers are stacked, and the negative electrode tab 14c (negative electrode tab group 14d) is welded by a plurality of times of welding. The connection between the conductive member 21 and the positive electrode tab group 13d can be similarly changed.

○ 形成工程では、負極電極14を複数層重ねるごとに、負極タブ14cの先端を負極タブ14cの先端に向かう方向へずらして配置してもよく、逆に基端に向かう方向へずらして配置してもよい。正極タブ群13dについても同様に変更できる。   ○ In the forming step, every time a plurality of layers of the negative electrode 14 are stacked, the tip of the negative electrode tab 14c may be shifted in the direction toward the tip of the negative electrode tab 14c, and conversely, the tip is shifted in the direction toward the base end. May be. It can change similarly about the positive electrode tab group 13d.

○ 形成工程では、負極電極14を1層重ねるごとに、又は負極電極14を複数層重ねるごとに、負極タブ14cの先端を幅方向D2へ順にずらして配置してもよい。
○ 形成工程では、レーザ光71の照射位置、即ち溶接装置70による溶接対象位置を固定する一方で、積層テーブル33を移動させることにより、負極タブ14cの先端部を溶接してもよい。
In the forming step, the tip of the negative electrode tab 14c may be shifted in order in the width direction D2 each time one layer of the negative electrode 14 is stacked or each time a plurality of layers of the negative electrode 14 are stacked.
In the forming step, the tip of the negative electrode tab 14c may be welded by moving the lamination table 33 while fixing the irradiation position of the laser beam 71, that is, the position to be welded by the welding device 70.

○ 突出方向D1に沿った負極タブ14cの長さが異なる負極電極14を積層することで、負極タブ14cの先端を所定方向へ順にずらしてもよい。正極タブ群13dについても同様に変更できる。   (Circle) the front-end | tip of the negative electrode tab 14c may be sequentially shifted to a predetermined direction by laminating | stacking the negative electrode 14 from which the length of the negative electrode tab 14c along the protrusion direction D1 differs. It can change similarly about the positive electrode tab group 13d.

○ 負極タブ群14d及び正極タブ群13dのうちいずれか一方についてのみ、電極を1層重ねるごとに、又は電極を複数層重ねるごとに溶接し、他方については一括して溶接してもよい。   Only one of the negative electrode tab group 14d and the positive electrode tab group 13d may be welded each time one electrode is stacked or each electrode is stacked, and the other may be collectively welded.

○ 電極組立体12は、帯状の正極電極13及び帯状の負極電極14を捲回した捲回型の電極組立体であってもよい。
○ 負極電極14は片面にのみ活物質層14bを有していてもよい。正極電極13についても同様に変更できる。
The electrode assembly 12 may be a wound electrode assembly obtained by winding a belt-like positive electrode 13 and a belt-like negative electrode 14.
The negative electrode 14 may have the active material layer 14b only on one side. The positive electrode 13 can be similarly changed.

○ 負極タブ14cは、別の金属箔を金属箔14aに接合して設けられていてもよい。正極タブ13cについても同様に変更できる。
○ 二次電池10は、リチウムイオン二次電池に限らず、ニッケル水素二次電池やニッケルカドミウム二次電池等の他の二次電池であってもよい。
The negative electrode tab 14c may be provided by bonding another metal foil to the metal foil 14a. It can change similarly about the positive electrode tab 13c.
The secondary battery 10 is not limited to a lithium ion secondary battery, and may be another secondary battery such as a nickel hydrogen secondary battery or a nickel cadmium secondary battery.

○ 二次電池10に限らず、例えば、電気二重層キャパシタやリチウムイオンキャパシタ等のような蓄電装置であってもよい。
以下に上記実施形態から把握できる技術的思想を追記する。
O Not only the secondary battery 10, but also a power storage device such as an electric double layer capacitor or a lithium ion capacitor may be used.
The technical idea that can be grasped from the above embodiment will be added below.

(イ)前記電極を1層重ねるごとに、又は前記電極を複数層重ねるごとに、前記集電部の先端を前記集電部の先端へ向かう方向へ順にずらして配置するとともに集電部の先端部を溶接することが好ましい。   (A) Each time the electrode is stacked one layer or each time the electrode is stacked a plurality of layers, the tip of the current collector is shifted in the direction toward the tip of the current collector and the tip of the current collector It is preferable to weld the part.

10…二次電池(蓄電装置)、12…電極組立体、12a…縁部、13…正極電極(電極)、13c…正極タブ(集電部)、13d…正極タブ群(集電部群)、14…負極電極(電極)、14c…負極タブ(集電部)、14d…負極タブ群(集電部群)、21,22…導電部材、30…製造装置、60…形成装置、70…溶接装置。   DESCRIPTION OF SYMBOLS 10 ... Secondary battery (electric storage apparatus), 12 ... Electrode assembly, 12a ... Edge, 13 ... Positive electrode (electrode), 13c ... Positive electrode tab (current collection part), 13d ... Positive electrode tab group (current collection part group) , 14 ... negative electrode (electrode), 14c ... negative electrode tab (current collector), 14d ... negative electrode tab group (current collector part), 21, 22 ... conductive member, 30 ... manufacturing device, 60 ... forming device, 70 ... Welding equipment.

Claims (4)

電極が層状に重なっている電極組立体と、導電部材とを備え、前記電極組立体は、前記電極の集電部が層状に重なっており且つ縁部から突出している集電部群を有しており、前記導電部材と前記集電部群とは電気的に接続されている蓄電装置の製造方法であって、
前記電極を1層重ねるごとに、又は前記電極を複数層重ねるごとに、該重ねた電極の集電部を溶接することを特徴とする蓄電装置の製造方法。
An electrode assembly having electrodes stacked in layers, and a conductive member, wherein the electrode assembly has a current collecting portion group in which current collecting portions of the electrodes are layered and projecting from an edge And the conductive member and the current collecting unit group are electrically connected power storage device manufacturing method,
A method of manufacturing a power storage device, comprising: welding a current collecting portion of the stacked electrodes each time one layer of the electrodes is stacked or each time a plurality of layers of the electrodes are stacked.
前記電極を1層重ねるごとに、又は前記電極を複数層重ねるごとに、前記集電部の先端を所定方向へ順にずらして配置するとともに集電部の先端部を溶接する請求項1に記載の蓄電装置の製造方法。   The electrode according to claim 1, wherein each time the electrode is stacked one layer or each time the electrode is stacked a plurality of layers, the tip of the current collector is sequentially shifted in a predetermined direction and the tip of the current collector is welded. A method for manufacturing a power storage device. 前記電極を1層重ねるごとに、又は前記電極を複数層重ねるごとに、前記集電部の先端を前記集電部の基端へ向かう方向へ順にずらして配置するとともに集電部の先端部をレーザ溶接する請求項1または2に記載の蓄電装置の製造方法。   Each time the electrode is stacked one layer or each time the electrode is stacked a plurality of layers, the tip of the current collector is sequentially shifted in the direction toward the base of the current collector and the tip of the current collector is The manufacturing method of the electrical storage apparatus of Claim 1 or 2 which carries out laser welding. 電極が層状に重なっている電極組立体と、導電部材とを備え、前記電極組立体は、前記電極の集電部が層状に重なっており且つ縁部から突出している集電部群を有しており、前記導電部材と前記集電部群とは電気的に接続されている蓄電装置の製造装置であって、
前記電極を層状に重ねて電極組立体を形成する形成装置と、
前記形成装置により前記電極が1層重ねられるごとに、又は前記電極が複数層重ねられるごとに、該重ねられた電極の集電部を溶接する溶接装置と、を備えたことを特徴とする蓄電装置の製造装置。
An electrode assembly having electrodes stacked in layers, and a conductive member, wherein the electrode assembly has a current collecting portion group in which current collecting portions of the electrodes are layered and projecting from an edge The conductive member and the current collecting unit group are electrically connected storage device manufacturing apparatuses,
A forming apparatus for stacking the electrodes in layers to form an electrode assembly;
And a welding device that welds a current collector of the stacked electrodes each time one layer of the electrodes is stacked by the forming device or each time a plurality of layers of the electrodes are stacked. Equipment manufacturing equipment.
JP2014121224A 2014-06-12 2014-06-12 Power storage device manufacturing method and power storage device manufacturing apparatus Expired - Fee Related JP6364985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014121224A JP6364985B2 (en) 2014-06-12 2014-06-12 Power storage device manufacturing method and power storage device manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014121224A JP6364985B2 (en) 2014-06-12 2014-06-12 Power storage device manufacturing method and power storage device manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2016001561A true JP2016001561A (en) 2016-01-07
JP6364985B2 JP6364985B2 (en) 2018-08-01

Family

ID=55077071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014121224A Expired - Fee Related JP6364985B2 (en) 2014-06-12 2014-06-12 Power storage device manufacturing method and power storage device manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP6364985B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10944091B2 (en) 2017-08-22 2021-03-09 Toyota Jidosha Kabushiki Kaisha Power storage device
US11329337B2 (en) 2017-07-31 2022-05-10 Gs Yuasa International Ltd. Energy storage device
WO2022153730A1 (en) * 2021-01-15 2022-07-21 株式会社エンビジョンAescジャパン Battery module and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348978A (en) * 1999-06-09 2000-12-15 Honda Motor Co Ltd Manufacture of electrode of electric double-layer capacitor
JP2008066170A (en) * 2006-09-08 2008-03-21 Nec Tokin Corp Method of manufacturing laminated battery
JP2011076776A (en) * 2009-09-29 2011-04-14 Sanyo Electric Co Ltd Welding method between core exposed part of electrode body and current collection member
JP2013161756A (en) * 2012-02-08 2013-08-19 Toyota Industries Corp Electricity storage device and vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348978A (en) * 1999-06-09 2000-12-15 Honda Motor Co Ltd Manufacture of electrode of electric double-layer capacitor
JP2008066170A (en) * 2006-09-08 2008-03-21 Nec Tokin Corp Method of manufacturing laminated battery
JP2011076776A (en) * 2009-09-29 2011-04-14 Sanyo Electric Co Ltd Welding method between core exposed part of electrode body and current collection member
JP2013161756A (en) * 2012-02-08 2013-08-19 Toyota Industries Corp Electricity storage device and vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11329337B2 (en) 2017-07-31 2022-05-10 Gs Yuasa International Ltd. Energy storage device
US11936054B2 (en) 2017-07-31 2024-03-19 Gs Yuasa International Ltd. Energy storage device
US10944091B2 (en) 2017-08-22 2021-03-09 Toyota Jidosha Kabushiki Kaisha Power storage device
WO2022153730A1 (en) * 2021-01-15 2022-07-21 株式会社エンビジョンAescジャパン Battery module and method for producing same

Also Published As

Publication number Publication date
JP6364985B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP5618691B2 (en) Secondary battery and manufacturing method thereof
JP6274034B2 (en) Power storage device
JP2015176701A (en) Power storage device and method for manufacturing power storage device
JP6032077B2 (en) Power storage device
WO2006109610A1 (en) Production method for electric device assembly and electric device assembly
JP6079338B2 (en) Power storage device and method for manufacturing power storage device
JP6593304B2 (en) Electric storage device and method for manufacturing electric storage device
JP6364985B2 (en) Power storage device manufacturing method and power storage device manufacturing apparatus
KR101483425B1 (en) Secondary Battery Having Novel Electrode Tap-Lead Joint Portion
JP6103204B2 (en) Method for manufacturing power storage device
JP2019067570A (en) Welding jig and formation method of weld zone
KR101182432B1 (en) Seperater sealing apparatus and manufacturing method using the same
JP5876380B2 (en) Method for manufacturing laminated aluminum material and method for manufacturing sealed battery including the same
JP2015225740A (en) Power storage device
JP2013196894A (en) Power storage device, vehicle and method of manufacturing electrode body
WO2006090511A1 (en) Manufacturing method of electrical device assembly
JP5558878B2 (en) Assembled battery, resistance welding method, and assembled battery manufacturing method
JP6330586B2 (en) Positioning structure
JP2014121723A (en) Welding method and welding equipment
JP2014093149A (en) Power storage device
JP5751203B2 (en) Power storage device and secondary battery
JP6364972B2 (en) Power storage device and method for manufacturing power storage device
JP2014056672A (en) Power storage device and manufacturing method of power storage device
JP6065610B2 (en) Method for manufacturing power storage device
JP2020191209A (en) Power storage device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R151 Written notification of patent or utility model registration

Ref document number: 6364985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees