JP6007296B2 - Brake device - Google Patents

Brake device Download PDF

Info

Publication number
JP6007296B2
JP6007296B2 JP2015165939A JP2015165939A JP6007296B2 JP 6007296 B2 JP6007296 B2 JP 6007296B2 JP 2015165939 A JP2015165939 A JP 2015165939A JP 2015165939 A JP2015165939 A JP 2015165939A JP 6007296 B2 JP6007296 B2 JP 6007296B2
Authority
JP
Japan
Prior art keywords
valve
pressure
communication
fluid
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015165939A
Other languages
Japanese (ja)
Other versions
JP2015212148A (en
Inventor
旭 渡辺
旭 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2015165939A priority Critical patent/JP6007296B2/en
Publication of JP2015212148A publication Critical patent/JP2015212148A/en
Application granted granted Critical
Publication of JP6007296B2 publication Critical patent/JP6007296B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Braking Systems And Boosters (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Regulating Braking Force (AREA)

Description

本発明は、ブレーキ装置に関する。   The present invention relates to a brake device.

この種の技術としては、下記の特許文献1に記載の技術が開示されている。この公報には、運転者の操作によるブレーキペダルの踏み込み量を検出し、この踏み込み量に応じてポンプによりホイルシリンダ圧を増圧することで、マスタシリンダ圧に対してホイルシリンダ圧を倍力するものが開示されている。   As this type of technology, the technology described in Patent Document 1 below is disclosed. In this publication, the amount of depression of the brake pedal by the driver's operation is detected, and the wheel cylinder pressure is boosted by the pump according to the amount of depression, thereby boosting the wheel cylinder pressure with respect to the master cylinder pressure. Is disclosed.

特開2006−306272号公報JP 2006-306272 A

倍力制御を行う各構成要素に失陥が生じて倍力制御ができない状態をチェックするには、ポンプを駆動しなければならない。しかし、上記特許文献1に記載の技術では、車両走行中にポンプを駆動させてしまうとホイルシリンダ圧が上昇するため車両が減速してしまうため、走行中に上記のチェックを行うことができず、失陥を検出できないまま倍力制御が行えない状態が長引くおそれがあった。
本発明は上記問題に着目してなされたもので、その目的とするところは、車両走行中であっても倍力制御を行う各構成要素の失陥を早期に検出することができるブレーキ装置を提供することである。
In order to check the state in which each component that performs the boost control fails and the boost control cannot be performed, the pump must be driven. However, in the technique described in Patent Document 1, if the pump is driven while the vehicle is running, the wheel cylinder pressure increases and the vehicle decelerates. Therefore, the above check cannot be performed during the running. There is a possibility that the state in which the boost control cannot be performed without detecting the failure will be prolonged.
The present invention has been made paying attention to the above problems, and the object of the present invention is to provide a brake device capable of early detection of a failure of each component that performs boost control even while the vehicle is running. Is to provide.

上記目的を達成するため本発明では、プライマリ系統の液路とセカンダリ系統の液路とを接続する連通液路に第一連通弁と第二連通弁とを設け、第一連通弁と第二連通弁のうち少なくとも一方の連通弁とポンプとの間に、ポンプから連通液路に吐出されたブレーキ液をポンプの吸入側に還流する還流路と、還流路に設けられた電磁弁と、を設けた。

In order to achieve the above object, in the present invention, a first series valve and a second communication valve are provided in a communication liquid path connecting the liquid path of the primary system and the liquid path of the secondary system . A recirculation path for recirculating brake fluid discharged from the pump to the communication liquid path to the suction side of the pump, and a solenoid valve provided in the recirculation path, between at least one of the two communication valves and the pump; Was established.

本発明により、車両走行中であっても制御を行う各構成要素の失陥を早期に検出することができる。   According to the present invention, it is possible to detect a failure of each component that performs control even when the vehicle is running.

実施例1のブレーキ装置の全体構成図である。1 is an overall configuration diagram of a brake device according to a first embodiment. 実施例1のコントローラの構成を示す図である。FIG. 3 is a diagram illustrating a configuration of a controller according to the first embodiment. 実施例1の通常時のブレーキ液圧コントロールの制御を示す図である。FIG. 6 is a diagram illustrating control of normal brake fluid pressure control in the first embodiment. 実施例1の片系統失陥時のブレーキ液圧コントロールの制御を示す図である。It is a figure which shows control of the brake fluid pressure control at the time of the one-system failure of Example 1. FIG. 実施例1の調圧系統増圧異常時のブレーキ液圧コントロールの制御を示す図である。It is a figure which shows control of the brake fluid pressure control at the time of the pressure regulation system | strain pressure increase abnormality of Example 1. FIG. 実施例1の減圧異常時のブレーキ液圧コントロールの制御を示す図である。It is a figure which shows control of the brake fluid pressure control at the time of the pressure reduction abnormality of Example 1. FIG. 実施例1の電源失陥時のブレーキ液圧コントロールの制御を示す図である。It is a figure which shows control of the brake fluid pressure control at the time of the power failure of Example 1. FIG. 実施例1の増圧異常を検出する制御の流れを示すフローチャートである。3 is a flowchart showing a flow of control for detecting an abnormal pressure increase in the first embodiment. 実施例1の増圧異常検出処理が行われたときのブレーキ液圧コントロールの制御を示す図であるIt is a figure which shows control of the brake fluid pressure control when the pressure increase abnormality detection process of Example 1 is performed. 実施例1の異常箇所を特定する制御の流れを示すフローチャートである。3 is a flowchart showing a flow of control for identifying an abnormal point in the first embodiment. 実施例1の異常箇所特定処理が行われたときのブレーキ液圧コントロールの制御を示す図である。It is a figure which shows control of the brake fluid pressure control when the abnormal location specific process of Example 1 is performed. 実施例1の減圧異常を検出する制御の流れを示すフローチャートである。3 is a flowchart illustrating a flow of control for detecting a decompression abnormality according to the first embodiment. 実施例1の減圧異常検出処理が行われたときのブレーキ液圧コントロールの制御を示す図である。It is a figure which shows control of the brake fluid pressure control when the pressure reduction abnormality detection process of Example 1 is performed. 実施例1の異常箇所に応じた制御モードを示す図である。It is a figure which shows the control mode according to the abnormal location of Example 1. FIG. 実施例1の異常判定処理のタイムチャートである。3 is a time chart of abnormality determination processing according to the first embodiment.

〔実施例1〕
[ブレーキ装置の全体構成]
実施例1のブレーキ装置1について説明する。図1はブレーキ装置1の全体構成図である。
ブレーキ装置1は、運転者によって踏み込み操作が行われるブレーキペダル2と、ブレーキペダル2の踏み込みにより液圧を発生させるマスタシリンダ3と、ブレーキ液を貯留するリザーバタンク4と、各車輪に設けられブレーキ液圧により制動力を発生させるホイルシリンダ5A,5B,5C,5Dと、ホイルシリンダ5に供給するブレーキ液圧を制御するブレーキ液圧コントロールユニット6とを有している。ホイルシリンダ5A,5B,5C,5Dの「A」、「B」、「C」、「D」は、各車輪に設けられていることを区別するために記載しているが、以降、他の構成においても特に区別しないときには「A」、「B」、「C」、「D」の表示は省略する。
ブレーキペダル2にはプッシュロッド2aが接続されており、プッシュロッド2aはマスタシリンダ3のプライマリピストン3aに接続している。ブレーキペダル2には、ブレーキペダル2の踏み込み量を検出するストロークセンサ2bが設けられている。
マスタシリンダ3内にはシリンダ3eが形成されており、このシリンダ3e内をプライマリピストン3aとセカンダリピストン3bとが摺動可能に設けられている。シリンダ3eはセカンダリピストン3bによりプライマリ液圧室3cとセカンダリ液圧室3dとに隔成されており、プライマリ液圧室3cはプライマリピストン3aによって内部のブレーキ液が増圧され、セカンダリ液圧室3dはセカンダリピストン3bによって内部のブレーキ液が増圧される。プライマリ液圧室3cとセカンダリ液圧室3dには、それぞれリザーバタンク4からブレーキ液が供給される。
[Example 1]
[Brake device overall configuration]
A brake device 1 according to the first embodiment will be described. FIG. 1 is an overall configuration diagram of the brake device 1.
The brake device 1 includes a brake pedal 2 that is depressed by a driver, a master cylinder 3 that generates hydraulic pressure when the brake pedal 2 is depressed, a reservoir tank 4 that stores brake fluid, and brakes provided on each wheel. Wheel cylinders 5A, 5B, 5C, and 5D that generate braking force by hydraulic pressure, and a brake hydraulic pressure control unit 6 that controls brake hydraulic pressure supplied to the wheel cylinder 5 are provided. The “A”, “B”, “C”, “D” of the wheel cylinders 5A, 5B, 5C, 5D are described to distinguish that they are provided on each wheel. The display of “A”, “B”, “C”, and “D” is omitted when the configuration is not particularly distinguished.
A push rod 2 a is connected to the brake pedal 2, and the push rod 2 a is connected to the primary piston 3 a of the master cylinder 3. The brake pedal 2 is provided with a stroke sensor 2b for detecting the depression amount of the brake pedal 2.
A cylinder 3e is formed in the master cylinder 3, and a primary piston 3a and a secondary piston 3b are slidably provided in the cylinder 3e. The cylinder 3e is divided into a primary hydraulic chamber 3c and a secondary hydraulic chamber 3d by a secondary piston 3b. The primary hydraulic chamber 3c is pressurized by the primary piston 3a to increase the internal brake fluid, and the secondary hydraulic chamber 3d. The internal brake fluid is increased by the secondary piston 3b. Brake fluid is supplied from the reservoir tank 4 to the primary hydraulic chamber 3c and the secondary hydraulic chamber 3d, respectively.

[ブレーキ液圧コントロールユニットの構成]
ブレーキ液圧コントロールユニット6の構成について説明する。ブレーキ液圧コントロールユニット6には、マスタシリンダ3のプライマリ液圧室3cとホイルシリンダ5A,5Bとを接続するプライマリ液路60Pと、セカンダリ液圧室3dとホイルシリンダ5C,5Dとを接続するセカンダリ液路60Sが形成されている。プライマリ液路60Pの「P」はプライマリ系統に設けられていることを示し、セカンダリ液路60Sの「S」はセカンダリ系統に設けられていることを示すが、以降、他の構成であっても特に区別をしないときには「P」、「S」の表示は省略する。また、ホイルシリンダ5の接続は、ホイルシリンダ5A,5Bが左前輪、右後輪用とし、ホイルシリンダ5C,5Dが右前輪、左後輪用とする所謂X配管であっても、ホイルシリンダ5A,5Bが左前輪、左後輪用とし、ホイルシリンダ5C,5Dが右前輪、右後輪用とする所謂H配管であっても良く特に限定しない。
プライマリ液路60Pには常開型の比例弁である遮断弁61Pが、セカンダリ液路60Sには同じく常開型の比例弁である遮断弁61Sが設けられている。プライマリ液路60P上であって、プライマリ液圧室3cと遮断弁61Pとの間には、プライマリ液圧室3c内の液圧を検出するマスタシリンダ圧センサ69が設けられている。
[Configuration of brake fluid pressure control unit]
The configuration of the brake fluid pressure control unit 6 will be described. The brake fluid pressure control unit 6 includes a primary fluid passage 60P that connects the primary fluid pressure chamber 3c of the master cylinder 3 and the wheel cylinders 5A and 5B, and a secondary fluid passage that connects the secondary fluid pressure chamber 3d and the wheel cylinders 5C and 5D. A liquid path 60S is formed. “P” in the primary fluid path 60P indicates that it is provided in the primary system, and “S” in the secondary fluid path 60S indicates that it is provided in the secondary system. When there is no particular distinction, “P” and “S” are omitted. The wheel cylinder 5 is connected to the wheel cylinder 5A, 5B for the left front wheel and the right rear wheel, and the wheel cylinders 5C, 5D for the right front wheel, the left rear wheel, so-called X piping. , 5B may be so-called H pipes for the left front wheel and the left rear wheel, and the wheel cylinders 5C, 5D may be so-called H pipes for the right front wheel and the right rear wheel.
The primary liquid passage 60P is provided with a shut-off valve 61P that is a normally open proportional valve, and the secondary liquid passage 60S is provided with a shut-off valve 61S that is also a normally open proportional valve. A master cylinder pressure sensor 69 that detects the fluid pressure in the primary fluid pressure chamber 3c is provided on the primary fluid path 60P and between the primary fluid pressure chamber 3c and the shutoff valve 61P.

プライマリ液路60P上であって、マスタシリンダ3のプライマリ液圧室3cと遮断弁61Pとの間から分岐するストロークシミュレータ液路66が形成されている。ストロークシミュレータ液路66には、ストロークシミュレータ80に接続している。ストロークシミュレータ液路66上であって、プライマリ液路60Pとストロークシミュレータ80との間には常閉型のオン/オフ弁であるストロークシミュレータ遮断弁65が設けられている。ストロークシミュレータ80は、ピストン80aとスプリング80bとから構成されている。ストロークシミュレータ遮断弁65が開弁しているときに、マスタシリンダ3のプライマリ液圧室3cに発生する液圧に応じてピストン80aが変位し、ピストン80aの変位に応じてスプリング80bによる反力が発生して、ブレーキペダル2にペダル反力を発生させることが可能となる。   A stroke simulator liquid path 66 is formed on the primary liquid path 60P and branched from between the primary hydraulic pressure chamber 3c of the master cylinder 3 and the shutoff valve 61P. The stroke simulator liquid channel 66 is connected to the stroke simulator 80. A stroke simulator cutoff valve 65, which is a normally closed on / off valve, is provided on the stroke simulator liquid path 66 and between the primary liquid path 60P and the stroke simulator 80. The stroke simulator 80 includes a piston 80a and a spring 80b. When the stroke simulator shut-off valve 65 is open, the piston 80a is displaced according to the hydraulic pressure generated in the primary hydraulic chamber 3c of the master cylinder 3, and the reaction force by the spring 80b is caused according to the displacement of the piston 80a. It is possible to generate a pedal reaction force on the brake pedal 2.

プライマリ液路60P、セカンダリ液路60S上であって、各ホイルシリンダ5との間には常開型の比例弁である増圧弁62A,62B,62C,62Dが設けられている。また各増圧弁62を迂回するようにバイパス液路71A,71B,71C,71Dが形成されており、各バイパス液路71に一方弁70A,70B,70C,70Dが設けられている。一方弁70は、マスタシリンダ3側からホイルシリンダ5側へ流れるブレーキ液の流れを規制し、ホイルシリンダ5側からマスタシリンダ3側へのブレーキ液の流れを許可している。
プライマリ液路60P上であって遮断弁61Pと増圧弁62A,62Bとの間には、この間の液路内の液圧(以下、プライマリ液路液圧)を検出するプライマリ液路液圧センサ68Pが設けられ、セカンダリ液路60S上であって遮断弁61Sと増圧弁62C,62Dとの間には、この間の液路内の液圧(以下、セカンダリ液路液圧)を検出するセカンダリ液路液圧センサ68Sが設けられている。
Pressure increase valves 62A, 62B, 62C, and 62D, which are normally open proportional valves, are provided on the primary liquid path 60P and the secondary liquid path 60S and between the wheel cylinders 5. Further, bypass fluid passages 71A, 71B, 71C, 71D are formed so as to bypass each pressure increasing valve 62, and one-way valves 70A, 70B, 70C, 70D are provided in each bypass fluid passage 71. On the other hand, the valve 70 restricts the flow of brake fluid flowing from the master cylinder 3 side to the wheel cylinder 5 side, and permits the brake fluid flow from the wheel cylinder 5 side to the master cylinder 3 side.
On the primary fluid path 60P, between the shut-off valve 61P and the pressure increasing valves 62A and 62B, a primary fluid path fluid pressure sensor 68P that detects the fluid pressure in the fluid path between them (hereinafter referred to as the primary fluid path fluid pressure). Is provided on the secondary liquid path 60S, and between the shutoff valve 61S and the pressure increasing valves 62C and 62D, a secondary liquid path for detecting the liquid pressure in the liquid path during this period (hereinafter referred to as secondary liquid path liquid pressure) A hydraulic pressure sensor 68S is provided.

プライマリ液路60P上であってプライマリ液路液圧センサ68Pと増圧弁62A,62Bとの間と、セカンダリ液路60S上であってセカンダリ液路液圧センサ68Sと増圧弁62C,62Dとの間とを接続する連通液路73が形成されている。連通液路73とプライマリ液路60P側との間には常開型の比例弁である連通弁72Pが設けられ、連通液路73とセカンダリ液路60Sとの間には常閉型の比例弁である連通弁72Sが設けられている。また連通液路73には連通液路73の液圧を検出する連通液路液圧センサ76が設けられている。
連通弁72Pを常開型とし、連通弁72Sを常閉型としているが、これは電源失陥時であってもプライマリ液路60Pとセカンダリ液路60Sとの間を遮断することができるようにするためであり、連通弁72Pと連通弁72Sの少なくともどちらか一方が常閉型であれば良い。連通弁72Pと連通弁72Sとを両方常閉型としても良い。
On primary fluid path 60P, between primary fluid path fluid pressure sensor 68P and booster valves 62A, 62B, and on secondary fluid path 60S, between secondary fluid path fluid pressure sensor 68S and booster valves 62C, 62D And a communication liquid path 73 is formed. A communication valve 72P, which is a normally open proportional valve, is provided between the communication liquid path 73 and the primary liquid path 60P, and a normally closed proportional valve is provided between the communication liquid path 73 and the secondary liquid path 60S. A communication valve 72S is provided. The communication fluid path 73 is provided with a communication fluid path fluid pressure sensor 76 that detects the fluid pressure in the communication fluid path 73.
The communication valve 72P is a normally open type, and the communication valve 72S is a normally closed type, so that the primary fluid passage 60P and the secondary fluid passage 60S can be blocked even when the power supply fails. Therefore, it is sufficient that at least one of the communication valve 72P and the communication valve 72S is a normally closed type. Both the communication valve 72P and the communication valve 72S may be normally closed.

連通弁72Pと連通弁72Sは共に比例弁としているが、常開型である連通弁72Pはオン/オフ弁であっても良い。常閉型の連通弁72Sもオン/オフ弁としても良いが、通常制御では連通弁72Sは常時開弁制御するため、PWM制御による電流制御は実施したほうがよい。
連通液路73には、吐出弁77を介してポンプ78の吐出側が接続される。ポンプ78はモータ79により駆動される。吐出弁77は、ポンプ78から連通液路73に向かって吐出する方向のブレーキ液の流れを許容し、反対方向のブレーキ液の流れを規制している。ポンプ78の吸入側はリザーバタンク4と接続するサクション液路67と接続している。連通液路73とサクション液路67との間には還流液路74が形成され、この還流液路74には常閉型の比例弁である調圧弁75が設けられている。
Although both the communication valve 72P and the communication valve 72S are proportional valves, the normally open communication valve 72P may be an on / off valve. The normally closed communication valve 72S may be an on / off valve. However, in normal control, the communication valve 72S is normally controlled to open, so it is better to perform current control by PWM control.
A discharge side of a pump 78 is connected to the communication liquid path 73 via a discharge valve 77. The pump 78 is driven by a motor 79. The discharge valve 77 allows the flow of brake fluid in the direction of discharging from the pump 78 toward the communication fluid path 73, and restricts the flow of brake fluid in the opposite direction. The suction side of the pump 78 is connected to a suction liquid path 67 that is connected to the reservoir tank 4. A reflux liquid path 74 is formed between the communication liquid path 73 and the suction liquid path 67, and a pressure regulating valve 75, which is a normally closed proportional valve, is provided in the reflux liquid path 74.

プライマリ液路60P上のホイルシリンダ5Aと増圧弁62Aとの間から減圧液路81Aが分岐し、ホイルシリンダ5Aと増圧弁62Bとの間から減圧液路81Bが分岐している。またセカンダリ液路60S上のホイルシリンダ5Cと増圧弁62Cとの間から減圧液路81Cが分岐し、ホイルシリンダ5Dと増圧弁62Dとの間から減圧液路81Dが分岐している。各減圧液路81はサクション液路67に接続している。
減圧液路81Aと減圧液路81Dには、それぞれ常閉型のオン/オフ弁である減圧弁63A,63Dが設けられている。減圧液路81Bと減圧液路81Cには、それぞれ常閉型の比例弁であるバックアップ減圧弁64B,64Cが設けられている。バックアップ減圧弁64C,64Cを比例弁としているのは調圧弁75が失陥したときに、調圧弁75の代わりにバックアップ減圧弁64B,64Cを用いるためである。減圧弁63A,63Bも比例弁として、調圧弁75の代わりに使用するようにしても良い。
A pressure reducing liquid path 81A branches from between the wheel cylinder 5A and the pressure increasing valve 62A on the primary liquid path 60P, and a pressure reducing liquid path 81B branches from between the wheel cylinder 5A and the pressure increasing valve 62B. Further, a pressure reducing liquid path 81C branches from between the wheel cylinder 5C and the pressure increasing valve 62C on the secondary liquid path 60S, and a pressure reducing liquid path 81D branches from between the wheel cylinder 5D and the pressure increasing valve 62D. Each decompression liquid path 81 is connected to a suction liquid path 67.
The decompression liquid path 81A and the decompression liquid path 81D are provided with decompression valves 63A and 63D, which are normally closed on / off valves, respectively. The decompression liquid path 81B and the decompression liquid path 81C are provided with backup decompression valves 64B and 64C, respectively, which are normally closed proportional valves. The reason why the backup pressure reducing valves 64C and 64C are proportional valves is that when the pressure regulating valve 75 fails, the backup pressure reducing valves 64B and 64C are used instead of the pressure regulating valve 75. The pressure reducing valves 63A and 63B may also be used as proportional valves instead of the pressure regulating valve 75.

[コントローラの構成]
図2はコントローラ9の構成を示す図である。コントローラ9は、倍力液圧制御部90、自動ブレーキ液圧制御部91、片系統液圧制御部92、増圧異常液圧制御部93、減圧異常液圧制御部94、増圧異常検出部95、減圧異常検出部96、保持異常検出部97を有している。コントローラ9は、ストロークセンサ2b、マスタシリンダ圧センサ69、プライマリ液路液圧センサ68P、セカンダリ液路液圧センサ68S、連通液路液圧センサ76から各情報を入力する。そして、各制御部91〜97における演算に基づいて、ストロークシミュレータ遮断弁65、遮断弁61、増圧弁62、減圧弁63、バックアップ減圧弁64、連通弁72、調圧弁75、モータ79を制御する。なお、増圧異常検出部95、減圧異常検出部96、保持異常検出部97はポンプ状態チェック部を構成している。
[Controller configuration]
FIG. 2 is a diagram showing the configuration of the controller 9. The controller 9 includes a boost hydraulic pressure control unit 90, an automatic brake hydraulic pressure control unit 91, a single system hydraulic pressure control unit 92, an abnormal pressure increase hydraulic pressure control unit 93, an abnormal pressure reduction hydraulic pressure control unit 94, and an abnormal pressure increase detection unit. 95, a decompression abnormality detection unit 96, and a holding abnormality detection unit 97. The controller 9 inputs information from the stroke sensor 2b, the master cylinder pressure sensor 69, the primary fluid path fluid pressure sensor 68P, the secondary fluid path fluid pressure sensor 68S, and the communication fluid path fluid pressure sensor 76. And based on the calculation in each control part 91-97, the stroke simulator cutoff valve 65, the cutoff valve 61, the pressure increase valve 62, the pressure reduction valve 63, the backup pressure reduction valve 64, the communication valve 72, the pressure regulation valve 75, and the motor 79 are controlled. . The pressure increase abnormality detection unit 95, the pressure reduction abnormality detection unit 96, and the holding abnormality detection unit 97 constitute a pump state check unit.

(倍力液圧制御)
図3は倍力液圧制御部90による通常時に行うブレーキ液圧コントロールユニット6の制御を示す図である。図3に示すように通常時には、遮断弁61を閉弁するとともにストロークシミュレータ遮断弁65を開弁する。これにより、運転者によりブレーキペダル2が踏み込まれると、マスタシリンダ3からブレーキ液圧コントロールユニット6内に送られるブレーキ液は、ストロークシミュレータ80に供給される。このときストロークシミュレータ80では、ブレーキペダル2の踏み込みに応じてブレーキペダル反力が発生するようにしている。
また、倍力液圧制御時には連通弁72を開弁する。遮断弁61を閉弁するとともに連通弁72を開弁しているため、連通液路液圧センサ76で検出する液圧は、ホイルシリンダ圧と見ることができる。倍力液圧制御時には運転者によるブレーキペダル2の操作量をストロークセンサ2bにより検出し、検出した操作量に応じて目標ホイルシリンダ圧を演算する。この目標ホイルシリンダ圧と検出したホイルシリンダ圧との偏差に応じて、モータ79はPWM制御される。また調圧弁75も目標ホイルシリンダ圧と検出したホイルシリンダ圧との偏差に応じてPWM制御されており、モータ79と調圧弁75とでホイルシリンダ圧を調圧している。これによりブレーキペダル2の踏み込み時には、踏み込み量に応じてホイルシリンダ液圧を倍力するように制御することができる。
(Boost hydraulic pressure control)
FIG. 3 is a diagram showing control of the brake hydraulic pressure control unit 6 performed by the boost hydraulic pressure control unit 90 at normal times. As shown in FIG. 3, at the normal time, the shut-off valve 61 is closed and the stroke simulator shut-off valve 65 is opened. Thus, when the brake pedal 2 is depressed by the driver, the brake fluid sent from the master cylinder 3 into the brake fluid pressure control unit 6 is supplied to the stroke simulator 80. At this time, the stroke simulator 80 generates a brake pedal reaction force in response to the depression of the brake pedal 2.
Further, the communication valve 72 is opened during the boost hydraulic pressure control. Since the shutoff valve 61 is closed and the communication valve 72 is opened, the fluid pressure detected by the communication fluid path fluid pressure sensor 76 can be regarded as the wheel cylinder pressure. During the boost hydraulic pressure control, the operation amount of the brake pedal 2 by the driver is detected by the stroke sensor 2b, and the target wheel cylinder pressure is calculated according to the detected operation amount. The motor 79 is PWM controlled according to the deviation between the target wheel cylinder pressure and the detected wheel cylinder pressure. The pressure regulating valve 75 is also PWM controlled according to the deviation between the target wheel cylinder pressure and the detected wheel cylinder pressure, and the wheel cylinder pressure is regulated by the motor 79 and the pressure regulating valve 75. Thus, when the brake pedal 2 is depressed, the wheel cylinder hydraulic pressure can be controlled to be boosted according to the depression amount.

また実施例1のブレーキ装置1は、遮断弁61を閉弁することによりステアバイワイヤのブレーキ装置とすることができ、駆動源としてモータジェネレータを用いている車両では、回生制動時にホイルシリンダ圧を回生制動力分だけ減少させる協調制御を行うこともできる。
また、倍力液圧制御は目標ホイルシリンダ圧と検出したホイルシリンダ圧の偏差が大きい場合など所定の条件が成立した時のみ実施することも可能である。そして、条件が成立しない場合は、遮断弁61を開弁、連通弁72及びストロークシミュレータ遮断弁65を閉弁し、マスタシリンダ3から送られるブレーキ液によってホイルシリンダ5を加圧し制動力を得るようにしてもよく、この場合、ポンプの作動頻度を抑制できる。
The brake device 1 of the first embodiment can be a steer-by-wire brake device by closing the shut-off valve 61. In a vehicle using a motor generator as a drive source, the wheel cylinder pressure is regenerated during regenerative braking. It is also possible to perform cooperative control for reducing the braking force.
Further, the boost hydraulic pressure control can be performed only when a predetermined condition is satisfied, such as when a deviation between the target wheel cylinder pressure and the detected wheel cylinder pressure is large. If the conditions are not satisfied, the shut-off valve 61 is opened, the communication valve 72 and the stroke simulator shut-off valve 65 are closed, and the wheel cylinder 5 is pressurized with the brake fluid sent from the master cylinder 3 to obtain a braking force. In this case, the operation frequency of the pump can be suppressed.

(自動ブレーキ液圧制御)
自動ブレーキ液圧制御時とは、ブレーキペダル2の踏み込みがないときであっても、旋回中に車両の横滑りを防止する横滑り防止制御時や、加速中に駆動輪にスリップが発生した場合にスリップ輪を制動するためのトラクション制御時に、自動的にホイルシリンダ5にブレーキ液を供給し制動力を発生させる制御である。自動ブレーキ液圧制御時には、自動ブレーキ液圧制御部91により倍力液圧制御と同様、遮断弁61を閉弁するとともにストロークシミュレータ遮断弁65を開弁する。ストロークシミュレータ遮断弁65は自動ブレーキ液圧制御時には閉弁していても構わない。
さらに連通弁72を開弁しモータ79を駆動してポンプ78により連通液路73にブレーキ液を供給するとともに、調圧弁75の開弁量を比例制御して連通液路73からプライマリ液路60Pおよびセカンダリ液路60Sに供給するブレーキ液の量を調整する。
また、各ホイルシリンダ5の液圧を独立して制御するために、増圧弁62、減圧弁63およびバックアップ減圧弁64を制御する。
(Automatic brake fluid pressure control)
Automatic brake fluid pressure control means slipping even when the brake pedal 2 is not depressed, during slip prevention control that prevents the vehicle from slipping during turning, or when slipping occurs on the drive wheels during acceleration. At the time of traction control for braking the wheel, the brake fluid is automatically supplied to the wheel cylinder 5 to generate a braking force. At the time of automatic brake fluid pressure control, the automatic brake fluid pressure control unit 91 closes the shut-off valve 61 and opens the stroke simulator shut-off valve 65 as in the case of boost hydraulic pressure control. The stroke simulator shutoff valve 65 may be closed during automatic brake fluid pressure control.
Further, the communication valve 72 is opened and the motor 79 is driven to supply brake fluid to the communication fluid path 73 by the pump 78, and the valve opening amount of the pressure regulating valve 75 is proportionally controlled to control the primary fluid path 60P from the communication fluid path 73. The amount of brake fluid supplied to the secondary fluid path 60S is adjusted.
Further, in order to independently control the hydraulic pressure of each wheel cylinder 5, the pressure increasing valve 62, the pressure reducing valve 63, and the backup pressure reducing valve 64 are controlled.

(片系統液圧制御)
図4は片系統液圧制御部92による片系統失陥時に行うブレーキ液圧コントロールユニット6の制御を示す図である。片系統失陥時とは、プライマリ系統またはセカンダリ系統の一方の液圧回路に失陥が生じ、液圧漏れが生じている状態を示す。図4では、セカンダリ系統の液圧回路に失陥が生じている場合を示している。
図4に示すようにセカンダリ系統の液圧回路失陥時には、遮断弁61Pを閉弁、遮断弁61Sを開弁するとともにストロークシミュレータ遮断弁65を開弁する。これにより、運転者によりブレーキペダル2が踏み込まれると、マスタシリンダ3からブレーキ液圧コントロールユニット6内に送られるブレーキ液は、ストロークシミュレータ80に供給される。このときストロークシミュレータ80では、ブレーキペダル2の踏み込みに応じてブレーキペダル反力が発生するようにしている。このとき、遮断弁61Sも閉弁するようにしても良い。なお、プライマリ系統の液圧回路失陥時には遮断弁61Pと遮断弁61Sを共に閉弁する。
またセカンダリ系統の液圧回路失陥時には、失陥側の連通弁72Sを閉し、他方の連通弁72Pを開弁しモータ79を駆動してポンプ78により連通液路73にブレーキ液を供給するとともに、調圧弁75の開弁量を比例制御して連通液路73からプライマリ液路60Pに供給するブレーキ液の量を調整する。これによりセカンダリ系統の液圧回路失陥時であってもプライマリ系統の液圧回路側で倍力制御を行うことができる。
(Single system hydraulic pressure control)
FIG. 4 is a diagram showing the control of the brake fluid pressure control unit 6 performed by the one-system fluid pressure control unit 92 when one-system failure occurs. One-system failure means a state in which one hydraulic circuit of the primary system or the secondary system has failed and a hydraulic pressure leak has occurred. FIG. 4 shows a case where a failure occurs in the hydraulic system of the secondary system.
As shown in FIG. 4, when the hydraulic circuit of the secondary system fails, the shutoff valve 61P is closed, the shutoff valve 61S is opened, and the stroke simulator shutoff valve 65 is opened. Thus, when the brake pedal 2 is depressed by the driver, the brake fluid sent from the master cylinder 3 into the brake fluid pressure control unit 6 is supplied to the stroke simulator 80. At this time, the stroke simulator 80 generates a brake pedal reaction force in response to the depression of the brake pedal 2. At this time, the shutoff valve 61S may also be closed. When the primary system hydraulic circuit fails, both the shut-off valve 61P and the shut-off valve 61S are closed.
Further, when the hydraulic circuit of the secondary system fails, the communication valve 72S on the failure side is closed, the other communication valve 72P is opened, the motor 79 is driven, and the brake fluid is supplied to the communication liquid path 73 by the pump 78. At the same time, the amount of brake fluid supplied from the communication fluid passage 73 to the primary fluid passage 60P is adjusted by proportionally controlling the valve opening amount of the pressure regulating valve 75. As a result, even when the hydraulic circuit of the secondary system fails, the boost control can be performed on the hydraulic circuit side of the primary system.

(増圧異常液圧制御)
図5は増圧異常液圧制御部93による調圧系統増圧異常時に行うブレーキ液圧コントロールユニット6の制御を示す図である。調圧系統とは、ポンプ78から連通液路73を介してプライマリ液路60P、セカンダリ液路60Sに供給するブレーキ液量を調整する構成要素であって、具体的には調圧弁75、ポンプ78、モータ79を示す。また調圧系統増圧異常とは、例えばモータ79やポンプ78の故障により連通液路73にブレーキ液を供給できないときや、調圧弁75が開固着したためプライマリ液路60Pやセカンダリ液路60Sにブレーキ液を供給できない状態を示す。
図5に示すように増圧異常時には、遮断弁61を開弁するとともにストロークシミュレータ遮断弁65を閉弁し、連通弁72を閉弁する。これにより、運転者によりブレーキペダル2が踏み込まれると、マスタシリンダ3からブレーキ液圧コントロールユニット6内に送られるブレーキ液は、ストロークシミュレータ80には供給されず、ホイルシリンダ5側に供給されることとなる。すなわち増圧異常時には、マスタシリンダ圧によってホイルシリンダ5にブレーキ液を供給しており、倍力作用は発生しないものの、最低限の制動力を確保することができる。
(Pressure increase abnormal hydraulic pressure control)
FIG. 5 is a diagram showing the control of the brake fluid pressure control unit 6 performed by the pressure increase abnormal fluid pressure control unit 93 when the pressure adjustment system pressure increase is abnormal. The pressure regulation system is a component that adjusts the amount of brake fluid supplied from the pump 78 to the primary fluid path 60P and the secondary fluid path 60S via the communication fluid path 73. Specifically, the pressure regulation system 75, the pump 78 The motor 79 is shown. In addition, abnormal pressure increase in the pressure regulation system means, for example, when brake fluid cannot be supplied to the communication fluid passage 73 due to a failure of the motor 79 or the pump 78, or because the pressure regulation valve 75 is stuck open, the brake is applied to the primary fluid passage 60P or the secondary fluid passage 60S. Indicates that the liquid cannot be supplied.
As shown in FIG. 5, when the pressure increase is abnormal, the shut-off valve 61 is opened, the stroke simulator shut-off valve 65 is closed, and the communication valve 72 is closed. Thus, when the brake pedal 2 is depressed by the driver, the brake fluid sent from the master cylinder 3 into the brake fluid pressure control unit 6 is not supplied to the stroke simulator 80 but to the wheel cylinder 5 side. It becomes. That is, when the pressure increase is abnormal, the brake fluid is supplied to the wheel cylinder 5 by the master cylinder pressure, and no boosting action is generated, but a minimum braking force can be ensured.

(減圧異常液圧制御)
図6は減圧異常液圧制御部94による減圧異常時に行うブレーキ液圧コントロールユニット6の制御を示す図である。減圧異常時とは、例えば調圧弁75が失陥して開弁制御することができないため連通液路73からプライマリ液路60P、セカンダリ液路60Sへ供給するブレーキ液の量を制御できない状態を示す。
図6に示すように減圧異常時には、遮断弁61を閉弁するとともにストロークシミュレータ遮断弁65を開弁する。これにより、運転者によりブレーキペダル2が踏み込まれると、マスタシリンダ3からブレーキ液圧コントロールユニット6内に送られるブレーキ液は、ストロークシミュレータ80に供給される。このときストロークシミュレータ80では、ブレーキペダル2の踏み込みに応じてブレーキペダル反力が発生するようにしている。
また減圧異常時において、連通弁72を開弁しモータ79を駆動してポンプ78により連通液路73にブレーキ液を供給するとともに、バックアップ減圧弁64の開弁量を比例制御してプライマリ液路60Pおよびセカンダリ液路60Sからホイルシリンダ5に供給するブレーキ液の量を調整する。これによりブレーキペダル2の踏み込み時には、踏み込み量に応じてホイルシリンダ液圧を倍力するように制御することができる。すなわち、失陥した調圧弁75の代わりにバックアップ減圧弁64を用いるようにしている。
(Depressurized abnormal fluid pressure control)
FIG. 6 is a diagram showing the control of the brake fluid pressure control unit 6 that is performed by the decompression abnormal fluid pressure control unit 94 when the decompression is abnormal. The time of abnormal pressure reduction indicates a state in which the amount of brake fluid supplied from the communication fluid passage 73 to the primary fluid passage 60P and the secondary fluid passage 60S cannot be controlled because, for example, the pressure regulating valve 75 has failed and valve opening control cannot be performed. .
As shown in FIG. 6, when the pressure reduction is abnormal, the shut-off valve 61 is closed and the stroke simulator shut-off valve 65 is opened. Thus, when the brake pedal 2 is depressed by the driver, the brake fluid sent from the master cylinder 3 into the brake fluid pressure control unit 6 is supplied to the stroke simulator 80. At this time, the stroke simulator 80 generates a brake pedal reaction force in response to the depression of the brake pedal 2.
In addition, when the pressure reduction is abnormal, the communication valve 72 is opened and the motor 79 is driven to supply the brake fluid to the communication fluid passage 73 by the pump 78, and the opening amount of the backup pressure reduction valve 64 is proportionally controlled to control the primary fluid passage. The amount of brake fluid supplied to wheel cylinder 5 from 60P and secondary fluid path 60S is adjusted. Thus, when the brake pedal 2 is depressed, the wheel cylinder hydraulic pressure can be controlled to be boosted according to the depression amount. That is, the backup pressure reducing valve 64 is used in place of the failed pressure regulating valve 75.

(電源失陥液圧制御)
図7は電源失陥時に行うブレーキ液圧コントロールユニット6の制御を示す図である。電源失陥時にはブレーキ液圧コントロールユニット6の各弁には通電できない。そのため図7に示すように電源失陥時には、遮断弁61が開弁するとともにストロークシミュレータ遮断弁65が閉弁する。またプライマリ液路60P側の連通弁72Pは開弁し、セカンダリ液路60S側の連通弁72Sは閉弁し、調圧弁75は閉弁し、モータ79は停止する。
これにより、運転者によりブレーキペダル2が踏み込まれると、マスタシリンダ3からブレーキ液圧コントロールユニット6内に送られるブレーキ液は、ストロークシミュレータ80には供給されず、ホイルシリンダ5側に供給されることとなる。またセカンダリ液路60S側の連通弁72Sが閉弁しているため、プライマリ液路60Pとセカンダリ液路60Sとの間の連通は遮断されている。
(Power failure fluid pressure control)
FIG. 7 is a diagram showing the control of the brake fluid pressure control unit 6 performed when the power supply fails. When the power fails, the brake fluid pressure control unit 6 cannot be energized. Therefore, as shown in FIG. 7, when the power fails, the shut-off valve 61 is opened and the stroke simulator shut-off valve 65 is closed. Further, the communication valve 72P on the primary liquid path 60P side is opened, the communication valve 72S on the secondary liquid path 60S side is closed, the pressure regulating valve 75 is closed, and the motor 79 is stopped.
Thus, when the brake pedal 2 is depressed by the driver, the brake fluid sent from the master cylinder 3 into the brake fluid pressure control unit 6 is not supplied to the stroke simulator 80 but to the wheel cylinder 5 side. It becomes. Further, since the communication valve 72S on the secondary liquid path 60S side is closed, the communication between the primary liquid path 60P and the secondary liquid path 60S is blocked.

(増圧異常検出処理)
図8は増圧異常検出部95において行われる増圧異常を検出する制御の流れを示すフローチャートである。
ステップS1では、制動要求の有無を判定し、制動要求が有るときにはステップS2へ移行し、制動要求が無いときにはステップS3へ移行する。制動要求の有無の判定は、例えばストロークセンサ2bの値が所定以上となり、運転者によりブレーキペダル2が踏み込まれていることを検出することで制動要求が有ると判定できる。または、横滑り制御やトラクション制御により、自動ブレーキ液圧制御が要求されているときに制動要求が有ると判定できる。
ステップS2では、増圧異常検出処理を禁止してステップS4へ移行する。
ステップS3では、前回の増圧異常検出処理完了から所定時間経過しているか否かを判定し、所定時間経過しているときにはステップS5へ移行し、所定時間経過していないときにはステップS2へ移行する。
ステップS4では、判定タイマT1をリセットし、処理を終了する。
ステップS5では、増圧異常検出処理の実行を許可して、ステップS6へ移行する。
(Pressure increase abnormality detection processing)
FIG. 8 is a flowchart showing a flow of control for detecting a pressure increase abnormality performed in the pressure increase abnormality detection unit 95.
In step S1, it is determined whether or not there is a braking request. If there is a braking request, the process proceeds to step S2, and if there is no braking request, the process proceeds to step S3. The determination of whether or not there is a braking request can be made by determining that there is a braking request, for example, by detecting that the value of the stroke sensor 2b is equal to or greater than a predetermined value and the driver depresses the brake pedal 2. Alternatively, it can be determined that there is a braking request when the automatic brake hydraulic pressure control is requested by the skid control or the traction control.
In step S2, the pressure increase abnormality detection process is prohibited and the process proceeds to step S4.
In step S3, it is determined whether or not a predetermined time has elapsed since the completion of the previous pressure increase abnormality detection process. If the predetermined time has elapsed, the process proceeds to step S5, and if the predetermined time has not elapsed, the process proceeds to step S2. .
In step S4, the determination timer T1 is reset and the process ends.
In step S5, the execution of the pressure increase abnormality detection process is permitted, and the process proceeds to step S6.

ステップS6では、連通弁72を閉弁、調圧弁75を閉弁、モータ79を駆動してステップS7へ移行する。図9はステップS6の処理が行われたときのブレーキ液圧コントロールユニット6の制御を示す図である。モータ79が駆動してポンプ78によりリザーバタンク4内のブレーキ液を連通液路73内に供給する。このとき、連通弁72および調圧弁75が閉弁しているため、ポンプ78が正常に駆動すれば連通液路73内の液圧が上昇し、この液圧上昇を連通液路液圧センサ76により検出することができる。連通弁72および調圧弁75が閉弁し、連通液路73は閉回路となっている。そのため、ポンプ78により少量のブレーキ液が吐出されるだけで、連通液路73内の液圧が発生するため、ポンプ78の駆動を抑えて、増圧異常検出を行うことができる。またブレーキ液圧コントロールユニット6内の回路で増圧異常検出を行うことができるため、液剛性の関係はブレーキ液圧コントロールユニット6毎に決まっており、搭載車両に寄らず判断条件を一定にすることができる。
ステップS7では、連通液路液圧センサ76により検出した連通液路73内の液圧が所定値以上であるか否かを判定し、所定値以上であるときにはステップS8へ移行し、所定値未満であるときにはステップS9へ移行する。このとき連通弁72および調圧弁75を閉弁しているため、連通液路73内の液圧はポンプ78の吐出圧と等しくなる。
ステップS8では、増圧正常であると判定しステップS4へ移行する。増圧正常とは、連通弁72、調圧弁75、ポンプ78、モータ79のいずれもが正常に作動し、倍力制御を行うことができる状態であることを示す。
ステップS9では、判定タイマT1が所定値より大きいか否かを判定し、所定値より大きいときにはステップS10に移行し、所定値以下であるときにはステップS12に移行する。判定タイマT1は、ポンプ78が駆動し始めて十分に吐出圧が上昇するまで、ポンプ78による液圧増圧異常判定を待つためのタイマである。
ステップS10では、増圧異常と判定してステップS11へ移行する。
ステップS11では、警告を作動させて処理を終了する。警告作動とは、ランプの点灯やブザーを鳴らすことであり、これによりブレーキシステムに異常が発生していることを運転者に伝える。
ステップS12では、判定タイマT1をインクリメントして処理を終了する。
In step S6, the communication valve 72 is closed, the pressure regulating valve 75 is closed, the motor 79 is driven, and the process proceeds to step S7. FIG. 9 is a diagram showing the control of the brake fluid pressure control unit 6 when the process of step S6 is performed. The motor 79 is driven and the brake fluid in the reservoir tank 4 is supplied into the communication fluid path 73 by the pump 78. At this time, since the communication valve 72 and the pressure regulating valve 75 are closed, if the pump 78 is driven normally, the fluid pressure in the communication fluid path 73 increases, and this fluid pressure increase is indicated by the communication fluid path fluid pressure sensor 76. Can be detected. The communication valve 72 and the pressure regulating valve 75 are closed, and the communication liquid path 73 is a closed circuit. For this reason, only a small amount of brake fluid is discharged by the pump 78, and the fluid pressure in the communication fluid path 73 is generated. Therefore, the pump 78 can be restrained from being driven and the pressure increase abnormality can be detected. In addition, because the pressure increase abnormality can be detected by the circuit in the brake fluid pressure control unit 6, the relationship of fluid rigidity is determined for each brake fluid pressure control unit 6, and the judgment condition is kept constant regardless of the installed vehicle. be able to.
In step S7, it is determined whether or not the fluid pressure in the communicating fluid path 73 detected by the communicating fluid path fluid pressure sensor 76 is equal to or greater than a predetermined value. If so, the process proceeds to step S9. At this time, since the communication valve 72 and the pressure regulating valve 75 are closed, the hydraulic pressure in the communication liquid path 73 becomes equal to the discharge pressure of the pump 78.
In step S8, it is determined that the pressure increase is normal, and the process proceeds to step S4. “Normal pressure increase” indicates that all of the communication valve 72, the pressure regulating valve 75, the pump 78, and the motor 79 operate normally and can perform boost control.
In step S9, it is determined whether or not the determination timer T1 is larger than a predetermined value. When the determination timer T1 is larger than the predetermined value, the process proceeds to step S10, and when it is equal to or smaller than the predetermined value, the process proceeds to step S12. The determination timer T1 is a timer for waiting for a hydraulic pressure increase abnormality determination by the pump 78 until the discharge pressure rises sufficiently after the pump 78 starts to drive.
In step S10, it is determined that the pressure increase is abnormal, and the process proceeds to step S11.
In step S11, a warning is activated and the process is terminated. The warning operation is to turn on a lamp or sound a buzzer, thereby notifying the driver that an abnormality has occurred in the brake system.
In step S12, the determination timer T1 is incremented and the process ends.

(異常箇所特定処理)
上記の増圧異常検出処理だけでは、増圧異常は検出することができるが、異常箇所まで特定することができない。そこで、続いて以下に説明する異常箇所特定処理を行う。
図10は増圧異常検出部95において行われる異常箇所を検出する制御の流れを示すフローチャートである。
ステップS21では、異常箇所が特定できているか否かを判定し、異常箇所が特定できているときにはステップS24へ移行し、異常箇所が特定できていないときにはステップS22へ移行する。
ステップS22では、制動要求の有無を判定し、制動要求が有るときにはステップS23へ移行し、制動要求が無いときにはステップS24へ移行する。
ステップS23では、連通弁72を閉弁、調圧弁75を閉弁、モータ79を停止、遮断弁61を開弁、増圧弁62を開弁、ストロークシミュレータ遮断弁65を閉弁してステップS24へ移行する。ステップS23の処理が行われたときには、増圧異常時のブレーキ液圧コントロールユニット6の制御(図5)を行う。これにより、マスタシリンダ圧によってホイルシリンダ5にブレーキ液を供給し、倍力作用は発生しないものの、最低限の制動力を確保することができる。
ステップS24では、判定タイマT2,T3をリセットして処理を終了する。
(Abnormal point identification processing)
Although the pressure increase abnormality can be detected only by the above-described pressure increase abnormality detection process, it is not possible to identify the abnormal part. Then, the abnormal part specific process demonstrated below is performed subsequently.
FIG. 10 is a flowchart showing a flow of control for detecting an abnormal portion performed in the pressure increase abnormality detecting unit 95.
In step S21, it is determined whether or not an abnormal location has been identified. If an abnormal location has been identified, the process proceeds to step S24. If an abnormal location has not been identified, the process proceeds to step S22.
In step S22, it is determined whether or not there is a braking request. If there is a braking request, the process proceeds to step S23, and if there is no braking request, the process proceeds to step S24.
In step S23, the communication valve 72 is closed, the pressure regulating valve 75 is closed, the motor 79 is stopped, the shut-off valve 61 is opened, the pressure increasing valve 62 is opened, and the stroke simulator shut-off valve 65 is closed, and the process proceeds to step S24. Transition. When the process of step S23 is performed, the brake fluid pressure control unit 6 is controlled (FIG. 5) when the pressure increase is abnormal. As a result, the brake fluid is supplied to the wheel cylinder 5 by the master cylinder pressure, and a boosting action does not occur, but a minimum braking force can be ensured.
In step S24, determination timers T2 and T3 are reset and the process is terminated.

ステップS25では、連通弁72を閉弁、調圧弁75を閉弁、モータ79を駆動、遮断弁61を閉弁、増圧弁62を閉弁してステップS26へ移行する。図11はステップS25の処理が行われたときのブレーキ液圧コントロールユニット6の制御を示す図である。モータ79が駆動してポンプ78によりリザーバタンク4内のブレーキ液を連通液路73内に供給する。このとき、連通弁72および調圧弁75が正常に閉弁し、ポンプ78が正常に駆動すれば連通液路73内の液圧が上昇し、この液圧上昇を連通液路液圧センサ76により検出することができる。また連通弁72および調圧弁75が正常に閉弁しなくても、遮断弁61が正常に閉弁していれば、ポンプ78が駆動することにより連通液路73内の液圧が上昇するとともに、プライマリ液路液圧、セカンダリ液路液圧が上昇することとなる。   In step S25, the communication valve 72 is closed, the pressure regulating valve 75 is closed, the motor 79 is driven, the shutoff valve 61 is closed, and the pressure increasing valve 62 is closed, and the process proceeds to step S26. FIG. 11 is a diagram showing the control of the brake fluid pressure control unit 6 when the process of step S25 is performed. The motor 79 is driven and the brake fluid in the reservoir tank 4 is supplied into the communication fluid path 73 by the pump 78. At this time, if the communication valve 72 and the pressure regulating valve 75 are normally closed and the pump 78 is driven normally, the fluid pressure in the communication fluid path 73 increases, and this fluid pressure increase is detected by the communication fluid path fluid pressure sensor 76. Can be detected. Even if the communication valve 72 and the pressure regulating valve 75 are not normally closed, if the shutoff valve 61 is normally closed, the pump 78 is driven to increase the fluid pressure in the communication fluid path 73. The primary fluid pressure and the secondary fluid pressure will increase.

ステップS26では、連通液路液圧センサ76により検出した連通液路73内の液圧が所定値以上であるか否かを判定し、所定値以上であるときにはステップS27へ移行し、所定値未満であるときにはステップS32へ移行する。
ステップS27では、プライマリ液路液圧センサ68Pにより検出したプライマリ液路液圧が所定値以上であるか否かを判定し、所定値以上であるときにはステップS28へ移行し、所定値未満であるときにはステップS29へ移行する。
ステップS28では、プライマリ側の連通弁72Pに異常が発生していると判定しステップS31へ移行する。
ステップS29では、セカンダリ液路液圧センサ68Sにより検出したセカンダリ液路液圧が所定値以上であるか否かを判定し、所定値以上であるときにはステップS30へ移行し、所定値未満であるときにはステップS35へ移行する。
ステップS30では、セカンダリ側の連通弁72Sに異常が発生していると判定しステップS31へ移行する。
ステップS31では、異常箇所を特定したと判定して処理を終了する。
In step S26, it is determined whether or not the fluid pressure in the communicating fluid path 73 detected by the communicating fluid path fluid pressure sensor 76 is equal to or greater than a predetermined value. If so, the process proceeds to step S32.
In step S27, it is determined whether or not the primary fluid pressure detected by the primary fluid pressure sensor 68P is equal to or greater than a predetermined value. If it is equal to or greater than the predetermined value, the process proceeds to step S28. Control goes to step S29.
In step S28, it is determined that an abnormality has occurred in the primary side communication valve 72P, and the process proceeds to step S31.
In step S29, it is determined whether or not the secondary fluid pressure detected by the secondary fluid pressure sensor 68S is greater than or equal to a predetermined value. If it is greater than or equal to the predetermined value, the process proceeds to step S30. Control goes to step S35.
In step S30, it is determined that an abnormality has occurred in the secondary communication valve 72S, and the process proceeds to step S31.
In step S31, it is determined that an abnormal location has been specified, and the process is terminated.

ステップS32では、判定タイマT2が所定値より大きいか否かを判定し、所定値より大きいときにはステップS33に移行し、所定値以下であるときにはステップS34に移行する。判定タイマT2は、ポンプ78が駆動し始めて十分に吐出圧が上昇するまで、ポンプ78による増圧異常判定を待つためのタイマである。
ステップS33では、調圧系統増圧異常と判定しステップS31へ移行する。調圧系統増圧異常とは、モータ79、ポンプ78、調圧弁75のいずれかに異常が発生しており、ポンプ78による増圧を望めない状況のことを示す。
ステップS34では、判定タイマT2をインクリメントして処理を終了する。
ステップS35では、判定タイマT3が所定値より大きいか否かを判定し、所定値より大きいときにはステップS37に移行し、所定値以下であるときにはステップS36に移行する。判定タイマT3は、ポンプ78が駆動し始めて十分に吐出圧が上昇するまで、ポンプ78による増圧異常判定を待つためのタイマである。
ステップS36では、判定タイマT3をインクリメントして処理を終了する。
ステップS37では、増圧正常と判定しステップS24へ移行する。
In step S32, it is determined whether or not the determination timer T2 is greater than a predetermined value. When the determination timer T2 is greater than the predetermined value, the process proceeds to step S33, and when it is less than the predetermined value, the process proceeds to step S34. The determination timer T2 is a timer for waiting for a pressure increase abnormality determination by the pump 78 until the discharge pressure rises sufficiently after the pump 78 starts to drive.
In step S33, it is determined that the pressure regulating system pressure increase abnormality has occurred, and the process proceeds to step S31. The pressure regulation system pressure increase abnormality indicates a situation where an abnormality has occurred in any of the motor 79, the pump 78, and the pressure regulating valve 75 and pressure increase by the pump 78 cannot be expected.
In step S34, the determination timer T2 is incremented and the process ends.
In step S35, it is determined whether or not the determination timer T3 is larger than a predetermined value. When the determination timer T3 is larger than the predetermined value, the process proceeds to step S37, and when it is equal to or smaller than the predetermined value, the process proceeds to step S36. The determination timer T3 is a timer for waiting for a pressure increase abnormality determination by the pump 78 until the discharge pressure rises sufficiently after the pump 78 starts to drive.
In step S36, the determination timer T3 is incremented and the process ends.
In step S37, it is determined that the pressure increase is normal, and the process proceeds to step S24.

(減圧異常検出処理)
図12は減圧異常検出部96において行われる減圧異常を検出する制御の流れを示すフローチャートである。
ステップS41では、増圧異常検出処理が終了し増圧正常であったか否かを判定して、増圧正常であったときにはステップS43へ移行し、増圧異常検出処理が終了していないまたは増圧異常であったときにはステップS42へ移行する。
ステップS42では、増圧異常検出処理を実行するように指令してステップS45へ移行する。
ステップS43では、制動要求の有無を判定し、制動要求が有るときにはステップS46へ移行し、制動要求が無いときにはステップS44へ移行する。
ステップS44では、減圧異常検出処理を禁止してステップS45へ移行する。
ステップS45では、判定タイマT4をリセットして処理を終了する。
ステップS46では、減圧異常検出処理を許可してステップS47へ移行する。
(Decompression abnormality detection processing)
FIG. 12 is a flowchart showing a flow of control for detecting a pressure reduction abnormality performed in the pressure reduction abnormality detection unit 96.
In step S41, it is determined whether or not the pressure increase abnormality detection process is completed and the pressure increase is normal. When the pressure increase is normal, the process proceeds to step S43, and the pressure increase abnormality detection process is not completed or is increased. If it is abnormal, the process proceeds to step S42.
In step S42, a command is issued to execute the pressure increase abnormality detection process, and the routine proceeds to step S45.
In step S43, it is determined whether or not there is a braking request. If there is a braking request, the process proceeds to step S46, and if there is no braking request, the process proceeds to step S44.
In step S44, the decompression abnormality detection process is prohibited and the process proceeds to step S45.
In step S45, the determination timer T4 is reset and the process ends.
In step S46, the decompression abnormality detection process is permitted, and the process proceeds to step S47.

ステップS47では、連通弁72を閉弁、調圧弁75を所定開度開弁、モータ79を停止してステップS48へ移行する。図13はステップS47の処理が行われたときのブレーキ液圧コントロールユニット6の制御を示す図である。増圧異常検出処理が終了した後に、増圧正常であれば連通液路73内は高圧の状態となっている。このとき、調圧弁75を所定開度開弁することにより連通液路73内の液圧が減少し、この液圧減少を連通液路液圧センサ76により検出することができる。
ステップS48では、連通液路液圧センサ76により検出した連通液路73内の液圧が所定値以下であるか否かを判定し、所定値以下であるときにはステップS49へ移行し、所定値より大きいときにはステップS50へ移行する。
ステップS49では、調圧弁75が正常であると判定してステップS45へ移行する。
ステップS50では、判定タイマT4が所定値より大きいか否かを判定し、所定値より大きいときにはステップS51へ移行し、所定値以下であるときにはステップS53へ移行する。
ステップS51では、調圧弁75に異常が発生していると判定してステップS52へ移行する。
ステップS52では、警告を作動させて処理を終了する。
ステップS53では、判定タイマT4をインクリメントして処理を終了する。
In step S47, the communication valve 72 is closed, the pressure regulating valve 75 is opened at a predetermined opening, the motor 79 is stopped, and the process proceeds to step S48. FIG. 13 is a diagram showing the control of the brake fluid pressure control unit 6 when the process of step S47 is performed. If the pressure increase is normal after the pressure increase abnormality detection process is completed, the communication liquid path 73 is in a high pressure state. At this time, by opening the pressure regulating valve 75 by a predetermined opening, the fluid pressure in the communication fluid path 73 decreases, and this decrease in fluid pressure can be detected by the communication fluid path fluid pressure sensor 76.
In step S48, it is determined whether or not the fluid pressure in the communicating fluid path 73 detected by the communicating fluid path fluid pressure sensor 76 is less than or equal to a predetermined value. When the fluid pressure is less than or equal to the prescribed value, the process proceeds to step S49. If larger, the process proceeds to step S50.
In step S49, it is determined that the pressure regulating valve 75 is normal, and the process proceeds to step S45.
In step S50, it is determined whether or not the determination timer T4 is greater than a predetermined value. When the determination timer T4 is greater than the predetermined value, the process proceeds to step S51, and when it is less than the predetermined value, the process proceeds to step S53.
In step S51, it is determined that an abnormality has occurred in the pressure regulating valve 75, and the process proceeds to step S52.
In step S52, a warning is activated and the process is terminated.
In step S53, the determination timer T4 is incremented and the process ends.

(保持異常検出処理)
上記の増圧異常検出処理と減圧異常検出処理との間に保持異常検出処理を行っても良い。
増圧異常検出処理が終了し、増圧正常と判断されると保持異常検出処理が行われる。保持異常検出処理では、連通弁72を閉弁、調圧弁75を閉弁、モータ79を停止した状態で連通液路液圧センサ76により検出した連通液路73の液圧が維持されていれば、保持正常と判定する。
(Holding error detection process)
A holding abnormality detection process may be performed between the pressure increase abnormality detection process and the pressure reduction abnormality detection process.
When the pressure increase abnormality detection process is completed and it is determined that the pressure increase is normal, the holding abnormality detection process is performed. In the holding abnormality detection process, if the fluid pressure of the communication fluid path 73 detected by the communication fluid path fluid pressure sensor 76 is maintained with the communication valve 72 closed, the pressure regulating valve 75 closed, and the motor 79 stopped. It is determined that the holding is normal.

(異常判定後の処理)
ブレーキ液圧コントロールユニット6に異常が発生していると判定されたときには、その異常箇所に応じて制御を行う。図14は異常箇所に応じた制御モードを示す図である。
図14に示すように調圧系統増圧異常と判定されたときには増圧異常液圧制御を行う。増圧異常液圧制御は前述のように増圧異常液圧制御部93により図5に示すようにブレーキ液圧コントロールユニット6を制御する。これにより、マスタシリンダ圧によってホイルシリンダ5にブレーキ液を供給しており、倍力作用は発生しないものの、最低限の制動力を確保することができる。
(Process after abnormality determination)
When it is determined that an abnormality has occurred in the brake fluid pressure control unit 6, control is performed according to the abnormality location. FIG. 14 is a diagram illustrating a control mode corresponding to an abnormal location.
As shown in FIG. 14, when it is determined that the pressure regulating system pressure increase abnormality is detected, the pressure increase abnormality hydraulic pressure control is performed. In the abnormal pressure increase hydraulic pressure control, as described above, the abnormal pressure increase hydraulic pressure control unit 93 controls the brake hydraulic pressure control unit 6 as shown in FIG. Thereby, the brake fluid is supplied to the wheel cylinder 5 by the master cylinder pressure, and a boosting action does not occur, but a minimum braking force can be ensured.

調圧弁異常と判定されたときには減圧異常液圧制御を行う。減圧異常液圧制御は前述のように減圧異常液圧制御部94により図6に示すようにブレーキ液圧コントロールユニット6を制御する。すなわち、異常と判定された調圧弁75の代わりにバックアップ減圧弁64を用いるようにしている。なお、プライマリ側にバックアップ減圧弁64Bを、セカンダリ側にバックアップ減圧弁64Cを配置しているが、調圧弁75の異常時にはどちらか一方のみを調圧弁75の代わりに用いても良いし、両方用いても良い。
連通弁異常と判定されたときには倍力液圧制御を行う。倍力液圧制御は前述のように倍力液圧制御部90により図3のようにブレーキ液圧コントロールユニット6を制御する。つまり、ブレーキ液圧コントロールユニット6が正常であるときと同様に制御する。しかし、連通弁72に異常が発生しているため警告は作動させるようにしている。
When it is determined that the pressure regulating valve is abnormal, the pressure reduction abnormal fluid pressure control is performed. In the abnormal pressure reduction control, the brake hydraulic pressure control unit 6 is controlled as shown in FIG. That is, the backup pressure reducing valve 64 is used instead of the pressure regulating valve 75 determined to be abnormal. Although the backup pressure reducing valve 64B is arranged on the primary side and the backup pressure reducing valve 64C is arranged on the secondary side, only one of them may be used instead of the pressure regulating valve 75 or both when the pressure regulating valve 75 is abnormal. May be.
When it is determined that the communication valve is abnormal, boost hydraulic pressure control is performed. In the boost hydraulic pressure control, the brake hydraulic pressure control unit 90 controls the brake hydraulic pressure control unit 6 as shown in FIG. 3 as described above. That is, the control is performed in the same manner as when the brake fluid pressure control unit 6 is normal. However, since an abnormality has occurred in the communication valve 72, the warning is activated.

(異常判定処理動作)
図15は異常判定処理のタイムチャートである。制動要求が無い時間t1において増圧異常判定処理が実行される。増圧異常判定処理が実行されると連通弁72、調圧弁75を閉弁し、モータ79を駆動する。判定タイマT1,T2,T3が所定値(増圧異常判定閾値)に達する前に、連通液路73の液圧が所定値(増圧判定圧力)以上となると増圧正常と判定する(時間t2)。
増圧異常検出処理が終了すると保持異常検出処理が実行される。保持異常検出処理では、連通弁72、調圧弁75を閉弁し、モータ79を停止する。このとき、連通液路73の液圧が減少しなければ保持正常と判定する(時間t3)。
保持異常検出処理が終了すると減圧異常検出処理が実行される。減圧異常検出処理では、連通弁72を閉弁し、調圧弁75は所定開度開弁し、モータ79を停止する。判定タイマT4が所定値(減圧異常判定閾値)に達する前に、連通液路73の液圧が所定値(減圧判定圧力)以下となると増圧正常と判定する(時間t4)。
(Abnormality judgment processing operation)
FIG. 15 is a time chart of the abnormality determination process. The pressure increase abnormality determination process is executed at time t1 when there is no braking request. When the pressure increase abnormality determination process is executed, the communication valve 72 and the pressure regulating valve 75 are closed and the motor 79 is driven. Before the determination timers T1, T2, T3 reach a predetermined value (pressure increase abnormality determination threshold value), if the fluid pressure in the communication fluid path 73 becomes equal to or higher than a predetermined value (pressure increase determination pressure), it is determined that pressure increase is normal (time t2). ).
When the pressure increase abnormality detection process ends, the holding abnormality detection process is executed. In the holding abnormality detection process, the communication valve 72 and the pressure regulating valve 75 are closed, and the motor 79 is stopped. At this time, if the fluid pressure in the communication fluid path 73 does not decrease, it is determined that the holding is normal (time t3).
When the holding abnormality detection process ends, the decompression abnormality detection process is executed. In the decompression abnormality detection process, the communication valve 72 is closed, the pressure regulating valve 75 is opened by a predetermined opening, and the motor 79 is stopped. Before the determination timer T4 reaches a predetermined value (depressurization abnormality determination threshold value), it is determined that the pressure increase is normal (time t4) when the fluid pressure in the communication fluid path 73 becomes equal to or lower than the predetermined value (decompression determination pressure).

[作用]
実施例1のようにブレーキ液圧コントロールユニット内のポンプにより倍力作用を発生させるシステムでは、ポンプによる倍力作用が発生できなくなったときに備えて常時ブレーキ液圧を貯めておくアキュムレータを備えているものがある。この場合、アキュムレータ内の圧力を監視していれば走行中であっても、液圧の増圧異常が発生していることを検出することができる。
アキュムレータを搭載すると、ブレーキ液圧コントロールユニット自体が大型化する問題がある。そこでアキュムレータを廃止することが考えられるが、アキュムレータを廃止するとシステムの信頼性確保のために増圧異常の検出を頻繁に行う必要が出てくる。しかし、アキュムレータを搭載していない場合、増圧異常を検出するためにはポンプを駆動する必要があり、ポンプを駆動するとホイルシリンダ圧が発生してしまうため走行中に増圧異常の検出を行うことができない。
[Action]
In the system in which the boosting action is generated by the pump in the brake fluid pressure control unit as in the first embodiment, an accumulator that always stores the brake fluid pressure is provided in case the boosting action by the pump cannot be generated. There is something. In this case, if the pressure in the accumulator is monitored, it can be detected that a fluid pressure increase abnormality has occurred even during traveling.
When the accumulator is installed, there is a problem that the brake fluid pressure control unit itself is enlarged. Therefore, it is conceivable to abolish the accumulator. However, if the accumulator is abolished, it is necessary to frequently detect the pressure increase abnormality in order to ensure the reliability of the system. However, when the accumulator is not installed, it is necessary to drive the pump in order to detect a pressure increase abnormality. When the pump is driven, the wheel cylinder pressure is generated, so the pressure increase abnormality is detected during traveling. I can't.

そこで実施例1では、プライマリ液路60Pとセカンダリ液路60Sとを繋ぐ連通液路73を設け、この連通液路73にポンプ78からブレーキ液を吐出するようにした。さらに連通液路73とプライマリ液路60Pとの間に連通弁72Pを、連通液路73とセカンダリ液路60Sとの間に連通弁72Sを設けるようにした。そして、連通弁72Pおよび連通弁72Sを閉弁制御してポンプ78を駆動することで、調圧系統の異常検出を行うようにした。これにより、連通弁72Pと連通弁72Sを閉弁した状態でポンプ78を駆動すれば、ポンプ78からプライマリ液路60Pおよびセカンダリ液路60Sのブレーキ液が供給されないため、走行中であってもホイルシリンダ圧を発生させることなく調圧系統の異常を検出することができる。
また、プライマリ側の連通弁72Pとポンプ78との間に、連通液路73に吐出されたブレーキ液をポンプ78の吸入側に還流する還流液路74を備えた。これにより、プライマリ側の連通弁72Pとセカンダリ側の連通弁72Sとをともに閉弁することで、ポンプ78の吐出側と吸入側との間で循環回路を形成することができ、走行中であってもホイルシリンダ5側にブレーキを送ることなくポンプ78を駆動することができる。
Therefore, in the first embodiment, the communication liquid path 73 that connects the primary liquid path 60P and the secondary liquid path 60S is provided, and the brake fluid is discharged from the pump 78 to the communication liquid path 73. Further, a communication valve 72P is provided between the communication liquid path 73 and the primary liquid path 60P, and a communication valve 72S is provided between the communication liquid path 73 and the secondary liquid path 60S. Then, the communication valve 72P and the communication valve 72S are controlled to be closed and the pump 78 is driven to detect the abnormality of the pressure regulating system. Thus, if the pump 78 is driven with the communication valve 72P and the communication valve 72S closed, the brake fluid in the primary liquid path 60P and the secondary liquid path 60S is not supplied from the pump 78. Abnormalities in the pressure regulation system can be detected without generating cylinder pressure.
Further, a reflux liquid path 74 for returning the brake fluid discharged to the communication liquid path 73 to the suction side of the pump 78 is provided between the primary side communication valve 72P and the pump 78. Thus, by closing both the primary side communication valve 72P and the secondary side communication valve 72S, a circulation circuit can be formed between the discharge side and the suction side of the pump 78, and the vehicle is running. However, the pump 78 can be driven without sending a brake to the wheel cylinder 5 side.

また、還流液路74に調圧弁75を備え、調圧系統の異常検出時に調圧弁75を制御するようにした。これにより、ポンプ78からプライマリ液路60P、セカンダリ液路60Sに供給するブレーキ液量の制御の異常を検出することができる。   Further, a pressure regulating valve 75 is provided in the reflux liquid path 74, and the pressure regulating valve 75 is controlled when an abnormality is detected in the pressure regulating system. Accordingly, it is possible to detect an abnormality in the control of the amount of brake fluid supplied from the pump 78 to the primary fluid passage 60P and the secondary fluid passage 60S.

また、プライマリ側の連通弁72Pとセカンダリ側の連通弁72Sのうち一方の連通弁を開弁方向に制御し、他方の連通弁を閉弁方向に制御し、ポンプ78を駆動して開弁方向に制御した系統への液路へブレーキ液を送るようにした。これにより、一方の系統の液路が失陥したとしても他方の系統の液路により制動力を確保することができる。
また、連通弁72P、連通弁72Sおよび調圧弁75を閉弁方向に制御し、ポンプ78を駆動して、連通液路液圧センサ76の検出値によって増圧異常検出を行うようにした。これにより、連通弁72Pと連通弁72Sを閉弁した状態でポンプ78を駆動すれば、ポンプ78からプライマリ液路60Pおよびセカンダリ液路60Sのブレーキ液が供給されないため、走行中であってもホイルシリンダ圧を発生させることなく増圧異常検出処理を行うことができる。
Also, one of the primary side communication valve 72P and the secondary side communication valve 72S is controlled in the valve opening direction, the other communication valve is controlled in the valve closing direction, and the pump 78 is driven to open the valve opening direction. The brake fluid is sent to the fluid path to the controlled system. Thereby, even if the liquid path of one system fails, the braking force can be secured by the liquid path of the other system.
Further, the communication valve 72P, the communication valve 72S, and the pressure regulating valve 75 are controlled in the valve closing direction, the pump 78 is driven, and the pressure increase abnormality is detected based on the detection value of the communication liquid path hydraulic pressure sensor 76. Thus, if the pump 78 is driven with the communication valve 72P and the communication valve 72S closed, the brake fluid in the primary liquid path 60P and the secondary liquid path 60S is not supplied from the pump 78. The pressure increase abnormality detection process can be performed without generating the cylinder pressure.

また、連通弁72P、連通弁72Sおよび調圧弁75を閉弁方向に制御し、ポンプ78を駆動した後に、調圧弁75を開弁方向に制御して増圧したブレーキ液を減圧して、連通液路液圧センサ76の検出値によって減圧異常検出処理を行うようにした。これにより、走行中であってもホイルシリンダ圧を変化させることなく減圧異常検出処理を行うことができる。
また、連通弁72P、連通弁72Sおよび調圧弁75を閉弁方向に制御し、ポンプ78を駆動し連通液路73内のブレーキ液を増圧し、ポンプ78を停止して、連通液路液圧センサ76の検出値によって保持異常検出処理を行うようにした。これにより、走行中であってもホイルシリンダ圧を変化させることなく保持異常検出処理を行うことができる。
また、前記循環回路を構成して各異常検出処理を行うことで、異常検出処理中に運転者によりブレーキペダルが踏み込まれても、マスタシリンダ3からブレーキ液圧コントロールユニット6内に送られるブレーキ液は、ホイルシリンダ5側に供給されることとなるため、ペダルフィールを悪化することなく制動力を確保することができる。
In addition, the communication valve 72P, the communication valve 72S, and the pressure regulating valve 75 are controlled in the valve closing direction, and after driving the pump 78, the pressure regulating valve 75 is controlled in the valve opening direction to reduce the increased brake fluid and communicate. The abnormal pressure reduction detection process is performed based on the detection value of the liquid passage hydraulic pressure sensor 76. As a result, the decompression abnormality detection process can be performed without changing the wheel cylinder pressure even during traveling.
Also, the communication valve 72P, the communication valve 72S and the pressure regulating valve 75 are controlled in the closing direction, the pump 78 is driven to increase the brake fluid in the communication fluid path 73, the pump 78 is stopped, and the communication fluid path fluid pressure is increased. The holding abnormality detection process is performed based on the detection value of the sensor 76. Thereby, even if it is drive | working, a holding | maintenance abnormality detection process can be performed, without changing wheel cylinder pressure.
Also, by configuring each circulation circuit and performing each abnormality detection process, the brake fluid sent from the master cylinder 3 into the brake fluid pressure control unit 6 even if the brake pedal is depressed by the driver during the abnormality detection process. Since it is supplied to the wheel cylinder 5 side, the braking force can be secured without deteriorating the pedal feel.

[効果]
実施例1のブレーキ装置1の効果について、以下に列記する。
(1)運転者のペダル操作によりブレーキ液圧を発生するマスタシリンダ3のプライマリ液圧室3c(第一室)により発生したマスタシリンダ圧により加圧可能な複数のホイルシリンダ5A,5Bを備えたプライマリ液路60Pと、マスタシリンダ3のセカンダリ液圧室3d(第二室)により発生したマスタシリンダ圧により加圧可能な複数のホイルシリンダ5C,5Dを備えたセカンダリ液路60Sと、プライマリ液路60Pとセカンダリ液路60Sとを接続する連通液路73と、連通液路73にブレーキ液を吐出するポンプ78と、連通液路73に設けられ、連通液路73からプライマリ液路60Pへのブレーキ液の流れを抑制する連通弁72P(第一連通弁)と、連通液路73に設けられ、連通液路73からセカンダリ液路60Sへのブレーキ液の流れを抑制する連通弁72S(第二連通弁)と、ポンプ78を駆動させ連通弁72Pおよび連通弁72Sを閉じ方向に制御し、少なくともポンプ78の状態をチェックする増圧異常検出部95、減圧異常検出部96、保持異常検出部97(ポンプ状態チェック部)を有するコントローラ9と、を備えた。
よって、ポンプ78からプライマリ液路60Pおよびセカンダリ液路60Sのブレーキ液が供給されないため、走行中であってもホイルシリンダ圧を発生させることなく調圧系統の異常を検出することができる。
[effect]
The effects of the brake device 1 of the first embodiment are listed below.
(1) Equipped with a plurality of wheel cylinders 5A and 5B that can be pressurized by the master cylinder pressure generated by the primary hydraulic chamber 3c (first chamber) of the master cylinder 3 that generates brake hydraulic pressure by the driver's pedal operation. Primary fluid path 60P, secondary fluid path 60S having a plurality of wheel cylinders 5C, 5D that can be pressurized by the master cylinder pressure generated by secondary fluid pressure chamber 3d (second chamber) of master cylinder 3, and primary fluid path A communication liquid path 73 that connects the 60P and the secondary liquid path 60S, a pump 78 that discharges brake fluid to the communication liquid path 73, and a brake from the communication liquid path 73 to the primary liquid path 60P. A communication valve 72P (second valve) that suppresses the flow of fluid and a communication valve 72S (second valve) that is provided in the communication fluid path 73 and suppresses the flow of brake fluid from the communication fluid path 73 to the secondary fluid path 60S. Communication valve) and pump 78 A controller 9 that controls the communication valve 72P and the communication valve 72S in the closing direction and includes at least a pressure increase abnormality detection unit 95, a pressure reduction abnormality detection unit 96, and a holding abnormality detection unit 97 (pump state check unit) that check at least the state of the pump 78 And provided.
Therefore, since the brake fluid in the primary fluid path 60P and the secondary fluid path 60S is not supplied from the pump 78, it is possible to detect an abnormality in the pressure regulating system without generating wheel cylinder pressure even during traveling.

(2)連通弁72Pと連通弁72Sのうち少なくとも一方の連通弁とポンプ78との間に設けられ、連通液路73に吐出されたブレーキ液をポンプ78の吸入側に還流する還流液路74を備えた。
よって、プライマリ側の連通弁72Pとセカンダリ側の連通弁72Sとをともに閉弁することで、ポンプ78の吐出側と吸入側との間で循環回路を形成することができ、走行中であってもホイルシリンダ5側にブレーキを送ることなくポンプ78を駆動することができる。
(3)還流液路74に調圧弁75を備え、コントローラ9は、増圧異常検出部95、減圧異常検出部96、保持異常検出部97による異常検出時に調圧弁75を制御するようにした。
よって、ポンプ78からプライマリ液路60P、セカンダリ液路60Sに供給するブレーキ液量の制御の異常を検出することができる。
(2) A reflux liquid path 74 provided between at least one of the communication valve 72P and the communication valve 72S and the pump 78, and for returning the brake fluid discharged to the communication liquid path 73 to the suction side of the pump 78. Equipped with.
Therefore, by closing both the primary side communication valve 72P and the secondary side communication valve 72S, a circulation circuit can be formed between the discharge side and the suction side of the pump 78, and the vehicle is running. The pump 78 can be driven without sending a brake to the wheel cylinder 5 side.
(3) A pressure regulating valve 75 is provided in the reflux liquid path 74, and the controller 9 controls the pressure regulating valve 75 when an abnormality is detected by the pressure increase abnormality detecting unit 95, the pressure reducing abnormality detecting unit 96, and the holding abnormality detecting unit 97.
Therefore, it is possible to detect an abnormality in the control of the amount of brake fluid supplied from the pump 78 to the primary fluid passage 60P and the secondary fluid passage 60S.

(4)コントローラ9に、連通弁72Pと連通弁72Sのうち一方の連通弁を開弁方向に制御し、他方の連通弁を閉弁方向に制御し、ポンプ78を駆動して開弁方向に制御した系統への液路へブレーキ液を送る片系統液圧制御部92を備えた。
よって、一方の系統の液路が失陥したとしても他方の系統の液路により制動力を確保することができる。
(5)連通液路73の液圧を検出する連通液路液圧センサ76を備え、コントローラ9に、連通弁72P、連通弁72Sおよび調圧弁75を閉弁方向に制御し、ポンプ78を駆動して、連通液路液圧センサ76の検出値によって増圧異常検出を行う増圧異常検出部95を備えた。
よって、走行中であってもホイルシリンダ圧を発生させることなく増圧異常検出処理を行うことができる。
(4) The controller 9 controls one of the communication valve 72P and the communication valve 72S in the valve opening direction, controls the other communication valve in the valve closing direction, and drives the pump 78 in the valve opening direction. A single-system hydraulic pressure control unit 92 that sends brake fluid to the fluid path to the controlled system is provided.
Therefore, even if the fluid path of one system fails, the braking force can be secured by the fluid path of the other system.
(5) A communication fluid path fluid pressure sensor 76 for detecting the fluid pressure in the communication fluid path 73 is provided. The controller 9 controls the communication valve 72P, the communication valve 72S and the pressure regulating valve 75 in the valve closing direction, and drives the pump 78. In addition, a pressure increase abnormality detection unit 95 that performs pressure increase abnormality detection based on the detection value of the communication liquid path hydraulic pressure sensor 76 is provided.
Therefore, even when the vehicle is running, the pressure increase abnormality detection process can be performed without generating the wheel cylinder pressure.

(6)連通液路73の液圧を検出する連通液路液圧センサ76を備え、コントローラ9に、連通弁72P、連通弁72Sおよび調圧弁75を閉弁方向に制御し、ポンプ78を駆動した後に、調圧弁75を開弁方向に制御して増圧したブレーキ液を減圧して、連通液路液圧センサ76の検出値によって減圧異常検出を行う減圧異常検出部96を備えた。
よって、走行中であってもホイルシリンダ圧を変化させることなく減圧異常検出処理を行うことができる。
(7)連通液路73の液圧を検出する連通液路液圧センサ76を備え、コントローラ9に、連通弁72P、連通弁72Sおよび調圧弁75を閉弁方向に制御し、ポンプ78を駆動し連通液路73内のブレーキ液を増圧しポンプ78を停止して、連通液路液圧センサ76の検出値によって保持異常検出を行う保持異常検出部97を備えた。
よって、走行中であってもホイルシリンダ圧を変化させることなく保持異常検出処理を行うことができる。
(6) A communication fluid path fluid pressure sensor 76 for detecting the fluid pressure in the communication fluid path 73 is provided. The controller 9 controls the communication valve 72P, the communication valve 72S and the pressure regulating valve 75 in the valve closing direction, and drives the pump 78. After that, the pressure reducing valve 75 is controlled to open the valve opening direction to reduce the pressure of the brake fluid, and the pressure reducing abnormality detecting unit 96 that detects the pressure reducing abnormality by the detected value of the communication fluid path hydraulic pressure sensor 76 is provided.
Therefore, it is possible to perform the decompression abnormality detection process without changing the wheel cylinder pressure even during traveling.
(7) Equipped with a communication fluid pressure sensor 76 that detects the fluid pressure in the communication fluid path 73. The controller 9 controls the communication valve 72P, the communication valve 72S, and the pressure regulating valve 75 in the valve closing direction, and drives the pump 78. A holding abnormality detecting unit 97 that increases the pressure of the brake fluid in the communication fluid path 73 and stops the pump 78 to detect a retention abnormality based on the detection value of the communication fluid path fluid pressure sensor 76 is provided.
Accordingly, the holding abnormality detection process can be performed without changing the wheel cylinder pressure even during traveling.

〔他の実施例〕
以上、本願発明を実施例1に基づいて説明してきたが、各発明の具体的な構成は各実施例に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。
例えば、実施例1では運転車のブレーキペダル2の操作量をストロークセンサ2bにより検出していたが、マスタシリンダ圧センサ69により検出するようにしても良いし、ブレーキペダル2の踏力を検出する踏力センサを用いるようにしても良い。
また、実施例1では倍力装置としてポンプ78のみを用いているが、負圧ブースタ、電動ブースタ、油圧ブースタ等の倍力装置も併用しても良く、併用する倍力装置の全負荷点以下のホイルシリンダ圧の領域では併用する倍力装置を用いて倍力作用を発生させるようにし、全負荷点より大きいホイルシリンダ圧の領域ではポンプ78を用いて倍力作用を発生させるようにしても良い。
また、実施例1ではマスタシリンダ3、ブレーキ液圧コントロールユニット6、ストロークシミュレータ80を分離しているが、いずれか2つまたは3つ全てを組み合わせて一体のユニットとしても良い。
[Other Examples]
As described above, the present invention has been described based on the first embodiment. However, the specific configuration of each invention is not limited to each embodiment, and even if there is a design change or the like without departing from the gist of the invention. Are included in the present invention.
For example, in the first embodiment, the operation amount of the brake pedal 2 of the driving vehicle is detected by the stroke sensor 2b, but may be detected by the master cylinder pressure sensor 69, or the pedaling force for detecting the pedaling force of the brake pedal 2 A sensor may be used.
In the first embodiment, only the pump 78 is used as the booster. However, a booster such as a negative pressure booster, an electric booster, or a hydraulic booster may be used in combination, and below the full load point of the booster used together. In the wheel cylinder pressure range, a booster is used to generate a boosting action. In a wheel cylinder pressure range higher than the full load point, a pump 78 is used to generate a boosting action. good.
In the first embodiment, the master cylinder 3, the brake fluid pressure control unit 6, and the stroke simulator 80 are separated, but any two or all three may be combined to form an integrated unit.

〔請求項以外の技術的思想〕
更に、上記実施例から把握しうる請求項以外の技術的思想について、以下にその効果と共に記載する。
(イ)運転者のペダル操作によりブレーキ液圧を発生するマスタシリンダの第一室により発生したマスタシリンダ圧により加圧可能な複数のホイルシリンダを備えたプライマリ系統の液路と、
前記マスタシリンダの第二室により発生したマスタシリンダ圧により加圧可能な複数のホイルシリンダを備えたセカンダリ系統の液路と、
前記プライマリ系統の液路と前記セカンダリ系統の液路とを接続する連通液路と、
前記連通液路にブレーキ液を吐出するポンプと、
前記連通液路と前記プライマリ系統の液路および前記セカンダリ系統の液路とを分離し、前記ポンプを駆動し、前記連通液路内のブレーキ液を流動させて前記ポンプの状態をチェックするポンプ状態チェック部を有するコントローラと、
を備えたことを特徴とするブレーキ装置。
よって、ポンプからプライマリ系統の液路およびセカンダリ系統の液路のブレーキ液が供給されないため、走行中であってもホイルシリンダ圧を発生させることなく調圧系統の異常を検出することができる。
[Technical thought other than claims]
Further, technical ideas other than the claims that can be grasped from the above embodiments will be described below together with the effects thereof.
(A) a fluid path of a primary system including a plurality of wheel cylinders that can be pressurized by a master cylinder pressure generated by a first chamber of a master cylinder that generates brake fluid pressure by a driver's pedal operation;
A secondary system fluid path comprising a plurality of wheel cylinders that can be pressurized by a master cylinder pressure generated by the second chamber of the master cylinder;
A communication liquid path connecting the liquid path of the primary system and the liquid path of the secondary system;
A pump that discharges brake fluid to the communication fluid path;
A pump state in which the communication fluid path is separated from the primary system fluid path and the secondary system fluid path, the pump is driven, and the brake fluid in the communication fluid path is caused to flow to check the state of the pump. A controller having a check unit;
A brake device comprising:
Therefore, since the brake fluid of the fluid path of the primary system and the fluid path of the secondary system is not supplied from the pump, it is possible to detect an abnormality in the pressure regulation system without generating wheel cylinder pressure even during traveling.

(ロ)上記(イ)に記載のブレーキ装置において、
前記連通液路に設けられ、前記連通液路から前記プライマリ系統の液路へのブレーキ液の流れを抑制する第一連通弁と、
前記連通液路に設けられ、前記連通液路から前記セカンダリ系統の液路へのブレーキ液の流れを抑制する第二連通弁と、
を備え、
前記第一連通弁および前記第二連通弁によって、前記連通液路と前記プライマリ系統の液路および前記セカンダリ系統の液路とを分離することを特徴とするブレーキ装置。
よって、連通弁および連通弁を閉弁することにより、ポンプからプライマリ系統の液路およびセカンダリ系統の液路のブレーキ液が供給されないため、走行中であってもホイルシリンダ圧を発生させることなく調圧系統の異常を検出することができる。
(ハ)上記(ロ)に記載のブレーキ装置において、
前記コントローラに、前記第一連通弁と前記第二連通弁のうち一方の連通弁を開弁方向に制御し、他方の連通弁を閉弁方向に制御し、前記ポンプを駆動して前記開弁方向に制御した系統への液路へブレーキ液を送る片系統液圧制御部を備えたことを特徴とするブレーキ装置。
よって、一方の系統の液路が失陥したとしても他方の系統の液路により制動力を確保することができる。
(ニ)上記(ハ)に記載のブレーキ装置において、
前記第一連通弁と前記第二連通弁のうち少なくとも一方の連通弁と前記ポンプとの間に設けられ、前記連通液路に吐出されたブレーキ液を前記ポンプの吸入側に還流する還流路と、
前記還流路に設けられた調圧弁と、
前記ポンプが吐出したブレーキ液の液圧を検出する液圧検出部と、
前記第一連通弁、前記第二連通弁、前記調圧弁および前記ポンプを制御するコントローラと、
を備え、
前記コントローラに、前記第一連通弁、前記第二連通弁および前記調圧弁を閉弁方向に制御し、前記ポンプを駆動して、前記液圧検出部の検出値によって増圧状態を検出する増圧異常検出部を備えたことを特徴とするブレーキ装置。
よって、走行中であってもホイルシリンダ圧を発生させることなく増圧異常検出処理を行うことができる。
(B) In the brake device described in (a) above,
A first series valve that is provided in the communication liquid path and suppresses a flow of brake fluid from the communication liquid path to the liquid path of the primary system;
A second communication valve that is provided in the communication liquid path and suppresses a flow of brake fluid from the communication liquid path to the liquid path of the secondary system;
With
The brake device, wherein the communication fluid path, the primary system fluid path, and the secondary system fluid path are separated by the first series valve and the second communication valve.
Therefore, by closing the communication valve and the communication valve, the brake fluid in the primary system fluid path and the secondary system fluid path is not supplied from the pump, so that the wheel cylinder pressure is not generated even during traveling. An abnormality in the pressure system can be detected.
(C) In the brake device described in (b) above,
The controller controls one communication valve of the first series valve and the second communication valve in the valve opening direction, controls the other communication valve in the valve closing direction, and drives the pump to open the valve. A brake system comprising a one-system hydraulic pressure control unit that sends brake fluid to a fluid path to a system controlled in a valve direction.
Therefore, even if the fluid path of one system fails, the braking force can be secured by the fluid path of the other system.
(D) In the brake device described in (c) above,
A reflux path that is provided between at least one of the first series valve and the second communication valve and the pump, and returns the brake fluid discharged to the communication liquid path to the suction side of the pump. When,
A pressure regulating valve provided in the reflux path;
A hydraulic pressure detection unit for detecting the hydraulic pressure of the brake fluid discharged by the pump;
A controller for controlling the first series valve, the second communication valve, the pressure regulating valve and the pump;
With
The controller controls the first series valve, the second communication valve, and the pressure regulating valve in a valve closing direction, drives the pump, and detects a pressure increase state based on a detection value of the fluid pressure detection unit. A brake device comprising a pressure increase abnormality detection unit.
Therefore, even when the vehicle is running, the pressure increase abnormality detection process can be performed without generating the wheel cylinder pressure.

(ホ)上記(ニ)に記載のブレーキ装置において、
前記コントローラに、前記第一連通弁、前記第二連通弁および前記調圧弁を閉弁方向に制御し、前記ポンプを駆動し前記連通液路内のブレーキ液を増圧し前記ポンプを停止して、前記液圧検出部の検出値によって保持状態を検出する保持異常検出部を備えたことを特徴とするブレーキ装置。
よって、走行中であってもホイルシリンダ圧を変化させることなく保持異常検出処理を行うことができる。
(ヘ)上記(ホ)に記載のブレーキ装置において、
前記コントローラに、前記第一連通弁、前記第二連通弁および前記調圧弁を閉弁方向に制御し、前記ポンプを駆動した後に、前記調圧弁を開弁方向に制御し増圧したブレーキ液を減圧して、前記液圧検出部の検出値によって減圧状態を検出する減圧異常検出部を備えたことを特徴とするブレーキ装置。
よって、走行中であってもホイルシリンダ圧を変化させることなく減圧異常検出処理を行うことができる。
(E) In the brake device described in (d) above,
The controller controls the first series valve, the second communication valve, and the pressure regulating valve in a valve closing direction, drives the pump, increases the brake fluid in the communication liquid path, and stops the pump. A brake apparatus comprising: a holding abnormality detecting unit that detects a holding state based on a detection value of the hydraulic pressure detecting unit.
Accordingly, the holding abnormality detection process can be performed without changing the wheel cylinder pressure even during traveling.
(F) In the brake device described in (e) above,
The controller controls the first series valve, the second communication valve, and the pressure regulating valve in the valve closing direction, and after driving the pump, the brake fluid increased in pressure by controlling the pressure regulating valve in the valve opening direction. A brake device comprising a reduced pressure abnormality detection unit that detects a reduced pressure state based on a detection value of the hydraulic pressure detection unit.
Therefore, it is possible to perform the decompression abnormality detection process without changing the wheel cylinder pressure even during traveling.

(ト)運転者のペダル操作によりブレーキ液圧を発生するマスタシリンダの第一室により発生したマスタシリンダ圧により加圧可能な複数のホイルシリンダを備えたプライマリ系統の液路と、
前記マスタシリンダの第二室により発生したマスタシリンダ圧により加圧可能な複数のホイルシリンダを備えたセカンダリ系統の液路と、
前記プライマリ系統の液路と前記セカンダリ系統の液路とを接続する連通液路と、
前記連通液路にブレーキ液を吐出するポンプと、
前記連通液路に設けられ、前記連通液路から前記プライマリ系統の液路へのブレーキ液の流れを抑制する第一連通弁と、
前記連通液路に設けられ、前記連通液路から前記セカンダリ系統の液路へのブレーキ液の流れを抑制する第二連通弁と、
前記第一連通弁と前記第二連通弁のうち少なくとも一方の連通弁と前記ポンプの間に設けられ、前記連通液路に吐出されたブレーキ液を前記ポンプの吸入側に還流する還流路と、
前記第一連通弁および前記第二連通弁を閉弁方向に制御することで、前記連通液路および前記還流路と前記ポンプとの間に閉回路を形成し、前記ポンプを駆動することで前記閉回路内のブレーキ液を流動させて前記ポンプの状態をチェックするポンプ状態チェック部を有するコントローラと、
を備えたことを特徴とするブレーキ装置。
よって、ポンプからプライマリ系統の液路およびセカンダリ系統の液路のブレーキ液が供給されないため、走行中であってもホイルシリンダ圧を発生させることなく調圧系統の異常を検出することができる。
(G) a primary system fluid path having a plurality of wheel cylinders that can be pressurized by the master cylinder pressure generated by the first chamber of the master cylinder that generates brake fluid pressure by the driver's pedal operation;
A secondary system fluid path comprising a plurality of wheel cylinders that can be pressurized by a master cylinder pressure generated by the second chamber of the master cylinder;
A communication liquid path connecting the liquid path of the primary system and the liquid path of the secondary system;
A pump that discharges brake fluid to the communication fluid path;
A first series valve that is provided in the communication liquid path and suppresses a flow of brake fluid from the communication liquid path to the liquid path of the primary system;
A second communication valve that is provided in the communication liquid path and suppresses a flow of brake fluid from the communication liquid path to the liquid path of the secondary system;
A reflux path provided between at least one of the first series valve and the second communication valve and the pump, and for returning the brake fluid discharged to the communication liquid path to the suction side of the pump; ,
By controlling the first series valve and the second communication valve in the closing direction, a closed circuit is formed between the communication liquid path and the reflux path and the pump, and the pump is driven. A controller having a pump state check unit that checks the state of the pump by flowing the brake fluid in the closed circuit;
A brake device comprising:
Therefore, since the brake fluid of the fluid path of the primary system and the fluid path of the secondary system is not supplied from the pump, it is possible to detect an abnormality in the pressure regulation system without generating wheel cylinder pressure even during traveling.

(チ)上記(ト)に記載のブレーキ装置において、
前記還流路に設けられた調圧弁を備え、
前記コントローラは、前記ポンプ状態チェック部によるチェック時に前記調圧弁を制御することを特徴とするブレーキ装置。
よって、ポンプからプライマリ系統の液路、セカンダリ系統の液路に供給するブレーキ液量の制御の異常を検出することができる。
(リ)上記(チ)に記載のブレーキ装置において、
前記コントローラに、前記第一連通弁と前記第二連通弁のうち一方の連通弁を開弁方向に制御し、他方の連通弁を閉弁方向に制御し、前記ポンプを駆動して前記開弁方向に制御した系統への液路へブレーキ液を送る片系統液圧制御部を備えたことを特徴とするブレーキ装置。
よって、一方の系統の液路が失陥したとしても他方の系統の液路により制動力を確保することができる。
(ヌ)上記(チ)に記載のブレーキ装置において、
前記第一連通弁と前記第二連通弁のうち少なくとも一方の連通弁と前記ポンプの間に設けられ、前記連通液路に吐出されたブレーキ液を前記ポンプの吸入側に還流する還流路と、
前記還流路に設けられた調圧弁と、
前記ポンプが吐出したブレーキ液の液圧を検出する液圧検出部と、
前記第一連通弁、前記第二連通弁、前記調圧弁および前記ポンプを制御するコントローラと、
を備え、
前記コントローラに、前記第一連通弁、前記第二連通弁および前記調圧弁を閉弁方向に制御し、前記ポンプを駆動して、前記液圧検出部の検出値によって増圧状態を検出する増圧異常検出部を備えたことを特徴とするブレーキ装置。
よって、ポンプからプライマリ系統の液路およびセカンダリ系統の液路のブレーキ液が供給されないため、走行中であってもホイルシリンダ圧を発生させることなく調圧系統の異常を検出することができる。
(ル)上記(チ)に記載のブレーキ装置において、
前記コントローラに、前記第一連通弁、前記第二連通弁および前記調圧弁を閉弁方向に制御し、前記ポンプを駆動し前記連通液路内のブレーキ液を増圧し前記ポンプを停止して、前記液圧検出部の検出値によって保持状態を検出する保持異常検出部を備えたことを特徴とするブレーキ装置。
よって、走行中であってもホイルシリンダ圧を変化させることなく保持異常検出処理を行うことができる。
(ヲ)上記(チ)に記載のブレーキ装置において、
前記コントローラに、前記第一連通弁、前記第二連通弁および前記調圧弁を閉弁方向に制御し、前記ポンプを駆動した後に、前記調圧弁を開弁方向に制御し増圧したブレーキ液を減圧して、前記液圧検出部の検出値によって減圧状態を検出する減圧異常検出部を備えたことを特徴とするブレーキ装置。
よって、走行中であってもホイルシリンダ圧を変化させることなく減圧異常検出処理を行うことができる。
(H) In the brake device described in (g) above,
A pressure regulating valve provided in the reflux path;
The said controller controls the said pressure regulation valve at the time of the check by the said pump state check part, The brake device characterized by the above-mentioned.
Therefore, it is possible to detect an abnormality in the control of the amount of brake fluid supplied from the pump to the liquid path of the primary system and the liquid path of the secondary system.
(L) In the brake device described in (H) above,
The controller controls one communication valve of the first series valve and the second communication valve in the valve opening direction, controls the other communication valve in the valve closing direction, and drives the pump to open the valve. A brake system comprising a one-system hydraulic pressure control unit that sends brake fluid to a fluid path to a system controlled in a valve direction.
Therefore, even if the fluid path of one system fails, the braking force can be secured by the fluid path of the other system.
(Nu) In the brake device described in (h) above,
A reflux path provided between at least one of the first series valve and the second communication valve and the pump, and for returning the brake fluid discharged to the communication liquid path to the suction side of the pump; ,
A pressure regulating valve provided in the reflux path;
A hydraulic pressure detection unit for detecting the hydraulic pressure of the brake fluid discharged by the pump;
A controller for controlling the first series valve, the second communication valve, the pressure regulating valve and the pump;
With
The controller controls the first series valve, the second communication valve, and the pressure regulating valve in a valve closing direction, drives the pump, and detects a pressure increase state based on a detection value of the fluid pressure detection unit. A brake device comprising a pressure increase abnormality detection unit.
Therefore, since the brake fluid of the fluid path of the primary system and the fluid path of the secondary system is not supplied from the pump, it is possible to detect an abnormality in the pressure regulation system without generating wheel cylinder pressure even during traveling.
(L) In the brake device described in (H) above,
The controller controls the first series valve, the second communication valve, and the pressure regulating valve in a valve closing direction, drives the pump, increases the brake fluid in the communication liquid path, and stops the pump. A brake apparatus comprising: a holding abnormality detecting unit that detects a holding state based on a detection value of the hydraulic pressure detecting unit.
Accordingly, the holding abnormality detection process can be performed without changing the wheel cylinder pressure even during traveling.
(Wo) In the brake device described in (H) above,
The controller controls the first series valve, the second communication valve, and the pressure regulating valve in the valve closing direction, and after driving the pump, the brake fluid increased in pressure by controlling the pressure regulating valve in the valve opening direction. A brake device comprising a reduced pressure abnormality detection unit that detects a reduced pressure state based on a detection value of the hydraulic pressure detection unit.
Therefore, it is possible to perform the decompression abnormality detection process without changing the wheel cylinder pressure even during traveling.

3 マスタシリンダ
3c プライマリ液圧室(第一室)
3d セカンダリ液圧室(第二室)
5A ホイルシリンダ
5B ホイルシリンダ
5C ホイルシリンダ
5D ホイルシリンダ
9 コントローラ
60P プライマリ液路
60S セカンダリ液路
72P 連通弁(第一連通弁)
72S 連通弁(第二連通弁)
73 連通液路
74 還流液路
75 調圧弁
76 連通液路液圧センサ(液圧検出部)
78 ポンプ
92 片系統液圧制御部
95 増圧異常検出部(ポンプ状態チェック部)
96 減圧異常検出部(ポンプ状態チェック部)
97 保持異常検出部(ポンプ状態チェック部)
3 Master cylinder
3c Primary hydraulic chamber (first chamber)
3d Secondary hydraulic chamber (second chamber)
5A wheel cylinder
5B wheel cylinder
5C wheel cylinder
5D wheel cylinder
9 Controller
60P primary fluid path
60S secondary fluid path
72P communication valve (first series valve)
72S communication valve (second communication valve)
73 Communication channel
74 Reflux channel
75 Pressure regulator
76 Communication fluid pressure sensor (hydraulic pressure detector)
78 Pump
92 Single system hydraulic control
95 Pressure increase abnormality detection part (pump status check part)
96 Decompression pressure detection unit (pump status check unit)
97 Holding error detection unit (pump status check unit)

Claims (3)

マスタシリンダの第一室で発生したマスタシリンダ圧により加圧可能な複数のホイルシリンダを備えたプライマリ系統の液路と、
前記マスタシリンダの第二室で発生したマスタシリンダ圧により加圧可能な複数のホイルシリンダを備えたセカンダリ系統の液路と、
前記プライマリ系統の液路と前記セカンダリ系統の液路とを接続する連通液路と、
前記連通液路にブレーキ液を吐出するポンプと、
前記連通液路に設けられ、前記連通液路から前記プライマリ系統の液路へのブレーキ液の流れを抑制する第一連通弁と、
前記連通液路に設けられ、前記連通液路から前記セカンダリ系統の液路へのブレーキ液の流れを抑制する第二連通弁と、
前記第一連通弁と前記第二連通弁のうち少なくとも一方の連通弁と前記ポンプとの間に設けられ、前記連通液路に吐出されたブレーキ液を前記ポンプの吸入側に還流する還流路と、
前記還流路に設けられた電磁弁と、
を備えたことを特徴とするブレーキ装置。
A primary system fluid path having a plurality of wheel cylinders that can be pressurized by the master cylinder pressure generated in the first chamber of the master cylinder;
A secondary system fluid path comprising a plurality of wheel cylinders that can be pressurized by a master cylinder pressure generated in the second chamber of the master cylinder;
A communication liquid path connecting the liquid path of the primary system and the liquid path of the secondary system;
A pump that discharges brake fluid to the communication fluid path;
A first series valve that is provided in the communication liquid path and suppresses a flow of brake fluid from the communication liquid path to the liquid path of the primary system;
A second communication valve that is provided in the communication liquid path and suppresses a flow of brake fluid from the communication liquid path to the liquid path of the secondary system;
A reflux path that is provided between at least one of the first series valve and the second communication valve and the pump, and returns the brake fluid discharged to the communication liquid path to the suction side of the pump. When,
A solenoid valve provided in the reflux path;
A brake device comprising:
マスタシリンダの第一室で発生したマスタシリンダ圧により加圧可能な複数のホイルシリンダを備えたプライマリ系統の液路と、
前記マスタシリンダの第二室で発生したマスタシリンダ圧により加圧可能な複数のホイルシリンダを備えたセカンダリ系統の液路と、
前記プライマリ系統の液路と前記セカンダリ系統の液路の夫々に設けられた増圧弁と、
前記プライマリ系統の液路であって前記マスタシリンダと前記増圧弁との間と、前記セカンダリ系統の液路であって前記マスタシリンダと前記増圧弁との間とを接続する連通液路と、
前記連通液路に設けられ、前記連通液路から前記プライマリ系統の液路へのブレーキ液の流れを遮断可能な第一連通弁と、
前記連通液路に設けられ、前記連通液路から前記セカンダリ系統の液路へのブレーキ液の流れを遮断可能な第二連通弁と、
前記連通液路の前記第一連通弁と前記第二連通弁との間にブレーキ液を吐出するポンプと、
を備えたことを特徴とするブレーキ装置。
A primary system fluid path having a plurality of wheel cylinders that can be pressurized by the master cylinder pressure generated in the first chamber of the master cylinder;
A secondary system fluid path comprising a plurality of wheel cylinders that can be pressurized by a master cylinder pressure generated in the second chamber of the master cylinder;
A pressure increasing valve provided in each of the liquid path of the primary system and the liquid path of the secondary system;
A fluid path in the primary system between the master cylinder and the booster valve; a fluid path in the secondary system that connects the master cylinder and the booster valve ;
A first series valve that is provided in the communication liquid path and can block a flow of brake fluid from the communication liquid path to the liquid path of the primary system;
A second communication valve provided in the communication liquid path, capable of blocking a flow of brake fluid from the communication liquid path to the liquid path of the secondary system;
A pump that discharges brake fluid between the first communication valve and the second communication valve of the communication fluid path;
A brake device comprising:
請求項1または2記載のブレーキ装置において、
前記連通液路には、前記連通液路の液圧を検出する連通路液圧センサを備えたことを特徴とするブレーキ装置。
The brake device according to claim 1 or 2,
The brake device according to claim 1, wherein the communication fluid path includes a communication path fluid pressure sensor that detects a fluid pressure of the communication fluid path.
JP2015165939A 2015-08-25 2015-08-25 Brake device Active JP6007296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015165939A JP6007296B2 (en) 2015-08-25 2015-08-25 Brake device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015165939A JP6007296B2 (en) 2015-08-25 2015-08-25 Brake device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012128585A Division JP5800762B2 (en) 2012-06-06 2012-06-06 Brake device

Publications (2)

Publication Number Publication Date
JP2015212148A JP2015212148A (en) 2015-11-26
JP6007296B2 true JP6007296B2 (en) 2016-10-12

Family

ID=54696688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015165939A Active JP6007296B2 (en) 2015-08-25 2015-08-25 Brake device

Country Status (1)

Country Link
JP (1) JP6007296B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017203A1 (en) * 2017-07-21 2019-01-24 日立オートモティブシステムズ株式会社 Braking device and brake control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616461U (en) * 1984-06-19 1986-01-16 三菱自動車工業株式会社 Traction control device for vehicles
DE4340467C2 (en) * 1993-11-27 2002-03-14 Bosch Gmbh Robert Hydraulic vehicle brake system working with external power
JP2000185634A (en) * 1998-12-22 2000-07-04 Nissan Motor Co Ltd Brake control device
JP4617991B2 (en) * 2005-04-28 2011-01-26 日産自動車株式会社 Brake control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017203A1 (en) * 2017-07-21 2019-01-24 日立オートモティブシステムズ株式会社 Braking device and brake control method

Also Published As

Publication number Publication date
JP2015212148A (en) 2015-11-26

Similar Documents

Publication Publication Date Title
JP5800762B2 (en) Brake device
JP3851043B2 (en) Brake hydraulic pressure control device
US8733849B2 (en) Brake control device, and brake control method
JP4452300B2 (en) Vehicle behavior control device
KR101301906B1 (en) Hydraulic brake device and method for controlling the same
JP2016097892A (en) Braking system of vehicle
JP6007296B2 (en) Brake device
JP2008222169A (en) Brake control device and brake control method
JP6201179B2 (en) Brake control device
KR101220406B1 (en) Vehicles hydraulic control apparatus and method of controlling the same
JP4612454B2 (en) Brake control device
JP5253364B2 (en) Brake system for vehicles
JP2019085028A (en) Brake control device, brake control method, and brake system
JP6082949B2 (en) Vehicle braking device
JP5411759B2 (en) Braking control device
JP5977691B2 (en) Brake control device
JP5200753B2 (en) Vehicle braking device and vehicle braking device abnormality detection method
JP4806228B2 (en) Brake hydraulic pressure control device for vehicles
CN104428181B (en) Brake unit
KR102148320B1 (en) Active hydraulic booster system in vehice and control method thereof
JP2005231395A (en) Brake hydraulic pressure control device
JP3938830B2 (en) Brake control device
JP5251675B2 (en) Brake control device
JP2009143265A (en) Brake control device
KR101901445B1 (en) Vehicles hydraulic control apparatus and method of controlling the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6007296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250