JP6004346B2 - 電気抵抗溶接用電極およびその冷却方法 - Google Patents

電気抵抗溶接用電極およびその冷却方法 Download PDF

Info

Publication number
JP6004346B2
JP6004346B2 JP2013223672A JP2013223672A JP6004346B2 JP 6004346 B2 JP6004346 B2 JP 6004346B2 JP 2013223672 A JP2013223672 A JP 2013223672A JP 2013223672 A JP2013223672 A JP 2013223672A JP 6004346 B2 JP6004346 B2 JP 6004346B2
Authority
JP
Japan
Prior art keywords
cooling water
guide pin
cooling
electrode
water passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013223672A
Other languages
English (en)
Other versions
JP2015074030A (ja
Inventor
青山 好高
好高 青山
青山 省司
省司 青山
Original Assignee
青山 省司
省司 青山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青山 省司, 省司 青山 filed Critical 青山 省司
Priority to JP2013223672A priority Critical patent/JP6004346B2/ja
Publication of JP2015074030A publication Critical patent/JP2015074030A/ja
Application granted granted Critical
Publication of JP6004346B2 publication Critical patent/JP6004346B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Description

この発明は、電極の中心部に配置されたガイドピンの先端が電極の端面から突出している形式の電極において、溶接熱で加圧された電極各部を効果的に冷却する電気抵抗溶接用電極およびその冷却方法に関している。
特許第3838565号公報および特許第4023702号公報には、水冷と空冷によって電極各部を冷却することが記載されている。また、特許第4984295号公報には、ガイドピンを包囲する環状の冷却水通路が記載されている。
特許第3838565号公報 特許第4023702号公報 特許第4984295号公報
上記特許文献1および特許文献2に記載されている冷却構造は、空冷用の空気通路と水冷用の冷却水通路が細長い形態で電極の軸線方向に配置されている。このため、溶接熱によって加熱された電極各部は、細長い領域が局部的に冷却されることとなり、均一で効果的な冷却状態ではない。また、特許文献3に記載されている水冷式の冷却構造は、空気冷却構造との効果的な複合構造ではないので、冷却性能の点で不十分である。
本発明は、上記の問題点を解決するために提供されたもので、電極の中心部に配置されたガイドピンやその外側の外筒部材に対する冷却を、空冷と水冷によって効果的に行うことができる電気抵抗溶接用電極およびその冷却方法の提供を目的とする。
請求項1記載の発明は、電気抵抗溶接用電極についての発明であり、電極の中心部に配置されたガイドピンの先端が電極の端面から突出している形式の電極において、ガイドピンを包囲する状態で環状の冷却水通路が電極の外筒部材に形成され、冷却水通路の内側に形成された薄肉部とガイドピンの間にガイドピンを包囲する状態で環状の通気空隙が形成され、前記冷却水通路は外筒部材に挿入された環状部材に溝状の状態で形成され、前記薄肉部は環状部材の内側に円筒状の状態で形成され、空気供給源から通気空隙へ供給される冷却空気の流入孔が外筒部材に開けてあり、冷却水通 路へ冷却水を流入させ冷却水通路に開口している入口孔と冷却水通路から冷却水を流出させる出口孔が外筒部材に設けられ、冷却水通路と通気空隙において水冷と空冷が複合した状態で遂行されることにより、冷却水通路の冷却水は主に外筒部材を冷却し、通気空隙を通過する冷却空気は主にガイドピンを冷却するように構成したことを特徴としている。
ガイドピンを包囲する状態で環状の冷却水通路が電極の外筒部材に形成され、冷却水通路の内側に形成された薄肉部とガイドピンの間にガイドピンを包囲する状態で環状の通気空隙が形成されている。したがって、溶着時に発生した溶接熱の内、外筒部材側に伝わった熱は、主に冷却水通路の冷却水で奪われる。つまり、冷却水通路における冷却作用は、主に溶着部から外筒部材側を流れる熱を奪う役割を果たしている。一方、溶着時に発生した溶接熱の内、ガイドピンに伝わった熱は、主に通気空隙を通過する冷却空気で奪われる。つまり、通気空隙を通過する冷却空気は、主に溶着部からガイドピン側を流れる熱を奪う役割を果たしている。
冷却空気の温度が冷却水の温度よりも低いときには、薄肉部を介して冷却水の温度低下にも貢献しており、間接的に外筒部材が冷却されている。一方、冷却水の温度が冷却空気の温度よりも低いときには、薄肉部を介して冷却空気の温度低下にも貢献しており、間接的にガイドピンが冷却されている。
このような熱の授受にともない、冷却空気によって冷却水が冷却されているのか、あるいは冷却水によって冷却空気が冷却されているのかは、冷却水と冷却空気のいずれの温度が低いかによって熱流の方向は変化する。例えば、生産量が増大して、連続的溶接により外筒部材側が著しく高温になっていると、冷却水の温度が高くなり冷却水が冷却空気によって冷却される。また、長時間溶接が行われないで溶接が開始されたときの、立ち上がり当初の溶接回数が少数のときには、外筒部材の方がガイドピンよりも熱容量が大きいので、外筒部材側よりもガイドピン側の方が早く高温となる。このようなときには、冷却空気が冷却水で冷やされる関係となる。
上述のような冷却過程により、冷却水通路の冷却水は主に外筒部材を冷却し、通気空隙を通過する冷却空気は主にガイドピンを冷却する。同時に、冷却空気の温度が冷却水の温度よりも低いときには、冷却水が冷却空気で冷却されて外筒部材が間接的に冷却される。一方、冷却空気の温度が冷却水の温度よりも高いときには、冷却空気が冷却水によって冷却されてガイドピンが間接的に冷却される。上記のような相互的な冷却作用は、薄肉部の厚さが薄くなっているので、熱の透過が良好になされることが効いている。つまり、水冷域と空冷域との間に薄肉部が介在しているので、上述のような良好な冷却がなされる。
請求項2記載の発明は、前記ガイドピンの先端とガイドピンの揺動を少なくするための軸受筒の間に、前記冷却水通路と前記薄肉部と前記通気空隙が配置されている請求項1記載の電気抵抗溶接用電極である。
ガイドピンが揺動すると、ガイドピンの上端部が近隣部材に接触する虞がある。そこで、上記のように軸受筒が採用される。同時に、冷却水通路は、熱発生源である溶着部にできるだけ近づけて配置してある。そして、軸受筒は溶着用突起の溶融部からできるだけ遠ざけて配置してある。そのため、各部材の配置順序は、溶融部側から冷却水通路、軸受筒の順番で配置してある。換言すると、熱源と軸受筒の間に冷却水通路や通気空隙が配置してある。このような配置とすることによって、軸受筒に達する溶融熱は、冷却水通路や通気空隙において積極的に奪われる。このため、軸受筒の加熱状態が軽減されるので、精度良く維持されるべき軸受筒の摺動間隙の過少化が最小限にとどめられる。上記冷却過程において、薄肉部における良好な熱の透過性が効果的に効いている。
請求項3記載の発明は、電気抵抗溶接用電極の冷却方法についての発明であり、電極の中心部に配置されたガイドピンの先端が電極の端面から突出している形式の電極において、ガイドピンを包囲する状態で環状の冷却水通路が電極の外筒部材に形成され、冷却水通路の内側に形成された薄肉部とガイドピンの間にガイドピンを包囲する状態で環状の通気空隙が形成され、冷却水通路の冷却水によって主に外筒部材を冷却し、通気空隙を通過する冷却空気によって主にガイドピンを冷却し、冷却空気の温度が冷却水の温度よりも低いときには、薄肉部を介して冷却水の温度低下を行って間接的に外筒部材を冷却し、冷却水の温度が冷却空気の温度よりも低いときには、薄肉部を介して冷却空気の温度低下を行って間接的にガイドピンを冷却することを特徴としている。
この冷却方法の発明の作用効果は、上記電極の発明の上記作用効果と同じである。
なお、電気抵抗溶接用電極には、静止した固定電極と進退動作をする可動電極があるが、本発明はいずれの電極に対しても適用することが可能である。
装置全体および各部の断面図である。 軸状部品が溶接される動作過程を示す断面図である。 鋼板部品の異常形態を示す断面図である。 冷却水通路の変型例を示す断面図である。 異なったガイドピンの場合を示す断面図である。 装置全体を動作させる制御系統図である。
つぎに、本発明の電気抵抗溶接用電極およびその冷却方法を実施するための形態を説明する。
図1〜図6は、本発明の実施例1を示す。
本発明の電極で保持される部品は、プロジェクションボルトのようにボルト軸を備えた軸状部品や、プロジェクションナットのような孔あき部品などがある。
最初に、軸状部品について説明する。
軸状部品1は、鉄製のプロジェクションボルトであり、その形状を図2(A)にしたがって説明すると、軸状のボルト2と同心の状態で円形のフランジ3がボルト2と一体的に設けてある。フランジ3の下面に溶着用突起4が同一円周上に複数個設けてある。通常は、120度間隔で3個形成されている。
プロジェクションボルト1の各部の寸法は、ボルト2の長さと直径がそれぞれ28mmと8mm、フランジ3の直径と厚さがそれぞれ18mmと2mmである。
つぎに、溶接装置の全体構成について説明する。
円筒状の固定電極100は、機枠などの静止部材6に、固定ブラケット7を介して取り付けられている。固定電極100の中心軸線O−Oが鉛直方向となるように、固定電極100の向きが設定されている。固定電極100と対をなす可動電極8が進退可能な状態で配置してある。固定電極100の下部に後述のガイドピンを進退させる駆動手段9が結合してある。駆動手段9としては進退出力式の電動モータやエアシリンダなど種々なものが採用できる。ここでは、エアシリンダ9である。
固定電極100の端面11に鋼板部品12が密着した状態で載置される。鋼板部品12は、その一部である端部が搬入搬出機構13によって掴まれている。搬入搬出機構13としては、供給ロッドの先端部に鋼板部品12をチャック機構などで掴んで水平方向や鉛直方向に進退させるものや、多関節式のロボット装置等が採用できる。ここでは、後者の多関節式のロボット装置13である。ロボット装置13は6軸タイプであり、その先端部分に鋼板部品12の端部を掴むチャック14が設けられ、ここが掴み箇所である。このような6軸タイプのロボット装置により、後述の図2に示す動作を容易に行わせることができる。
つぎに、固定電極の内部構造を説明する。
固定電極100は円筒型であり、円筒状の第1部材15と円筒状の第2部材16と円筒状の第3部材17が1本の筒状部材を形成するように結合されて、1本の外筒部材18が形成されている。符号19、20はねじ部であり、第1部材15、第2部材16および第3部材18の一体化結合を行っている。第1部材15の上側に、円形の支持部材22がねじ部23を介して結合してある。この支持部材22の上面が前述の端面11である。第1部材15、第2部材16および第3部材17、支持部材22は銅合金で作られており、ここではクロム銅が採用されている。
外筒部材18は、上記の支持部材22、第1部材15、第2部材16および第3部材18の一体化結合によって形成されているものであるが、1本の円筒部材に機械加工などを施して構成してもよく、構成部品の個数や形状に特別な要件はない。
ポリアミド樹脂のような絶縁材料で作られた円筒型の接続部材24を介して、第3部材17とエアシリンダ9が結合してある。ねじ部25と26が結合部とされている。
エアシリンダ9のピストンロッド27と作動軸28が接手部材29を介して結合され、作動軸28にねじ部30を介してガイドピン31が結合してある。第3部材17には接手部材29が進退できるようにするための大径孔32が設けられ、支持部材22と第1部材15と第2部材16には、作動軸28とガイドピン31が貫通する貫通孔33が形成してある。
つぎに、冷却水通路について説明する。
第1部材15、すなわち外筒部材18内に冷却水通路34が形成してある。冷却水通路34を形成するために、第1部材15内に環状部材35が挿入してあり、その外側に環状の溝が形成されて冷却水通路34が形成されている。冷却水の入口孔36と出口孔37が第1部材15に形成され、流入した冷却水は図1(B)から明らかなように、左右に円周方向に分流して流出してゆく。なお、符号38は水密用のOリングである。この環状部材35は、ポリアミド樹脂やポリエチレン樹脂のような合成樹脂、あるいはアルミニウムや銅合金などで作られている。なお、図1(A)のB−B断面が同図の(B)図であり、同様にC−C断面が同図の(C)図、D−D断面が同図の(D)図とされている。
環状部材35に環状の冷却水通路34を溝状に形成することにより、環状部材35の内側に円筒状の薄肉部39が形成される。そして、この薄肉部39の内側に前述の貫通孔33が形成されている。
支持部材22の貫通孔33の内側には、筒状の絶縁体40が圧入や接着などによって固定され、実際にはこの絶縁体40の内面が貫通孔33を形成している。また、上記のように環状部材35の内面が貫通孔33を形成している。このようにして貫通孔33は、支持部材22の箇所、第1部材15の箇所、環状部材35の箇所、第2部材16の箇所にわたって一貫した同径の孔として形成されている。そして、作動軸28やガイドピン31と貫通孔33の間の空隙が通気空隙41とされている。なお、作動軸28とガイドピン31はねじ部30で結合してあるが、このねじ部30を止めて1本のガイドピン31を接手部材29と一体化することも可能である。
作動軸28またはガイドピン31の進退動作において、作動軸28またはガイドピン31がその中心軸線からずれる量をできるだけ少なくするために、第2部材16、すなわち外筒部材18の貫通孔33に軸受筒42が嵌め込まれ、作動軸28またはガイドピン31と軸受筒42の内面との間に摺動間隙43が形成されている。この摺動間隙43は微少な隙間なので、図1(E)と(F)にだけ拡大して図示されている。上記軸受筒42は、耐摩耗性や耐熱性のすぐれた材料で作られており、合成樹脂材料や軸受金属材料などが適している。ここでは、ポリテトラフルオロエチレン(商品名:テフロン)である。
作動軸28またはガイドピン31が揺動すると、ガイドピン31の上端部が絶縁体40に接触する虞がある。そこで、上記のように軸受筒42が採用されるのであるが、ガイドピン31、作動軸28、ピストンロッド27の全体的な軸系を2点支持することが望ましい。ここでは、1点が軸受筒42であり、2点目がエアシリンダ9のピストンであり、このような2点支持でガイドピン31の正確な進退動作が確保されている。
作動軸28およびガイドピン31の直径は9.5mm、貫通孔33の内径は11.9mmであり、環状の通気空隙41は1.2mmである。また、軸受筒42の内径は9.8mm、作動軸28の直径は9.5mmであり、軸受筒42の箇所における環状の摺動間隙43は0.15mmである。
冷却水通路34は、熱発生源である溶着用突起4の溶融部にできるだけ近づけて配置してある。したがって、冷却水通路34は支持部材22に接近した箇所に配置されている。そのために、第1部材15にねじ部23が形成された端部材21が設けられ、その下面に環状部材35が密接させてある。そして、軸受筒42は溶着用突起4の溶融部からできるだけ遠ざけて配置してある。そのため、各部材の配置順序は、鋼板部品12側から支持部材22、冷却水通路34、軸受筒42の順番で配置してある。換言すると、熱源である鋼板部品12に密着している支持部材22と軸受筒42の間に冷却水通路34配置してある。
このような配置とすることによって、支持部材22から第1部材15を経て軸受筒42に達する溶融熱は、冷却水通路34において積極的に奪われる。このため、軸受筒42の加熱状態が軽減されるので、精度良く維持されるべき摺動間隙43の過少化が最小限にとどめられる。もし、軸受筒42が異常に加熱されると、軸受筒42の膨張量が過大になるため摺動間隙43が異常に過少となり、摺動抵抗が高くなりすぎたり後述の空気流が阻害されたりする、という弊害が生じる。なお、軸受筒42が加熱されるとその内径が小さくなるのは、軸受筒42が軸受筒42よりも熱膨張量の少ない第2部材16によって包囲されているためである。
つぎに、ガイドピンについて説明する。
固定電極100が待機状態にあるときには、エアシリンダ9の動作によりガイドピン31の先端が支持部材22の端面11から突き出た位置に停止している。鋼板部品12には予め下孔10が開けられ、鋼板部品12が搬入されてきて下孔10とガイドピン31が同軸になった状態で鋼板部品12を端面11側へ移行させると、ガイドピン31の先端部が相対的に下孔10を貫通し、鋼板部品12が端面11に密着する。この密着した状態では、図1(A)や図2(A)に示すように、ガイドピン31の先端部は鋼板部品12からわずかに突き出ている。下孔10の内径とガイドピン31の外径との差はできるだけ小さく設定されており、例えば、上記差寸法は0.4mmであり、片側の隙間としては0.2mmである。
ガイドピン31には端部に開口する受入孔45が設けてある。図1(A)では符号の引き出し線が輻輳して見にくいので、図2(E)にしたがって説明する。受入孔45は断面円形の孔であり、ガイドピン31と同軸状態で形成してあり、底面46が形成された有底構造である。受入孔45にボルト2が挿入され、ボルト2の下端が図2(A)に示すように、底面46で受止められる。なお、図1(A)と図2(A)は同じ作動状態を示している。この受入孔45の中心軸線O−Oは、ボルト2の軸線、作動軸28の軸線、固定電極100の軸線などと同軸とされ、鉛直方向に向けて配置されている。
受入孔45の深さ方向の長さは、そこに挿入されるボルト2の長さよりも短く設定してある。このような長さ関係とすることにより、受入孔45にボルト2を挿入すると、図1(A)や図2(A)に示すように、溶着用突起4と鋼板部品12の表面との間に浮上空間L1が形成される。
つぎに、空気通路について説明する。
第3部材17に冷却空気の流入孔47が開けられ、空気供給源(図示していない)から送られてきた冷却空気が外筒部材18内に流入し、通過する。流入孔47から第3部材17内に流入した冷却空気は、接手部材29と第3部材17内面との隙間を通過して貫通孔33へ送られる。貫通孔33は、第2部材16における通気空隙41、軸受筒42における摺動間隙43、環状部材35における通気空隙41、第1部材15における通気空隙41および絶縁体40における通気空隙41を経て、溶着用突起4と鋼板部品12の溶着部に供給される。
上述の空気流は、図1(F)に示すように、摺動間隙43において流路面積が大幅に減少するので、ここで空気流が絞られた状態になる。この状態から再び流路面積の大きな通気空隙41に流れるので、冷却空気はここで急膨張をする。この膨張はいわゆる断熱膨張であり、そのために冷却空気の温度が低下する。このような温度低下によって、環状部材35自体や環状部材35で包囲されているガイドピン31の箇所を積極的に冷却する効果がある。
貫通孔33を通過する冷却空気は、溶着時に発生するスパッタがボルト2にこびり付かないようにすることや、貫通孔33内にスパッタが侵入しないようにすることや、後述の冷却作用を果たしている。
上述の冷却水通路34の形成、ガイドピン31の形成、空気通路、すなわち通気空隙41の形成によって、ガイドピン31を包囲する状態で環状の冷却水通路34が電極の外筒部材18に形成され、冷却水通路34の内側に形成された円筒状の薄肉部39とガイドピン31の間にガイドピン31を包囲する状態で環状の通気空隙41が形成されている。なお、薄肉部39の厚さは1mmから3mmの間に設定されている。厚さが1mm未満であると、熱伸縮によって割れが発生する虞があり、3mmを超えると熱伝達が不十分になる。ここでの厚さは、1.65mmである。
つぎに、冷却過程について説明する。
溶着時の熱は、支持部材22から第1部材15を経て冷却水通路34の方へ伝熱されて冷却水に奪われ、第2部材16や軸受筒42への伝達熱量が少量化される。冷却水通路34における冷却作用は、主に溶着部から外筒部材18側を流れる熱を奪う役割を果たしている。
一方、溶着部からフランジ3、ボルト2の下端部、底面46を経てガイドピン31に伝わった熱は、主に冷却空気が環状部材35における貫通孔33を通過するときに奪われることになる。また、この通過空気は前述の断熱膨張で低温化されているので、ガイドピン31をより効果的に冷却している。冷却空気の温度が冷却水の温度よりも低いときには、薄肉部39を介して冷却水の温度低下にも貢献している。また、冷却空気の温度が冷却水の温度よりも高いときには、冷却水通路34の冷却水によって薄肉部39を介して冷却空気が冷却され、間接的に環状部材35の部分のガイドピン31が冷却されている。
このような熱の授受にともない、冷却空気によって冷却水が冷却されているのか、あるいは冷却水によって冷却空気が冷却されているのかは、冷却水と冷却空気のいずれの温度が低いかによって熱流の方向は変化する。例えば、生産量が増大して、連続的溶接により外筒部材18側が著しく高温になっていると、冷却水の温度が高くなり冷却水が冷却空気によって冷却される。ボルト2の下端部は、プロジェクションボルト溶接後の鋼板部品12が取り出されるまで底面46に接触しているので、この接触箇所からガイドピン31への伝達熱量が多くなる。
上述のような冷却過程により、冷却水通路の冷却水は主に外筒部材を冷却し、通気空隙を通過する冷却空気は主にガイドピンを冷却する。同時に、冷却空気の温度が冷却水の温度よりも低いときには、冷却水が冷却空気で冷却されて外筒部材18が間接的に冷却される。一方、冷却空気の温度が冷却水の温度よりも高いときには、冷却空気が冷却水によって冷却されてガイドピン31が間接的に冷却される。上記のような相互的な冷却作用は、薄肉部39の厚さが薄くなっているので、熱の透過が良好になされることが効いている。
上述のように、環状部材35における貫通孔33の箇所では、冷却水による冷却と空気流による空冷とが複合した状態になっている。このような複合した冷却箇所に隣接させた状態で受入孔45が形成されている。つまり、受入孔45が形成されている部分は中空構造であるから、放熱性が良好である。しかし、ボルト2の下端部は、プロジェクションボルト溶接後の鋼板部品12が取り出されるまで底面46に接触しているので、この接触箇所からガイドピン31への伝達熱量が多くなる。同時に、受入孔45に隣接している中実構造の部分は熱容量が大きいので、中空構造部に近い中実な箇所を積極的に冷却することが望ましい。したがって、軸線方向で見て環状部材35を受入孔45の底面46の近くに隣接させて配置し、冷却水通路34が形成されている。
図2(C)に示すように、プロジェクションボルト1が押し下げられてボルト2がガイドピン31を下降させているときは、ボルト2の下端部が受入孔45の底面46に密着して、ガイドピン31への伝達熱量が多くなっている時期である。このような状態において、底面46の位置を環状部材35の近傍に位置させることにより、冷却空気流の冷却に加えて冷却水による冷却を複合させることができて、ガイドピン31の冷却をより促進することができる。
底面46を上述のように環状部材35の近傍に位置させることの具体例として、例えば、環状部材35の軸線方向で見て、環状部材35の部分の貫通孔33の内側に位置させることが最適である。または、底面46を上記内側に位置させるのは、プロジェクションボルト1が押し下げられていない時期において、環状部材35における貫通孔33の内側に位置させるようにすることも可能である。この場合は、受入孔45の深さが十分に長いときに、可能となる。
上述のようにして、外筒部材18やガイドピン31は、冷却水や冷却空気によって2重冷却的に冷却されている。
つぎに、溶接の動作過程を説明する。
図2(A)や図1(A)においては、可動電極8と固定電極100の端面11との間隔が紙面の都合で狭く図示されているが、実際には可動電極8がもっと上方に待機して、鋼板部品12の出し入れに支障がない程度に間隔が大きく設定されている。
図2(A)や図1(A)に示すように、エアシリンダ9の動作でガイドピン31はその先端部が端面11から突き出た状態で待機している。ロボット装置13のチャック14で端部が掴まれた鋼板部品12が両電極8と100の間に水平方向に挿入され、鋼板部品12の下孔10がガイドピン31と同軸になった位置、すなわち下孔10が中心軸線O−Oと同軸になった位置で停止し、ついでロボット装置13の動作で鋼板部品12が中心軸線O−Oに沿って鉛直方向に端面11の方へ移動する。これらの動作によって、ガイドピン31が相対的に下孔10を貫通して鋼板部品12が端面11に密着する。
鋼板部品12が上記のように搬入されると、今度は、ボルト2が受入孔に挿入され、ボルト2の下端が底面46に受止められる。ボルト2がこのように受入孔45内に挿入されていることにより、ボルト2と下孔10の相対位置が正確に設定される。つまり、ガイドピン31が基準ピンのような役割を果たし、ガイドピン31を介して上記相対位置が決定づけられている。受入孔45にボルト2を挿入する方法は、作業者がプロジェクションボルト1を手で持って挿入したり、一般的に知られている進退式の供給ロッドでプロジェクションボルト1を保持して挿入したりすることができる。
その後、図2(B)に示すように、可動電極8が下降してきて可動電極8の端面がフランジ3の表面を押し下げることにより、その押し下げ変位がボルト2の下端から底面46を経てガイドピン3に伝えられて、エアシリンダ9が後退させられる。このような動作で、溶着用突起4が鋼板部品12の表面に加圧される。このときに前記浮上空間L1が縮まり、逆にガイドピン31の先端部と鋼板部品12の裏面との間に沈下空隙L2が形成される。上記押し下げ変位でエアシリンダ9が押し下げられるときには、エアシリンダの圧縮空気を大気中に放出するようにすることが望ましい。あるいは、上記押し下げ時に、エアシリンダ9に後退動作を行わせてガイドピン31を後退させるようにしてもよい。
上述のように、溶着用突起4が鋼板部品12の表面に加圧されていることにより、溶着用突起4が鋼板部品12の表面上をずれ動くことがない。したがって、ボルト2と受入孔45の相対位置が正確に設定され、ボルト2と下孔10の相対位置も正確に維持される。なお、鋼板部品12はロボット装置13により静止状態におかれているので、ボルト2の下降時にガイドピン31の先端部が下孔10から抜け出たときから溶着用突起4が鋼板部品12に圧着されるまでの間に、下孔10が直径方向にずれることはない。
ついで、図2(C)に示すように、溶接電流の通電がなされることにより、溶着用突起4が鋼板部品12に溶着される。図中、黒く塗りつぶした箇所が溶着部である。このときのガイドピン31は沈下空隙L2を保ったままとなるように、エアシリンダ9の停止位置が維持されている。
図2(C)の状態から可動電極8が後退すると、今度は、同図(D)に示すように、ロボット装置13の動作でボルト2と鋼板部品12が一体になったまま受入孔45から抜き取られる。この抜き取り動作は、鋼板部品12が支持部材22の端面11に密着している状態から開始され、ボルト2は中心軸線O−Oと同軸状態のままで抜き取られる。そして、ボルト2の下端が貫通孔33から脱出すると、ロボット装置13の動作で鋼板部品12は部品収容箱などの目的箇所へ搬送される。
抜き取り動作は、鋼板部品12が支持部材22の端面11に密着している状態から開始される。このような事を実現するために、沈下位置にあるガイドピン31が沈下空隙L2を維持したままで、ロボット装置13による抜き取り動作が開始されるように、エアシリンダ9の停止位置の維持動作やロボット装置13の動作開始などが設定されている。換言すると、抜き取り動作が開始されるまでにエアシリンダ9の復帰動作が開始されると、ボルト2が一体になった鋼板部品12が強制的にガイドピン31の底面46を経て突き上げられることとなり、図3に示したような異常形態が発生するのである。
図2(D)に示す抜き取り動作が完了すると、今度は、エアシリンダ9の動作でガイドピン31が復帰して図2(E)に示すように、端面11から突出して、つぎの溶接工程に備えることとなる。
上記の一連の動作において、冷却空気は少なくとも、図2(B)に示した溶着用突起4が鋼板部品12の表面に接触して空気通過の空隙がフランジ3と鋼板部品表面との間に存在しているときから、図2(C)に示す溶着用突起4が鋼板部品12に溶着するまでの期間にわたって送給される。この送給期間の間に空冷機能に加えてスパッタ除去などがなされる。そして、溶接完了後に可動電極が後退するときには、空気送給を中止して空気圧で鋼板部品12が端面11から離れることを防止することが望ましい。
もし、溶接完了後の鋼板部品12に空気圧が作用すると、図3に示した異常形態になる虞がある。また、空冷作用をより効果的に効かせるために、プロジェクションボルト1の抜き取り後に、再度、冷却空気を追加的に送給することも可能である。いわゆる2段吹きである。例えば、生産数量が増加して連続的な溶接がなされるときには、ガイドピン側の冷却に不足を来す虞がある。しかし、このような追加的な空気供給によって電極100全体の温度分布を良好に維持することができる。このような空気供給のオン・オフ制御は、後述の制御手法で実施することができる。たとえば、図2(E)に示すガイドピン31の突出信号で、2段目の空気噴射を行うことができる。
図3は、抜き取り動作が開始されるまでにエアシリンダ9の復帰動作が開始されるために、ボルト2が一体になった鋼板部品12が強制的にガイドピン31の底面46で突き上げられている状態である。この突き上げ変位は、受入孔45の底面46からボルト2の下端や溶着部を経て鋼板部品12に伝わっている。したがって、鋼板部品12は図示のように撓み箇所48において曲げられている。そのために、ボルト2の外周面が受入孔45の開口部近傍の内面や底面46近傍の内面に対して、圧接した状態になり、受入孔45の内面を損傷させてガイドピン31の耐久性を低下させている。あるいは、鋼板部品12の撓み箇所48に塑性変形が発生することもあり、鋼板部品12に異常変形が発生する。
つぎに、溶接の動作制御について説明する。
図2にしたがって説明した溶接過程を実行する動作制御は、一般的に採用されている制御手法で容易に行うことが可能である。制御装置またはシーケンス回路からの信号で動作するタイマーや空気切換弁、あるいはエアシリンダの所定位置で信号を発して前記制御装置に送信するセンサー等を組み合わせることによって、所定の動作を確保することができる。このような動作制御を実行する制御系統の一例が、図6に示されている。
図6において符号49は、可動電極8を進退させるためのエアシリンダである。図6において、矢線は制御信号の通信線、実線は空気の給排管、鎖線は電力供給線を示している。
起動スイッチ50によってタイマーなどを内蔵した制御装置51を動作させると、空気切換弁52からエアシリンダ9と49に作動空気が送られて、ガイドピン31が突き出るとともに、可動電極8が後退位置におかれる。それに引き続く信号が制御装置51からロボット装置13の制御装置53へ送られて、鋼板部品12を掴んだロボット装置13が動作して、鋼板部品12の下孔10にガイドピン31が貫通し、しかも鋼板部品12が端面11に密着する。
この密着完了状態を示す信号が制御装置53から制御装置51に送られる。そこで制御装置51からの信号でエアシリンダ49が動作してプロジェクションボルト1を加圧し、ガイドピン31が貫通孔33内に入り込んで停止する。ここで前記沈下空隙L2が形成される。これに引き続いて溶接電流の通電がなされる。溶接電流の通電後、制御装置51内のタイマーが作動して空気切換弁52から作動空気をエアシリンダ9に送り続けることにより、ガイドピン31が沈下空隙L2を維持した状態となる。上記タイマーによって沈下空隙L2が維持されている間に、制御装置53からロボット装置13への動作信号が送られてプロジェクションボルト1が受入孔45から抜き取られる。
この抜き取りが完了すると、タイマーからの信号で空気切換弁52から作動空気がエアシリンダ9に送られて、ガイドピン31が突出位置に復帰してつぎの溶接動作に備えるようになる。なお、鋼板部品12の抜き取り後におけるガイドピン31の復帰突出を、ロボット装置13の抜き取り完了信号を制御装置53から制御装置51で受領して、実行するようにしてもよい。
つぎに、冷却水通路やガイドピンの変型例を説明する。
図4は、冷却水通路形成の変型例である。これは、第1部材15の外周に円周方向の溝を形成して冷却水通路34を形成したもので、円周方向の溝を封鎖するために、円筒状の封鎖部材55がOリング38を介して取り付けられたものである。また、円周方向の溝の形成によって、円筒状の薄肉部39が設けられる。それ以外の構成や作用動作は、図示されていない部分も含めて先の例と同じであり、同様な機能の部材には同一の符号が記載してある。
上述の実施例ではプロジェクションボルト1がガイドピン31の受入孔45挿入されるものであるが、図5に示した例は、ガイドピン31の形態が異なり、プロジェクションナット56を鋼板部品12に溶接する場合である。同図は、可動電極8と支持部材22の端面11の間でプロジェクションナット56と鋼板部品12が加圧されて溶着した状態を示している。冷却水通路34や通気空隙41の形成や冷却状態などは先の各例と同じである。それ以外の構成や作用動作は、図示されていない部分も含めて先の各例と同じであり、同様な機能の部材には同一の符号が記載してある。
なお、上記各種のエアシリンダに換えて、進退出力をする電動モータを採用することもできる。
以上に説明した実施例1の作用効果は、つぎのとおりである。
ガイドピン31を包囲する状態で環状の冷却水通路34が電極100の外筒部材18に形成され、冷却水通路34の内側に形成された薄肉部39とガイドピン31の間にガイドピン31を包囲する状態で環状の通気空隙41が形成されている。したがって、溶着時に発生した溶接熱の内、外筒部材18側に伝わった熱は、主に冷却水通路34の冷却水で奪われる。つまり、冷却水通路34における冷却作用は、主に溶着部から外筒部材18側を流れる熱を奪う役割を果たしている。一方、溶着時に発生した溶接熱の内、ガイドピン31に伝わった熱は、主に通気空隙41を通過する冷却空気で奪われる。つまり、通気空隙41を通過する冷却空気は、主に溶着部からガイドピン31側を流れる熱を奪う役割を果たしている。
冷却空気の温度が冷却水の温度よりも低いときには、薄肉部39を介して冷却水の温度低下にも貢献しており、間接的に外筒部材18が冷却されている。一方、冷却水の温度が冷却空気の温度よりも低いときには、薄肉部39を介して冷却空気の温度低下にも貢献しており、間接的にガイドピン31が冷却されている。
このような熱の授受にともない、冷却空気によって冷却水が冷却されているのか、あるいは冷却水によって冷却空気が冷却されているのかは、冷却水と冷却空気のいずれの温度が低いかによって熱流の方向は変化する。例えば、生産量が増大して、連続的溶接により外筒部材18側が著しく高温になっていると、冷却水の温度が高くなり冷却水が冷却空気によって冷却される。また、長時間溶接が行われないで溶接が開始されたときの、立ち上がり当初の溶接回数が少数のときには、外筒部材18の方がガイドピン31よりも熱容量が大きいので、外筒部材18側よりもガイドピン31側の方が早く高温となる。このようなときには、冷却空気が冷却水で冷やされる関係となる。
上述のような冷却過程により、冷却水通路34の冷却水は主に外筒部材18を冷却し、通気空隙41を通過する冷却空気は主にガイドピン31を冷却する。同時に、冷却空気の温度が冷却水の温度よりも低いときには、冷却水が冷却空気で冷却されて外筒部材18が間接的に冷却される。一方、冷却空気の温度が冷却水の温度よりも高いときには、冷却空気が冷却水によって冷却されてガイドピン31が間接的に冷却される。上記のような相互的な冷却作用は、薄肉部39の厚さが薄くなっているので、熱の透過が良好になされることが効いている。
ガイドピン31の先端とガイドピン31の揺動を少なくするための軸受筒42の間に、冷却水通路34と薄肉部39と通気空隙41が配置されている。
ガイドピン31が揺動すると、ガイドピン31の上端部が近隣部材に接触する虞がある。そこで、上記のように軸受筒42が採用される。同時に、冷却水通路34は、熱発生源である溶着部にできるだけ近づけて配置してある。そして、軸受筒42は溶着用突起4の溶融部からできるだけ遠ざけて配置してある。そのため、各部材の配置順序は、溶融部側から冷却水通路34、軸受筒42の順番で配置してある。換言すると、熱源と軸受筒42の間に冷却水通路34や通気空隙41が配置してある。このような配置とすることによって、軸受筒42に達する溶融熱は、冷却水通路39や通気空隙41において積極的に奪われる。このため、軸受筒42の加熱状態が軽減されるので、精度良く維持されるべき軸受筒42の摺動間隙43の過少化が最小限にとどめられる。上記冷却過程において、薄肉部39における良好な熱の透過性が効果的に効いている。
冷却水通路34の冷却水によって主に外筒部材18を冷却し、通気空隙41を通過する冷却空気によって主にガイドピン31を冷却し、冷却空気の温度が冷却水の温度よりも低いときには、薄肉部39を介して冷却水の温度低下を行って間接的に外筒部材18を冷却し、冷却水の温度が冷却空気の温度よりも低いときには、薄肉部39を介して冷却空気の温度低下を行って間接的にガイドピン31を冷却するという、冷却方法についての作用効果は、上記電極の発明の上記作用効果と同じである。
上述のように、本発明は、電極の中心部に配置されたガイドピンやその外側の外筒部材に対する冷却を、空冷と水冷によって効果的に行うことができる電気抵抗溶接用電極およびその冷却方法である。したがって、自動車の車体溶接工程や、家庭電化製品の板金溶接工程などの広い産業分野で利用できる。
1 軸状部品、プロジェクションボルト
2 軸部、ボルト
3 フランジ
4 溶着用突起
8 可動電極
10 下孔
11 端面
12 鋼板部品
13 搬入搬出機構、ロボット装置
14 掴み箇所、チャック
15 第1部材
16 第2部材
17 第3部材
18 外筒部材
22 支持部材
28 作動軸
31 ガイドピン
33 貫通孔
34 冷却水通路
35 環状部材
39 薄肉部
40 絶縁体
41 通気空隙
42 軸受筒
43 摺動間隙
45 受入孔
46 底面
48 掴み箇所、チャック
56 孔あき部品、プロジェクションナット
100 固定電極
L1 浮上空間
L2 沈下空隙

Claims (3)

  1. 電極の中心部に配置されたガイドピンの先端が電極の端面から突出している形式の電極において、ガイドピンを包囲する状態で環状の冷却水通路が電極の外筒部材に形成され、冷却水通路の内側に形成された薄肉部とガイドピンの間にガイドピンを包囲する状態で環状の通気空隙が形成され、前記冷却水通路は外筒部材に挿入された環状部材に溝状の状態で形成され、前記薄肉部は環状部材の内側に円筒状の状態で形成され、空気供給源から通気空隙へ供給される冷却空気の流入孔が外筒部材に開けてあり、冷却水通路へ冷却水を流入させ冷却水通路に開口している入口孔と冷却水通路から冷却水を流出させる出口孔が外筒部材に設けられ、冷却水通路と通気空隙において水冷と空冷が複合した状態で遂行されることにより、冷却水通路の冷却水は主に外筒部材を冷却し、通気空隙を通過する冷却空気は主にガイドピンを冷却するように構成したことを特徴とする電気抵抗溶接用電極。
  2. 前記ガイドピンの先端とガイドピンの揺動を少なくするための軸受筒の間に、前記冷却水通路と前記薄肉部と前記通気空隙が配置されている請求項1記載の電気抵抗溶接用電極。
  3. 電極の中心部に配置されたガイドピンの先端が電極の端面から突出している形式の電極において、ガイドピンを包囲する状態で環状の冷却水通路が電極の外筒部材に形成され、冷却水通路の内側に形成された薄肉部とガイドピンの間にガイドピンを包囲する状態で環状の通気空隙が形成され、冷却水通路の冷却水によって主に外筒部材を冷却し、通気空隙を通過する冷却空気によって主にガイドピンを冷却し、冷却空気の温度が冷却水の温度よりも低いときには、薄肉部を介して冷却水の温度低下を行って間接的に外筒部材を冷却し、冷却水の温度が冷却空気の温度よりも低いときには、薄肉部を介して冷却空気の温度低下を行って間接的にガイドピンを冷却することを特徴とする電気抵抗溶接用電極の冷却方法。
JP2013223672A 2013-10-08 2013-10-08 電気抵抗溶接用電極およびその冷却方法 Active JP6004346B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013223672A JP6004346B2 (ja) 2013-10-08 2013-10-08 電気抵抗溶接用電極およびその冷却方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013223672A JP6004346B2 (ja) 2013-10-08 2013-10-08 電気抵抗溶接用電極およびその冷却方法

Publications (2)

Publication Number Publication Date
JP2015074030A JP2015074030A (ja) 2015-04-20
JP6004346B2 true JP6004346B2 (ja) 2016-10-05

Family

ID=52999303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013223672A Active JP6004346B2 (ja) 2013-10-08 2013-10-08 電気抵抗溶接用電極およびその冷却方法

Country Status (1)

Country Link
JP (1) JP6004346B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6553004B2 (ja) 2016-08-08 2019-07-31 青山 省司 電気抵抗溶接用電極
JP7094549B2 (ja) * 2018-08-22 2022-07-04 セキ工業株式会社 頭付きロッド固定装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09108847A (ja) * 1995-10-13 1997-04-28 Fuji Oozx Inc 電気抵抗溶接機における下部電極の冷却構造
JPH11197849A (ja) * 1998-01-09 1999-07-27 Smk:Kk 溶接用電極の冷却構造
KR20030090610A (ko) * 2000-12-13 2003-11-28 가부시키가이샤 에스엠케이 너트등의 용접장치
US8357871B2 (en) * 2009-05-07 2013-01-22 Innovative Weld Solutions Ltd. Welding assembly and method

Also Published As

Publication number Publication date
JP2015074030A (ja) 2015-04-20

Similar Documents

Publication Publication Date Title
US10166635B2 (en) Welding device comprising an active heating device for heating the workpiece
EP3159071B1 (en) Molding device, method for replacing molding device components, and replacement unit for molding device
CN106536080B (zh) 成型装置及成型方法
WO2016158778A1 (ja) 成形装置
JP6400952B2 (ja) 成形システム及び成形方法
JP6004346B2 (ja) 電気抵抗溶接用電極およびその冷却方法
CN106714998B (zh) 成型装置
KR20190126292A (ko) 성형시스템 및 성형방법
CN103846537B (zh) 异种金属管的焊接方法
JP4203672B2 (ja) プロジェクションナットの溶接装置と溶接方法
WO2015194600A1 (ja) 成形システム
KR20190126290A (ko) 성형장치 및 성형방법
JP2016190248A (ja) 成形装置
JP6004345B2 (ja) プロジェクション溶接装置および溶接方法
JP2008302425A (ja) 中空鋼板部品の溶接装置と溶接方法
US11453037B2 (en) Forming system
EP4116005A1 (en) Molding device and molding method
CN113290120A (zh) 异种金属复合管的制备工艺、设备及异种金属复合管
JP2007253240A (ja) 小接合面用パルス通電接合装置
JP2018153859A (ja) 成形装置
KR20210142087A (ko) 성형시스템
US3288980A (en) Heat stress relieving apparatus
KR101126719B1 (ko) 전기 업셋 장치의 앤빌
JP4984295B2 (ja) 電気抵抗溶接用電極
CN220074100U (zh) 钢管智能化转角切断设备的冷却机构

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160826

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 6004346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150