JP6002779B2 - Non-magnetic high-strength high-manganese steel sheet and method for producing the same - Google Patents

Non-magnetic high-strength high-manganese steel sheet and method for producing the same Download PDF

Info

Publication number
JP6002779B2
JP6002779B2 JP2014548662A JP2014548662A JP6002779B2 JP 6002779 B2 JP6002779 B2 JP 6002779B2 JP 2014548662 A JP2014548662 A JP 2014548662A JP 2014548662 A JP2014548662 A JP 2014548662A JP 6002779 B2 JP6002779 B2 JP 6002779B2
Authority
JP
Japan
Prior art keywords
steel sheet
magnetic
less
strength
manganese steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014548662A
Other languages
Japanese (ja)
Other versions
JP2015507090A (en
Inventor
スン−キュ キム、
スン−キュ キム、
カン−グン チン、
カン−グン チン、
ピル−ヨン オー、
ピル−ヨン オー、
ヒュン−ギュ ファン、
ヒュン−ギュ ファン、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110141738A external-priority patent/KR20130073736A/en
Priority claimed from KR1020110142433A external-priority patent/KR20130074384A/en
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2015507090A publication Critical patent/JP2015507090A/en
Application granted granted Critical
Publication of JP6002779B2 publication Critical patent/JP6002779B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Description

本発明は、配電盤、変圧器等の重電機器に使用可能で非磁性特性を有する高強度高マンガン鋼板に関する。   The present invention relates to a high-strength, high-manganese steel sheet that can be used in heavy electrical equipment such as a distribution board and a transformer and has nonmagnetic properties.

配電盤、変圧器等の素材は、通常、高い強度と共に優れた非磁性特性を必要とする。   Materials such as switchboards and transformers usually require excellent nonmagnetic properties as well as high strength.

このような条件を満たすために、従来ではニッケルとクロムが多量に添加されたステンレス鋼が用いられてきた。しかしながら、上記ステンレス鋼は、強度が低くてコストが高いという問題がある。   In order to satisfy these conditions, stainless steel with a large amount of nickel and chromium has been conventionally used. However, the stainless steel has a problem of low strength and high cost.

強度を高くするためにフェライト系又はマルテンサイト系ステンレス鋼を用いることができるが、上記フェライト系又はマルテンサイト系ステンレス鋼は、高い磁性を有することから、渦電流による電力損失が発生する上、コストが非常に高いという短所がある。   In order to increase the strength, ferritic or martensitic stainless steel can be used. However, since the above ferritic or martensitic stainless steel has high magnetism, power loss due to eddy currents occurs and cost increases. Has the disadvantage of being very expensive.

よって、ステンレス鋼の限界を克服し且つ高い強度と優れた非磁性特性を有する素材が求められている。   Therefore, there is a demand for a material that overcomes the limitations of stainless steel and has high strength and excellent nonmagnetic properties.

本発明の目的は、優れた強度及び成形性を有すると共に優れた非磁性特性を確保した高強度高マンガン鋼板及びこれを製造する方法を提供することである。   An object of the present invention is to provide a high-strength and high-manganese steel sheet having excellent strength and formability and ensuring excellent nonmagnetic properties, and a method for producing the same.

本発明によれば、重量%で、C:0.4〜0.9%、Mn:10〜25%、Al:0.01〜8.0%、Si:0.01〜2.0%、Ti:0.05〜0.2%、B:0.0005〜0.005%、S:0.05%以下(0は除く)、P:0.8%以下(0は除く)、N:0.003〜0.01%、並びに残部Fe及び不可避不純物を含む非磁性高強度高マンガン鋼板が提供される。   According to the present invention, by weight, C: 0.4-0.9%, Mn: 10-25%, Al: 0.01-8.0%, Si: 0.01-2.0%, Ti: 0.05 to 0.2%, B: 0.0005 to 0.005%, S: 0.05% or less (excluding 0), P: 0.8% or less (excluding 0), N: A non-magnetic high-strength high manganese steel sheet containing 0.003-0.01% and the balance Fe and inevitable impurities is provided.

本発明によれば、オーステナイト安定度を大きくして非磁性を確保し、Al等を添加することにより炭素によって炭化物が形成されることを防止してオーステナイトをより安定化させた高マンガン鋼を提供することにより、高い強度を有すると共に成形性に優れるという長所が得られる。したがって、大型変圧器等の構造部材として用いるのに十分な剛性を提供する。   According to the present invention, a high austenite stability is secured by increasing the austenite stability, ensuring the non-magnetism, and preventing the formation of carbides by carbon by adding Al or the like, thereby providing a high manganese steel that further stabilizes austenite. By doing so, the advantage of having high strength and excellent moldability is obtained. Therefore, it provides sufficient rigidity to be used as a structural member such as a large transformer.

図1(a)は発明例1‐7の微細組織を観察した写真であり、図1(b)は比較例1‐4の微細組織を観察した写真である。1A is a photograph observing the microstructure of Invention Example 1-7, and FIG. 1B is a photograph observing the microstructure of Comparative Example 1-4. 図2(a)および(b)はそれぞれ発明鋼2‐1と比較鋼2‐1の相安定度を測定したXRDグラフである。2 (a) and 2 (b) are XRD graphs obtained by measuring the phase stability of the inventive steel 2-1 and the comparative steel 2-1. 図3(a)および(b)はそれぞれ発明鋼2‐1と比較鋼2‐1の微細組織を観察した写真である。FIGS. 3A and 3B are photographs observing the microstructures of the inventive steel 2-1 and the comparative steel 2-1, respectively.

電磁場に露出する素材の渦電流による損失は、素材の磁性と密接な関係がある。磁性が大きいほど渦電流の発生が大きくなるため、損失が増加する。一般に、磁性は、透磁率(μ)に比例する。即ち、透磁率が大きいほど、磁性が増加する。透磁率は、磁化させる磁場(H)に対する誘導磁場(B)の比、即ち、μ=B/Hの式で定義される。即ち、透磁率を減らすと、素材の磁性が減少するため、電場に露出したときに表面における渦電流損失が防止されてエネルギー効率が増加する。したがって、配電盤と変圧器等の素材として磁性のない非磁性鋼板を用いた方がエネルギー損失を防止するのに有利である。   The loss due to the eddy current of the material exposed to the electromagnetic field is closely related to the magnetism of the material. Since the generation of eddy current increases as the magnetism increases, the loss increases. In general, magnetism is proportional to magnetic permeability (μ). That is, the greater the permeability, the greater the magnetism. The magnetic permeability is defined by the ratio of the induced magnetic field (B) to the magnetic field (H) to be magnetized, that is, μ = B / H. That is, when the magnetic permeability is reduced, the magnetism of the material is reduced. Therefore, when exposed to an electric field, eddy current loss at the surface is prevented and energy efficiency is increased. Therefore, it is advantageous to use energy-free non-magnetic steel plates as materials for switchboards and transformers.

よって、本発明者らは、研究を重ねた結果、高強度と非磁性特性を備えるために鋼中にマンガン(Mn)及び炭素(C)を添加してオーステナイト安定性を高くした高マンガン鋼を発明するに至った。本発明では、炭素及びマンガンの含量を制御することにより、オーステナイト相安定度を高くし、アルミニウムを添加することにより、変形中のε‐マルテンサイトの形成及び転位によるスリップ変形を抑制し、優れた強度及び延伸率(成形性)のみならず優れた非磁性特性も有することができる。   Therefore, as a result of repeated research, the present inventors have developed a high manganese steel in which austenite stability is increased by adding manganese (Mn) and carbon (C) to the steel in order to provide high strength and nonmagnetic properties. It came to invent. In the present invention, by controlling the content of carbon and manganese, the austenite phase stability is increased, and by adding aluminum, formation of ε-martensite during deformation and slip deformation due to dislocation are suppressed, and excellent It can have excellent nonmagnetic properties as well as strength and stretch ratio (formability).

以下、本発明について詳細に説明する。まず、本発明の鋼板について詳細に説明する。本発明の鋼板は、下記組成を満たす(以下、重量%)。   Hereinafter, the present invention will be described in detail. First, the steel plate of the present invention will be described in detail. The steel sheet of the present invention satisfies the following composition (hereinafter referred to as “wt%”).

炭素(C):0.4〜0.9%
上記Cは、鋼中のオーステナイト組織を確保するのに必要な元素であり、オーステナイト安定度を十分に確保するために0.4%以上添加されることが好ましい。しかしながら、Cの量が0.9%を超える場合は、炭化物が過度に析出されるため、却って非磁性特性が低下し、鋳造性が低下するという問題がある。したがって、上記Cの含量は0.4〜0.9%であることが好ましい。
Carbon (C): 0.4-0.9%
C is an element necessary for securing an austenite structure in the steel, and is preferably added in an amount of 0.4% or more in order to sufficiently secure the austenite stability. However, when the amount of C exceeds 0.9%, carbides are excessively precipitated, so that there is a problem that the nonmagnetic characteristics are lowered and castability is lowered. Therefore, the C content is preferably 0.4 to 0.9%.

マンガン(Mn):10〜25%
上記Mnは、オーステナイト組織を安定化させる役割をする重要な元素であり、本発明では10%以上含まれる。Mnの量が10%未満の場合は、α’‐マルテンサイト相が存在するため、非磁性特性が低下し、25%を超える場合は、製造原価が大きく増加し、工程上、熱間圧延段階で加熱時に内部酸化がひどく発生して表面品質が低下するという問題がある。したがって、上記Mnの含量は10〜25%であることが好ましい。
Manganese (Mn): 10-25%
Mn is an important element that plays a role of stabilizing the austenite structure, and is contained in an amount of 10% or more in the present invention. When the amount of Mn is less than 10%, the α'-martensite phase is present, so the nonmagnetic characteristics are deteriorated. When it exceeds 25%, the production cost is greatly increased. However, there is a problem that internal oxidation is severely generated during heating and the surface quality is deteriorated. Therefore, the Mn content is preferably 10 to 25%.

アルミニウム(Al):0.01〜8.0%
上記Alは、炭化物が形成されることを防止するのに効果的な元素であり、双晶の分率を調節して成形性を改善する。本発明では、炭素が固溶されてオーステナイトを安定化させるために炭化物が形成されることを防止して非磁性特性を向上させる重要な元素として作用するため、0.01%以上含まれる。しかしながら、8.0%を超える場合は、製造コストが増加し、過度な酸化物の形成によって製品の表面品質が低下する。したがって、上記Alの含量は0.01〜8.0%であることが好ましい。
Aluminum (Al): 0.01 to 8.0%
The Al is an element effective for preventing the formation of carbides, and improves the formability by adjusting the fraction of twins. In the present invention, since carbon acts as an important element for improving the nonmagnetic characteristics by preventing the formation of carbides in order to stabilize the austenite by solid solution, 0.01% or more is contained. However, if it exceeds 8.0%, the manufacturing cost increases, and the surface quality of the product deteriorates due to excessive oxide formation. Therefore, the Al content is preferably 0.01 to 8.0%.

ケイ素(Si):0.01〜2.0%
上記Siは、積層欠陥エネルギーに影響を大きく及ぼさない元素であり、通常、脱酸剤として用いられ、一般の製鋼工程では0.01%程度含有される。また、これを除去しようとする場合はコストが多く発生するため、0.01%含まれることが好ましい。上記Siの含量が2.0%を超える場合は、製造コストが増加し、過度な酸化物の形成によって製品の表面品質が低下する。したがって、上記Siの含量は0.01〜2.0%であることが好ましい。
Silicon (Si): 0.01-2.0%
The Si is an element that does not greatly affect the stacking fault energy, and is usually used as a deoxidizer, and is contained by about 0.01% in a general steelmaking process. Moreover, since it will generate many costs when trying to remove this, it is preferable to contain 0.01%. When the content of Si exceeds 2.0%, the manufacturing cost increases, and the surface quality of the product decreases due to the formation of excessive oxides. Therefore, the content of Si is preferably 0.01 to 2.0%.

チタン(Ti):0.05〜0.2%
上記Tiは、鋼材の内部で窒素と反応して窒化物を沈殿させて双晶を形成する成分であり、強度及び成形性を確保するために添加される。また、上記Tiは、析出相を形成して強度を増加させる役割をするため、0.05%以上含まれることが好ましい。上記Tiの含量が0.2%を超える場合は、沈殿物が過多に形成されて冷間圧延時に微細クラックが形成され、成形性及び溶接性が悪化する可能性がある。したがって、上記Tiの含量は0.05〜0.2%であることが好ましい。
Titanium (Ti): 0.05-0.2%
The Ti is a component that reacts with nitrogen inside the steel material to precipitate nitrides to form twins, and is added to ensure strength and formability. Further, the Ti content is preferably 0.05% or more in order to form a precipitated phase and increase the strength. When the Ti content exceeds 0.2%, an excessive amount of precipitates are formed and fine cracks are formed during cold rolling, which may deteriorate the formability and weldability. Therefore, the Ti content is preferably 0.05 to 0.2%.

ボロン(B):0.0005〜0.005%
上記Bは、微量添加される場合は鋳片の粒界を強化する役割をするため、0.0005%以上含まれることが好ましい。上記Bが過度に含まれている場合は、コストが増加する。したがって、上記Bの含量は0.0005〜0.05%であることが好ましい。
Boron (B): 0.0005 to 0.005%
When B is added in a small amount, it serves to reinforce the grain boundary of the slab, and therefore it is preferably contained in an amount of 0.0005% or more. When the B is excessively included, the cost increases. Therefore, the content of B is preferably 0.0005 to 0.05%.

硫黄(S):0.05%以下(0は除く)
上記Sは、介在物の制御のために0.05%以下に制御される必要がある。上記Sの含量が0.05%を超える場合は、熱間脆性の問題が生じる恐れがある。したがって、その上限を0.05%とすることが好ましい。
Sulfur (S): 0.05% or less (excluding 0)
The S needs to be controlled to 0.05% or less in order to control inclusions. If the S content exceeds 0.05%, a problem of hot brittleness may occur. Therefore, the upper limit is preferably 0.05%.

リン(P):0.8%以下(0は除く)
上記Pは、偏析が発生しやすい元素であり、鋳造時に亀裂を発生させるため、これを防止するために0.8%以下に制御されることが好ましい。上記Pの含量が0.8%を超える場合は、鋳造性が悪化する可能性がある。したがって、その上限を0.8%とすることが好ましい。
Phosphorus (P): 0.8% or less (excluding 0)
P is an element that is easily segregated, and cracks are generated during casting. Therefore, P is preferably controlled to 0.8% or less in order to prevent this. If the P content exceeds 0.8%, castability may deteriorate. Therefore, the upper limit is preferably 0.8%.

窒素(N):0.003〜0.01%
上記Nは、製鋼工程中に大気と反応し、必ず添加される元素である。上記Nの含量が0.003%未満の場合は、工程コストが多く発生し、0.01%を超える場合は、窒化物を形成して成形性を低下させるため、好ましくない。したがって、上記Nの含量は0.003〜0.01%であることが好ましい。
Nitrogen (N): 0.003-0.01%
N is an element that reacts with the atmosphere during the steelmaking process and is always added. If the N content is less than 0.003%, a lot of process costs are generated, and if it exceeds 0.01%, nitrides are formed and formability is lowered, which is not preferable. Therefore, the N content is preferably 0.003 to 0.01%.

残部は、Fe及び不可避不純物を含む。   The balance contains Fe and inevitable impurities.

本発明の鋼板は、その微細組織に炭化物が1体積%以下で含まれていることが好ましい。本発明において炭素は原子状態で固溶されなければならず、これにより、オーステナイト安定度が確保される。即ち、上記炭素が炭化物の形で鋼中に存在すると、オーステナイト安定度が低くなり、透磁率が高くなり、非磁性特性が劣位になる。したがって、本発明では、鋼中の炭化物ができる限り少ないことが好ましく、具体的には、1体積%以下であることが好ましい。特に、上記炭化物は、熱処理後にも1体積%以下で含まれることが好ましい。上記熱処理は、鋼板の製造過程で存在する熱処理のみならず、鋼板の使用過程で行われる熱処理も含む。   The steel sheet of the present invention preferably contains 1% by volume or less of carbide in its microstructure. In the present invention, carbon must be dissolved in an atomic state, thereby ensuring austenite stability. That is, when the carbon is present in the steel in the form of carbide, the austenite stability is lowered, the magnetic permeability is increased, and the nonmagnetic properties are inferior. Therefore, in the present invention, it is preferable that the amount of carbide in the steel is as small as possible, and specifically, it is preferably 1% by volume or less. In particular, the carbide is preferably contained at 1% by volume or less even after heat treatment. The heat treatment includes not only heat treatment existing in the manufacturing process of the steel sheet but also heat treatment performed in the process of using the steel sheet.

一方、本発明の鋼板は、オーステナイト組織を有し、熱処理等の外部エネルギーに対しても非磁性を維持するためにオーステナイト組織を維持するようにする。したがって、本発明の鋼板は、オーステナイト組織を有し、熱処理条件により炭化物が一部(1体積%以下)形成されることが好ましい。   On the other hand, the steel sheet of the present invention has an austenite structure and maintains the austenite structure in order to maintain non-magnetism even with external energy such as heat treatment. Therefore, it is preferable that the steel sheet of the present invention has an austenite structure and a part of carbide (1% by volume or less) is formed depending on heat treatment conditions.

本発明の鋼板は、Alの含量が1.3〜8.0%のときに積層欠陥エネルギー(Stacking Fault Energy、SFE)値が30mJ/cm以上であることが好ましい。積層欠陥エネルギーとは、材料の内部に形成される部分転位間の界面が有するエネルギーのことである。本発明では、Alの含量を制御することにより、積層欠陥エネルギーを制御するため、オーステナイト相の相安定性を向上させる。 The steel sheet of the present invention preferably has a stacking fault energy (SFE) value of 30 mJ / cm 2 or more when the Al content is 1.3 to 8.0%. The stacking fault energy is the energy that the interface between the partial dislocations formed in the material has. In the present invention, since the stacking fault energy is controlled by controlling the Al content, the phase stability of the austenite phase is improved.

上記積層欠陥エネルギーが適当な値を有する場合は、転位と双晶が調和するため、相安定性が増加するが、低すぎる場合は、転位が生成・移動することができないため、相安定性が減少し、高すぎる場合は、転位のみで変形が進行されるため、強度が上昇する。よって、本発明は、適当な強度を有し且つ相安定性を得るために最適の積層欠陥エネルギーを導出した。   When the stacking fault energy has an appropriate value, dislocations and twins harmonize with each other, so the phase stability increases.However, when too low, dislocations cannot be generated / moved, so the phase stability is low. If it decreases and is too high, the deformation proceeds only by dislocations, and the strength increases. Therefore, the present invention has derived the optimum stacking fault energy in order to have an appropriate strength and obtain phase stability.

上記積層欠陥エネルギーが30mJ/cm未満の場合は、双晶が生成されて強度が上昇するが、ε‐マルテンサイトが形成される。上記ε‐マルテンサイトは、稠密立方構造を有し、非磁性であるが、通常、α‐マルテンサイトをよく形成するため、磁性を増加させる。したがって、非磁性を維持しながら双晶を形成して高強度を有するためには、積層欠陥エネルギー値が30mJ/cm以上であるのが良い。 When the stacking fault energy is less than 30 mJ / cm 2 , twins are formed and the strength is increased, but ε-martensite is formed. The ε-martensite has a dense cubic structure and is non-magnetic. However, normally, α-martensite is well formed, so that the magnetism is increased. Therefore, in order to form twins and maintain high strength while maintaining non-magnetism, the stacking fault energy value is preferably 30 mJ / cm 2 or more.

一方、上記積層欠陥エネルギーを測定する方法としては、X線測定法、透過電子顕微鏡測定法、熱力学計算法等の多様な方法があるが、成分の影響をよく反映し測定が容易な熱力学データを用いた熱力学計算法が最も好ましい。   On the other hand, there are various methods for measuring the stacking fault energy, such as an X-ray measurement method, a transmission electron microscope measurement method, and a thermodynamic calculation method. The thermodynamic calculation method using data is most preferable.

本発明の鋼板は、800MPa以上の引張強度を有し、15%以上の延伸率を確保することにより、優れた強度及び加工性を保有することが好ましい。   The steel sheet of the present invention preferably has a tensile strength of 800 MPa or more and possesses excellent strength and workability by securing a draw ratio of 15% or more.

以下、本発明の製造方法について詳細に説明する。   Hereinafter, the production method of the present invention will be described in detail.

上記組成を満たす鋼スラブを1100〜1250℃で再加熱する。上記加熱温度が低すぎる場合は熱間圧延時に圧延荷重が過度にかかる可能性があるため、1100℃以上の温度で加熱することが好ましい。加熱温度が高いほど熱間圧延が容易となるが、Mnの含量が高い鋼の場合は高温加熱時に内部酸化がひどく発生して表面品質が低下する可能性があるため、上記再加熱温度の上限を1250℃とすることが好ましい。   A steel slab satisfying the above composition is reheated at 1100 to 1250 ° C. When the heating temperature is too low, a rolling load may be excessively applied during hot rolling, and thus heating at a temperature of 1100 ° C. or higher is preferable. The higher the heating temperature, the easier the hot rolling, but in the case of steel with a high Mn content, internal oxidation may occur severely during high-temperature heating and the surface quality may deteriorate, so the upper limit of the above reheating temperature Is preferably 1250 ° C.

上記再加熱後、熱間圧延を行い、800〜1000℃で熱間仕上げ圧延を行う。熱間仕上げ圧延温度が高いほど、変形抵抗が低くなって圧延が容易となるが、表面品質は低下する可能性があるため、1000℃以下で行うことが好ましい。また、熱間仕上げ圧延温度が低すぎる場合は圧延中に負荷が大きくなるため、800℃以上で行うことが好ましい。   After the reheating, hot rolling is performed, and hot finish rolling is performed at 800 to 1000 ° C. The higher the hot finish rolling temperature, the lower the deformation resistance and the easier the rolling, but the surface quality may be lowered, so it is preferable to carry out at 1000 ° C. or lower. In addition, when the hot finish rolling temperature is too low, the load increases during rolling.

上記熱間圧延後、巻き取る段階を行う。上記巻取は、400〜700℃で行われることが好ましい。通常、上記巻取後の冷却速度は遅い場合が多い。巻取開始温度が低すぎる場合は冷却のために多量の冷却水が必要とされ、巻取時に荷重が大きく作用するため、巻取開始温度を400℃以上とする。巻取温度が高温の場合は巻取後の冷却過程中に板の表面の酸化皮膜と鋼板のマトリックス組織との反応が起こって酸洗性を悪化させるため、700℃以下の温度で行うことが好ましい。   After the hot rolling, a winding step is performed. The winding is preferably performed at 400 to 700 ° C. Usually, the cooling rate after the winding is often slow. When the winding start temperature is too low, a large amount of cooling water is required for cooling, and a large load is applied during winding, so the winding start temperature is set to 400 ° C. or higher. When the coiling temperature is high, a reaction between the oxide film on the surface of the plate and the matrix structure of the steel plate occurs during the cooling process after winding, and the pickling property is deteriorated. preferable.

上記熱間圧延後、巻取前に水冷を行うことが好ましい。   It is preferable to perform water cooling after the hot rolling and before winding.

上記のように製造された熱延鋼板を冷間圧延して冷延鋼板を製造する。上記冷間圧延時の圧下率は、通常、製品の厚さによって決まる。本発明では、冷間圧延後の熱処理過程で再結晶が行われるため、再結晶の駆動力をよく制御する必要がある。即ち、冷間圧延時の圧下率が低すぎる場合は製品の強度が落ちることから、30%以上の圧下率で行うことが好ましく、圧下率が高すぎる場合は強度の確保には有利であるが圧延器の負荷が増加することから、60%以下の圧下率で行うことが好ましい。   The hot-rolled steel sheet manufactured as described above is cold-rolled to manufacture a cold-rolled steel sheet. The rolling reduction during the cold rolling is usually determined by the thickness of the product. In the present invention, since recrystallization is performed in the heat treatment process after cold rolling, the driving force for recrystallization needs to be well controlled. That is, if the rolling reduction at the time of cold rolling is too low, the strength of the product is lowered, so it is preferable to carry out at a rolling reduction of 30% or more, and when the rolling reduction is too high, it is advantageous for securing the strength. Since the load on the rolling mill increases, the rolling reduction is preferably 60% or less.

上記冷間圧延後、連続焼鈍を行う。上記連続焼鈍は、650〜900℃で行われることが好ましい。連続焼鈍は、再結晶が十分に起こる650℃以上で行われることが好ましいが、焼鈍温度が高すぎる場合は表面に酸化物が形成され、連続作業が行われる前/後の連結製品との作業性が低下するため、900℃以下で行われることが好ましい。   After the cold rolling, continuous annealing is performed. The continuous annealing is preferably performed at 650 to 900 ° C. The continuous annealing is preferably performed at 650 ° C. or more at which recrystallization occurs sufficiently. However, when the annealing temperature is too high, oxides are formed on the surface, and work with the connected product before / after the continuous operation is performed. It is preferable to be performed at 900 ° C. or lower because the properties are reduced.

以下、本発明の実施例について詳細に説明する。下記実施例は、本発明の理解のためのものであり、本発明を限定するものではない。   Examples of the present invention will be described in detail below. The following examples are for the understanding of the present invention and are not intended to limit the present invention.

(実施例1)
下記表1の組成を満たす鋼スラブを1200℃に再加熱し、900℃で熱間仕上げ圧延を行い、500℃で巻き取った後、50%の圧下率で冷間圧延し、800℃で連続焼鈍を行って、冷延鋼板を製造した。
Example 1
A steel slab satisfying the composition shown in Table 1 below is reheated to 1200 ° C., hot-finished at 900 ° C., wound at 500 ° C., cold-rolled at a reduction rate of 50%, and continuously at 800 ° C. Annealing was performed to produce a cold-rolled steel sheet.

上記鋼板の物理的性質を調べるために降伏強度、引張強度及び延伸率を測定し、その結果を下記表2に示した。   In order to investigate the physical properties of the steel sheet, the yield strength, tensile strength, and stretch ratio were measured, and the results are shown in Table 2 below.

上記製造された鋼板について、介在物の分率と熱処理条件による炭化物の分率と磁場25kA/mにおける相対透磁率を測定した。上記熱処理は、製造過程での熱処理又は鋼板の使用中に行われる熱処理を模擬したものである。   About the manufactured steel plate, the fraction of inclusions, the fraction of carbide according to heat treatment conditions, and the relative permeability at a magnetic field of 25 kA / m were measured. The heat treatment simulates heat treatment in the manufacturing process or heat treatment performed during use of the steel sheet.

一方、透磁率は、真空における透磁率と特定雰囲気における透磁率の比である相対透磁率で表示される。本発明では、真空と大気における透磁率比である相対透磁率μを測定した。測定にはVSM(Vibrating Sample Magnetometer)装備を用い、VSMを用いてHall probeによって加えた印加磁場を記録し、ファラデー法則により試料に振動を加えられたときに得られる起電力を記録して試料の磁化値を測定する。VSMは、上記のような基本作動原理によって試料に振動を加えるときに発生する誘導起電力をサーチコイルで検出し、この起電力によって試料の磁化値を測定する方法である。材料の磁気的特性を磁場、温度、時間の関数で簡単に測定することができ、最大2テスラの磁力と2 K〜1273 Kの温度範囲の速い測定が可能である。また、粉末、薄膜、単結晶、液体等のほとんどの形の試料を測定することができるという長所があるため、磁性測定方法として広く用いられている。 On the other hand, the magnetic permeability is displayed as a relative magnetic permeability that is a ratio of the magnetic permeability in a vacuum and the magnetic permeability in a specific atmosphere. In the present invention, it was measured relative permeability mu r is the permeability ratio of the vacuum and the atmosphere. For measurement, a VSM (Vibrating Sample Magnetometer) equipment is used, the applied magnetic field applied by the Hall probe is recorded using the VSM, and the electromotive force obtained when the sample is vibrated by Faraday's law is recorded. Measure the magnetization value. VSM is a method for detecting an induced electromotive force generated when a vibration is applied to a sample according to the basic operation principle as described above, by a search coil, and measuring the magnetization value of the sample by this electromotive force. The material's magnetic properties can be easily measured as a function of magnetic field, temperature, and time, and a maximum of 2 Tesla magnetic force and a fast measurement in the temperature range of 2 K to 1273 K are possible. In addition, it is widely used as a magnetic measurement method because it has the advantage that most types of samples such as powder, thin film, single crystal, and liquid can be measured.

上記表3の結果から、熱処理条件である400℃、1時間で熱処理を行った場合、炭化物の分率が1体積%以下のときは透磁率が1.05以下と優れた非磁性特性を有することが分かる。また、より過酷な熱処理条件である600℃、5時間で熱処理を行った場合も、炭化物の分率が1体積%以下のときは透磁率が1.10を超えないことが分かる。   From the results of Table 3 above, when heat treatment is performed at 400 ° C. for 1 hour, which is the heat treatment condition, when the carbide fraction is 1% by volume or less, the magnetic permeability is 1.05 or less and excellent nonmagnetic characteristics are obtained. I understand that. It can also be seen that when the heat treatment is performed at 600 ° C. for 5 hours, which is a more severe heat treatment condition, the magnetic permeability does not exceed 1.10 when the carbide fraction is 1% by volume or less.

一方、上記発明例1‐7と比較例1‐3の微細組織を観察してそれぞれ図1(a)及び(b)に示した。図1を参照すると、本発明例は、炭化物の分率が非常に少ないが、本発明の範囲を外れた比較例は、炭化物の分率が1体積%を超えて非磁性特性が劣位にあることが分かる。   On the other hand, the microstructures of Invention Example 1-7 and Comparative Example 1-3 were observed and shown in FIGS. 1 (a) and 1 (b), respectively. Referring to FIG. 1, the present invention example has a very small fraction of carbide, but the comparative example outside the scope of the present invention has a non-magnetic property inferior because the fraction of carbide exceeds 1% by volume. I understand that.

したがって、炭化物の分率が1体積%以下のとき、優れた非磁性特性を確保することができることが分かる。   Therefore, it can be seen that when the carbide fraction is 1% by volume or less, excellent nonmagnetic characteristics can be secured.

(実施例2)
下記表4の組成(重量%)を満たす鋼スラブを1200℃に再加熱し、900℃で熱間仕上げ圧延を行い、500℃で巻き取った後、50%の圧下率で冷間圧延し、800℃で連続焼鈍を行って、冷延鋼板を製造した。
(Example 2)
A steel slab satisfying the composition (% by weight) shown in Table 4 below was reheated to 1200 ° C., subjected to hot finish rolling at 900 ° C., wound at 500 ° C., and then cold-rolled at a reduction rate of 50%. Continuous annealing was performed at 800 ° C. to produce a cold-rolled steel sheet.

上記冷延鋼板について、降伏強度(YS)、引張強度(TS)及び延伸率を測定し、その結果を表5に示した。また、積層欠陥エネルギー(SFE)及び相対透磁率を測定し、その結果を表5に一緒に示した。相対透磁率は50kA/mの磁場で測定され、他のものは上記実施例1と同じ条件で行われた。   With respect to the cold-rolled steel sheet, the yield strength (YS), tensile strength (TS), and stretch ratio were measured, and the results are shown in Table 5. In addition, stacking fault energy (SFE) and relative permeability were measured, and the results are shown together in Table 5. The relative permeability was measured with a magnetic field of 50 kA / m, and the others were performed under the same conditions as in Example 1 above.

上記表5の結果から、本発明の範囲を満たす発明例は、すべて積層欠陥エネルギー(SFE)が30mJ/cm 以上であり且つ相対透磁率が低いことが分かる。即ち、優れた非磁性特性が確保され、相安定性が高いことが分かる。
From the results of Table 5 above, it can be seen that all the inventive examples satisfying the scope of the present invention have a stacking fault energy (SFE) of 30 mJ / cm 2 or more and a low relative magnetic permeability. That is, it can be seen that excellent non-magnetic properties are ensured and phase stability is high.

これに対し、比較例は、上記積層欠陥エネルギー又は相対透磁率のいずれか一つの効果を確保するのが困難であるという問題があることが分かる。   On the other hand, it can be seen that the comparative example has a problem that it is difficult to ensure any one of the stacking fault energy and the relative permeability.

一方、図2はそれぞれ上記発明例2‐1と比較例2‐1のXRDを分析したグラフである。図2(a)と(b)はそれぞれ発明例と比較例の相安定度を特定して積層欠陥エネルギーの影響を確認したものであり、図3(a)と(b)はそれぞれ上記発明例2‐1と比較例2‐1の微細組織を観察したものである。図2及び3から、本発明の範囲を満たす発明例は、全範囲にわたって均一な双晶が発生したため、優れた相安定性を有することが分かる。これに対し、比較例は、積層欠陥エネルギーが低くて変形後に双晶の発生が大きくなり、一部の結晶粒では双晶が発生しないことが分かる。   On the other hand, FIG. 2 is a graph obtained by analyzing the XRDs of the invention example 2-1 and the comparative example 2-1. FIGS. 2 (a) and 2 (b) show the effects of stacking fault energy by specifying the phase stability of the inventive example and the comparative example, respectively. FIGS. The microstructures of 2-1 and Comparative Example 2-1 were observed. 2 and 3, it can be seen that the invention examples satisfying the scope of the present invention have excellent phase stability because uniform twins are generated over the entire range. On the other hand, in the comparative example, the stacking fault energy is low, and the generation of twins increases after deformation, and it can be seen that some crystals do not generate twins.

Claims (4)

重量%で、C:0.4〜0.9%、Mn:10〜25%、Al:1.3〜8.0%、Si:0.01〜2.0%、Ti:0.05〜0.2%、B:0.0005〜0.005%、S:0.05%以下(0は除く)、P:0.8%以下(0は除く)、N:0.003〜0.01%、並びに残部Fe及び不可避不純物からなり、微細組織のうち炭化物の分率が1体積%以下である、非磁性高強度高マンガン鋼板であって、
前記鋼板の積層欠陥エネルギーが30mJ/cm 以上であり、
前記鋼板の相対透磁率が25kA/mの磁場で1.10以下である
非磁性高強度高マンガン鋼板。
In weight%, C: 0.4-0.9%, Mn: 10-25%, Al: 1.3-8.0%, Si: 0.01-2.0%, Ti: 0.05- 0.2%, B: 0.0005-0.005%, S: 0.05% or less (excluding 0), P: 0.8% or less (excluding 0), N: 0.003-0. 01%, and the balance Fe and inevitable impurities, the fraction of carbide in the microstructure is 1% by volume or less, non-magnetic high strength high manganese steel sheet,
The stacking fault energy of the steel sheet is 30 mJ / cm 2 or more,
The relative permeability of the steel sheet is 1.10 or less in a magnetic field of 25 kA / m .
Non-magnetic high strength high manganese steel sheet.
前記鋼板は相対透磁率が50kA/mの磁場で1.05以下である、請求項1に記載の非磁性高強度高マンガン鋼板。 The non-magnetic high-strength high-manganese steel sheet according to claim 1 , wherein the steel sheet has a relative magnetic permeability of 1.05 or less in a magnetic field of 50 kA / m. 前記鋼板の引張強度は800MPa以上、延伸率は15%以上である、請求項1または2に記載の非磁性高強度高マンガン鋼板。 The non-magnetic high-strength high-manganese steel sheet according to claim 1 or 2 , wherein the steel sheet has a tensile strength of 800 MPa or more and a draw ratio of 15% or more. 重量%で、C:0.4〜0.9%、Mn:10〜25%、Al:1.3〜8.0%、Si:0.01〜2.0%、Ti:0.05〜0.2%、B:0.0005〜0.005%、S:0.05%以下(0は除く)、P:0.8%以下(0は除く)、N:0.003〜0.01%、並びに残部Fe及び不可避不純物からなる鋼スラブを1100〜1250℃に再加熱する段階と、
前記再加熱された鋼スラブを熱間圧延し、800〜950℃で仕上げ圧延する熱間圧延する段階と、
前記熱間圧延された鋼板を400〜700℃で巻き取る段階と、
30〜60%の圧下率で冷間圧延する段階と、
前記冷間圧延された鋼板を650〜900℃で連続焼鈍する段階
とを含む、非磁性高強度高マンガン鋼板の製造方法であって、
前記鋼板が請求項1〜3のいずれか1項に記載の非磁性高強度高マンガン鋼板である、非磁性高強度高マンガン鋼板の製造方法
In weight%, C: 0.4-0.9%, Mn: 10-25%, Al: 1.3-8.0%, Si: 0.01-2.0%, Ti: 0.05- 0.2%, B: 0.0005-0.005%, S: 0.05% or less (excluding 0), P: 0.8% or less (excluding 0), N: 0.003-0. Reheating the steel slab consisting of 01% and the balance Fe and inevitable impurities to 1100 to 1250 ° C .;
Hot rolling the reheated steel slab and finishing rolling at 800-950 ° C .;
Winding the hot-rolled steel sheet at 400 to 700 ° C .;
Cold rolling at a rolling reduction of 30-60%,
A step of continuously annealing the cold-rolled steel sheet at 650 to 900 ° C., and a method for producing a non-magnetic high-strength high-manganese steel sheet ,
The manufacturing method of the nonmagnetic high intensity | strength high manganese steel plate whose said steel plate is the nonmagnetic high intensity high manganese steel plate of any one of Claims 1-3 .
JP2014548662A 2011-12-23 2012-12-20 Non-magnetic high-strength high-manganese steel sheet and method for producing the same Active JP6002779B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR1020110141738A KR20130073736A (en) 2011-12-23 2011-12-23 High strength non-magnetic steel sheet having excellent austenite stability and method for manufacturing the same
KR10-2011-0141738 2011-12-23
KR1020110142433A KR20130074384A (en) 2011-12-26 2011-12-26 High strength and high manganese steel sheet having excellent non-magnetic property and method for manufacturing the same
KR10-2011-0142433 2011-12-26
PCT/KR2012/011168 WO2013095005A1 (en) 2011-12-23 2012-12-20 Non-magnetic high manganese steel sheet with high strength and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015507090A JP2015507090A (en) 2015-03-05
JP6002779B2 true JP6002779B2 (en) 2016-10-05

Family

ID=48668813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014548662A Active JP6002779B2 (en) 2011-12-23 2012-12-20 Non-magnetic high-strength high-manganese steel sheet and method for producing the same

Country Status (5)

Country Link
US (1) US20150211088A1 (en)
EP (1) EP2796585B1 (en)
JP (1) JP6002779B2 (en)
CN (1) CN104011248B (en)
WO (1) WO2013095005A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6185865B2 (en) * 2013-03-21 2017-08-23 株式会社神戸製鋼所 Nonmagnetic steel excellent in low-temperature bending workability and method for producing the same
JP6154768B2 (en) * 2013-03-21 2017-06-28 株式会社神戸製鋼所 Nonmagnetic steel with excellent low-temperature bending workability
KR101518599B1 (en) * 2013-10-23 2015-05-07 주식회사 포스코 High manganess steel sheet with high strength and excellent vibration isolation property and mathod for manufacturing the same
CN104087872B (en) * 2014-06-24 2016-04-06 宁国市正兴耐磨材料有限公司 A kind of blower mill strike plate
KR101889187B1 (en) * 2015-12-23 2018-08-16 주식회사 포스코 Nonmagnetic steel having superior hot workability and method for manufacturing the same
KR101747034B1 (en) * 2016-04-28 2017-06-14 주식회사 포스코 Ultra high strength and high ductility steel sheet having excellent yield ratio, and method for manufacturing the same
WO2017203315A1 (en) 2016-05-24 2017-11-30 Arcelormittal Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts
WO2017203311A1 (en) * 2016-05-24 2017-11-30 Arcelormittal Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts
WO2017203310A1 (en) 2016-05-24 2017-11-30 Arcelormittal Method for producing a twip steel sheet having an austenitic microstructure
WO2017203312A1 (en) * 2016-05-24 2017-11-30 Arcelormittal Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts
KR101977507B1 (en) * 2017-12-22 2019-05-10 주식회사 포스코 Steel sheet for magnetic field shielding and method for manufacturing the same
KR102255827B1 (en) * 2018-10-25 2021-05-26 주식회사 포스코 Low-temperature austenitic high manganese steel having excellent surface quality and manufacturing method for the same
KR102119962B1 (en) * 2018-10-25 2020-06-05 주식회사 포스코 High-strength and high-ductility steel having excellent weldability and method for manufacturing thereof
EP3771746A1 (en) * 2019-08-02 2021-02-03 ThyssenKrupp Steel Europe AG Steel, steel sheet product, method for producing steel sheet product and use thereof
KR102218441B1 (en) * 2019-10-08 2021-02-19 주식회사 포스코 High strength wire rod having non-magnetic property and method for manufacturing thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558474A (en) * 1978-07-04 1980-01-22 Kobe Steel Ltd Non-magnetic high manganese steel excellent in weldability and machinability
JPH02104633A (en) * 1989-07-28 1990-04-17 Daido Steel Co Ltd High strength and non-magnetic high manganese steel
JPH0717949B2 (en) * 1990-10-05 1995-03-01 株式会社神戸製鋼所 Method for producing high Mn non-magnetic steel excellent in local deformability
JPH05195156A (en) * 1991-11-15 1993-08-03 Nippon Steel Corp High-manganese ultrahigh tensile strength steel excellent in toughness in heat affected zone and its production
ES2121985T3 (en) * 1991-12-30 1998-12-16 Po Hang Iron & Steel MANGANESE RICH AUSTENITIC STEEL SHEET WITH SUPERIOR CONFORMABILITY, STRENGTH AND WELDABILITY, AND PROCEDURE FOR ITS MANUFACTURE.
JP3182995B2 (en) * 1993-10-15 2001-07-03 株式会社神戸製鋼所 High Mn non-magnetic steel with excellent stress corrosion cracking resistance and mechanical properties
FR2857980B1 (en) * 2003-07-22 2006-01-13 Usinor PROCESS FOR MANUFACTURING HIGH-STRENGTH FERRO-CARBON-MANGANESE AUSTENITIC STEEL SHEET, EXCELLENT TENACITY AND COLD SHAPINGABILITY, AND SHEETS THUS PRODUCED
KR100742833B1 (en) * 2005-12-24 2007-07-25 주식회사 포스코 High Mn Steel Sheet for High Corrosion Resistance and Method of Manufacturing Galvanizing the Steel Sheet
KR100742823B1 (en) * 2005-12-26 2007-07-25 주식회사 포스코 High Manganese Steel Strips with Excellent Coatability and Superior Surface Property, Coated Steel Strips Using Steel Strips and Method for Manufacturing the Steel Strips
KR100851158B1 (en) * 2006-12-27 2008-08-08 주식회사 포스코 High Manganese High Strength Steel Sheets With Excellent Crashworthiness, And Method For Manufacturing Of It
KR100957992B1 (en) * 2007-12-27 2010-05-17 주식회사 포스코 High Manganese Steel Sheet having Excellent Pickling Property and Manufacturing Method Thereof
KR20090070509A (en) * 2007-12-27 2009-07-01 주식회사 포스코 High manganese coated steel sheet having high strength and ductility and manufacturing method thereof
KR100957974B1 (en) * 2007-12-27 2010-05-17 주식회사 포스코 High Managese Steel Plate, Hot Rolled Steel Plate, Cold Rolled Steel Plate, Galvanized Steel Plate Having Excellent Hole Expansibility and Manufacturing Method Thereof
KR20110009792A (en) * 2009-07-23 2011-01-31 주식회사 포스코 Austenitic steel sheet with high hot ductility and high resistance of delayed fracture and process for manufacturing of the same

Also Published As

Publication number Publication date
CN104011248B (en) 2016-08-17
EP2796585A4 (en) 2016-02-24
CN104011248A (en) 2014-08-27
EP2796585A1 (en) 2014-10-29
EP2796585B1 (en) 2017-09-27
WO2013095005A1 (en) 2013-06-27
US20150211088A1 (en) 2015-07-30
JP2015507090A (en) 2015-03-05

Similar Documents

Publication Publication Date Title
JP6002779B2 (en) Non-magnetic high-strength high-manganese steel sheet and method for producing the same
Li et al. A ductile high entropy alloy with attractive magnetic properties
JP6226072B2 (en) Electrical steel sheet
JP6651759B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
Schulte et al. Effect of manganese in high silicon alloyed non-oriented electrical steel sheets
Sahoo et al. Recrystallization behaviour and texture of non-oriented electrical steels
KR20190075991A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6379100B2 (en) Directional silicon steel and method for producing the same
JP4389691B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JPWO2011105327A1 (en) Non-oriented electrical steel sheet
KR102569224B1 (en) Electrical steel sheet and manufacturing method thereof
US20230193413A1 (en) Method for producing an no electric strip of intermediate thickness
JP6481287B2 (en) Fe-based metal plate with excellent magnetic properties
JP2017106059A (en) Nonoriented magnetic steel sheet and production method therefor
KR20130073736A (en) High strength non-magnetic steel sheet having excellent austenite stability and method for manufacturing the same
Capdevila Electrical Steels
KR20130074384A (en) High strength and high manganese steel sheet having excellent non-magnetic property and method for manufacturing the same
JP2011184787A (en) High tensile strength non-oriented electromagnetic steel sheet having excellent high frequency iron loss
Xie et al. Texture optimization for intermediate Si-containing non-oriented electrical steel
Kustas Shear-based deformation processing and characterization of electrical steel sheet
KR20140073473A (en) High strength and high manganese steel sheet having excellent non-magnetic property and method for manufacturing the same
JP4192403B2 (en) Electrical steel sheet used under DC bias
KR102271303B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
Hou Effects of sulfur content and slab reheating temperature on the magnetic properties of fully processed nonoriented electrical steels
JP5826284B2 (en) Wire rods, steel wires having excellent magnetic properties, and methods for producing them

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160607

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160905

R150 Certificate of patent or registration of utility model

Ref document number: 6002779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250