KR102255827B1 - Low-temperature austenitic high manganese steel having excellent surface quality and manufacturing method for the same - Google Patents

Low-temperature austenitic high manganese steel having excellent surface quality and manufacturing method for the same Download PDF

Info

Publication number
KR102255827B1
KR102255827B1 KR1020190118927A KR20190118927A KR102255827B1 KR 102255827 B1 KR102255827 B1 KR 102255827B1 KR 1020190118927 A KR1020190118927 A KR 1020190118927A KR 20190118927 A KR20190118927 A KR 20190118927A KR 102255827 B1 KR102255827 B1 KR 102255827B1
Authority
KR
South Korea
Prior art keywords
less
present
surface quality
slab
rolling
Prior art date
Application number
KR1020190118927A
Other languages
Korean (ko)
Other versions
KR20200047320A (en
Inventor
김성규
하유미
이동호
이운해
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201980068253.3A priority Critical patent/CN112888804A/en
Priority to PCT/KR2019/014170 priority patent/WO2020085851A1/en
Priority to EP19877327.7A priority patent/EP3872217A4/en
Publication of KR20200047320A publication Critical patent/KR20200047320A/en
Application granted granted Critical
Publication of KR102255827B1 publication Critical patent/KR102255827B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0231Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Abstract

본 발명의 일 측면에 따른 표면품질이 우수한 극저온용 오스테나이트계 고 망간 강재는, 중량%로, C: 0.4~0.5%, Mn: 23~26%, Si: 0.03~0.5%, Cr: 3~5%, Al: 0.05% 이하, S: 0.05% 이하, P: 0.5% 이하, B: 0.005% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, 95면적% 이상의 오스테나이트를 미세조직으로 포함하되, 광학현미경을 이용한 단면 관찰 시, 표면으로부터 t/8(여기서 t는 제품 두께(mm)를 의미함) 지점까지의 영역에서 관찰되는 표면 흠 중 표면으로부터 10㎛ 이상의 깊이로 형성된 표면 흠의 개수가 단위 면적(mm2)당 0.0001개 이하일 수 있다.Cryogenic austenitic high manganese steel having excellent surface quality according to an aspect of the present invention, by weight, C: 0.4 to 0.5%, Mn: 23 to 26%, Si: 0.03 to 0.5%, Cr: 3 to 5%, Al: 0.05% or less, S: 0.05% or less, P: 0.5% or less, B: 0.005% or less, the balance contains Fe and inevitable impurities, and contains 95 area% or more of austenite as a microstructure, optical When observing a cross section using a microscope, the number of surface flaws formed to a depth of 10 μm or more from the surface is a unit area among the surface flaws observed in the area from the surface to the point t/8 (where t means product thickness (mm)). It may be 0.0001 or less per (mm 2 ).

Description

표면품질이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법{Low-temperature austenitic high manganese steel having excellent surface quality and manufacturing method for the same} Low-temperature austenitic high manganese steel having excellent surface quality and manufacturing method for the same}

본 발명은 액화석유가스, 액화천연가스 등의 저장 및 운반을 위한 연료탱크, 저장탱크, 선박용 멤브레인 및 수송용 파이프 등에 적합한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법에 관한 것이며, 상세하게는 표면 흠 형성을 억제하여 표면품질을 효과적으로 확보한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법에 관한 것이다. The present invention relates to a cryogenic austenitic high manganese steel material suitable for storage and transport of liquefied petroleum gas and liquefied natural gas, storage tanks, ship membranes and transport pipes, and a method of manufacturing the same, in detail The present invention relates to a cryogenic austenitic high manganese steel material for effectively securing surface quality by suppressing the formation of surface flaws, and a method of manufacturing the same.

오스테나이트계 고망간(Mn) 강은 오스테나이트의 상 안정성을 높여주는 원소인 망간(Mn)과 탄소(C)의 함량을 조율하여 상온 또는 극저온에서도 오스테나이트 상이 안정하여 높은 인성을 가지므로, 극저온 특성이 요구되는 액화석유가스, 액화천연가스 등의 저장 및 운반을 위한 연료탱크, 저장탱크, 선박용 멤브레인 및 수송용 파이프 등의 소재로 사용될 수 있다. The austenitic high manganese (Mn) steel adjusts the content of manganese (Mn) and carbon (C), which are elements that enhance the phase stability of austenite, so that the austenite phase is stable at room temperature or cryogenic temperature and has high toughness. It can be used as a material for storage and transport of liquefied petroleum gas, liquefied natural gas, etc. that require characteristics, such as fuel tanks, storage tanks, ship membranes, and transport pipes.

다만, 고망간(Mn) 강은 산화 경향이 강한 망간(Mn)을 다량 포함하므로, 슬라브 재가열 시 형성된 입계산화 중 일부는 스케일로 제거되지만, 일부는 열간압연 시 크랙으로 성장하여 제품의 표면에 표면 흠으로 잔존할 수 있다. 따라서, 고망간(Mn) 강의 제조 시 제품 표면의 그라인딩 공정이 필수적으로 수반되는바, 경제성 및 생산성 측면에서 바람직하지 않다. However, high manganese (Mn) steel contains a large amount of manganese (Mn), which has a strong tendency to oxidize, so some of the grain boundary oxidation formed when the slab is reheated is removed as scale, but some of it grows into cracks during hot rolling and leaves the surface of the product. It can remain as a surface flaw. Therefore, when manufacturing high manganese (Mn) steel, a grinding process on the product surface is essentially involved, which is not preferable in terms of economy and productivity.

대한민국 공개특허공보 제10-2015-0075275호 (2015.07.03. 공개)Republic of Korea Patent Publication No. 10-2015-0075275 (published on July 3, 2015)

본 발명의 한 가지 측면에 따르면 표면 흠 형성을 억제하여 표면품질을 효과적으로 확보한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법이 제공될 수 있다According to one aspect of the present invention, an austenitic high manganese steel material for cryogenic use and a method of manufacturing the same can be provided which effectively secures surface quality by suppressing the formation of surface flaws.

본 발명의 과제는 상술한 내용에 한정되지 않는다. 통상의 기술자라면 본 명세서의 전반적인 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.The subject of the present invention is not limited to the above description. Those skilled in the art will have no difficulty in understanding the additional subject of the present invention from the general contents of the present specification.

본 발명의 일 측면에 따른 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재는, 중량%로, C: 0.4~0.5%, Mn: 23~26%, Si: 0.03~0.5%, Cr: 3~5%, Al: 0.05% 이하, S: 0.05% 이하, P: 0.5% 이하, B: 0.005% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, 95면적% 이상의 오스테나이트를 미세조직으로 포함하되, 광학현미경을 이용한 단면 관찰 시, 표면으로부터 t/8(여기서 t는 제품 두께(mm)를 의미함) 지점까지의 영역에서 관찰되는 표면 흠 중 표면으로부터 10㎛ 이상의 깊이로 형성된 표면 흠의 개수가 단위 면적(mm2)당 0.0001개 이하일 수 있다.Cryogenic austenitic high manganese steel having excellent surface quality according to an aspect of the present invention is, by weight, C: 0.4 to 0.5%, Mn: 23 to 26%, Si: 0.03 to 0.5%, Cr: 3 to 5%, Al: 0.05% or less, S: 0.05% or less, P: 0.5% or less, B: 0.005% or less, the balance contains Fe and inevitable impurities, and contains 95 area% or more of austenite as a microstructure, optical When observing a cross section using a microscope, the number of surface flaws formed to a depth of 10 μm or more from the surface is a unit area among the surface flaws observed in the area from the surface to the point t/8 (where t means product thickness (mm)). It may be 0.0001 or less per (mm 2 ).

상기 강재는 0.7중량% 이하의 Cu를 더 포함할 수 있다.The steel material may further contain less than or equal to 0.7% by weight of Cu.

상기 강재의 항복강도는 400MPa 이상이고, -196℃의 샤르피 충격인성은 41J 이상일 수 있다.The steel has a yield strength of 400 MPa or more, and a Charpy impact toughness of -196° C. may be 41J or more.

본 발명의 일 측면에 따른 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재는, 중량%로, C: 0.4~0.5%, Mn: 23~26%, Si: 0.03~0.5%, Cr: 3~5%, Al: 0.05% 이하, S: 0.05% 이하, P: 0.5% 이하, B: 0.005% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 1000~1300℃의 온도범위에서 재가열하고, 상기 재가열된 슬라브를 조압연하여 조압연바를 제공하고, 상기 조압연바를 750~1000℃의 온도범위에서 마무리 압연하여 열연재를 제공하되, 하기의 관계식 1을 만족하도록 상기 슬라브의 재가열 온도(TSR)와 상기 조압연의 압하량(RRM)을 제어하여 제조될 수 있다.Cryogenic austenitic high manganese steel having excellent surface quality according to an aspect of the present invention is, by weight, C: 0.4 to 0.5%, Mn: 23 to 26%, Si: 0.03 to 0.5%, Cr: 3 to 5%, Al: 0.05% or less, S: 0.05% or less, P: 0.5% or less, B: 0.005% or less, the balance Fe and the slab containing inevitable impurities are reheated in a temperature range of 1000 to 1300 °C, and the reheating The slab is roughly rolled to provide a rough rolled bar, and the rough rolled bar is finish-rolled in a temperature range of 750 to 1000°C to provide a hot rolled material, but the reheating temperature (T SR ) of the slab and It can be manufactured by controlling the rolling reduction (R RM) of the rough rolling.

[관계식 1][Relationship 1]

RRM/TSR > 0.15R RM /T SR > 0.15

(관계식 1에서 RRM 및 TSR는 각각 조압연 압하량(mm) 및 슬라브 재가열 온도(℃)를 의미함) (R RM in relation 1 And T SR means rough rolling reduction (mm) and slab reheating temperature (℃), respectively)

상기 슬라브는 0.7중량% 이하의 Cu를 더 포함할 수 있다.The slab may further contain 0.7% by weight or less of Cu.

상기 마무리 압연 된 열연재를 10℃/s 이상의 냉각속도로 600℃ 이하까지 가속냉각할 수 있다.The finish-rolled hot-rolled material may be accelerated cooling to 600°C or less at a cooling rate of 10°C/s or more.

상기 과제의 해결 수단은 본 발명의 특징을 모두 열거한 것은 아니며, 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시예를 참조하여 보다 상세하게 이해될 수 있을 것이다.The means for solving the above problems are not all of the features of the present invention, and various features of the present invention and advantages and effects thereof will be understood in more detail with reference to the specific embodiments below.

본 발명의 일 측면에 따르면 극저온용으로 특히 적합한 물성을 가지면서도 우수한 표면품질을 가지 오스테나이트계 고망간 강재를 제공할 수 있다.According to an aspect of the present invention, it is possible to provide an austenitic high-manganese steel material having excellent surface quality while having properties particularly suitable for cryogenic use.

또한, 본 발명의 일 측면에 따르면, 그라인딩 등의 후속 공정을 수반하지 않고서도 우수한 표면품질을 확보하여, 생산성 및 경제성을 효과적으로 확보 가능한 오스테나이트계 고망간 강재의 제조방법을 제공할 수 있다.In addition, according to an aspect of the present invention, it is possible to provide a method of manufacturing an austenitic high manganese steel material that can effectively secure productivity and economy by securing excellent surface quality without following subsequent processes such as grinding.

도 1은 시편 1의 표면을 촬영한 사진이다.
도 2는 시편 3의 표면을 촬영한 사진이다.
도 3은 시편 1을 두께 방향으로 절단한 후 단면을 광학현미경으로 관찰한 사진이다.
1 is a photograph of the surface of specimen 1.
2 is a photograph of the surface of the specimen 3.
3 is a photograph of specimen 1 being cut in the thickness direction and then observed with an optical microscope.

본 발명은 극저온용 오스테나이트계 고망간 강재 및 그 제조방법에 관한 것으로, 이하에서는 본 발명의 바람직한 구현예들을 설명하고자 한다. 본 발명의 구현예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명되는 구현예들에 한정되는 것으로 해석되어서는 안된다. 본 발명의 구현예들은 당해 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 본 발명을 더욱 상세하기 위하여 제공되는 것이다.The present invention relates to a cryogenic austenitic high manganese steel and a method for manufacturing the same. Hereinafter, preferred embodiments of the present invention will be described. Embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. Embodiments of the present invention are provided in order to further detail the present invention to those of ordinary skill in the art to which the present invention pertains.

이하, 본 발명의 강 조성에 대하여 보다 상세히 설명한다. 이하, 특별히 달리 표시하지 않는 한 각 원소의 함량을 나타내는 %는 중량을 기준으로 한다.Hereinafter, the steel composition of the present invention will be described in more detail. Hereinafter, unless otherwise indicated,% indicating the content of each element is based on weight.

본 발명의 일 측면에 따른 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재는, 중량%로, C: 0.4~0.5%, Mn: 23~26%, Si: 0.03~0.5%, Cr: 3~5%, Al: 0.05% 이하, S: 0.05% 이하, P: 0.5% 이하, B: 0.005% 이하, 잔부 Fe 및 불가피한 불순물을 포함할 수 있다. 또한, 본 발명의 일 측면에 따른 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재는 0.7중량% 이하의 Cu를 더 포함할 수 있다.Cryogenic austenitic high manganese steel having excellent surface quality according to an aspect of the present invention is, by weight, C: 0.4 to 0.5%, Mn: 23 to 26%, Si: 0.03 to 0.5%, Cr: 3 to 5%, Al: 0.05% or less, S: 0.05% or less, P: 0.5% or less, B: 0.005% or less, balance Fe and inevitable impurities may be included. In addition, the austenitic high manganese steel material for cryogenic use having excellent surface quality according to an aspect of the present invention may further contain 0.7% by weight or less of Cu.

탄소(C): 0.4~0.5%Carbon (C): 0.4~0.5%

탄소(C)는 강 내에 오스테나이트를 안정화시키고, 고용강화에 의해 강도를 확보하는데 효과적인 원소이다. 따라서, 본 발명은 저온인성 및 강도 확보를 위하여 탄소(C) 함량의 하한을 0.4%로 제한할 수 있다. 바람직한 탄소(C) 함량의 하한은 0.41% 일 수 있으며, 보다 바람직한 탄소(C) 함량의 하한은 0.43% 일 수 있다. 즉, 탄소(C) 함량이 0.4% 미만인 경우, 항복강도가 저하될 수 있으며, 오스테나이트 안정도가 저하되어 페라이트 또는 마르텐사이트가 형성되며, 저온인성이 저하될 수 있기 때문이다. 반면, 탄소(C) 함량이 일정 범위를 초과하는 경우 압연 후 냉각 시 과다한 탄화물이 형성될 수 있는바, 본 발명은 탄소(C) 함량의 상한을 0.5%로 제한할 수 있다. 바람직한 탄소(C) 함량의 상한은 0.49%일 수 있으며, 보다 바람직한 탄소(C) 함량의 상한은 0.47% 일 수 있다.Carbon (C) is an element effective in stabilizing austenite in steel and securing strength by solid solution strengthening. Accordingly, the present invention may limit the lower limit of the carbon (C) content to 0.4% in order to secure low-temperature toughness and strength. A preferred lower limit of the carbon (C) content may be 0.41%, and a more preferred lower limit of the carbon (C) content may be 0.43%. That is, when the carbon (C) content is less than 0.4%, the yield strength may be lowered, austenite stability may be lowered to form ferrite or martensite, and low temperature toughness may be lowered. On the other hand, when the carbon (C) content exceeds a certain range, excessive carbide may be formed during cooling after rolling, and the present invention may limit the upper limit of the carbon (C) content to 0.5%. The upper limit of the preferable carbon (C) content may be 0.49%, and the upper limit of the more preferable carbon (C) content may be 0.47%.

망간(Mn): 23~26%Manganese (Mn): 23-26%

망간(Mn)은 오스테나이트를 안정화시키는 역할을 하는 중요한 원소이다. 따라서, 본 발명은 이와 같은 효과 달성을 위해 망간(Mn) 함량의 하한을 23%로 제한할 수 있다. 즉, 본 발명은 23% 이상의 망간(Mn)을 포함하므로 오스테나이트 안정도를 효과적으로 증가시킬 수 있으며, 그에 따라 페라이트, ε-마르텐사이트 및 α'-마르텐사이트의 형성을 억제하여 저온인성을 효과적으로 확보할 수 있다. 보다 바람직한 망간(Mn) 함량의 하한은 23.1%일 수 있다. 반면, 망간(Mn) 함량이 일정 수준 이상인 경우, 오스테나이트 안정도 증가 효과는 포화되는 반면 과다한 제조원가가 크게 증가하고, 열간압연 중 내부산화가 과도하게 발생하여 표면품질이 열위해질 수 있는바, 본 발명은 망간(Mn) 함량의 상한을 26%로 제한할 수 있다. 보다 바람직한 망간(Mn) 함량의 상한은 25.5%일 수 있다.Manganese (Mn) is an important element that plays a role in stabilizing austenite. Accordingly, the present invention may limit the lower limit of the manganese (Mn) content to 23% in order to achieve such an effect. That is, since the present invention contains more than 23% manganese (Mn), it is possible to effectively increase austenite stability, thereby inhibiting the formation of ferrite, ε-martensite, and α'-martensite to effectively secure low-temperature toughness. I can. A more preferable lower limit of the manganese (Mn) content may be 23.1%. On the other hand, when the manganese (Mn) content is higher than a certain level, the austenite stability increase effect is saturated, while the excessive manufacturing cost is greatly increased, and the surface quality may be deteriorated due to excessive internal oxidation during hot rolling. The upper limit of the manganese (Mn) content can be limited to 26%. A more preferable upper limit of the manganese (Mn) content may be 25.5%.

실리콘(Si): 0.03~0.5%Silicon (Si): 0.03~0.5%

실리콘(Si)은 알루미늄(Al)과 같이 탈산제로서 필수불가결하게 미량 첨가되는 원소이다. 다만, 실리콘(Si)이 과도하게 첨가되는 경우, 입계에 산화물을 형성하여 고온연성을 감소시키고, 크랙 등을 유발하여 표면품질을 저하시킬 우려가 있는바, 본 발명은 실리콘(Si) 함량의 상한을 0.5%로 제한할 수 있다. 보다 바람직한 실리콘(Si) 함량의 상한은 0.45%일 수 있다. 반면, 강 중에서 Si 함량을 줄이기 위해서는 과도한 비용이 소요되는바, 본 발명은 실리콘(Si) 함량의 하한을 0.03%로 제한할 수 있다. 보다 바람직한 실리콘(Si) 함량의 하한은 0.04%일 수 있다.Silicon (Si), like aluminum (Al), is an element that is indispensably added in trace amounts as a deoxidizing agent. However, when silicon (Si) is excessively added, oxides are formed at grain boundaries to reduce high-temperature ductility, and there is a concern that the surface quality may be degraded by causing cracks, etc. The present invention is the upper limit of the silicon (Si) content. Can be limited to 0.5%. A more preferable upper limit of the silicon (Si) content may be 0.45%. On the other hand, in order to reduce the Si content in steel, an excessive cost is required, and the present invention may limit the lower limit of the silicon (Si) content to 0.03%. A more preferable lower limit of the silicon (Si) content may be 0.04%.

크롬(Cr): 3~5%Chrome (Cr): 3~5%

크롬(Cr)은 오스테나이트 내에서 고용강화를 통해 강도 상향에 기여하는 원소이다. 또한, 크롬(Cr)은 우수한 내식성을 가지므로, 고온산화에 의한 표면품질 저하 방지에 효과적으로 기여하는 원소이다. 따라서, 본 발명은 이와 같은 효과 달성을 위해 크롬(Cr) 함량의 하한을 3%로 제한할 수 있다. 바람직한 크롬(Cr) 함량의 하한은 3.1%일 수 있으며, 보다 바람직한 크롬(Cr) 함량의 하한은 3.3%일 수 있다. 반면, 크롬(Cr) 함량이 일정 수준 이상인 경우, 탄화물 생성에 따른 극저온인성 저하가 문제되는바, 본 발명은 크롬(Cr) 함량의 상한을 5%로 제한할 수 있다. 바람직한 크롬(Cr) 함량의 상한은 4.5%일 수 있으며, 보다 바람직한 크롬(Cr) 함량의 상한은 4.0%일 수 있다.Chromium (Cr) is an element that contributes to increase the strength through solid solution strengthening in austenite. In addition, since chromium (Cr) has excellent corrosion resistance, it is an element that effectively contributes to preventing deterioration of surface quality due to high-temperature oxidation. Therefore, the present invention may limit the lower limit of the chromium (Cr) content to 3% to achieve such an effect. A preferred lower limit of the chromium (Cr) content may be 3.1%, and a more preferred lower limit of the chromium (Cr) content may be 3.3%. On the other hand, when the chromium (Cr) content is higher than a certain level, the cryogenic toughness decreases due to the generation of carbides, and the present invention may limit the upper limit of the chromium (Cr) content to 5%. The upper limit of the preferred chromium (Cr) content may be 4.5%, and the upper limit of the more preferred chromium (Cr) content may be 4.0%.

황(S): 0.05% 이하Sulfur (S): 0.05% or less

황(S)은 불가피하게 유입되는 불순물 원소일 뿐만 아니라, 개재물 형성에 의해 열간취성 결함을 유발하는 원소이기도 하다. 따라서, 본 발명은 황(S) 함량의 상한을 적극 억제할 수 있으며, 바람직한 황(S) 함량의 상한은 0.05%일 수 있다.Sulfur (S) is not only an impurity element that is unavoidably introduced, but is also an element that causes hot brittle defects due to the formation of inclusions. Accordingly, the present invention can actively suppress the upper limit of the sulfur (S) content, and the upper limit of the preferred sulfur (S) content may be 0.05%.

인(P): 0.5% 이하Phosphorus (P): 0.5% or less

인(P)은 불가피하게 유입되는 불순물 원소일 뿐만 아니라, 쉽게 편석되는 원소로서 주조 시 균열발생을 유발하거나, 용접성을 저하시키는 원소이기도 하다. 따라서, 본 발명은 인(P) 함량의 상한을 적극 억제할 수 있으며, 바람직한 인(P) 함량의 상한은 0.5%일 수 있다. Phosphorus (P) is not only an impurity element that is unavoidably introduced, but is also an element that easily segregates and causes cracking during casting or deteriorates weldability. Accordingly, the present invention can actively suppress the upper limit of the phosphorus (P) content, and the upper limit of the preferred phosphorus (P) content may be 0.5%.

보론(B): 0.005% 이하Boron (B): 0.005% or less

보론(B)은 결정입계 강화를 통한 입계파괴의 억제 효과로 표면품질 향상에 기여하는 원소이나, 과도한 첨가 시 조대 석출물의 형성 등에 의해 인성 및 용접성을 저하시키는 원소이기도 하다. 따라서 본 발명은 표면품질 향상의 효과 달성을 위해 0.0005% 이상의 보론(B)을 포함할 수 있으나, 용접성 저하를 방지하기 위하여 보론(B) 함량의 상한을 0.005%로 제한할 수 있다.Boron (B) is an element that contributes to the improvement of surface quality by suppressing grain boundary fracture through strengthening of grain boundaries, but is also an element that reduces toughness and weldability by formation of coarse precipitates when excessively added. Accordingly, the present invention may contain 0.0005% or more boron (B) to achieve the effect of improving the surface quality, but the upper limit of the boron (B) content may be limited to 0.005% in order to prevent a decrease in weldability.

구리(Cu): 0.7% 이하Copper (Cu): 0.7% or less

구리(Cu)는 오스테나이트 안정화 원소로 망간(Mn) 및 탄소(C)와 더불어 오스테나이트를 안정화시키는 원소로서, 저온인성 향상에 기여하는 원소이다. 또한, 구리(Cu)는 탄화물 내 고용도가 매우 낮고 오스테나이트 내에서의 확산이 느린 원소이므로, 오스테나이트와 탄화물의 계면에 농축되어 미세한 탄화물의 핵 주위를 둘러싸게 됨으로써 탄소(C)의 추가적인 확산에 따른 탄화물의 생성 및 성장을 효과적으로 억제하는 원소이다. 따라서, 본 발명은 이와 같은 효과 달성을 위해 일정 함량의 구리(Cu)를 추가적으로 첨가할 수 있다. 구리(Cu) 함량의 하한은 0.3%일 수 있으며, 바람직한 구리(Cu) 함량의 하한은 0.35%일 수 있으며, 보다 바람직한 구리(Cu) 함량의 하한은 0.4%일 수 있다. 다만, 구리(Cu) 함량이 일정 수준 이상인 경우 열간취성(hot shortness)에 의한 표면품질이 저하가 문제되는바, 본 발명은 구리(Cu) 함량의 상한을 0.7%로 제한할 수 있다. 바람직한 구리(Cu) 함량의 상한은 0.65%일 수 있으며, 보다 바람직한 구리(Cu) 함량의 상한은 0.6%일 수 있다.Copper (Cu) is an austenite stabilizing element, an element that stabilizes austenite along with manganese (Mn) and carbon (C), and is an element that contributes to improving low-temperature toughness. In addition, copper (Cu) is an element that has a very low solubility in carbides and slows diffusion in austenite, so it is concentrated at the interface between austenite and carbide and surrounds the nuclei of fine carbides, thereby further diffusion of carbon (C). It is an element that effectively suppresses the formation and growth of carbides. Therefore, the present invention may additionally add a certain amount of copper (Cu) to achieve such an effect. The lower limit of the copper (Cu) content may be 0.3%, the preferred lower limit of the copper (Cu) content may be 0.35%, and a more preferable lower limit of the copper (Cu) content may be 0.4%. However, when the copper (Cu) content is higher than a certain level, the surface quality is deteriorated due to hot shortness, and the present invention may limit the upper limit of the copper (Cu) content to 0.7%. The upper limit of the preferred copper (Cu) content may be 0.65%, and the upper limit of the more preferred copper (Cu) content may be 0.6%.

본 발명의 일 측면에 따른 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재는 상기한 성분 이외에 잔부 Fe 및 기타 불가피한 불순물을 포함할 수 있다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물이 불가피하게 혼입될 수 있으므로, 이를 전면적으로 배제할 수는 없다. 이들 불순물은 본 기술분야에서 통상의 지식을 가진 자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 본 명세서에서 특별히 언급하지는 않는다. 더불어, 상기 조성 이외에 유효한 성분의 첨가가 배제되는 것은 아니다.The austenitic high manganese steel for cryogenic use having excellent surface quality according to an aspect of the present invention may contain the balance Fe and other unavoidable impurities in addition to the above components. However, in a typical manufacturing process, since unintended impurities may inevitably be mixed from the raw material or the surrounding environment, this cannot be completely excluded. Since these impurities are known to anyone of ordinary skill in the art, all the contents are not specifically mentioned in the present specification. In addition, addition of effective ingredients other than the above composition is not excluded.

본 발명의 일 측면에 따른 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재는, 95면적% 이상의 오스테나이트를 미세조직으로 포함하되, 광학현미경을 이용한 단면 관찰 시, 표면으로부터 t/8(여기서 t는 제품 두께(mm)를 의미함) 지점까지의 영역에서 관찰되는 표면 흠 중 표면으로부터 10㎛ 이상의 깊이로 형성된 표면 흠의 개수가 단위 면적(mm2)당 0.0001개 이하일 수 있다. 여기서, 관찰 영역은 강재 단면상 형성되는 임의의 직사각형 영역을 의미하며, 관찰 영역의 일면은 강재의 표면에 인접하여 위치할 수 있다. 즉, 관찰 영역의 높이는 t/8(t: 제품 두께, mm)이며, 관찰영역 내에 형성된 흠 중 깊이가 일정 수준 이상인 표면 흠 개수를 이용하여 표면 흠 개수 밀도를 산출할 수 있다.Cryogenic austenitic high manganese steel having excellent surface quality according to an aspect of the present invention contains 95 area% or more of austenite as a microstructure, and when observing a cross section using an optical microscope, t/8 from the surface (where t Means product thickness (mm)) of the surface defects observed in the area up to the point, the number of surface defects formed to a depth of 10 μm or more from the surface may be 0.0001 or less per unit area (mm 2 ). Here, the observation area means an arbitrary rectangular area formed on the cross-section of the steel material, and one surface of the observation area may be located adjacent to the surface of the steel material. That is, the height of the observation area is t/8 (t: product thickness, mm), and the surface defect number density can be calculated by using the number of surface defects having a depth of at least a certain level among defects formed in the observation area.

즉, 본 발명의 일 측면에 따른 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재는, 후술하는 바와 같이 엄격한 공정 조건 제어를 통해 제품 표면에서의 표면 흠 형성을 적극 억제하는바, 표면 품질을 효과적으로 확보하여 그라인딩 공정 등의 후속 공정의 생략이 가능하며, 그에 따라 제품의 경제성 및 생산성을 효과적으로 확보할 수 있다.That is, the cryogenic austenitic high manganese steel material having excellent surface quality according to an aspect of the present invention actively suppresses the formation of surface flaws on the product surface through strict process condition control as described below, effectively reducing the surface quality. By securing it, it is possible to omit subsequent processes such as the grinding process, and accordingly, economical efficiency and productivity of the product can be effectively secured.

또한, 본 발명의 일 측면에 따른 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재는 400MPa 이상의 항복강도 및 -196℃에서 41J 이상의 샤르피 충격인성을 구비하므로, 극저온 특성이 요구되는 액화석유가스, 액화천연가스 등의 저장 및 운반을 위한 연료탱크, 저장탱크, 선박용 멤브레인 및 수송용 파이프 등의 소재로 특히 적합한 오스테나이트계 고망간 강재를 제공할 수 있다.In addition, the austenitic high manganese steel material for cryogenic use having excellent surface quality according to an aspect of the present invention has a yield strength of 400 MPa or more and Charpy impact toughness of 41 J or more at -196°C, so liquefied petroleum gas, which requires cryogenic properties, is liquefied. Austenitic high-manganese steels that are particularly suitable as materials for storage and transport of natural gas, such as fuel tanks, storage tanks, membranes for ships, and pipes for transport can be provided.

이하, 본 발명의 제조방법에 대해 보다 상세히 설명한다.Hereinafter, the manufacturing method of the present invention will be described in more detail.

본 발명의 일 측면에 따른 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재는, 상술한 조성으로 구비되는 슬라브를 1000~1300℃의 온도범위에서 재가열하고, 상기 재가열된 슬라브를 조압연하여 조압연바를 제공하고, 750~1000℃의 온도범위에서 마무리 압연하여 열연재를 제공하되, 하기의 관계식 1을 만족하도록 상기 슬라브의 재가열 온도(TSR, ℃)와 상기 조압연의 압하량(RRM, mm)을 제어하여 제조될 수 있다.Cryogenic austenitic high manganese steel having excellent surface quality according to an aspect of the present invention reheats a slab provided with the above-described composition in a temperature range of 1000 to 1300°C, and rough rolls the reheated slab by rough rolling A bar is provided and a hot rolled material is provided by finishing rolling in a temperature range of 750 to 1000° C., but the reheating temperature (T SR ,° C.) of the slab and the rolling reduction of the rough rolling (R RM , mm) can be produced by controlling.

[관계식 1][Relationship 1]

RRM/TSR > 0.15R RM /T SR > 0.15

슬라브 재가열Reheating the slab

슬라브의 강 조성은 전술한 오스테나이트계 고망간 강재의 강 조성과 대응하므로, 슬라브의 강 조성에 대한 전술한 오스테나이트계 고망간 강재의 강 조성에 대한 설명으로 대신한다.Since the steel composition of the slab corresponds to the steel composition of the austenitic high-manganese steel material described above, it is replaced by a description of the steel composition of the austenitic high-manganese steel material described above for the steel composition of the slab.

전술한 강 조성으로 구비되는 슬라브를 1000~1300℃의 온도범위에서 균일하게 가열할 수 있다. 슬라브 재가열 단계에 제공되는 슬라브의 두께는 약 250mm일 수 있으나, 본 발명의 범위가 반드시 이에 국한되는 것은 아니다.The slab provided with the above-described steel composition can be uniformly heated in a temperature range of 1000 to 1300°C. The thickness of the slab provided in the slab reheating step may be about 250mm, but the scope of the present invention is not necessarily limited thereto.

후속되는 열간압연에서 압연하중이 과도하게 걸리는 것을 방지하기 위하여 슬라브 재가열 온도의 하한은 1000℃로 제한할 수 있다. 또한, 가열온도가 높을수록 열간압연의 용이성이 확보되지만, 망간(Mn) 함량이 높은 강은 고온 가열 시 입계산화가 심하게 발생할 수 있는바, 본 발명은 슬라브 재가열 온도의 상한을 1300℃로 제한할 수 있다.In order to prevent excessive rolling load in subsequent hot rolling, the lower limit of the slab reheating temperature may be limited to 1000°C. In addition, the higher the heating temperature, the greater the ease of hot rolling, but steel with a high manganese (Mn) content may severely generate grain boundary oxidation when heated at high temperatures, and the present invention limits the upper limit of the slab reheating temperature to 1300°C. I can.

열간압연Hot rolled

슬라브 재가열 공정 이후 재가열된 슬라브를 조압연바로 조압연하고, 조압연바를 750~1000℃의 온도범위에서 마무리 압연하여 열연재를 제공하는 열간압연 공정이 수반될 수 있다. 열간압연의 마무리 압연 온도 역시 고온일수록 변형저항이 낮아져 압연의 용이성이 확보되지만, 마무리 압연 온도가 높을수록 입계산화에 따른 표면품질 저하가 유발되므로, 본 발명의 마무리 압연 온도는 750~1000℃로 제한될 수 있다.After the slab reheating process, a hot rolling process may be involved in which the reheated slab is roughly rolled with a rough rolled bar, and the rough rolled bar is finished rolled in a temperature range of 750 to 1000°C to provide a hot rolled material. The finish rolling temperature of hot rolling also increases the higher the temperature, the lower the deformation resistance, thus ensuring the ease of rolling, but the higher the finish rolling temperature, the lower the surface quality due to grain boundary oxidation, so the finish rolling temperature of the present invention is 750~1000℃. May be limited.

본 발명의 오스테나이트계 고망간 강은 산화성이 강한 망간(Mn)을 다량 포함하므로, 가열로의 온도 제한에 의하더라도 필연적으로 입계산화가 발생하게 된다. 슬라브 재가열 중에 형성된 입계산화 중 일부는 스케일로 제거되더라도, 잔존하는 일부는 열간압연 중 크랙으로 성장하여 제품의 표면에 표면 흠을 형성하며, 그에 따라 제품의 표면품질이 악화된다. Since the austenitic high manganese steel of the present invention contains a large amount of manganese (Mn) having strong oxidizing properties, grain boundary oxidation inevitably occurs even when the temperature of the heating furnace is limited. Even if some of the grain boundary oxidation formed during reheating of the slab is removed as scale, the remaining part grows into cracks during hot rolling to form surface flaws on the surface of the product, thereby deteriorating the surface quality of the product.

본 발명의 발명자는 심도 있는 연구를 통해 열간압연 중 슬라브 표면에 잔존하는 입계산화가 크랙으로 성장하는 것을 최소화하기 위해서는 슬라브 가열 후 가급적 신속하게 재결정이 발생하도록 하여 조직을 미세화하는 것이 효과적이라는 결론에 도달하였다. 다만, 재결정 촉진을 위해서는 변형속도의 증가가 가장 효과적이며, 변형속도의 증가는 조압연의 압하량 증가를 통해 도달 가능한 요소이나, 압하량이 과다하게 증가하는 경우 입계산화가 크랙으로 성장하는 것을 최소화하는 것은 별론, 과다한 압연부하에 의한 설비 파손 등이 문제될 수 있다.Through in-depth research, the inventors of the present invention came to the conclusion that it is effective to refine the structure by allowing recrystallization to occur as quickly as possible after heating the slab in order to minimize the growth of the grain boundary oxidation remaining on the surface of the slab to cracks during hot rolling. I did. However, to promote recrystallization, increasing the strain rate is the most effective, and the increase in strain rate is a factor that can be reached through an increase in the rolling reduction of rough rolling, but when the rolling reduction is excessively increased, grain boundary oxidation minimizes the growth of cracks. Separately, equipment damage due to excessive rolling load may be a problem.

따라서, 본 발명의 발명자는 거듭된 실험을 통해 제품의 표면 흠 형성을 적극 억제하면서도 열간압연의 압연부하를 임계치 이하로 제어하는 아래의 관계식 1을 도출하였다.Accordingly, the inventor of the present invention derives the following relational equation 1 for controlling the rolling load of hot rolling to be below a critical value while actively suppressing the formation of surface flaws of the product through repeated experiments.

[관계식 1] [Relationship 1]

RRM/TSR > 0.15R RM /T SR > 0.15

(관계식 1에서 RRM 및 TSR은 각각 조압연 압하량(mm) 및 슬라브 재가열 온도(℃)를 의미함) (R RM in relation 1 And T SR means rough rolling reduction (mm) and slab reheating temperature (℃), respectively)

즉, 본 발명은 상기 관계식 1과 같이 가열로 온도에 대한 조압연 압하량을 일정 범위로 제어하므로, 가열로 온도가 높은 경우 상대적으로 조압연의 압하량을 증가시켜 열간압연 중 입계산화가 표면 흠으로 성장하는 것을 억제할 수 있으며, 가열로 온도가 낮은 경우 상대적으로 조압연의 압연량을 감소시켜 열간압연 중 압연기에 가해지는 압연부하를 감소시킬 수 있는바, 최적의 슬라브 가열 조건 및 열간 압연 조건을 제공할 수 있다.That is, the present invention controls the rough rolling reduction amount with respect to the heating furnace temperature in a certain range as shown in the above relational equation 1, so when the heating furnace temperature is high, the grain boundary oxidation during hot rolling is increased by relatively increasing the rough rolling reduction amount. When the heating furnace temperature is low, the rolling load applied to the rolling mill during hot rolling can be reduced by relatively reducing the rolling amount of rough rolling. Optimal slab heating conditions and hot rolling conditions Can provide.

가속냉각Accelerated cooling

열간압연 공정 이후 마무리 압연된 열연재를 10℃/s 이상의 냉각속도로 600℃ 이하까지 가속냉각할 수 있다. 본 발명의 오스테나이트계 고 망간 강재는 3~5%의 크롬(Cr) 및 C를 포함하므로, 열연재의 냉각속도를 10℃/s 이상으로 제어하여 탄화물 석출에 의한 저온인성 저하를 효과적으로 방지할 수 있다. 또한, 통상의 가속냉각에 있어서 100℃/s를 초과하는 냉각속도는 설비 특성상 구현하기 어려운바, 본 발명은 냉각속도의 상한을 100℃/s로 제한할 수 있다.After the hot rolling process, the finish-rolled hot-rolled material can be accelerated cooling to 600°C or less at a cooling rate of 10°C/s or more. Since the austenitic high-manganese steel material of the present invention contains 3 to 5% of chromium (Cr) and C, the cooling rate of the hot-rolled material is controlled to 10°C/s or more to effectively prevent the decrease in low-temperature toughness due to carbide precipitation. I can. In addition, in the usual accelerated cooling, a cooling rate exceeding 100°C/s is difficult to implement due to the characteristics of the facility, and the present invention may limit the upper limit of the cooling rate to 100°C/s.

또한, 10℃/s 이상의 냉각속도를 적용하여 열연재를 냉각하더라도, 높은 온도에서 냉각이 정지되는 경우 탄화물이 생성 및 성장할 가능성이 높으므로, 본 발명은 냉각 정지 온도를 600℃ 이하로 제한할 수 있다.In addition, even if the hot-rolled material is cooled by applying a cooling rate of 10°C/s or more, if the cooling is stopped at a high temperature, the possibility of generating and growing carbides is high, so the present invention can limit the cooling stop temperature to 600°C or less. have.

상기와 같이 제조된 오스테나이트계 고망간 강재는, 95면적% 이상의 오스테나이트를 미세조직으로 포함하되, 광학현미경을 이용한 단면 관찰 시, 표면으로부터 t/8(여기서 t는 제품 두께(mm)를 의미함) 지점까지의 단면적에 대해 표면으로부터 10㎛ 이상의 깊이로 형성된 표면 흠의 개수가 단위 면적(mm2)당 0.0001개 이하일 수 있으며, 400MPa 이상의 항복강도 및 -196℃에서 41J 이상의 샤르피 충격인성은 구비할 수 있다.The austenitic high manganese steel manufactured as described above contains 95 area% or more of austenite as a microstructure, but when observing the cross section using an optical microscope, t/8 from the surface (where t means the product thickness (mm)) The number of surface flaws formed with a depth of 10㎛ or more from the surface for the cross-sectional area to the point may be 0.0001 or less per unit area (mm 2 ), and has a yield strength of 400 MPa or more and Charpy impact toughness of 41J or more at -196°C. can do.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 후술하는 실시예는 본 발명을 예시하여 보다 구체화하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것은 아니라는 점에 유의할 필요가 있다.Hereinafter, the present invention will be described in more detail through examples. However, it should be noted that the examples to be described later are for illustrative and more specific purposes of the present invention, and are not intended to limit the scope of the present invention.

(실시예 1)(Example 1)

하기 표 1의 조성을 가지는 강재를 이용하여 250mm 두께의 슬라브를 제작하였으며, 하기 표 2의 공정 조건을 통해 제조하여 시편을 준비하였다. 각각의 시편은 750~1000℃의 온도범위에서 마무리 압연하고, 10℃/s 이상의 냉각속도로 600℃ 이하까지 가속냉각하여 제조되었다. 각각의 시편에 대해 충격흡수에너지, 항복강도 및 표면 흠 형성 여부를 평가하여 그 결과를 하기 표 2에 함께 나타내었다. 충격흡수에너지는 표준 시험법인 ASTM E23에 준하여 2mm의 노치를 가지는 판상시편을 이용하여 -196℃에서 평가하였다. 인장시험은 표준 시험법인 ASTM E8/E8M에 준하는 판상시편을 가공하여 일방향 인장시험기로 평가하였다. 표면 흠의 깊이 및 개수는 시편을 두께방향으로 절단하여 ASTM E112에 따라 시편을 준비한 후 광학현미경을 이용하여 관찰 영역 내의 가장 큰 표면 흠의 깊이 및 관찰 영역 내의 단위면적당 깊이 10㎛ 이상인 표면 흠의 개수를 측정하여 평가하였다. A slab having a thickness of 250 mm was manufactured using a steel material having the composition shown in Table 1 below, and a specimen was prepared by manufacturing through the process conditions shown in Table 2 below. Each specimen was prepared by finishing rolling in a temperature range of 750 to 1000°C, and accelerated cooling to 600°C or less at a cooling rate of 10°C/s or more. Impact absorption energy, yield strength, and surface flaw formation were evaluated for each specimen, and the results are shown in Table 2 below. Impact absorption energy was evaluated at -196°C using a plate specimen having a notch of 2 mm in accordance with ASTM E23, a standard test method. The tensile test was evaluated by a one-way tensile tester by processing a plate-shaped specimen conforming to the standard test method ASTM E8/E8M. The depth and number of surface flaws are determined by cutting the specimen in the thickness direction, preparing the specimen according to ASTM E112, and using an optical microscope to determine the depth of the largest surface flaw in the observation area and the number of surface flaws with a depth of 10 μm or more per unit area in the observation area. Was evaluated by measuring.

구분division MnMn CrCr CC CuCu BB SiSi PP S.AlS.Al SS 1One 23.223.2 3.53.5 0.440.44 0.500.50 0.00120.0012 0.0410.041 0.0270.027 0.0360.036 0.00140.0014 22 24.624.6 3.43.4 0.460.46 0.520.52 0.00280.0028 0.3110.311 0.0140.014 0.0390.039 0.00130.0013 33 25.225.2 3.43.4 0.450.45 0.490.49 0.00260.0026 0.3180.318 0.0170.017 0.0430.043 0.00150.0015 44 24.824.8 3.43.4 0.450.45 0.480.48 0.00290.0029 0.3000.300 0.0170.017 0.0330.033 0.00130.0013 55 24.824.8 3.43.4 0.450.45 0.480.48 0.00290.0029 0.3000.300 0.0170.017 0.0330.033 0.00140.0014 66 24.824.8 3.43.4 0.450.45 0.480.48 0.00290.0029 0.3000.300 0.0170.017 0.0330.033 0.00150.0015 77 24.824.8 3.43.4 0.450.45 0.480.48 0.00290.0029 0.3000.300 0.0170.017 0.0330.033 0.00130.0013 88 24.024.0 3.43.4 0.440.44 0.430.43 0.00300.0030 0.2700.270 0.0130.013 0.0230.023 0.00140.0014 99 24.024.0 3.43.4 0.440.44 0.430.43 0.00300.0030 0.2700.270 0.0130.013 0.0230.023 0.00150.0015

구분division 재가열
온도
(℃)
Reheat
Temperature
(℃)
조압연
압하량
(mm)
Rough rolling
Reduction
(mm)
관계식 1
(RRM/TSR)
Relation 1
(R RM /T SR )
충격흡수
에너지
(J, @-196℃)
Shock absorption
energy
(J, @-196℃)
항복
강도
(MPa)
surrender
burglar
(MPa)
최대
표면 흠
깊이
(㎛)
maximum
Surface blemishes
depth
(㎛)
표면 흠
개수
(개/mm2)
Surface blemishes
Count
(Pcs/mm 2 )
비고Remark
1One 13001300 132132 0.1020.102 123123 458458 3030 0.030.03 비교예Comparative example 22 11741174 130130 0.1110.111 9090 464464 2828 0.020.02 비교예Comparative example 33 11201120 180180 0.1610.161 9696 465465 00 00 발명예Invention example 44 11501150 105105 0.0910.091 8686 486486 3232 0.030.03 비교예Comparative example 55 11621162 135135 0.1160.116 8484 514514 3030 0.030.03 비교예Comparative example 66 11551155 175175 0.1520.152 8484 514514 00 00 발명예Invention example 77 11991199 203203 0.1700.170 8484 495495 00 00 발명예Invention example 88 11981198 207207 0.1730.173 7171 529529 00 00 발명예Invention example 99 11301130 207207 0.1840.184 7070 531531 00 00 발명예Invention example

관계식 1을 만족하는 시편 3, 6 내지 9의 경우, 표면 흠이 발생하지 않아 표면품질이 우수한 반면, 관계식 1을 만족하지 않는 시편 1, 2, 4 및 5의 경우, 표면 흠이 발생하여 표면품질이 열위하며, 표면품질 확보를 위해 그라인딩 등의 후속 공정 필수적으로 수반되어야 함을 확인할 수 있다.In the case of specimens 3, 6 to 9 that satisfy the relational equation 1, the surface quality is excellent because no surface defect occurs, whereas in the case of the specimens 1, 2, 4, and 5 that do not satisfy the relational equation 1, surface defects occur and the surface quality It can be seen that this is inferior and must be accompanied by subsequent processes such as grinding in order to secure surface quality.

도 1은 시편 1의 표면을 촬영한 사진이며, 도 2는 시편 3의 표면을 촬영한 사진이다. 육안 관찰 결과 시편 1에는 미세한 표면 흠이 다량 형성된 반면, 시편 3에는 표면 흠이 형성되지 않아 우수한 표면품질을 확보함을 알 수 있다. 또한, 도 3은 시편 1을 두께 방향으로 절단한 후 단면을 광학현미경으로 관찰한 사진으로, 시편 1의 표면측에는 시편의 두께방향에 대해 경사진 방향으로 표면 흠이 형성된 것을 확인할 수 있다.1 is a photograph of the surface of specimen 1, and FIG. 2 is a photograph of the surface of specimen 3. As a result of visual observation, it can be seen that a large amount of fine surface flaws were formed in Specimen 1, whereas no surface flaws were formed in Specimen 3, so that excellent surface quality was secured. In addition, FIG. 3 is a photograph of specimen 1 being cut in the thickness direction and the cross section is observed with an optical microscope, and it can be seen that surface flaws are formed on the surface side of specimen 1 in a direction inclined with respect to the thickness direction of the specimen.

이상에서 실시예를 통하여 본 발명을 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 실시예들에 한정되지 않는다.Although the present invention has been described in detail through examples above, other types of examples are also possible. Therefore, the technical spirit and scope of the claims set forth below are not limited to the embodiments.

Claims (6)

삭제delete 삭제delete 삭제delete 중량%로, C: 0.4~0.5%, Mn: 23~26%, Si: 0.03~0.5%, Cr: 3~5%, Al: 0.05% 이하, S: 0.05% 이하, P: 0.5% 이하, B: 0.005% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 1000~1300℃의 온도범위에서 재가열하고,
상기 재가열된 슬라브를 조압연하여 조압연바를 제공하고,
상기 조압연바를 750~1000℃의 온도범위에서 마무리 압연하여 열연재를 제공하되,
하기의 관계식 1을 만족하도록 상기 슬라브의 재가열 온도(TSR)와 상기 조압연의 압하량(RRM)를 제어하는, 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재의 제조방법.
[관계식 1]
RRM/TSR > 0.15
(관계식 1에서 RRM 및 TSR은 각각 조압연 압하량(mm) 및 슬라브 재가열 온도(℃)를 의미함)
In% by weight, C: 0.4 to 0.5%, Mn: 23 to 26%, Si: 0.03 to 0.5%, Cr: 3 to 5%, Al: 0.05% or less, S: 0.05% or less, P: 0.5% or less, B: Reheating the slab containing 0.005% or less, the balance Fe and inevitable impurities in the temperature range of 1000 ~ 1300 ℃,
Rough rolling the reheated slab to provide a rough rolled bar,
Provide a hot rolled material by finishing rolling the rough rolled bar in a temperature range of 750 ~ 1000 ℃
Controlling the reheating temperature (T SR ) of the slab and the rolling reduction (R RM ) of the rough rolling to satisfy the following relational equation 1, a method for producing a cryogenic austenitic high manganese steel with excellent surface quality.
[Relationship 1]
R RM /T SR > 0.15
(R RM and T SR in relational equation 1 mean rough rolling rolling reduction (mm) and slab reheating temperature (℃), respectively)
제4항에 있어서,
상기 슬라브는 0.7중량% 이하의 Cu를 더 포함하는, 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재의 제조방법.
The method of claim 4,
The slab further comprises 0.7% by weight or less of Cu, a method for producing a cryogenic austenitic high manganese steel having excellent surface quality.
제4항에 있어서,
상기 마무리 압연 된 열연재를 10℃/s 이상의 냉각속도로 600℃ 이하까지 가속냉각하는, 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재의 제조방법.
The method of claim 4,
A method of producing a cryogenic austenitic high manganese steel material having excellent surface quality by accelerating cooling the finish-rolled hot rolled material to 600°C or less at a cooling rate of 10°C/s or more.
KR1020190118927A 2018-10-25 2019-09-26 Low-temperature austenitic high manganese steel having excellent surface quality and manufacturing method for the same KR102255827B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980068253.3A CN112888804A (en) 2018-10-25 2019-10-25 Austenitic high-manganese steel with excellent surface quality for ultralow temperature and preparation method thereof
PCT/KR2019/014170 WO2020085851A1 (en) 2018-10-25 2019-10-25 Cryogenic austenitic high manganese steel having excellent surface quality and manufacturing method therefor
EP19877327.7A EP3872217A4 (en) 2018-10-25 2019-10-25 Cryogenic austenitic high manganese steel having excellent surface quality and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180128501 2018-10-25
KR20180128501 2018-10-25

Publications (2)

Publication Number Publication Date
KR20200047320A KR20200047320A (en) 2020-05-07
KR102255827B1 true KR102255827B1 (en) 2021-05-26

Family

ID=70733248

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190118927A KR102255827B1 (en) 2018-10-25 2019-09-26 Low-temperature austenitic high manganese steel having excellent surface quality and manufacturing method for the same

Country Status (3)

Country Link
EP (1) EP3872217A4 (en)
KR (1) KR102255827B1 (en)
CN (1) CN112888804A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113637908B (en) * 2021-07-30 2023-05-12 河钢股份有限公司 High manganese steel plate for large-thickness low-temperature environment and production method thereof
CN114888075A (en) * 2022-04-13 2022-08-12 大冶特殊钢有限公司 Rolling method of 80Mn14Ti drill core for drill tool

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246817A (en) 2003-07-22 2011-12-08 Arcelormittal France Method of producing austenitic iron/carbon/manganese steel sheet having high strength and excellent toughness and being suitable for cold forming, and the steel sheet thus produced

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623259A (en) * 1979-08-03 1981-03-05 Sumitomo Metal Ind Ltd Nickel-free high manganese cast steel for low temperature use
JP2978427B2 (en) * 1995-05-22 1999-11-15 株式会社神戸製鋼所 High Mn nonmagnetic steel for cryogenic use and manufacturing method
KR20000041265A (en) * 1998-12-22 2000-07-15 이구택 Method for producing high manganese hot rolled metal strip by mini mill process and for preventing surface scab defect and crack defect
US20150211088A1 (en) * 2011-12-23 2015-07-30 Posco Non-magnetic high manganese steel sheet with high strength and manufacturing method thereof
KR101543916B1 (en) * 2013-12-25 2015-08-11 주식회사 포스코 Steels for low temperature services having superior deformed surface quality and method for production thereof
KR20150075275A (en) 2013-12-25 2015-07-03 주식회사 포스코 A high manganese steel having superior toughness at low temperature, and manufacturing method
KR101665821B1 (en) * 2014-12-24 2016-10-13 주식회사 포스코 Low temperature steels having superior surface quality and method for production thereof
US20190010590A1 (en) * 2015-12-22 2019-01-10 Posco Austenitic steel material having excellent hydrogen-embrittlement resistance
KR101889187B1 (en) * 2015-12-23 2018-08-16 주식회사 포스코 Nonmagnetic steel having superior hot workability and method for manufacturing the same
WO2017111510A1 (en) * 2015-12-23 2017-06-29 주식회사 포스코 Non-magnetic steel material having excellent hot workability and manufacturing method therefor
CN106222554A (en) * 2016-08-23 2016-12-14 南京钢铁股份有限公司 A kind of economical steel used at ultra-low temperature and preparation method thereof
KR101940874B1 (en) * 2016-12-22 2019-01-21 주식회사 포스코 High manganese steel with superior low temperature toughness and yield strength and method for manufacturing the same
KR101899692B1 (en) * 2016-12-23 2018-09-17 주식회사 포스코 Low temperature austenitic high manganese steel and method for manufacturing the same
CN107177786B (en) * 2017-05-19 2018-12-21 东北大学 A kind of design and its manufacturing method of the high manganese cut deal of LNG storage tank
CN108570541B (en) * 2018-05-14 2020-07-10 东北大学 High-temperature heat treatment method of high-manganese medium plate for L NG storage tank

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246817A (en) 2003-07-22 2011-12-08 Arcelormittal France Method of producing austenitic iron/carbon/manganese steel sheet having high strength and excellent toughness and being suitable for cold forming, and the steel sheet thus produced

Also Published As

Publication number Publication date
CN112888804A (en) 2021-06-01
EP3872217A1 (en) 2021-09-01
KR20200047320A (en) 2020-05-07
EP3872217A4 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
KR101252920B1 (en) High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
KR100957970B1 (en) High-strength and high-toughness thick steel plate and method for producing the same
KR20180074450A (en) Low temperature austenitic high manganese steel and method for manufacturing the same
WO2016079908A1 (en) High-strength seamless steel pipe for oil wells and method for producing same
KR20180072967A (en) High manganese steel with superior low temperature toughness and yield strength and method for manufacturing the same
KR102255827B1 (en) Low-temperature austenitic high manganese steel having excellent surface quality and manufacturing method for the same
KR102389019B1 (en) High manganese austenitic steel having high yield strength
KR102065276B1 (en) Steel Plate For Pressure Vessel With Excellent Toughness and Elongation Resistance And Manufacturing Method Thereof
EP3733905A1 (en) High-strength structural steel material having excellent fatigue crack propagation inhibitory characteristics and manufacturing method therefor
KR102109270B1 (en) Low temperature high manganese steel plate with excellent surface property and method for manufacturing the same
KR102164110B1 (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
KR102255825B1 (en) Ultra-low temperature austenitic high manganese steel having excellent shape and manufacturing method for the same
KR20160138771A (en) Tmcp typed steel and method of manufacturing the same
KR102290109B1 (en) Ultra-low temperature austenitic high manganese steel having excellent corrosion resistance and manufacturing method for the same
KR102153170B1 (en) Ultra heavy gauge hot rolled steel plate having excellent strength and high DWTT toughness at low temperature and method for manufacturing thereof
KR101639845B1 (en) High strength thick sheet with cutting crack resistance and method for manufacturing the same
KR20200046831A (en) Low temperature austenitic high manganese steel having excellent surface quality and resistance to stress corrosion cracking, and manufacturing method for the same
KR102290103B1 (en) Ultra-low temperature austenitic high manganese steel having excellent scale peeling property and manufacturing method for the same
KR20200047081A (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
KR102256376B1 (en) High-manganese steel sheet having excellent quality of surface, and method for manufacturing thereof
KR102307950B1 (en) High strength non-magnetic steel having excellent oxygen cutting property and manufacturing method for the same
KR102245226B1 (en) High manganese steel having excellent oxygen cutting property and manufacturing method for the same
KR102200225B1 (en) Steel Plate For Pressure Vessel With Excellent Lateral Expansion And Manufacturing Method Thereof
KR102321319B1 (en) Steel sheet having excellent ductility and low-temperature impact toughness and method for manufacturing thereof
KR20180068087A (en) Ferritic stainless steel with improved impact toughness and method of manufacturing the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant