JP6003293B2 - Method for manufacturing film-type capacitive touch panel - Google Patents

Method for manufacturing film-type capacitive touch panel Download PDF

Info

Publication number
JP6003293B2
JP6003293B2 JP2012146745A JP2012146745A JP6003293B2 JP 6003293 B2 JP6003293 B2 JP 6003293B2 JP 2012146745 A JP2012146745 A JP 2012146745A JP 2012146745 A JP2012146745 A JP 2012146745A JP 6003293 B2 JP6003293 B2 JP 6003293B2
Authority
JP
Japan
Prior art keywords
film
touch panel
wiring
roll
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012146745A
Other languages
Japanese (ja)
Other versions
JP2014010614A (en
Inventor
智博 鶴田
智博 鶴田
田中 健
健 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2012146745A priority Critical patent/JP6003293B2/en
Publication of JP2014010614A publication Critical patent/JP2014010614A/en
Application granted granted Critical
Publication of JP6003293B2 publication Critical patent/JP6003293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Input By Displaying (AREA)

Description

本発明は、金属配線のメッシュ構造をセンサーとするフィルム状静電容量型タッチパネルに係り、特には金属配線の酸化防止機能を備えたフィルム状センサーをロールツーロール方式で製造する技術に関する。   The present invention relates to a film-type capacitive touch panel using a mesh structure of metal wiring as a sensor, and more particularly to a technique for manufacturing a film-shaped sensor having an anti-oxidation function for metal wiring by a roll-to-roll method.

近年、携帯電話機や、携帯情報端末、カーナビゲーションシステムを始め、様々な電子機器の操作部にタッチパネル型入力装置(以下、単にタッチパネルと記す。)が採用されている。タッチパネルは、液晶表示装置、有機EL装置等の表示用パネルの表示面上に、指先やペン先の接触位置を検出する入力装置として貼り合わせて使用されるものである。タッチパネルには、その構造及び検出方式の違いにより、抵抗膜型や静電容量型等の様々なタイプがある。   2. Description of the Related Art In recent years, touch panel type input devices (hereinafter simply referred to as touch panels) have been adopted for operation units of various electronic devices such as mobile phones, portable information terminals, and car navigation systems. The touch panel is used as an input device that detects a contact position of a fingertip or a pen tip on a display surface of a display panel such as a liquid crystal display device or an organic EL device. There are various types of touch panels, such as a resistance film type and a capacitance type, depending on the structure and detection method.

静電容量型タッチパネルには表面型と投影型の2つがある。両方式とも指先と導電膜との間での静電容量の変化を捉えて位置を検出する。指がセンサー表面に近づくだけで静電結合が起きるため、接触前でのカーソル表示のようなことが可能となる。押さえつけるものは指や指と同等の静電的な導電性のものである必要があるが、静電容量の変化に応じて流れる交流電流は、接触する媒体のインピーダンスにはよらない。   There are two types of capacitive touch panels: surface type and projection type. Both methods detect the position by capturing the change in capacitance between the fingertip and the conductive film. Since electrostatic coupling occurs just by moving the finger close to the sensor surface, it is possible to display a cursor before contact. The object to be pressed needs to be a finger or an electrostatically conductive material equivalent to that of the finger, but the alternating current that flows in accordance with the change in the capacitance does not depend on the impedance of the contact medium.

特に、投影型の静電容量方式は指先の多点検出が可能である。一般に投影型は、電極層と制御ICを搭載する支持基板を保護用の絶縁性樹脂で被覆した構成である。電極層は、詳細は省略するがガラスやプラスチックなどの支持基板上に、透明電極材料(ITO)を用いてX方向電極,Y方向電極の縦横1組からなる多数のモザイク状電極が形成されている。X方向電極とY方向電極は全て絶縁を保って敷設されている(特許文献1、2)。   In particular, the projected capacitive method can detect multiple points of the fingertip. In general, the projection type has a configuration in which a support substrate on which an electrode layer and a control IC are mounted is covered with a protective insulating resin. Although the details of the electrode layer are omitted, on the support substrate such as glass or plastic, a large number of mosaic electrodes composed of one set of X and Y direction electrodes are formed on a support substrate such as glass or plastic using a transparent electrode material (ITO). Yes. The X direction electrode and the Y direction electrode are all laid while maintaining insulation (Patent Documents 1 and 2).

また図1に示すように、単に縦方向に伸びるストライプ状の金属配線2と横方向に伸びる金属配線3を絶縁を保って基板上に敷設しても構わない(特許文献3,4)。金属配線の方がITOよりも抵抗が低い分感度が高く有利であるが、金属は遮光性且つ反射性なので、ITOと異なり、配線の密度と開口率が問題となる。ITO配列でも金属配列でも、指が触れたり近づくとその付近の電極の静電容量の変化を縦横1組の電極列から知ることで、分解能を別にすれば接触位置をかなり正確に特定できる。   Further, as shown in FIG. 1, stripe-shaped metal wirings 2 extending in the vertical direction and metal wirings 3 extending in the horizontal direction may be laid on the substrate while maintaining insulation (Patent Documents 3 and 4). Metal wiring is more advantageous because it has lower sensitivity than ITO, but metal is light-shielding and reflective, so unlike ITO, wiring density and aperture ratio are problematic. Whether the ITO array or the metal array is touched or approached, the change in the capacitance of the electrode in the vicinity can be known from one set of vertical and horizontal electrode rows, so that the contact position can be specified fairly accurately, except for the resolution.

縦と横に走る多数の電極列によって多点検出が可能となるが、端子数が多いため配線が細くまたITOによる配線では抵抗が高くなりすぎるため、そのままでは大画面化に向かない。そこで大型タッチパネルでは、位置検出を行うICが搭載されたFPCとセンサー基板とを接続するために、線幅が太い取り出し用配線を基板周囲に設けるが、これらの配線や交差部9については金属配線(モリブデン/アルミニウム/モリブデンの3層構造、又は銀ペースト等)とする必要があるなどコストが高くなる傾向がある。   Many points can be detected by a large number of electrode rows running vertically and horizontally. However, since the number of terminals is large, the wiring is thin and the resistance of the ITO wiring is too high. Therefore, in a large-sized touch panel, in order to connect an FPC on which an IC for position detection is mounted and a sensor substrate, a wiring with a large line width is provided around the substrate. There is a tendency for the cost to increase, for example, it is necessary to have a three-layer structure of molybdenum / aluminum / molybdenum or silver paste.

したがって、対角が15インチ以上の大型ディスプレイ用のタッチパネルとしては、最初から金属配線タイプにした方が低抵抗で、それもフィルム上に金属配線を敷設するのが低コストで製造できて実用性が高いと言える。ところが、センサー用電極として銅細線のような遮光性の金属配線を単にフィルム上に形成しただけでは、経時変化により金属配線の抵抗値が増大するという問題がある。配線抵抗が増大すると位置センサーとしての感度が低下し、動作が不安定になるという問題がある。これに対し、金属配線を別のフィルムで被覆するだけでは、隙間が生じて視認性が低下するという問題がある。   Therefore, as a touch panel for a large display with a diagonal size of 15 inches or more, the metal wiring type from the beginning has lower resistance, and it is also practical to lay the metal wiring on the film at a low cost. Can be said to be expensive. However, simply forming a light-shielding metal wiring such as a thin copper wire as a sensor electrode on the film has a problem that the resistance value of the metal wiring increases with time. When the wiring resistance increases, there is a problem that the sensitivity as a position sensor decreases and the operation becomes unstable. On the other hand, there is a problem in that the visibility is lowered by forming a gap only by covering the metal wiring with another film.

経時変化を抑制する手段として、従来は保護フィルムで金属配線を被覆するとか、シリカ系ゾルゲル溶液をスピンコートとして皮膜化してからフォトリソ法でパタニングする技術がある。また、PSAノンキャリアフィルムでラミネート貼合する等、一般には保護層自体がフィルム基材をベースとし、それをタッチパネルに貼合せることがほとんどであった。二つの機能性フィルムを製造しそれを貼り合わせるのは、工数が多く工程も煩雑で異物や気泡を巻き込むなど工程上のトラブルで歩留まりが低下する問題がある。また貼合した後の製品形態がシート状であるため、タッチパネルを仕上げる上でロールツーロール工法が一貫できないという難点があった。   Conventionally, as a means for suppressing the change with time, there is a technique in which a metal wiring is covered with a protective film or a silica-based sol-gel solution is formed into a film as a spin coat and then patterned by a photolithography method. Moreover, generally the protective layer itself is based on a film base material, such as laminating and bonding with a PSA non-carrier film, and it is mostly bonded to a touch panel. Manufacturing two functional films and bonding them together has a problem that the process is troublesome and the process is complicated and foreign matter and bubbles are involved, resulting in a decrease in yield due to problems in the process. Moreover, since the product form after bonding is a sheet form, there existed a difficulty that a roll-to-roll construction method could not be consistent in finishing a touch panel.

液晶表示装置には、フィルム状タッチパネル以外に、偏光フィルム、反射防止フィルム、防眩フィルムなど種々の機能性フィルムが必要であるが、これらとタッチパネルを組み合わせる場合には、タッチパネル側もできるだけ厚みが均一なロール状の方が、加工する上で自由度が高くなるという利点がある。   In addition to film-like touch panels, liquid crystal display devices require various functional films such as polarizing films, antireflection films, and antiglare films. When these are combined with touch panels, the thickness of the touch panel is as uniform as possible. A simple roll has an advantage that the degree of freedom is high in processing.

特開2012−01462号公報JP 2012-01462 A 特開2012−004042号公報JP 2012-004042 A 特開2011−253263号公報JP 2011-253263 A 特開2011−248722号公報JP 2011-248722 A

本発明は上記問題に鑑みてなされたもので、金属抵抗の経時変化を抑制する保護層形成を効率的に行え、且つ後工程での加工自由度を高めた金属メッシュをセンサーとするフィルム状静電容量型タッチパネルの製造方法を提供することを課題とした。   The present invention has been made in view of the above problems, and it is possible to efficiently form a protective layer that suppresses a change in metal resistance with time, and to use a metal mesh having a higher degree of freedom in processing in a later process as a sensor. It was an object to provide a method for manufacturing a capacitive touch panel.

上記課題を達成するための請求項1に係る発明は、
ロール状フィルムの表面と裏面にストライプ状の配線を表裏で互いに直交するように形成する工程と、
ロール状フィルムの表面に電離放射線硬化性組成物を塗布し塗膜を形成する工程と、
電離放射線を塗膜に照射して硬化した皮膜を形成する工程と、
をこの順に有し、
前記皮膜は、酸フリーの有機樹脂からなる保護膜であり、
銅配線の表面抵抗を3Ω/□以下,上下の銅配線間の静電容量を0.5〜3pFの範囲に設定する
ことを特徴とするフィルム状静電容量型タッチパネルの製造方法としたものである。
The invention according to claim 1 for achieving the above object is as follows:
Forming striped copper wiring on the front and back surfaces of the roll film so as to be orthogonal to each other on the front and back;
Applying an ionizing radiation curable composition to the surface of the roll film to form a coating film;
Irradiating the coating with ionizing radiation to form a cured coating;
Have a in this order,
The film is a protective film made of an acid-free organic resin,
A method of manufacturing a film-like capacitive touch panel, characterized in that the surface resistance of the copper wiring is set to 3Ω / □ or less and the capacitance between the upper and lower copper wirings is set to a range of 0.5 to 3 pF. is there.

請求項1と請求項2に記載の発明によれば、電離放射線硬化性樹脂が硬化した皮膜が、保護膜としてストライプ状に並ぶ金属配線を被覆しており、金属が空気に直接に接触しないので水分や酸素による酸化が抑制される。   According to the first and second aspects of the present invention, the film obtained by curing the ionizing radiation curable resin covers the metal wiring arranged in a stripe shape as the protective film, and the metal does not directly contact air. Oxidation due to moisture and oxygen is suppressed.

金属メッシュの製造と保護膜の形成が全て、ロールツーロール方式で行われる結果、生産性が大幅に向上し、保護膜形成後のフィルム状タッチパネルが断裁されたシート形態でなくロール状で得られ、後工程の自由度が増すという効果が期待できる。   Production of the metal mesh and formation of the protective film are all performed in a roll-to-roll manner, resulting in a significant improvement in productivity, and the film-like touch panel after the formation of the protective film is obtained in a roll form rather than a cut sheet form. The effect of increasing the degree of freedom in the post-process can be expected.

金属配線が形成されたフィルム上に樹脂保護膜が直接形成される結果、工数の低減と余分なフィルム基材がなくなり薄いタッチパネルが効率的に製造できる。   As a result of forming the resin protective film directly on the film on which the metal wiring is formed, a thin touch panel can be efficiently manufactured by reducing man-hours and eliminating an extra film substrate.

金属を使用するタッチパネルの配線配置(メッシュ構造)を説明する上面視の図である。It is a figure of the top view explaining the wiring arrangement (mesh structure) of the touch panel which uses a metal. 本発明になるタッチパネルの構造を説明する断面視の図である。It is a figure of the cross sectional view explaining the structure of the touch panel which becomes this invention. (a)〜(f)本発明になるタッチパネルの製造工程を説明する断面視の工程図である。(A)-(f) It is process drawing of the cross sectional view explaining the manufacturing process of the touchscreen which becomes this invention.

以下、本発明になるタッチパネルの実施態様について図面を用いて説明する。   Hereinafter, embodiments of the touch panel according to the present invention will be described with reference to the drawings.

本発明に係るタッチパネルの金属配線パターンを上面視で図1に、その構造を断面視で図2に示した。フィルム基材5の表面と裏面に、同じピッチのストライプ状銅配線2、3を、表裏で直交するように配置したもので、上面視では開口部4が、概ね正方形のメッシュ構造をなすものである。実線が表面のストライプ状金属配線3を、二重線が裏面の金属配線2に相当する。さらに、フィルム表裏の金属配線2,3が、有機樹脂を硬化させた保護膜7により被覆された構造である。   The metal wiring pattern of the touch panel according to the present invention is shown in FIG. 1 in a top view, and the structure is shown in FIG. 2 in a sectional view. The striped copper wirings 2 and 3 having the same pitch are arranged on the front and back surfaces of the film base 5 so as to be orthogonal to each other, and the opening 4 has a generally square mesh structure when viewed from above. is there. The solid line corresponds to the striped metal wiring 3 on the front surface, and the double line corresponds to the metal wiring 2 on the back surface. Further, the metal wirings 2 and 3 on the front and back of the film are covered with a protective film 7 obtained by curing an organic resin.

絶縁性のフィルム基材5が金属配線2と金属配線3の間にあるので、上下の金属配線2,3は自然に絶縁されている。一方の面だけにストライプ状電極を備えたフィルムを2組準備して背中合わせに張り合わせても構わない。また、一方の面だけにメッシュ構造を設けた構造についても本発明は適用できる。   Since the insulating film base 5 is between the metal wiring 2 and the metal wiring 3, the upper and lower metal wirings 2 and 3 are naturally insulated. Two sets of films having stripe electrodes on only one surface may be prepared and pasted back to back. The present invention can also be applied to a structure in which a mesh structure is provided only on one surface.

金属配線は遮光性があるので、線幅dが太くなれば開口率が低くなって透過率が下がり、ストライプのピッチpが長くなると位置センサーとしての分解能が低くなるので、線幅dとピッチpは適切な値に設定される。金属材料としては、アルミニウムや銅が好適であるが抵抗とコストの面から銅が最も好ましい。   Since the metal wiring has a light-shielding property, if the line width d is increased, the aperture ratio is decreased and the transmittance is decreased. If the stripe pitch p is increased, the resolution as the position sensor is decreased. Therefore, the line width d and the pitch p are decreased. Is set to an appropriate value. As the metal material, aluminum or copper is preferable, but copper is most preferable in terms of resistance and cost.

タッチパネルとは、金属配線のような導電体の両端に同じ位相で同じ電圧の交流を加えた場合に、導電体に指や手のような静電的且つ導電性の媒体を近接させると、接地されているとみなされる媒体と導電体間(これも接地されているので)に容量結合が生じて過剰な交流電流が導電体に流れる現象を利用した電子デバイスである。   A touch panel is a grounding device when an electrostatic and conductive medium such as a finger or hand is brought close to a conductor when alternating current with the same phase and voltage is applied to both ends of the conductor such as metal wiring. This is an electronic device that utilizes the phenomenon that capacitive coupling occurs between a medium that is considered to be conductive and a conductor (which is also grounded) and an excessive alternating current flows through the conductor.

したがって、導電体に指が直接触れる必要がなく誘電体を介して接触、近接しても構わない。手がセンサー部の導電体に触れると導電体が汚れるので、通常導電体は防汚性のある透明な保護用材料で被覆する必要がある。導電体(以下、電極とも記す。)は必ずしも同一平面上に存在する必要はなく、図2のように絶縁性樹脂5など間に挟んで配置されていても構わない。ただし、接触媒体(例えば、指)までの実質的な距離が変わってくるので感度が絶縁性樹脂5の上にあるか下にあるかで変わる可能性はある。   Therefore, it is not necessary for the finger to touch the conductor directly, and the conductor may be contacted or approached via the dielectric. Since the conductor is soiled when the hand touches the conductor of the sensor portion, it is usually necessary to coat the conductor with an antifouling transparent protective material. The conductors (hereinafter also referred to as electrodes) are not necessarily present on the same plane, and may be disposed between the insulating resins 5 as shown in FIG. However, since the substantial distance to the contact medium (for example, the finger) changes, there is a possibility that the sensitivity changes depending on whether the sensitivity is above or below the insulating resin 5.

原理的には、電極材料を適当に置くだけで、どの電極材料のどの辺に近接したかが検出可能であるが、位置センサーとしての精度を保つために直線状電極をXYのマトリックス状に配置して、どの電極上のどこ辺りにではなく、どのX方向電極とどのY方向電極であるかを独立に検出して交点から位置を算出している。当然、X方向の電極2とY方向の電極3は、全ての電極が絶縁されている必要がある。また、電極2,3は必ずしも直線状である必要はない。遮光性の金属配線であれば、透過率が許す範囲で見にくい細線をできるだけびっしりと配置することになる。   In principle, it is possible to detect which electrode material is close to which side by simply placing the electrode material appropriately, but in order to maintain accuracy as a position sensor, linear electrodes are arranged in an XY matrix. Thus, the position is calculated from the intersection by independently detecting which X-direction electrode and which Y-direction electrode, not where on which electrode. Of course, all of the electrodes 2 in the X direction and the electrode 3 in the Y direction need to be insulated. Moreover, the electrodes 2 and 3 do not necessarily need to be linear. In the case of a light-shielding metal wiring, fine lines that are difficult to see within the range allowed by the transmittance are arranged as tightly as possible.

保護膜となる有機樹脂層(以下、単に保護膜)の形成手段として特に限定するものではないが、ロールツーロール方式でフィルム上に樹脂層を形成できなければならない。それも保護膜7は、センサー電極部分を被覆して、取り出し用電極6の接続に使用される部分
を被覆しないようにパターン状に形成できることが好ましい。また保護膜がストライプ電極間の隙間を埋設し且つ表面も覆い、保護膜表面が、図2に示すように概ね面一になるのが好ましい保護皮膜の形態である。銅線2,3の厚みが10〜15μm程度であれば保護膜7の厚みは20〜25μm程度が最適である。
Although it does not specifically limit as a formation means of the organic resin layer (henceforth a protective film only) used as a protective film, It must be able to form a resin layer on a film by a roll-to-roll system. It is also preferable that the protective film 7 can be formed in a pattern so as to cover the sensor electrode portion and not the portion used for connection of the extraction electrode 6. Further, it is preferable that the protective film fills the gap between the stripe electrodes and covers the surface, and the surface of the protective film is generally flush as shown in FIG. If the thickness of the copper wires 2 and 3 is about 10 to 15 μm, the thickness of the protective film 7 is optimally about 20 to 25 μm.

タッチパネルの透視可能な部分の大きさは、液晶ディスプレイや有機EL等の画像表示部に重ねて使用されるので、少なくともこれらの画像表示部と同じ大きさである。但し、その範囲全てがタッチパネルの入力範囲でない場合には、透視範囲であってもメッシュ電極はなくても構わない。一般に、透視が必要な範囲以外は、見えないように枠状に黒塗りされているのが好ましい(加飾)。   The size of the transparent portion of the touch panel is used so as to overlap with an image display unit such as a liquid crystal display or an organic EL, so that it is at least as large as these image display units. However, if the entire range is not the input range of the touch panel, the mesh electrode may be omitted even if the range is a fluoroscopic range. In general, it is preferable to paint in a frame shape so that it is not visible outside the range that requires fluoroscopy (decoration).

メッシュ電極を構成する個々の銅配線2,3は、全てフィルム基材5の外周に導かれて外部接続用の端子につながっている。この配線6を引き出し用配線といい安価で抵抗の低い銅が好ましく、透視されない部分では、許される範囲で線幅を太くすることができる。そこでは、概ね0.02〜0.5mmの範囲が好ましい。メッシュ状銅配線2,3と引き出し用銅配配線6は、フィルム5に積層された銅薄膜から一括形成される。全ての銅配線は、センサーとして使用される限り互いに絶縁されている必要がある。   The individual copper wirings 2 and 3 constituting the mesh electrode are all guided to the outer periphery of the film base 5 and connected to terminals for external connection. The wiring 6 is called a lead-out wiring and is preferably made of copper with low cost and low resistance. In a portion that is not seen through, the line width can be increased within an allowable range. In this case, a range of approximately 0.02 to 0.5 mm is preferable. The mesh-like copper wirings 2 and 3 and the drawing copper distribution wiring 6 are collectively formed from a copper thin film laminated on the film 5. All copper wiring needs to be insulated from each other as long as they are used as sensors.

銅配線によって仕切られたメッシュの開口部4の幅をp、遮光部の配線幅をdとすると開口率90%でd/p=0.05程度、開口率98%でd/p=0.01程度である。遮光性金属の線幅dは、概ね20μm以下であれば視認できないといわれているので、線幅d=20μmでは、開口の一辺pは400〜2000μmの範囲となる。より狭い線幅d=10μmでは200〜1000μm、d=5μmでは100〜500μmの範囲とする必要がある。大型ディスプレイ用では線幅は50μm程度以下が好ましく開口率90%でpは1000μm程度以上となる。   Assuming that the width of the opening 4 of the mesh partitioned by the copper wiring is p and the wiring width of the light shielding portion is d, d / p = 0.05 when the aperture ratio is 90%, and d / p = 0. It is about 01. Since the line width d of the light-shielding metal is said to be invisible when it is approximately 20 μm or less, the side p of the opening is in the range of 400 to 2000 μm when the line width d = 20 μm. The narrower line width d = 10 μm needs to be in the range of 200 to 1000 μm, and d = 5 μm in the range of 100 to 500 μm. For large displays, the line width is preferably about 50 μm or less, and the aperture ratio is 90%, and p is about 1000 μm or more.

銅配線の表面抵抗は3Ω/□程度以下に設定するのが好ましい。抵抗が低い方がセンサー感度が高いからである。また、上下の金属配線間2,3に厚みが100μm程度のフィルム5が介在するので静電容量を0.5〜3pFの範囲に設定するのが好ましい。   The surface resistance of the copper wiring is preferably set to about 3Ω / □ or less. This is because the sensor sensitivity is higher when the resistance is lower. Further, since the film 5 having a thickness of about 100 μm is interposed between the upper and lower metal wirings 2, 3, the capacitance is preferably set in the range of 0.5 to 3 pF.

ちなみに、電解銅箔をエッチングにより厚さ13μm、線幅10μm、ピッチ1000μm、開口率98%のメッシュ構成とした場合で、表面抵抗は0.3Ω/□(四端子法による)であった。蒸着銅箔を厚さ1.5μm、線幅5μm、メッシュピッチ250μm(前述のpにほぼ該当)、開口率93%で、表面抵抗は3Ω/□であった。製法上の材質差があるが、表面抵抗は3Ω/□以下の範囲で所望の値に制御できる。   Incidentally, the surface resistance was 0.3Ω / □ (by the four-terminal method) when the electrolytic copper foil was etched to form a mesh structure having a thickness of 13 μm, a line width of 10 μm, a pitch of 1000 μm, and an aperture ratio of 98%. The deposited copper foil had a thickness of 1.5 μm, a line width of 5 μm, a mesh pitch of 250 μm (substantially corresponding to the aforementioned p), an aperture ratio of 93%, and a surface resistance of 3Ω / □. Although there are material differences in manufacturing method, the surface resistance can be controlled to a desired value within a range of 3Ω / □ or less.

フィルム5上に、銅からなる金属配線2,3を敷設したままでは銅配線の表面と側面が大気に露出しており、空気中の水分や酸素などにより銅表面が酸化して次第に抵抗が増加する。85℃95%RHの加速条件では1000時間後に抵抗は20%程度増加する。抵抗の増加は感度の低下を招くので好ましいものではなく抑制する必要がある。   If the metal wiring 2 and 3 made of copper is laid on the film 5, the surface and side surfaces of the copper wiring are exposed to the atmosphere, and the resistance increases gradually due to oxidation of the copper surface by moisture and oxygen in the air. To do. Under an acceleration condition of 85 ° C. and 95% RH, the resistance increases by about 20% after 1000 hours. Since an increase in resistance causes a decrease in sensitivity, it is not preferable and must be suppressed.

本発明では、図2に示すように金属配線2,3の表面が空気と接触しないように、好ましくは酸フリーの有機樹脂からなる保護膜7で完全に被覆するようにしている。フィルムの上に有機樹脂塗膜を形成する手段としては、ロールツーロール方式が適用できればよく、所定の幅の狭いノズルからフィルムに樹脂インクを滴下するダイコート方式あるいはシリンダー版から樹脂インクを転移する方式のいずれでも構わない。印刷方式としては、グラビア印刷、オフセット印刷、フレキソ印刷等の凹版印刷方式から適宜選択して使用できる。ノズルから滴下する方式としては、ダイコート、スリットダイコート、リップコート等から選択して使用できる。いずれも厚みが数μmから50μmの範囲の塗膜が形成できる。   In the present invention, as shown in FIG. 2, the surfaces of the metal wirings 2 and 3 are preferably completely covered with a protective film 7 made of an acid-free organic resin so as not to come into contact with air. As a means for forming an organic resin coating film on a film, a roll-to-roll method may be applied. A die coating method in which resin ink is dropped onto a film from a nozzle having a predetermined width or a method in which resin ink is transferred from a cylinder plate. Any of these may be used. As the printing method, an intaglio printing method such as gravure printing, offset printing, flexographic printing or the like can be appropriately selected and used. The method of dropping from the nozzle can be selected from die coating, slit die coating, lip coating and the like. In any case, a coating film having a thickness ranging from several μm to 50 μm can be formed.

有機樹脂層を組成する電離放射線硬化性組成物は、電磁波、紫外線、可視光線、電子線等の電離放射線エネルギーにより架橋硬化させて使用する硬化性組成物である。紫外線照射による硬化の場合には、波長が150〜450nmの範囲の光を含む高圧水銀灯光源を使用する。電子線硬化の場合には、加速電圧が10〜500kV、より好ましくは30〜200kVの範囲で照射量が3〜300kGyとなる電子線が必要である。   The ionizing radiation curable composition that constitutes the organic resin layer is a curable composition that is used after being crosslinked and cured by ionizing radiation energy such as electromagnetic waves, ultraviolet rays, visible rays, and electron beams. In the case of curing by ultraviolet irradiation, a high pressure mercury lamp light source containing light having a wavelength in the range of 150 to 450 nm is used. In the case of electron beam curing, an electron beam with an irradiation voltage of 3 to 300 kGy in an acceleration voltage range of 10 to 500 kV, more preferably 30 to 200 kV is required.

硬化性組成物の具体例としては(メタ)アクリレート系組成物があるが、分子中に重合性不飽和結合またはエポキシ基を有するプレポリマー、オリゴマー、モノマーの混合物を使用する。プレポリマー、オリゴマーとしては、不飽和ポリエステル類、メタクリレート類、アクリレート類、カチオン重合性エポキシ化合物が挙げられる。   Specific examples of the curable composition include a (meth) acrylate-based composition, and a mixture of a prepolymer, an oligomer and a monomer having a polymerizable unsaturated bond or an epoxy group in the molecule is used. Examples of the prepolymer and oligomer include unsaturated polyesters, methacrylates, acrylates, and cationically polymerizable epoxy compounds.

モノマーとしては、エチレングリコールジアクリレート、プロピレングリコールジアクリレート等の化合物、ジプロピレングリコールジアクリレート等の多官能性化合物、ポリチオール化合物を挙げることができる。この他重合開始剤等が必要である。   Examples of the monomer include compounds such as ethylene glycol diacrylate and propylene glycol diacrylate, polyfunctional compounds such as dipropylene glycol diacrylate, and polythiol compounds. In addition, a polymerization initiator or the like is necessary.

透明なフィルム基材については、コスト面からPETが好ましいが、セルロースジアセテート、セルローストリアセテート等のセルロース系樹脂、ポリエチレン樹脂、ポリプロピレン系樹脂、メタクリル系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリル−(ポリ)スチレン共重合体(AS樹脂)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリアミドイミド系樹脂等から製造される厚みが50〜150μmの範囲の熱可塑系樹脂フィルムが使用できる。   For transparent film base materials, PET is preferable from the viewpoint of cost, but cellulose resins such as cellulose diacetate and cellulose triacetate, polyethylene resins, polypropylene resins, methacrylic resins, cyclic polyolefin resins, polystyrene resins, acrylonitrile- (Poly) styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), polyvinyl chloride resin, poly (meth) acrylic resin, polycarbonate resin, polyester resin, polyamide resin Further, a thermoplastic resin film having a thickness of 50 to 150 μm manufactured from a polyamideimide resin or the like can be used.

次に、タッチパネルの製造方法につき図3の工程図を用いて説明する。   Next, a manufacturing method of the touch panel will be described with reference to the process diagram of FIG.

厚みが100μm、幅が300mmの電解銅箔付きPETフィルムを用いてロールツーロール方式で保護膜付きフィルム状タッチパネルを製造した。   A film-like touch panel with a protective film was manufactured by a roll-to-roll method using a PET film with an electrolytic copper foil having a thickness of 100 μm and a width of 300 mm.

PETフィルムには、厚みが12μmの表面が平滑な電解銅箔が6μm厚の接着剤を介して表裏に積層されている。銅箔をエッチングして形成する銅線の線幅は銅箔の厚みよりは細くできないので、所望の線幅から銅箔のタイプや厚さを決める必要がある。線幅が10μm程度以下と細くなる場合には、フィルム上に蒸着した銅薄膜を用いるのが好ましい。電解銅箔以外では圧延銅箔も使用可能である。   On the PET film, an electrolytic copper foil having a smooth surface having a thickness of 12 μm is laminated on the front and back surfaces through an adhesive having a thickness of 6 μm. Since the line width of the copper wire formed by etching the copper foil cannot be made thinner than the thickness of the copper foil, it is necessary to determine the type and thickness of the copper foil from the desired line width. When the line width is as thin as about 10 μm or less, it is preferable to use a copper thin film deposited on the film. Other than the electrolytic copper foil, a rolled copper foil can also be used.

先ず、厚みが12μmの銅箔11を表裏にラミネートしたロール状PETフィルム5を用意し(図3(a))、銅箔のパターニングを定法のフォトリソ法を適用して実施した。図3では、接着層は省略され、フィルムはシート様に描かれているが長尺のロール状である。図中の矢印は、フィルム基材5の移動方向を模式的に示すものである。   First, a roll-shaped PET film 5 in which a copper foil 11 having a thickness of 12 μm was laminated on both sides was prepared (FIG. 3A), and patterning of the copper foil was performed by applying a regular photolithographic method. In FIG. 3, the adhesive layer is omitted, and the film is drawn like a sheet but is in the form of a long roll. The arrows in the figure schematically indicate the moving direction of the film substrate 5.

ロールコーター13を用いてネガレジスト12を、上側の銅箔11面に6μm程度の厚みで塗布し90℃で30分乾燥した(図3(b))。次に、メッシュ部を構成するストライプパターンと引き出し用電極パターン他を備えたフォトマスクを介してUV光を約100mJ/cm照射した。他方のフィルム面にも同じ厚みでレジスト12を塗布してからフォトマスクを介して露光を行った。レジストとしては、汎用のドライフィルムタイプのネガレジストの他にカゼインレジストも使用することができる。 The negative resist 12 was applied to the upper copper foil 11 surface with a thickness of about 6 μm using a roll coater 13 and dried at 90 ° C. for 30 minutes (FIG. 3B). Next, UV light was irradiated at about 100 mJ / cm 2 through a photomask provided with a stripe pattern constituting the mesh portion and an extraction electrode pattern. The other film surface was coated with resist 12 with the same thickness, and then exposed through a photomask. As a resist, a casein resist can be used in addition to a general-purpose dry film type negative resist.

次いで、3%の炭酸ナトリウム水溶液にてフォトレジスト層に、現像処理を施した。これにより、銅配線のストライプパターンに対応する部分にレジストパターンが形成され、
それ以外の部分のレジストが除去された。
The photoresist layer was then developed with a 3% aqueous sodium carbonate solution. Thereby, a resist pattern is formed in a portion corresponding to the stripe pattern of the copper wiring,
The rest of the resist was removed.

次に、比重1.45の塩化第二鉄液を用いて、表裏同時に銅箔の露出部をエッチング除去し、残ったレジストを剥離した。これにより、フィルム基材5の表裏に、上面視でメッシュ構造をなすストライプ状の金属配線2,3が形成され、同時に外周部には引き出しよう配線6も形成された(図3(c))。   Next, using a ferric chloride solution having a specific gravity of 1.45, the exposed portions of the copper foil were etched away at the same time, and the remaining resist was peeled off. As a result, stripe-shaped metal wirings 2 and 3 having a mesh structure in the top view were formed on the front and back of the film substrate 5, and at the same time, wiring 6 was also formed on the outer peripheral portion so as to lead out (FIG. 3C). .

保護膜用有機樹脂としてPETA(ライトアクリレートPE−3A;固形分濃度100%)を使用し、溶剤にIPAを用いて固形分濃度が50%になるように希釈した。硬化剤としてイルガキュアー18(チバ・スペシャリティー・ケミカルズ(株)製)をPETAに対して5%加え調整した。さらにフッ素系添加剤F−470(DIC株式会社製9を固形分に対し0.1%添加して保護膜用樹脂インクとした。   PETA (light acrylate PE-3A; solid content concentration 100%) was used as the organic resin for the protective film, and the solid content concentration was diluted to 50% using IPA as a solvent. As a curing agent, Irgacure 18 (manufactured by Ciba Specialty Chemicals Co., Ltd.) was added at 5% to PETA for adjustment. Furthermore, 0.1% of fluorine-based additive F-470 (DIC Corporation 9) was added to the solid content to obtain a resin ink for a protective film.

上記の保護膜用インクをグラビアコーター14にて前述のPETフィルムの一方の面に膜厚30μmになるように塗布してから(図3(d))、図示しない乾燥室を通して乾燥した塗膜を得た。その後、備え付けの250W超高圧水銀灯から主波長365nm、照射強度40mJ/cm・秒の紫外線15を40秒照射して塗膜を硬化させた(図3(e))。フィルムを巻き上げロール状にした後、同じ工程を他方の面の金属配線の上にも繰り返して、フィルムの両面が保護膜7で被覆されたフィルム状タッチパネルを得た(図3(f))。 After coating the above protective film ink on one surface of the PET film with a gravure coater 14 to a film thickness of 30 μm (FIG. 3D), the dried coating film was passed through a drying chamber (not shown). Obtained. Thereafter, the coating film was cured by irradiating ultraviolet rays 15 having a main wavelength of 365 nm and an irradiation intensity of 40 mJ / cm 2 · sec for 40 seconds from the 250 W ultra-high pressure mercury lamp provided (FIG. 3E). After the film was rolled up and rolled, the same process was repeated on the metal wiring on the other side to obtain a film-like touch panel in which both surfaces of the film were covered with the protective film 7 (FIG. 3 (f)).

このようにして一貫したロールツーロール方式で保護膜を備えた静電容量型タッチパネルをロール状に製造できた。   In this way, a capacitive touch panel provided with a protective film by a consistent roll-to-roll method could be manufactured in a roll shape.

1、金属配線のメッシュ配置
2、X方向のストライプ電極
3、Y方向のストライプ電極
4、開口部
5、フィルム基材(絶縁性樹脂)
6、引き出し用配線
7、保護層(電離放射線硬化性組成物)
9、交差部
10、タッチパネル
11、銅箔
12、レジスト
13、ロールコーター
14、グラビアコーター
p;開口幅
d;配線幅
1. Metal wiring mesh arrangement 2, stripe electrode 3 in X direction, stripe electrode 4 in Y direction, opening 5, film base material (insulating resin)
6, lead-out wiring 7, protective layer (ionizing radiation curable composition)
9, intersection 10, touch panel 11, copper foil 12, resist 13, roll coater 14, gravure coater p; opening width d; wiring width

Claims (1)

ロール状フィルムの表面と裏面にストライプ状の配線を表裏で互いに直交するように形成する工程と、
ロール状フィルムの表面に電離放射線硬化性組成物を塗布し塗膜を形成する工程と、
電離放射線を塗膜に照射して硬化した皮膜を形成する工程と、
をこの順に有し、
前記皮膜は、酸フリーの有機樹脂からなる保護膜であり、
銅配線の表面抵抗を3Ω/□以下,上下の銅配線間の静電容量を0.5〜3pFの範囲に設定する
ことを特徴とするフィルム状静電容量型タッチパネルの製造方法。
Forming striped copper wiring on the front and back surfaces of the roll film so as to be orthogonal to each other on the front and back;
Applying an ionizing radiation curable composition to the surface of the roll film to form a coating film;
Irradiating the coating with ionizing radiation to form a cured coating;
Have a in this order,
The film is a protective film made of an acid-free organic resin,
A method of manufacturing a film-type capacitive touch panel , comprising setting a surface resistance of a copper wiring to 3Ω / □ or less and a capacitance between upper and lower copper wirings in a range of 0.5 to 3 pF .
JP2012146745A 2012-06-29 2012-06-29 Method for manufacturing film-type capacitive touch panel Active JP6003293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012146745A JP6003293B2 (en) 2012-06-29 2012-06-29 Method for manufacturing film-type capacitive touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012146745A JP6003293B2 (en) 2012-06-29 2012-06-29 Method for manufacturing film-type capacitive touch panel

Publications (2)

Publication Number Publication Date
JP2014010614A JP2014010614A (en) 2014-01-20
JP6003293B2 true JP6003293B2 (en) 2016-10-05

Family

ID=50107287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012146745A Active JP6003293B2 (en) 2012-06-29 2012-06-29 Method for manufacturing film-type capacitive touch panel

Country Status (1)

Country Link
JP (1) JP6003293B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058017A (en) * 2014-09-12 2016-04-21 凸版印刷株式会社 Touch panel and touch type information input image display device using the same
JP2016110367A (en) * 2014-12-05 2016-06-20 欣永立企業有限公司 Configuration of touch electrode substrate and method for manufacturing the same
JP6577846B2 (en) 2015-11-25 2019-09-18 株式会社ジャパンディスプレイ Detection device and display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5253288B2 (en) * 2009-05-08 2013-07-31 グンゼ株式会社 Planar body and touch switch
JP2011113149A (en) * 2009-11-24 2011-06-09 Fujifilm Corp Conductive sheet, use method for the same and capacitance type touch panel
JP2012003900A (en) * 2010-06-15 2012-01-05 Fujifilm Corp Conductive film and method of manufacturing the same, touch panel, and integrated solar cell
JP4870830B2 (en) * 2010-06-22 2012-02-08 日本写真印刷株式会社 Double-sided transparent conductive film excellent in rust prevention and production method thereof
JP5581183B2 (en) * 2010-11-19 2014-08-27 富士フイルム株式会社 Method for manufacturing touch panel and conductive film for touch panel
JP2012123744A (en) * 2010-12-10 2012-06-28 Shin Etsu Polymer Co Ltd Capacitance type input device and manufacturing method thereof, and input method of capacitance type input device

Also Published As

Publication number Publication date
JP2014010614A (en) 2014-01-20

Similar Documents

Publication Publication Date Title
JP2014029614A (en) Film-shaped capacitive touch panel and method for manufacturing the same
CN106104444B (en) Transparent conductive laminate and the touch panel for having transparent conductive laminate
TWI430161B (en) Conductive sheet, method of using conductive sheet, and capacitive touch panel
JP6027633B2 (en) Method for manufacturing touch input sensor and photosensitive conductive film
JP6267340B2 (en) Capacitive touch panel
JP6026447B2 (en) Laminate for touch panel, flat panel display
JP5845765B2 (en) Transparent conductive laminate and method for producing the same
JP2015069508A (en) Touch panel
JP6003293B2 (en) Method for manufacturing film-type capacitive touch panel
WO2015001901A1 (en) Mutual capacitance touch panel
JP2014016935A (en) Method for manufacturing film-state electrostatic capacitance type touch panel
WO2017124618A1 (en) Manufacturing method for projected-capacitance touch screen
KR101515376B1 (en) Method for preparing touch screen panel and touch screen panel prepared from the same
JP6308211B2 (en) Touch panel
JP6063411B2 (en) Conductive film, conductive film manufacturing method, and touch panel
JP2014063444A (en) Transparent conductive film, touch panel, and manufacturing method of transparent conductive film
JP2015045986A (en) Method for manufacturing touch panel film with functional film, and touch panel manufactured by method thereof
JP6244928B2 (en) Manufacturing method of touch panel film with functional film, and touch panel manufactured using the manufacturing method
JP6476578B2 (en) Touch panel
JP2013250633A (en) Film-like capacitive type touch panel and manufacturing method of the same, and image display device
JP2013214185A (en) Touch panel sensor and manufacturing method of the same
KR101391306B1 (en) Method of fabricating touch screen panel by printing method and touch screen panel manufactured by the same
JP2016060089A (en) Transfer foil including circuit layer and manufacturing method of transfer foil
JP2013200994A (en) Transparent conductive film, touch panel, and method for manufacturing transparent conductive film
CN115729371A (en) Thin film sensor, preparation method thereof, touch panel and foldable display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent or registration of utility model

Ref document number: 6003293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250