JP6000885B2 - Seal valve and manufacturing method thereof - Google Patents

Seal valve and manufacturing method thereof Download PDF

Info

Publication number
JP6000885B2
JP6000885B2 JP2013062172A JP2013062172A JP6000885B2 JP 6000885 B2 JP6000885 B2 JP 6000885B2 JP 2013062172 A JP2013062172 A JP 2013062172A JP 2013062172 A JP2013062172 A JP 2013062172A JP 6000885 B2 JP6000885 B2 JP 6000885B2
Authority
JP
Japan
Prior art keywords
valve
valve seat
main body
seal
fluid passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013062172A
Other languages
Japanese (ja)
Other versions
JP2014185734A (en
Inventor
透 石橋
透 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANCALL CORPORATION
Original Assignee
SANCALL CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANCALL CORPORATION filed Critical SANCALL CORPORATION
Priority to JP2013062172A priority Critical patent/JP6000885B2/en
Priority to CN201480010403.2A priority patent/CN105074300B/en
Priority to PCT/JP2014/056111 priority patent/WO2014156575A1/en
Publication of JP2014185734A publication Critical patent/JP2014185734A/en
Application granted granted Critical
Publication of JP6000885B2 publication Critical patent/JP6000885B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K25/00Details relating to contact between valve members and seats
    • F16K25/005Particular materials for seats or closure elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/341Systems characterised by their valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/3615Electromagnetic valves specially adapted for anti-lock brake and traction control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/3615Electromagnetic valves specially adapted for anti-lock brake and traction control systems
    • B60T8/363Electromagnetic valves specially adapted for anti-lock brake and traction control systems in hydraulic systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/04Check valves with guided rigid valve members shaped as balls
    • F16K15/044Check valves with guided rigid valve members shaped as balls spring-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • F16K31/0665Lift valves with valve member being at least partially ball-shaped

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Chemically Coating (AREA)
  • Lift Valve (AREA)
  • Magnetically Actuated Valves (AREA)

Description

本発明は、シール弁及びその製造方法に関する。   The present invention relates to a seal valve and a manufacturing method thereof.

シール弁は、流体通路に設けられた弁座に対して弁体を当接・離反させることにより、流体通路を開閉するものであり、例えば自動車のABSアクチュエータのソレノイドバルブに組み込まれる。シール弁は、弁座と弁体とを良好に密着させて、要求されるシール性を確保する必要がある。このため、シール弁を組み立てた後、弁座を弁体に押し付けた状態でリークテストを行い、リーク量が所定以下であることを確認している。   The seal valve opens and closes the fluid passage by bringing a valve body into contact with and away from a valve seat provided in the fluid passage, and is incorporated in, for example, a solenoid valve of an ABS actuator of an automobile. The seal valve needs to ensure the required sealing performance by bringing the valve seat and the valve body into good contact with each other. For this reason, after the seal valve is assembled, a leak test is performed in a state where the valve seat is pressed against the valve body, and it is confirmed that the leak amount is not more than a predetermined value.

このようにシール弁のリーク量を所定以下にするためには、弁座と弁体との密着状態が重要となるため、弁座を高精度に加工する必要がある。このため、通常、弁座には切削加工が施されるが、これだけでは要求されるシール性を保証できない恐れがある。例えば、切削加工の後、弁座に研磨加工を施せば、加工精度を高めてリーク量を抑えることができるが、加工コストが高騰してしまう。   Thus, in order to reduce the leak amount of the seal valve to a predetermined value or less, the close contact state between the valve seat and the valve body is important, and therefore it is necessary to process the valve seat with high accuracy. For this reason, the valve seat is usually subjected to cutting, but there is a possibility that the required sealing performance cannot be guaranteed only by this. For example, if the valve seat is polished after cutting, the processing accuracy can be increased and the amount of leakage can be suppressed, but the processing cost increases.

例えば特許文献1には、弁座に弁体(ボール弁等)を押し付けて塑性変形させることにより(面押し加工)、弁座と弁体との密着性を高めている。   For example, in Patent Document 1, a valve body (ball valve or the like) is pressed against a valve seat and is plastically deformed (surface pressing process), thereby improving the adhesion between the valve seat and the valve body.

特開2002−54757号公報JP 2002-54757 A

ところで、シール弁の本体における弁座の位置によっては、高精度な切削加工が難しい場合がある。例えば、図1(a)に示すように、シール弁1の本体10の軸心に設けられた弁座11bは、本体10を回転させながら切削工具を弁座11bに当てて加工できる。一方、本体10の軸心からオフセットした位置に設けられた弁座12cは、切削工具を回転させながら、固定した本体10の弁座12cに押し当てて加工する必要がある。一般に、工具を回転させて切削加工する場合は、ワークを回転させて切削加工する場合よりも加工精度が低くなるため、上記のように軸心からオフセットした位置に設けられた弁座12cは、軸心に設けられた弁座11bよりも切削加工精度が低くなる。このように、切削加工後の弁座の寸法精度(特に真円度)が低いと、その後に上記特許文献1のような面押し加工を施しても、所望の真円度が得られないことがある。   By the way, depending on the position of the valve seat in the main body of the seal valve, high-precision cutting may be difficult. For example, as shown in FIG. 1A, the valve seat 11b provided at the shaft center of the main body 10 of the seal valve 1 can be processed by applying a cutting tool to the valve seat 11b while rotating the main body 10. On the other hand, the valve seat 12c provided at a position offset from the axis of the main body 10 needs to be processed by pressing against the valve seat 12c of the fixed main body 10 while rotating the cutting tool. Generally, when cutting by rotating a tool, the processing accuracy is lower than when cutting by rotating a workpiece, so the valve seat 12c provided at the position offset from the axis as described above is Cutting accuracy is lower than that of the valve seat 11b provided at the shaft center. As described above, when the dimensional accuracy (particularly roundness) of the valve seat after cutting is low, the desired roundness cannot be obtained even if the surface pressing process as in Patent Document 1 is performed thereafter. There is.

本発明が解決すべき技術的課題は、高精度な切削加工が難しい位置に弁座が設けられた場合でも、低コストな方法で弁座の真円度を保証し、リーク量を抑えることができるシール弁を提供することにある。   The technical problem to be solved by the present invention is to guarantee the roundness of the valve seat by a low-cost method and suppress the leak amount even when the valve seat is provided at a position where high-precision cutting is difficult. It is to provide a seal valve that can be used.

前記課題を解決するためになされた本発明に係るシール弁は、流体通路を有する本体と、前記流体通路に設けられた弁座と、前記弁座に着座可能に設けられた弁体とを備えたシール弁であって、少なくとも前記弁座にコーティング処理が施されると共に、前記弁座のうち、前記弁体と接触する部分に、環状の面押し加工痕が形成されたことを特徴とするものである。   A seal valve according to the present invention, which has been made to solve the above problems, includes a main body having a fluid passage, a valve seat provided in the fluid passage, and a valve body provided so as to be seated on the valve seat. The valve seat is coated with at least the valve seat, and an annular surface pressing trace is formed in a portion of the valve seat that contacts the valve body. Is.

このように、弁座に面押し加工を施すことで、この面押し加工痕と弁体とを全周で当接させることが可能となる。しかし、高精度な切削加工が難しい場所に弁座が形成される場合、弁座の面粗さが粗くなってしまうため、上記のような面押し加工を施しても、面粗さが粗いことに起因して弁座の真円度が悪化し、リークが生じてしまう。本発明は、この点に着目してなされたものであり、弁座にコーティングを施して面粗さを小さくすることで弁座の真円度を保証し、面押し加工だけでは抑えきれないリークを確実に抑えることができる。   In this way, by performing a surface pressing process on the valve seat, it is possible to bring the surface pressing marks and the valve body into contact with each other all around. However, if the valve seat is formed in a place where high-precision cutting is difficult, the surface roughness of the valve seat becomes rough. As a result, the roundness of the valve seat deteriorates and leaks occur. The present invention has been made paying attention to this point, and by applying coating to the valve seat to reduce the surface roughness, the roundness of the valve seat is ensured, and leakage that cannot be suppressed only by surface pressing. Can be reliably suppressed.

例えば、コーティング処理が施された弁座の面粗さをRz3.2μm以下とすれば、面押し加工により真円度を十分に(例えば5μm以下まで)高めることができる。   For example, when the surface roughness of the valve seat subjected to the coating treatment is Rz 3.2 μm or less, the roundness can be sufficiently increased (for example, to 5 μm or less) by the surface pressing process.

上記のコーティング処理としては、例えば無電解めっきを適用することができる。   For example, electroless plating can be applied as the coating treatment.

上記のシール弁は、弁座に切削加工を施す切削工程と、少なくとも弁座にコーティング処理を施す工程と、弁座に、弁体と同形状の治具を押し付けて塑性変形させることにより、環状の面押し加工痕を形成する面押し工程とを経て製造することができる。   The above-described seal valve is formed into a ring shape by cutting the valve seat, performing a coating process on at least the valve seat, and pressing and deforming the valve seat with a jig having the same shape as the valve body. Can be manufactured through a surface pressing step for forming a surface pressing mark.

以上のように、本発明のシール弁によれば、高精度な切削加工が難しい位置に弁座が設けられた場合でも、低コストな方法で弁座の真円度を保証し、リーク量を抑えることができる。   As described above, according to the seal valve of the present invention, even when the valve seat is provided at a position where high-precision cutting is difficult, the roundness of the valve seat is ensured by a low-cost method, and the leak amount is reduced. Can be suppressed.

(a)は、本発明の一実施形態に係るシール弁の本体の断面図、(b)は(a)図のB方向から見た側面図、(c)は(a)図のC方向から見た側面図である。(A) is sectional drawing of the main body of the seal valve which concerns on one Embodiment of this invention, (b) is the side view seen from the B direction of (a) figure, (c) is from the C direction of (a) figure. FIG. (a)は本体の主流体通路の弁座11b付近の拡大断面図、(b)は本体の副流体通路の弁座12c付近の拡大図である。(A) is an expanded sectional view near the valve seat 11b of the main fluid passage of the main body, and (b) is an enlarged view of the vicinity of the valve seat 12c of the auxiliary fluid passage of the main body. シール弁の製造方法の手順を示すブロック図である。It is a block diagram which shows the procedure of the manufacturing method of a seal valve. 鍛造加工で形成された本体素材の断面図である。It is sectional drawing of the main body raw material formed by the forging process. 切削加工面にコーティング処理を施す様子を示す拡大断面図である。It is an expanded sectional view which shows a mode that a coating process is performed to a cutting surface. 本体素材に面押し加工を施す様子を示す断面図である。It is sectional drawing which shows a mode that a surface pressing process is performed to a main body raw material. 上記シール弁が組み込まれたABSアクチュエータのソレノイドバルブの断面図である。It is sectional drawing of the solenoid valve of the ABS actuator incorporating the said seal valve. 他の実施形態に係るシール弁の断面図である。It is sectional drawing of the seal valve which concerns on other embodiment.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本実施形態のシール弁1は、図1に示すように、本体10と、主弁体としてのボール20と、副弁体としてのボール30とを備える。   As shown in FIG. 1, the seal valve 1 of the present embodiment includes a main body 10, a ball 20 as a main valve body, and a ball 30 as a sub valve body.

本体10は、略円盤状をなしている。本体10には、流体(例えばオイル)が流通可能な流体通路が設けられる。本実施形態では、本体10の軸心に主流体通路11が設けられ、本体10の軸心からオフセットした位置に副流体通路12が設けられる。主流体通路11及び副流体通路12の軸心は、本体10の軸心と平行である。   The main body 10 has a substantially disk shape. The main body 10 is provided with a fluid passage through which a fluid (for example, oil) can flow. In the present embodiment, the main fluid passage 11 is provided in the axial center of the main body 10, and the auxiliary fluid passage 12 is provided at a position offset from the axial center of the main body 10. The axes of the main fluid passage 11 and the sub fluid passage 12 are parallel to the axis of the main body 10.

主流体通路11は、本体10の一方の端面(図1の右側端面)に開口した小径通路11aと、本体10の他方の端面(図1の左側端面)に開口し、小径通路11aと連通した弁座11bとを有する。小径通路11aは円筒面であり、弁座11bは、軸方向一方側を縮径させたテーパ面である。   The main fluid passage 11 opens to one end face (right end face in FIG. 1) of the main body 10 and opens to the other end face (left end face in FIG. 1) of the main body 10 and communicates with the small diameter passage 11a. And a valve seat 11b. The small diameter passage 11a is a cylindrical surface, and the valve seat 11b is a tapered surface having a reduced diameter on one side in the axial direction.

副流体通路12は、本体10の他方の端面(図1の左側端面)に開口した小径通路12aと、本体10の一方の端面(図1の右側端面)に開口した大径通路12bと、小径通路12a及び大径通路12bとの間に設けられた弁座12cとを有する。小径通路12a及び大径通路12bは円筒面であり。弁座12cは、軸方向他方側を縮径させたテーパ面であり、小径通路12a及び大径通路12bと連続している。   The sub-fluid passage 12 includes a small-diameter passage 12a that opens to the other end face (the left end face in FIG. 1) of the main body 10, a large-diameter passage 12b that opens to one end face (the right-side end face in FIG. 1), and a small diameter. And a valve seat 12c provided between the passage 12a and the large-diameter passage 12b. The small diameter passage 12a and the large diameter passage 12b are cylindrical surfaces. The valve seat 12c is a tapered surface having a diameter reduced on the other side in the axial direction, and is continuous with the small diameter passage 12a and the large diameter passage 12b.

弁座11b,12cには、環状の面押し加工痕14,15が形成されている。面押し加工痕14,15は、ボール20,30と同径のボール治具を弁座11b,12cに押し付け、これらのボール治具の形状を弁座11b,12cに転写することで形成される(詳細は後述する)。面押し加工痕14,15は、図1(b)及び(c)に示すように、弁座11b,12cの中間部(軸方向両端を除く部分)に環状に設けられる。面押し加工痕14,15は、弁座11b,12cのうち、ボール20,30との接触部に設けられ、ボール20,30のうち、弁座11b,12cとの接触部と同径の円形を成している。面押し加工痕14,15は、真円度5μm以下、好ましくは3μm以下とされる。   On the valve seats 11b and 12c, annular surface pressing marks 14 and 15 are formed. The surface pressing marks 14 and 15 are formed by pressing a ball jig having the same diameter as the balls 20 and 30 against the valve seats 11b and 12c, and transferring the shape of these ball jigs to the valve seats 11b and 12c. (Details will be described later). As shown in FIGS. 1B and 1C, the surface pressing marks 14 and 15 are provided in an annular shape in the intermediate portion (portion excluding both ends in the axial direction) of the valve seats 11b and 12c. The surface pressing marks 14 and 15 are provided in contact portions with the balls 20 and 30 in the valve seats 11b and 12c, and the balls 20 and 30 have circular shapes having the same diameter as the contact portions with the valve seats 11b and 12c. Is made. The surface pressing marks 14 and 15 have a roundness of 5 μm or less, preferably 3 μm or less.

図2に示すように、本体10のうち、少なくとも弁座11b,12cには、コーティング処理が施される。本実施形態では、流体通路11,12の内周面を含む本体10の表面全体に、無電解めっき層13が施される。無電解めっき層13は、例えばニッケルで形成される。無電解めっき層13が施された弁座11b,12cの表面粗さは、Rz3.2μm以下、好ましくは1.6μm以下とされる。   As shown in FIG. 2, at least the valve seats 11 b and 12 c in the main body 10 are subjected to a coating process. In the present embodiment, the electroless plating layer 13 is applied to the entire surface of the main body 10 including the inner peripheral surfaces of the fluid passages 11 and 12. The electroless plating layer 13 is made of nickel, for example. The surface roughness of the valve seats 11b and 12c to which the electroless plating layer 13 is applied is Rz 3.2 μm or less, preferably 1.6 μm or less.

上記構成のシール弁1を開いた状態、すなわち、ボール20,30が弁座11b,12cから離れた状態では、流体通路11,12を介した流体の流通が可能となる。一方、シール弁1を閉じた状態、すなわち、ボール20,30を弁座11b,12cに押し付けた状態では、流体通路11,12を介した流体の流通が規制される。   When the seal valve 1 having the above configuration is opened, that is, when the balls 20 and 30 are separated from the valve seats 11b and 12c, fluid can be circulated through the fluid passages 11 and 12. On the other hand, in a state where the seal valve 1 is closed, that is, in a state where the balls 20 and 30 are pressed against the valve seats 11b and 12c, the fluid flow through the fluid passages 11 and 12 is restricted.

以下、上記構成のシール弁1の製造方法を、本体10の形成方法を中心に説明する。シール弁1は、図3に示すように、鍛造工程、切削工程、コーティング工程(無電解めっき工程)、面押し工程、組立工程を経て行われる。   Hereinafter, the manufacturing method of the seal valve 1 having the above configuration will be described focusing on the method of forming the main body 10. As shown in FIG. 3, the seal valve 1 is subjected to a forging process, a cutting process, a coating process (electroless plating process), a surface pressing process, and an assembly process.

鍛造工程では、図4に示すように、本体10とほぼ同形状の本体素材10’が形成される。本体素材10’には、テーパ面11b’,12c’を有する貫通孔11’,12’が形成される。   In the forging process, as shown in FIG. 4, a main body material 10 ′ having substantially the same shape as the main body 10 is formed. Through holes 11 'and 12' having tapered surfaces 11b 'and 12c' are formed in the main body material 10 '.

切削工程では、図4に示す本体素材10’のテーパ面11b’,12c’に、切削加工が施される。具体的には、まず、本体素材10’を軸心周りに回転させながら、本体素材10’の軸心に設けられたテーパ面11b’に切削工具を当てて切削加工を施す。その後、本体素材10’を固定した状態で、テーパ面12c’に別の切削工具を回転させながら当てて切削加工を施す。ワークに切削加工(旋削加工)を施す場合、一般に、ワークを回転させて切削する方が、工具を回転させて切削する場合よりも加工精度が高い。本実施形態では、本体素材10’を回転させて切削したテーパ面11b’は精度良く加工され、例えば真円度5μm以下(好ましくは3μm以下)、表面粗さRz3.2μm以下(好ましくは1.6μm以下)となっている。一方、切削工具を回転させて切削したテーパ面12c’は、テーパ面11b’よりも加工精度が低く、例えば真円度20μm程度、表面粗さRz6.3μm程度になっている。尚、切削工程の後、必要に応じて、本体素材10’に対して熱処理工程、ショット・バレル工程、及びフェルマイト工程等を施してもよい。   In the cutting process, cutting is performed on the tapered surfaces 11b 'and 12c' of the main body material 10 'shown in FIG. Specifically, first, while rotating the main body material 10 ′ around the axis, the cutting tool is applied to the tapered surface 11 b ′ provided on the axis of the main body material 10 ′ to perform cutting. Thereafter, in a state where the main body material 10 ′ is fixed, another cutting tool is applied to the tapered surface 12 c ′ while rotating to perform cutting. When a workpiece is subjected to cutting (turning), generally, the cutting accuracy is higher when the workpiece is rotated than when the tool is rotated. In the present embodiment, the tapered surface 11b ′ cut by rotating the main body material 10 ′ is processed with high accuracy. For example, the roundness is 5 μm or less (preferably 3 μm or less), and the surface roughness Rz is 3.2 μm or less (preferably 1. 6 μm or less). On the other hand, the taper surface 12c 'cut by rotating the cutting tool has lower processing accuracy than the taper surface 11b', and has, for example, a roundness of about 20 μm and a surface roughness Rz of about 6.3 μm. After the cutting process, the main body material 10 ′ may be subjected to a heat treatment process, a shot / barrel process, a fermite process, and the like as necessary.

その後、本体素材10’にコーティング処理が施される。本実施形態では、コーティング処理として、無電解めっき、特にニッケル無電解めっきが施される。具体的には、ニッケルを含むめっき浴に本体素材10’を浸漬することにより、貫通孔11’,12’の内周面を含む本体素材10’の表面全体にニッケル無電解めっきが施される。これにより、図5に示すように、切削加工が施されたテーパ面11b’,12c’に無電解めっき層13がコーティングされ、表面粗さが改善される。特に、本体素材10’の軸心からオフセットした位置にあるテーパ面12c’は、高精度な切削加工が難しく、上述のように面粗さが比較的粗くなっているが、コーティング処理により切削加工痕にコーティング材(無電解めっき層13)が入り込み、表面粗さが小さくなる。具体的には、テーパ面11b’,12c’の表面粗さがRz3.2μm以下、好ましくは1.6μm以下となるように、コーティング処理が施される。   Thereafter, the main body material 10 ′ is subjected to a coating process. In the present embodiment, electroless plating, particularly nickel electroless plating is performed as the coating treatment. Specifically, by immersing the main body material 10 ′ in a plating bath containing nickel, the entire surface of the main body material 10 ′ including the inner peripheral surfaces of the through holes 11 ′ and 12 ′ is subjected to nickel electroless plating. . As a result, as shown in FIG. 5, the electroless plating layer 13 is coated on the tapered surfaces 11b 'and 12c' subjected to the cutting process, and the surface roughness is improved. In particular, the tapered surface 12c ′ located at a position offset from the axis of the main body material 10 ′ is difficult to cut with high accuracy, and has a relatively rough surface as described above. The coating material (electroless plating layer 13) enters the traces and the surface roughness is reduced. Specifically, the coating process is performed so that the surface roughness of the tapered surfaces 11b 'and 12c' is Rz 3.2 µm or less, preferably 1.6 µm or less.

その後、本体素材10’に対して面押し工程が施される。面押し工程では、図6に示すように、テーパ面11b’に対して、ボール20と同径の治具ボール20’を押し付けると共に、テーパ面12c’に対して、ボール30と同径の治具ボール30’を押し付け、テーパ面11b’,12c’の一部を塑性変形させる。治具ボール20’,30’は、それぞれ本体素材10’に対して回転させることなく平行に押し付けられる。これにより、テーパ面11b’,12c’(弁座11b,12c)にそれぞれ環状の面押し加工痕14,15が形成される(図1参照)。治具ボール20’,30’は、それぞれボール20,30よりも硬い材質が使用される。治具ボール20’,30’の真円度は5μm以下、好ましくは3μm以下とされ、治具ボール20’,30’の表面粗さはRz3.2μm以下、好ましくは1.6μm以下とされる。この面押し加工により、本体10が完成する。その後、本体10及びボール20,30を組み立てることで、シール弁1が完成する。   Thereafter, a surface pressing process is performed on the main body material 10 '. In the surface pressing step, as shown in FIG. 6, a jig ball 20 ′ having the same diameter as the ball 20 is pressed against the tapered surface 11b ′, and a jig having the same diameter as the ball 30 is pressed against the tapered surface 12c ′. The tool ball 30 ′ is pressed to plastically deform part of the tapered surfaces 11b ′ and 12c ′. The jig balls 20 ′ and 30 ′ are pressed in parallel with each other without rotating with respect to the main body material 10 ′. As a result, annular surface pressing marks 14 and 15 are formed on the tapered surfaces 11b 'and 12c' (valve seats 11b and 12c), respectively (see FIG. 1). The jig balls 20 ′ and 30 ′ are made of a material harder than the balls 20 and 30, respectively. The roundness of the jig balls 20 ′ and 30 ′ is 5 μm or less, preferably 3 μm or less, and the surface roughness of the jig balls 20 ′ and 30 ′ is Rz 3.2 μm or less, preferably 1.6 μm or less. . The main body 10 is completed by this surface pressing. Thereafter, the seal valve 1 is completed by assembling the main body 10 and the balls 20 and 30.

上記のように、シール弁1の弁座、特に、本体10の軸心からオフセットした位置にある弁座12cにコーティング処理を施して、弁座12cの表面粗さを改善することで、この弁座12cに形成される面押し加工痕15の真円度が改善される。これにより、弁座12cとボール30との密着性が高められるため、副流体通路12のリークを抑えてシール性が高められる。   As described above, the valve seat of the seal valve 1, in particular, the valve seat 12c at a position offset from the axis of the main body 10 is coated to improve the surface roughness of the valve seat 12c. The roundness of the surface pressing mark 15 formed on the seat 12c is improved. Thereby, since the adhesiveness of the valve seat 12c and the ball | bowl 30 is improved, the leak of the subfluid channel | path 12 is suppressed and a sealing performance is improved.

ところで、弁座11b,12cに形成される面押し加工痕14,15は、厳密に言うと、治具ボール20’,30’と同径の球面状、すなわちボール20,30と同径の球面状に形成される。従って、面押し加工痕14,15の幅(弁座11b,12cの母線方向における幅)が大きい場合、ボール20,30を弁座11b,12cに押し付けてシール弁1を閉じると、球面状の面押し加工痕14,15にボール20,30が嵌り込む。この場合、その後にシール弁1を開こうとしたときに、ボール20,30が面押し加工痕14,15に引っかかって弁座11b,12cから離反しにくくなる恐れがある。本実施形態では、上記のように、弁座11b,12cにコーティング処理を施して表面を滑らかにしているため、上記のような引っかかりが防止され、シール弁1をスムーズに開閉することが可能となる。   Strictly speaking, the surface pressing marks 14 and 15 formed on the valve seats 11b and 12c are spherical with the same diameter as the jig balls 20 ′ and 30 ′, that is, spherical with the same diameter as the balls 20 and 30. It is formed in a shape. Accordingly, when the width of the surface pressing marks 14 and 15 (the width of the valve seats 11b and 12c in the generatrix direction) is large, when the balls 20 and 30 are pressed against the valve seats 11b and 12c and the seal valve 1 is closed, a spherical shape is obtained. The balls 20 and 30 are fitted into the surface pressing marks 14 and 15. In this case, when the seal valve 1 is subsequently opened, the balls 20 and 30 may be caught by the surface pressing marks 14 and 15 and hardly come apart from the valve seats 11b and 12c. In the present embodiment, as described above, the valve seats 11b and 12c are coated to smooth the surface, so that the above-described catch is prevented and the seal valve 1 can be opened and closed smoothly. Become.

上記のシール弁1は、例えば図7に示すようなABSアクチュエータ100のソレノイドバルブ200に組み込まれる。ABSアクチュエータ100は、ブレーキ液圧を制御するものであり、ホイールシリンダ101とマスタシリンダ102との間に設けられる。ソレノイドバルブ200は、ABSアクチュエータ100のハウジング103aの凹部に固定されたガイド201と、ガイド201の内周に挿入されたシャフト202と、ガイド201の内周に固定され、シャフト202の先端側に配されたシール弁1とを主に備える。シール弁1の本体10は、シャフト202の先端側に同軸上に配される。ボール20は、主流体通路11の弁座11bとシャフト202の先端との間に配される。ボール30は、副流体通路12の弁座12cとボール止め207との間に配される。   Said seal valve 1 is integrated in the solenoid valve 200 of the ABS actuator 100 as shown, for example in FIG. The ABS actuator 100 controls the brake fluid pressure, and is provided between the wheel cylinder 101 and the master cylinder 102. The solenoid valve 200 includes a guide 201 fixed to the recess of the housing 103 a of the ABS actuator 100, a shaft 202 inserted into the inner periphery of the guide 201, and an inner periphery of the guide 201, and is arranged on the distal end side of the shaft 202. The seal valve 1 is mainly provided. The main body 10 of the seal valve 1 is coaxially disposed on the distal end side of the shaft 202. The ball 20 is disposed between the valve seat 11 b of the main fluid passage 11 and the tip of the shaft 202. The ball 30 is disposed between the valve seat 12 c of the auxiliary fluid passage 12 and the ball stopper 207.

ソレノイドバルブ200は、通常時はコイル213に通電されない状態となっている。この状態では、スプリング212によりシャフト202及びプランジャ211が図中上方に付勢される。これにより、シール弁1のボール20は、弁座11bとシャフト202の先端との上下方向間で移動自在とされる。従って、ホイールシリンダ101側の流路103bとマスタシリンダ102側の流路103cとが、シール弁1の主流体通路11を介して連通状態となる。   The solenoid valve 200 is normally not energized to the coil 213. In this state, the spring 202 urges the shaft 202 and the plunger 211 upward in the drawing. As a result, the ball 20 of the seal valve 1 can be moved between the valve seat 11b and the tip of the shaft 202 in the vertical direction. Therefore, the flow path 103 b on the wheel cylinder 101 side and the flow path 103 c on the master cylinder 102 side are in communication with each other via the main fluid passage 11 of the seal valve 1.

ポンプ106が作動すると、シール弁1のボール30が弁座12cに押し付けられて副流体通路12が閉じる。従って、シール弁1の主流体通路11のみを介してホイールシリンダ101側からマスタシリンダ102側へブレーキ液が流動される。   When the pump 106 is operated, the ball 30 of the seal valve 1 is pressed against the valve seat 12c, and the auxiliary fluid passage 12 is closed. Accordingly, the brake fluid flows from the wheel cylinder 101 side to the master cylinder 102 side only through the main fluid passage 11 of the seal valve 1.

ポンプ106の作動が中止されると、シール弁1のボール30が弁座12cから離れ、副流体通路12が開く。従って、シール弁1の主流体通路11及び副流体通路12を介して、マスタシリンダ102側からホイールシリンダ101側へブレーキ液が速やかに戻される。   When the operation of the pump 106 is stopped, the ball 30 of the seal valve 1 is separated from the valve seat 12c, and the auxiliary fluid passage 12 is opened. Accordingly, the brake fluid is quickly returned from the master cylinder 102 side to the wheel cylinder 101 side via the main fluid passage 11 and the sub fluid passage 12 of the seal valve 1.

ポンプ106を作動させると共に、コイル213へ通電すると、シール弁1のボール30が弁座12cに押し付けられて副流体通路12が閉じると共に、プランジャ211及びシャフト202が図中下側に移動し、シール弁1のボール20が弁座11bに押し付けられて主流体通路11が閉じる。これにより、ホイールシリンダ101が増圧する。従って、コイル213への通電量を調整して主流体通路11を開閉することで、ホイールシリンダ101の圧力を調整することができる。   When the pump 106 is operated and the coil 213 is energized, the ball 30 of the seal valve 1 is pressed against the valve seat 12c to close the auxiliary fluid passage 12, and the plunger 211 and the shaft 202 move downward in the figure, The ball 20 of the valve 1 is pressed against the valve seat 11b, and the main fluid passage 11 is closed. As a result, the wheel cylinder 101 increases in pressure. Therefore, the pressure of the wheel cylinder 101 can be adjusted by adjusting the energization amount to the coil 213 to open and close the main fluid passage 11.

本発明は上記の実施形態に限られない。例えば、逆流防止弁に本発明のシール弁を適用してもよい。例えば、図8に示すシール弁41(逆流防止弁)は、本体42と、ボール43と、スプリング44と、ケース45とを備える。本体42は流体通路46を有し、流体通路46の開口側端部に球面状の弁座46aが設けられる。弁座46aには、ボール43と同径の治具ボールを押し当てて形成された環状の面押し加工痕(図示省略)が形成される。弁座46aや面押し加工痕の諸元は、上記実施形態と同様である。   The present invention is not limited to the above embodiment. For example, the seal valve of the present invention may be applied to a backflow prevention valve. For example, the seal valve 41 (backflow prevention valve) shown in FIG. 8 includes a main body 42, a ball 43, a spring 44, and a case 45. The main body 42 has a fluid passage 46, and a spherical valve seat 46 a is provided at the opening side end of the fluid passage 46. The valve seat 46a is formed with an annular surface pressing trace (not shown) formed by pressing a jig ball having the same diameter as the ball 43. The specifications of the valve seat 46a and the surface pressing trace are the same as in the above embodiment.

また、上記の実施形態では、テーパ面11b’,12c’を含む本体素材10’の表面全体にコーティング処理を施しているが、本体素材10’の軸心にあるテーパ面11b’は切削加工後の表面粗さが小さい(Rz3.2μm以下)ため、コーティング処理を施さなくても良い。従って、本体素材10’の表面の一部のみにコーティング処理を施してもよい。例えばテーパ面12c’以外にマスキングを施した状態で本体素材10’をめっき浴に浸漬することで、テーパ面12c’のみにコーティング処理を施しても良い。   In the above embodiment, the entire surface of the main body material 10 ′ including the tapered surfaces 11b ′ and 12c ′ is coated. However, the tapered surface 11b ′ at the axis of the main body material 10 ′ is subjected to the cutting process. Since the surface roughness is small (Rz 3.2 μm or less), it is not necessary to perform the coating treatment. Therefore, only a part of the surface of the main body material 10 'may be coated. For example, only the tapered surface 12c 'may be coated by immersing the main body material 10' in a plating bath in a state where masking is applied to the portion other than the tapered surface 12c '.

また、コーティング処理は、切削加工を施した弁座の表面粗さを改善できる方法であればよく、例えば電解めっきや蒸着処理等を採用することもできる。ただし、無電解めっきは、非常に滑らかな表面を得ることができるため好ましい。また、弁体は、ボールに限らず、例えばテーパ面を有するものであってもよい。   Moreover, the coating process should just be a method which can improve the surface roughness of the valve seat which gave cutting, for example, electroplating, a vapor deposition process, etc. can also be employ | adopted for it. However, electroless plating is preferable because a very smooth surface can be obtained. Further, the valve body is not limited to a ball, and may have, for example, a tapered surface.

また、上記の実施形態では、コーティング処理を施した後、面押し加工を施した場合を示したが、これとは逆に、面押し加工を施した後、コーティング処理を施してもよい。   In the above-described embodiment, the case where the surface pressing process is performed after the coating process is performed is shown, but conversely, the surface treatment may be performed and then the coating process may be performed.

1 シール弁
10 本体
11 主流体通路
11b 弁座
12 副流体通路
12c 弁座
13 無電解めっき層(コーティング層)
14,15 面押し加工痕
20 ボール(主弁体)
30 ボール(副弁体)
DESCRIPTION OF SYMBOLS 1 Seal valve 10 Main body 11 Main fluid passage 11b Valve seat 12 Sub fluid passage 12c Valve seat 13 Electroless plating layer (coating layer)
14, 15 Surface stamping marks 20 balls (main valve body)
30 balls (sub-valve)

Claims (4)

流体通路を有する本体と、前記流体通路に設けられた弁座と、前記弁座に着座可能に設けられた弁体とを備えたシール弁であって、
少なくとも前記弁座にコーティング処理が施されると共に、前記弁座のうち、前記弁体と接触する部分に、環状の面押し加工痕が形成されたことを特徴とするシール弁。
A seal valve comprising a main body having a fluid passage, a valve seat provided in the fluid passage, and a valve body provided to be seatable on the valve seat,
A seal valve characterized in that at least the valve seat is coated, and an annular surface pressing trace is formed in a portion of the valve seat that contacts the valve body.
前記コーティング処理が施された前記弁座の面粗さがRz3.2μm以下である請求項1記載のシール弁。   The seal valve according to claim 1, wherein a surface roughness of the valve seat subjected to the coating treatment is Rz 3.2 μm or less. 前記コーティング処理が無電解めっきである請求項1又は2記載のシール弁。   The seal valve according to claim 1 or 2, wherein the coating treatment is electroless plating. 流体通路を有する本体と、前記流体通路に設けられた弁座と、前記弁座に着座可能に設けられた弁体とを備えたシール弁を製造するための方法であって、
前記弁座に切削加工を施す切削工程と、少なくとも前記弁座にコーティング処理を施すコーティング工程と、前記弁座に、前記弁体と同形状の治具を押し付けて塑性変形させることにより、環状の面押し加工痕を形成する面押し工程とを有するシール弁の製造方法。
A method for producing a seal valve comprising a main body having a fluid passage, a valve seat provided in the fluid passage, and a valve body provided to be seatable on the valve seat,
A cutting step of cutting the valve seat, a coating step of applying a coating treatment to at least the valve seat, and pressing the jig having the same shape as the valve body against the valve seat to cause plastic deformation, A manufacturing method of a seal valve having a surface pressing step for forming surface pressing marks.
JP2013062172A 2013-03-25 2013-03-25 Seal valve and manufacturing method thereof Expired - Fee Related JP6000885B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013062172A JP6000885B2 (en) 2013-03-25 2013-03-25 Seal valve and manufacturing method thereof
CN201480010403.2A CN105074300B (en) 2013-03-25 2014-03-10 Sealing valve and its manufacture method
PCT/JP2014/056111 WO2014156575A1 (en) 2013-03-25 2014-03-10 Seal valve and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013062172A JP6000885B2 (en) 2013-03-25 2013-03-25 Seal valve and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014185734A JP2014185734A (en) 2014-10-02
JP6000885B2 true JP6000885B2 (en) 2016-10-05

Family

ID=51623560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013062172A Expired - Fee Related JP6000885B2 (en) 2013-03-25 2013-03-25 Seal valve and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP6000885B2 (en)
CN (1) CN105074300B (en)
WO (1) WO2014156575A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK180054B1 (en) * 2018-10-02 2020-02-11 Hans Jensen Lubricators A/S Substitution of a valve seat for improving a lubricator pump unit and lubrication system of a large slow-running two-stroke engine, and an improved lubricator pump unit
TR202010494A1 (en) * 2020-07-02 2022-05-23 Ali Oezel CYLINDER PISTON END CAP AND FULLY SAFE LOCKING MECHANISM THAT CAN BE INTEGRATED IN HYDRAULIC AND PNEUMATIC CYLINDERS

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605870A (en) * 1983-06-24 1985-01-12 Toshiba Corp Valve
JPS61282673A (en) * 1985-05-15 1986-12-12 Tlv Co Ltd Valve part structure of valve
JPH0227066U (en) * 1988-08-09 1990-02-22
JP2859838B2 (en) * 1995-10-19 1999-02-24 シーケーディ株式会社 solenoid valve
US5954312A (en) * 1996-01-31 1999-09-21 Siemens Automotive Corporation Groove means in a fuel injector valve seat
JPH1130350A (en) * 1997-07-10 1999-02-02 Otix:Kk Fluid pressure control valve and its manufacture
JPH1162833A (en) * 1997-08-22 1999-03-05 Y B M:Kk Valve for plunger pump
US6325090B1 (en) * 1998-06-09 2001-12-04 Watts Investment Company Backflow preventer assembly
JP2002054757A (en) * 2000-08-10 2002-02-20 Tgk Co Ltd Valve device
EP1493534A1 (en) * 2003-07-01 2005-01-05 Maschinenfabrik Gehring GmbH & Co. KG Method for producing valve seat surfaces and valve with a conical seat surface
CN2823714Y (en) * 2005-09-01 2006-10-04 程路 Ball valve
JP2007146914A (en) * 2005-11-25 2007-06-14 Hitachi Ltd Structure of solenoid valve and method of manufacturing the same
EP2118542B1 (en) * 2007-01-10 2018-05-09 Fritz Gyger Ag Micro-valve
CN201034181Y (en) * 2007-04-28 2008-03-12 苏州纽威阀门有限公司 Hard-sealing ball valve seat structure
CN202203433U (en) * 2011-08-25 2012-04-25 中山铁王流体控制设备有限公司 Novel ultralow temperature valve base

Also Published As

Publication number Publication date
WO2014156575A1 (en) 2014-10-02
CN105074300B (en) 2017-07-07
CN105074300A (en) 2015-11-18
JP2014185734A (en) 2014-10-02

Similar Documents

Publication Publication Date Title
US8448916B2 (en) Solenoid valve for controlling a fluid
JP5178683B2 (en) Electromagnetic fuel injection valve
US8381400B2 (en) Method of manufacturing a check valve
EP1484539A1 (en) Electromagnetic valve
JP2007092829A (en) Valve
JP6000885B2 (en) Seal valve and manufacturing method thereof
JP5559962B2 (en) Fuel injection valve and nozzle processing method
JP4082929B2 (en) Fuel injection valve
JP2592542B2 (en) Method for manufacturing nozzle of electromagnetic valve
RU2614883C2 (en) Valve body with ring stem guide
RU2657399C2 (en) Spring gasket for valve housing
US5213126A (en) Pressure control valve and method of manufacturing same
JP2015105592A (en) Fuel injection valve
JP5184675B2 (en) solenoid valve
JPH058152U (en) Solenoid valve
CN1734142B (en) Valve installation
US20130263429A1 (en) Caulking joint method and caulking joint structure
JP2008273507A (en) Brake fluid pressure control device for vehicle
JP5974234B2 (en) Method for manufacturing solenoid valve and solenoid valve
JP2012031969A (en) Hub integrated shaft for fluid dynamic pressure bearing device, and method for manufacturing the same
WO2020250542A1 (en) Orifice machining method, and fuel injection valve
JP2009250426A (en) Solenoid valve and manufacturing method of the same
JP5536424B2 (en) Solenoid valve nozzle
JP2007278303A (en) Fuel injection valve
CN110500416B (en) Butterfly valve elastic metal sealing ring and processing technology thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160831

R150 Certificate of patent or registration of utility model

Ref document number: 6000885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees