JP2007146914A - Structure of solenoid valve and method of manufacturing the same - Google Patents

Structure of solenoid valve and method of manufacturing the same Download PDF

Info

Publication number
JP2007146914A
JP2007146914A JP2005339725A JP2005339725A JP2007146914A JP 2007146914 A JP2007146914 A JP 2007146914A JP 2005339725 A JP2005339725 A JP 2005339725A JP 2005339725 A JP2005339725 A JP 2005339725A JP 2007146914 A JP2007146914 A JP 2007146914A
Authority
JP
Japan
Prior art keywords
valve
valve body
valve seat
plunger
passage hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2005339725A
Other languages
Japanese (ja)
Inventor
Michihide Saito
倫英 斎藤
Norihiro Saida
憲宏 齋田
Satoshi Doi
諭志 土井
Katsuma Tsuruoka
克磨 鶴岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005339725A priority Critical patent/JP2007146914A/en
Publication of JP2007146914A publication Critical patent/JP2007146914A/en
Abandoned legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solenoid valve which can prevent repeated movement of a valve element caused by a change in pressure-receiving diameter at the beginning of a valve opening stroke of the valve element so as to decrease oscillation phenomena. <P>SOLUTION: The solenoid valve comprises the spherical valve element 38 provided at the top end of a plunger which slides due to magnetic force generated in an electromagnetic coil, a valve seat body 39 arranged coaxially with the plunger and having a passage hole 40 formed therein and axially extending therethrough, and a spherical-surface valve seat 41 which is formed in an opening portion 40a at the top end of the passage hole and from or on which the valve element is separated or seated. The solenoid valve is structured such that the valve element is separated from or seated on the valve seat corresponding to the sliding movement of the plunger so as to open or close the opening at the top end of the passage hole. A rate of decrease of the pressure-receiving diameter D in the valve opening stroke of the valve element is reduced by setting the curvature radius of the valve seat larger than that of the valve element, thereby decreasing the oscillation phenomena of the valve element caused by fluid pressure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば車両のブレーキ液圧を制御するためのアンチロックブレーキ装置(ABS)などに用いられる電磁弁構造及びこの電磁弁の製造方法に関する。   The present invention relates to an electromagnetic valve structure used in, for example, an antilock brake device (ABS) for controlling a brake hydraulic pressure of a vehicle, and a method of manufacturing the electromagnetic valve.

この種の従来の電磁弁構造としては、アンチロックブレーキ装置に適用された以下の特許文献に記載されたものが知られている。   As this type of conventional solenoid valve structure, those described in the following patent documents applied to an antilock brake device are known.

概略を説明すれば、この電磁弁は、いわゆる常閉型の減圧用電磁弁であって、ハウジングに形成された弁保持穴と、一部が前記ハウジング内に形成されて、一端が各ホイールシリンダに接続され、他端がリザーバに接続されたブレーキ液を通流させるブレーキ液圧通路と、前記弁保持穴内に収容保持され、周壁の径方向に前記ブレーキ液圧通路に連通する通路孔を有するほぼ円筒状のバルブボディと、該バルブボディの内部に形成されて、前記通路孔の一端開口縁に形成された球面状の弁座に離着座して前記通路孔の一端開口を開閉する球面状の弁体と、バルブボディの上端部に固定されたシリンダの内部に摺動自在に設けられて、前記弁体を開閉作動させるプランジャと、を備えている。   Briefly speaking, this solenoid valve is a so-called normally closed type pressure-reducing solenoid valve, a valve holding hole formed in the housing, a part formed in the housing, and one end of each wheel cylinder. A brake fluid pressure passage for allowing the brake fluid to flow through, the other end of which is connected to the reservoir, and a passage hole that is housed and held in the valve holding hole and communicates with the brake fluid pressure passage in the radial direction of the peripheral wall. A substantially cylindrical valve body, and a spherical shape that is formed inside the valve body and opens and closes one end opening of the passage hole by being attached to and detached from a spherical valve seat formed at one end opening edge of the passage hole. And a plunger that is slidably provided inside a cylinder fixed to the upper end of the valve body and that opens and closes the valve body.

前記シリンダの一端側には、固定コアが固定され、この固定コアの外周に電磁コイルが配置されており、この電磁コイルに通電されずに固定コアが消磁されている場合は、バルブスプリングによって弁体が前記開口縁を閉成する一方、通電されるとプランジャが固定コアに吸引されて弁体によって開口端を開成して各ホイールシリンダのブレーキ液をリザーバに還流させてブレーキ液圧を制御するようになっている。
特開平11−222119号公報(第3図)
A fixed core is fixed to one end of the cylinder, and an electromagnetic coil is disposed on the outer periphery of the fixed core. When the fixed core is demagnetized without being energized, the valve spring While the body closes the opening edge, when energized, the plunger is sucked into the fixed core, the opening end is opened by the valve body, and the brake fluid of each wheel cylinder is returned to the reservoir to control the brake fluid pressure. It is like that.
Japanese Patent Laid-Open No. 11-222119 (FIG. 3)

しかしながら、前記従来の電磁弁は、図6Aに示すように、球面状の弁座2の曲率半径R’が、前記球面状の弁体1の受圧面1aの曲率半径Rよりも小さく形成されている。このため、弁体1が弁座2の上端内周縁2aに着座した状態から開弁方向へストロークした際に、その開弁初期に弁体1の受圧径D、つまり弁体1の中心Pから弁座2の上端内周縁2a及び該弁座2の外周側に有する開口縁部4の上面までの最短距離を結ぶ直線で形成される円錐角度θ間に受圧径Dが存在し、この受圧径Dが弁体1の弁座2の上端内周縁2aに着座位置における受圧径Dの幅0よりも急激に減少した1及び2の範囲になり、この減少方向の変化率が大きいことから、前記通路孔3から開口端3a方向へ流れる流体圧に大きな変動が発生する。   However, as shown in FIG. 6A, the conventional solenoid valve is formed such that the curvature radius R ′ of the spherical valve seat 2 is smaller than the curvature radius R of the pressure receiving surface 1a of the spherical valve body 1. Yes. For this reason, when the valve body 1 is stroked in the valve opening direction from the state in which the valve body 1 is seated on the upper peripheral edge 2a of the valve seat 2, from the pressure-receiving diameter D of the valve body 1, that is, from the center P of the valve body 1 There is a pressure receiving diameter D between a cone angle θ formed by a straight line connecting the shortest distance from the inner peripheral edge 2a of the upper end of the valve seat 2 to the upper surface of the opening edge 4 on the outer peripheral side of the valve seat 2, and this pressure receiving diameter is present. D is in the range of 1 and 2 which is sharply reduced from the width 0 of the pressure receiving diameter D at the seating position at the upper inner periphery 2a of the valve seat 2 of the valve body 1, and the rate of change in the decreasing direction is large. A large fluctuation occurs in the fluid pressure flowing from the passage hole 3 toward the opening end 3a.

すなわち、前記弁体1の前記通路孔3を通流する液圧による受圧径Dは、通路孔3の先端開口3aの開口面積によって決定され、弁体1が弁座2の上端内周縁2aに着座した閉弁時の受圧径Dは、通路孔3の先端開口3aの開口面積と同一の0であるが、プランジャを介して弁体1が図6Aの矢印で示すように、開弁方向へストロークして弁座2から離間した初期の段階では、前記受圧径Dが一時的に1及び2に段階的に大きく減少する方向へ変化する。これに伴って、弁体1が一時的に閉弁方向への移動を繰り返す。   That is, the pressure receiving diameter D due to the fluid pressure flowing through the passage hole 3 of the valve body 1 is determined by the opening area of the tip opening 3 a of the passage hole 3. The pressure-receiving diameter D when the seated valve is closed is 0, which is the same as the opening area of the tip opening 3a of the passage hole 3, but the valve body 1 moves in the valve opening direction via the plunger as shown by the arrow in FIG. 6A. In the initial stage of stroke and separation from the valve seat 2, the pressure receiving diameter D temporarily changes to 1 and 2 in a direction that greatly decreases stepwise. Along with this, the valve body 1 temporarily repeats the movement in the valve closing direction.

そして、この従来技術では、受圧径Dの減少変化率(変化幅)が大きいことから、通路孔3を通流する流体圧が瞬間的に低下して、前記弁体1(プランジャ)の閉弁方向への繰り返し移動量が大きくなる。   In this prior art, since the rate of change (change width) of the pressure receiving diameter D is large, the fluid pressure flowing through the passage hole 3 instantaneously decreases, and the valve body 1 (plunger) is closed. The amount of repeated movement in the direction increases.

これにより、図6B及び図7に示すように、流体圧の変動が急激に発生して振幅の大きな発振現象が起こり、異音が発生するばかりか、正確な流体圧を得ることが困難になる。特に、弁体1の中間位置で開度を保持制御するような比例制御式の電磁弁においては、弁体1を中間位置で安定して保持することができなくなるおそれがある。   As a result, as shown in FIG. 6B and FIG. 7, the fluid pressure fluctuates rapidly and an oscillation phenomenon with a large amplitude occurs, which causes not only abnormal noise but also difficulty in obtaining accurate fluid pressure. . In particular, in a proportional control type electromagnetic valve in which the opening degree is held and controlled at an intermediate position of the valve body 1, the valve body 1 may not be stably held at the intermediate position.

本発明は、前記従来の技術的課題に鑑みて案出されたもので、前記弁体の開弁方向へのストローク移動時における受圧径の急激な減少変化を抑制して、発振現象を十分に防止し得る電磁弁構造を提供することを目的としている。   The present invention has been devised in view of the above-described conventional technical problems, and suppresses a sudden decrease change in the pressure receiving diameter when the valve body moves in the stroke direction in the valve opening direction, thereby sufficiently suppressing the oscillation phenomenon. An object of the present invention is to provide a solenoid valve structure that can be prevented.

請求項1に記載の発明にあっては、電磁コイルに通電した際に発生する磁力によって摺動するプランジャと、該プランジャの先端部に設けられた弁体と、前記プランジャと同軸上に配置されて内部軸方向に通路孔が貫通形成されたバルブシートと、前記通路孔の先端開口部に形成されて、前記弁体が離着座する弁座と、を備え、前記プランジャの摺動に伴って前記弁体が弁座から離着座して前記通路孔の開先端開口を開閉する電磁弁構造であって、前記弁座の形状を、前記弁体の開弁ストローク移動に伴って前記通路孔の先端開口面積との相対関係で決定される前記弁体の受圧径の増減変化率が減少するように形成したことを特徴としている。   In the first aspect of the present invention, the plunger is slid by the magnetic force generated when the electromagnetic coil is energized, the valve body provided at the tip of the plunger, and the plunger is disposed coaxially. A valve seat having a passage hole formed therethrough in the direction of the internal axis, and a valve seat formed at a front end opening of the passage hole, on which the valve body is attached and detached, and with the sliding of the plunger An electromagnetic valve structure in which the valve body is separated from the valve seat and opens and closes the open end opening of the passage hole, and the shape of the valve seat is changed in accordance with the valve opening stroke movement of the valve body. It is characterized in that it is formed so that the rate of change in the pressure receiving diameter of the valve body determined by the relative relationship with the tip opening area decreases.

この発明によれば、前記弁座の形状を、前記弁体の開弁ストローク移動に伴って前記通路孔の先端開口面積との相対関係で決定される前記弁体の受圧径の減少変化率が小さくなるように形成したことから、弁体の開弁初期における受圧径の一時的な減少変化率が十分に小さくなり、該受圧径が連続的に変化するようになる。このため、通路孔の先端開口での流体圧の変動(発振)を十分に抑制することが可能になる。   According to this invention, the rate of change in the pressure-receiving diameter of the valve body is determined by the relative relationship between the shape of the valve seat and the tip opening area of the passage hole as the valve body opens. Since the valve body is formed to be small, the rate of change in the pressure-receiving diameter temporarily at the initial stage of valve opening becomes sufficiently small, and the pressure-receiving diameter changes continuously. For this reason, it is possible to sufficiently suppress the fluctuation (oscillation) of the fluid pressure at the tip opening of the passage hole.

この結果、かかる電磁弁を、例えば車両ブレーキ液圧制御装置に適用した場合には、弁体を中間位置に保持制御する比例制御や過渡時の作動応答性を向上させることが可能になる。また、前記比較的大きな発振による異音の発生をも防止できる。   As a result, when such an electromagnetic valve is applied to, for example, a vehicle brake hydraulic pressure control device, it becomes possible to improve the proportional control for controlling the valve body to be held at an intermediate position and the operation responsiveness at the time of transition. Moreover, it is possible to prevent the generation of abnormal noise due to the relatively large oscillation.

請求項2に記載の発明は、電磁コイルに通電した際に発生する磁力によって摺動するプランジャと、該プランジャの先端部に設けられた球面状の弁体と、前記プランジャと同軸上に配置されて内部軸方向に通路孔が貫通形成されたバルブシートと、前記通路孔の先端開口部に形成されて、前記弁体が離着座する球面状の弁座と、を備え、前記プランジャの摺動に伴って前記弁体が弁座から離着座して前記通路孔の開先端開口を開閉する電磁弁構造であって、前記弁座の曲率半径を、前記弁体の曲率半径よりも大きく設定したことを特徴としている。   According to a second aspect of the present invention, there is provided a plunger that slides by a magnetic force generated when an electromagnetic coil is energized, a spherical valve body provided at a tip of the plunger, and coaxial with the plunger. And a valve seat having a passage hole formed therethrough in the inner axial direction, and a spherical valve seat formed at a front end opening of the passage hole, on which the valve body is attached and detached, and sliding the plunger Accordingly, the valve body is separated from the valve seat and opens and closes the opening end opening of the passage hole, and the curvature radius of the valve seat is set larger than the curvature radius of the valve body. It is characterized by that.

この発明は、弁座の曲率半径を設定するだけであるから、簡単な構造で前記請求項1に記載の発明と同様な作用効果が得られると共に、コストの高騰を抑制できる。   Since the present invention merely sets the curvature radius of the valve seat, the same effects as those of the first aspect of the present invention can be obtained with a simple structure, and an increase in cost can be suppressed.

請求項3に記載の発明は、前記弁座の外周側にほぼテーパ状の開口縁部を形成したことを特徴としている。   The invention described in claim 3 is characterized in that a substantially tapered opening edge is formed on the outer peripheral side of the valve seat.

この発明によれば、請求項1または2に記載の発明の作用効果に加えて、前記弁体の受圧径の変化をさらに連続的にすることができるので、前述の発振現象を効果的に防止することが可能になる。   According to this invention, in addition to the operational effect of the invention according to claim 1 or 2, the change in the pressure receiving diameter of the valve body can be made more continuous, so the above-mentioned oscillation phenomenon is effectively prevented. It becomes possible to do.

請求項4に記載の発明にあっては、前記電磁弁は、消磁されているときに閉弁状態となる常閉型であることを特徴としている。   The invention according to claim 4 is characterized in that the electromagnetic valve is a normally closed type which is in a closed state when demagnetized.

前述のように、中間の開弁位置にストローク量を保持するような液圧制御を行う場合において、弁体を閉弁状態に押し戻す流体圧力が前記弁座の形状によって軽減することができるため、目標液圧量に対する制御が行い易くなる。   As described above, when performing hydraulic pressure control such that the stroke amount is held at the intermediate valve opening position, the fluid pressure that pushes the valve element back to the closed state can be reduced by the shape of the valve seat. It becomes easy to control the target hydraulic pressure amount.

請求項5に記載の発明は、前記電磁弁内を通流する作動流体は、開弁方向へ流動することを特徴としている。   The invention according to claim 5 is characterized in that the working fluid flowing through the electromagnetic valve flows in the valve opening direction.

この発明によれば、中間の開弁位置にストローク量を保持するような液圧制御を行う場合において、弁体を閉弁状態に押し戻す流体圧力は、弁体を開弁方向へ押し上げる方向に流れをもつ場合に最も顕著になるため、このような態様の電磁弁に前記弁体と弁座の形状を用いることにより、中間の開弁位置の液圧制御特性を向上させることができる。   According to the present invention, in the case of performing hydraulic pressure control that maintains the stroke amount at the intermediate valve opening position, the fluid pressure that pushes the valve element back to the closed state flows in a direction that pushes up the valve element in the valve opening direction. Therefore, when the shape of the valve body and the valve seat is used for the electromagnetic valve having such a configuration, the hydraulic pressure control characteristic at the intermediate valve opening position can be improved.

請求項6に記載の発明は、電磁弁の製造方法に関し、軸方向に往復運動するプランジャと、該プランジャの先端部に設けられたほぼ球状の弁体と、該弁体に対向して通路孔が設けられ、該通路孔の開口部に前記弁体より半径の大きなほぼ球状の弁座が形成され、該弁座の外周にほぼテーパ状の開口縁部が形成された電磁弁の製造方法であって、前記開口縁部を切削加工によってほぼテーパ状に形成する第1の工程と、該第1の工程後に、前記開口縁部のテーパ面によって位置決めし、前記弁座を治具によって球面状に圧痕形成して該曲率半径を前記弁体の曲率半径よりも大きく設定する第2の工程と、を有することを特徴としている。   The invention according to claim 6 relates to a method of manufacturing an electromagnetic valve, a plunger that reciprocates in an axial direction, a substantially spherical valve body provided at a tip of the plunger, and a passage hole facing the valve body. A substantially spherical valve seat having a larger radius than the valve body is formed at the opening of the passage hole, and a substantially tapered opening edge is formed on the outer periphery of the valve seat. A first step of forming the opening edge portion in a substantially tapered shape by cutting, and after the first step, the opening edge portion is positioned by a tapered surface, and the valve seat is formed into a spherical shape by a jig. And a second step of setting the radius of curvature larger than the radius of curvature of the valve body.

例えば、ブレーキ液圧制御装置などに用いられる電磁弁は、弁座の寸法公差がきわめて小さく、例えば弁座の直径が1〜2mm程度であって、この弁座の加工は高い表面荒さ精度と位置決め精度とが要求されている。   For example, a solenoid valve used in a brake fluid pressure control device or the like has a very small valve seat dimensional tolerance, for example, the valve seat has a diameter of about 1 to 2 mm, and the processing of the valve seat has a high surface roughness accuracy and positioning. Accuracy is required.

この発明によれば、テーパ状の開口縁部を予め切削加工によって形成し、このテーパ形状によって位置決めされる治具によって圧痕して弁座を球面形状に形成することから、表面及び位置決め精度が高くかつ作業効率よい弁座の加工が可能になる。   According to the present invention, the tapered opening edge is formed in advance by cutting and indented by the jig positioned by the tapered shape to form the valve seat in a spherical shape, so that the surface and positioning accuracy are high. In addition, the valve seat can be processed efficiently.

以下、本発明にかかる電磁弁構造及び電磁弁の製造方法の実施形態を図面に基づいて詳述する。この実施形態では、ABSなどに適用されるブレーキバイワイヤー装置の減圧用電磁弁に適用したものを示している。   Embodiments of a solenoid valve structure and a solenoid valve manufacturing method according to the present invention will be described below in detail with reference to the drawings. In this embodiment, what is applied to a pressure reducing solenoid valve of a brake-by-wire device applied to ABS or the like is shown.

まず、この実施形態における減圧用電磁弁が適用されるブレーキ液圧制御装置を図2に基づいて簡単に説明する。   First, a brake fluid pressure control apparatus to which the pressure reducing electromagnetic valve in this embodiment is applied will be briefly described with reference to FIG.

図中11はブレーキペダル12の踏み込み操作量に応じて液圧を発生させるマスターシリンダ、13は該マスターシリンダ11に一体的に取り付けられたリザーバタンク、14は油圧ユニットであって、前記ブレーキペダル12の操作に応じて油圧ユニット14により左右前輪のホイールシリンダ15、16に対する油圧制御が行われるようになっている。   In the figure, 11 is a master cylinder that generates hydraulic pressure in accordance with the amount of depression of the brake pedal 12, 13 is a reservoir tank that is integrally attached to the master cylinder 11, and 14 is a hydraulic unit. In response to this operation, the hydraulic unit 14 performs hydraulic control on the wheel cylinders 15 and 16 of the left and right front wheels.

前記油圧ユニット14は、前記マスターシリンダ11から分岐して前記各ホイールシリンダ15,16に連通する両油圧通路17a,17bと、該各油圧通路17a、17bの上流側にそれぞれ設けられて、通常制御ブレーキ時に両油圧通路17a,17bを遮断して回路を閉鎖する遮断弁18a,18bと、前記リザーバタンク13とフレキシブルチューブ19を介して連通し、チェック弁20a20bを介してブレーキ液圧を各ホイールシリンダ15,16に供給するオイルポンプ21と、前記各チェック20a、20bの下流側に設けられて、特定の車輪のホイールシリンダ15,16にのみ増圧(開弁)、減圧(閉弁)させる際に用いられる保持弁22a、22bと、該各保持弁22a、22bの下流側に設けられた前記常閉型の減圧用電磁弁23,24と、を備えている。   The hydraulic unit 14 is provided with both hydraulic passages 17a and 17b branched from the master cylinder 11 and communicating with the wheel cylinders 15 and 16, respectively, and upstream of the hydraulic passages 17a and 17b. The brake valves 18a and 18b that shut off both hydraulic passages 17a and 17b and close the circuit at the time of braking communicate with the reservoir tank 13 via the flexible tube 19, and the brake hydraulic pressure is supplied to each wheel cylinder via the check valve 20a20b. When the oil pump 21 supplied to 15 and 16 is provided on the downstream side of each of the checks 20a and 20b and only the wheel cylinders 15 and 16 of specific wheels are increased (opened) or reduced (closed). Holding valves 22a and 22b used in the above, and the normally closed type reduction valve provided on the downstream side of the holding valves 22a and 22b. And use solenoid valves 23 and 24, and a.

また、オイルポンプ21の吐出圧を制御するリリーフバルブ25が設けられていると共に、各圧力発生箇所に圧力センサ26a〜26eがそれぞれ設けられている。なお、前記オイルポンプ21は、図外の電子コントローラからの制御信号によって回転駆動する電動モータ21aによって駆動されるようになっている。前記減圧用電磁弁23,24には、一端が各ホイールシリンダ15,16に接続され、他端が低圧側の前記リザーバタンク13に接続された流通路27、27が連通している。   In addition, a relief valve 25 for controlling the discharge pressure of the oil pump 21 is provided, and pressure sensors 26a to 26e are provided at respective pressure generation locations. The oil pump 21 is driven by an electric motor 21a that is rotationally driven by a control signal from an electronic controller (not shown). The pressure reducing electromagnetic valves 23 and 24 communicate with flow passages 27 and 27 having one end connected to the wheel cylinders 15 and 16 and the other end connected to the reservoir tank 13 on the low pressure side.

そして、通常のブレーキモード時には、電子コントローラからの制御信号によって前記各遮断弁18a、18bを閉作動させて油圧回路を閉状態とし、ブレーキペダル12の操作量の検出信号に応じて前記各保持弁22a、22bを開閉制御してオイルポンプ21から各ホイールシリンダ15,16へのブレーキ液圧を制御すると共に、急激なブレーキペダル12の操作時には、流通路27,27を介して各減圧用電磁弁23,24をも制御して増減圧制御によるABS制御を行うようになっている。   In the normal brake mode, the shut-off valves 18a and 18b are closed by a control signal from the electronic controller to close the hydraulic circuit, and the holding valves are set in accordance with the operation amount detection signal of the brake pedal 12. The brake fluid pressure from the oil pump 21 to the wheel cylinders 15 and 16 is controlled by opening and closing the valves 22a and 22b, and when the brake pedal 12 is suddenly operated, the pressure reducing solenoid valves are connected via the flow passages 27 and 27. 23 and 24 are also controlled to perform ABS control by increasing / decreasing pressure control.

なお、本実施形態の油圧ユニットは、前輪左右のホイールシリンダ15,16に対する液圧制御を行う構成となっているが、後輪左右の各ホイールシリンダに対する液圧制御においても同様の構成を採ることも可能である。   The hydraulic unit of the present embodiment is configured to perform hydraulic pressure control on the front wheel left and right wheel cylinders 15, 16, but the same configuration is adopted in hydraulic pressure control on the rear wheel left and right wheel cylinders. Is also possible.

また、フェールセーフモードに移行した場合は、前記遮断弁18a、18bを開作動させて油圧回路を開放し、ブレーキペダル12から出力された踏力に応じてマスターシリンダ11からブレーキ液圧を直接的に各ホイールシリンダ15,16に供給してブレーキ力を付与するようになっている。   Further, when the mode is shifted to the fail safe mode, the shut-off valves 18a and 18b are opened to open the hydraulic circuit, and the brake hydraulic pressure is directly applied from the master cylinder 11 according to the pedaling force output from the brake pedal 12. A brake force is applied to the wheel cylinders 15 and 16.

次に、前記減圧用電磁弁23,24の具体的な構成を図1に基づいて説明する。便宜上、一方の電磁弁23について説明すると、この電磁弁23は、アルミ合金製のハウジング30の内部に形成された弁保持孔31と、該弁保持孔31内に収容保持された円筒状のバルブボディ32と、該バルブボディ32上端部に固定されて、上端部が弁保持孔31から露出した円筒状の金属製シリンダ33と、該シリンダ33の外周側に配置されて、図外の電子コントローラから出力された制御電流によって励磁する円筒状の電磁コイル34と、シリンダ33の上端部に固定された円柱状の固定コア35と、シリンダ33の内部に摺動自在に収容された可動コア36と、該可動コア36の先端部に配置されたプランジャ37と、該プランジャ37の先端部に一体に形成された弁体38と、前記バルブボディ32の内部に軸方向から収容固定された金属円筒状のバルブシート39と、該バルブシート39の内部軸方向に貫通形成されて、前記流通路27の上下流に連通する通路孔40と、前記バルブシート39の先端部に有する突起部39a上面に形成され、前記弁体38が離着座して通路孔40の先端開口40aを開閉するほぼ球面状の弁座41と、を備えている。   Next, a specific configuration of the pressure reducing electromagnetic valves 23 and 24 will be described with reference to FIG. For convenience, one electromagnetic valve 23 will be described. The electromagnetic valve 23 includes a valve holding hole 31 formed in an aluminum alloy housing 30, and a cylindrical valve housed and held in the valve holding hole 31. A body 32, a cylindrical metal cylinder 33 fixed to the upper end portion of the valve body 32 and having an upper end portion exposed from the valve holding hole 31, and an electronic controller (not shown) disposed on the outer peripheral side of the cylinder 33 A cylindrical electromagnetic coil 34 that is excited by a control current output from the cylinder 33, a columnar fixed core 35 that is fixed to the upper end of the cylinder 33, and a movable core 36 that is slidably accommodated inside the cylinder 33. The plunger 37 disposed at the tip of the movable core 36, the valve body 38 formed integrally with the tip of the plunger 37, and the valve body 32 are accommodated in the axial direction. A fixed metal cylindrical valve seat 39, a passage hole 40 penetratingly formed in the inner axial direction of the valve seat 39, and communicating with the upstream and downstream of the flow passage 27, and at the tip of the valve seat 39. A substantially spherical valve seat 41 which is formed on the upper surface of the projection 39a and which opens and closes the distal end opening 40a of the passage hole 40 by the valve body 38 separating and seating.

前記プランジャ37は、前記固定コア35の内部に形成された保持穴35aの底面と可動コア36の上面との間に弾装されたバルブスプリング42のばね力によって弁体38が弁座41に着座して先端開口40aを閉止する方向に付勢されている。また、該プランジャ37の先端側段差面とバルブシート39の前記突起部39a外周側段差面との間に弾装されたリターンスプリング46によって開弁方向へ付勢されており、このリターンスプリング46のばね力はバルブスプリング42のばね力よりも十分に小さく設定されて、単にプランジャ37を可動コア36側へ押しつける程度のばね力に設定されている。   In the plunger 37, the valve element 38 is seated on the valve seat 41 by the spring force of the valve spring 42 elastically mounted between the bottom surface of the holding hole 35 a formed in the fixed core 35 and the upper surface of the movable core 36. Thus, the tip opening 40a is biased in the closing direction. Further, the return spring 46 is urged in the valve opening direction by a return spring 46 elastically mounted between the front end side step surface of the plunger 37 and the protrusion 39a outer peripheral side step surface of the valve seat 39. The spring force is set to be sufficiently smaller than the spring force of the valve spring 42, and is set to a spring force that simply presses the plunger 37 toward the movable core 36 side.

前記バルブシート39の下端部には、流通路27から通路孔40内に流入するブレーキ液を濾過するフィルター部材43が設けられていると共に、外周にシールリング44が設けられている。また、前記電磁コイル34の外周側には、ヨークとして機能するバルブケーシング45が取り付けられている。   At the lower end of the valve seat 39, a filter member 43 for filtering the brake fluid flowing into the passage hole 40 from the flow passage 27 is provided, and a seal ring 44 is provided on the outer periphery. A valve casing 45 that functions as a yoke is attached to the outer peripheral side of the electromagnetic coil 34.

前記弁体38は、図1及び図4に示すように、金属材で球面状に形成されて、その曲率半径Rが所定長さに設定されている。一方、前記弁座41は、図4の黒点間に示すように、円環状に形成されてその表面が球面状に形成されていると共に、その曲率半径R’が弁体38の曲率半径Rよりも大きく形成されている。   As shown in FIGS. 1 and 4, the valve body 38 is formed of a metal material in a spherical shape, and its curvature radius R is set to a predetermined length. On the other hand, the valve seat 41 is formed in an annular shape and has a spherical surface as shown between the black dots in FIG. 4, and its curvature radius R ′ is larger than the curvature radius R of the valve body 38. Is also formed large.

また、前記バルブシート39の突出部39a上面には、弁座41の外周縁(外側黒点)から外方に亘ってテーパ状に立ち上がった円環状の開口縁部46が連続して形成されている。   Further, an annular opening edge 46 rising in a tapered shape from the outer peripheral edge (outer black spot) of the valve seat 41 to the outside is continuously formed on the upper surface of the protruding portion 39a of the valve seat 39. .

なお、前記他方の減圧用電磁弁24も、一方の減圧用電磁弁23と同様の構成になっている。   The other pressure reducing solenoid valve 24 has the same configuration as the one pressure reducing solenoid valve 23.

前記弁座41を成形する方法を図3A〜Cに基づいて簡単に説明すると、まずバルブシート39となる円柱状の金属素材50の内部軸方向に沿って通路孔40をドリルによって形成する。続いて、該通路孔40の上端部(突起部39a)の先端開口40aの孔縁に弁座41や開口縁部46となる円錐状の切欠部51を切削加工によって形成する(図3A、B参照)。   A method for forming the valve seat 41 will be briefly described with reference to FIGS. 3A to 3C. First, the passage hole 40 is formed by a drill along the internal axis direction of the columnar metal material 50 to be the valve seat 39. Subsequently, a conical notch 51 serving as the valve seat 41 and the opening edge 46 is formed by cutting at the hole edge of the tip opening 40a at the upper end (projection 39a) of the passage hole 40 (FIGS. 3A and 3B). reference).

次に、前記切欠部51の表面には、ツールマークによる凹凸部51aが形成されてしまうことから、球面状の治具によってツールマークを圧痕して表面を滑らかにして球面状の弁座41を成形する(図3C参照)。このとき、弁座41は、曲率半径R’が前記弁体38の先端球面(受圧面38a)の曲率半径Rよりも大きく成形されている。   Next, since the uneven portion 51a due to the tool mark is formed on the surface of the notch 51, the tool mark is indented by a spherical jig to smooth the surface, and the spherical valve seat 41 is formed. Mold (see FIG. 3C). At this time, the valve seat 41 is formed so that the curvature radius R ′ is larger than the curvature radius R of the tip spherical surface (pressure receiving surface 38 a) of the valve body 38.

以下、この実施形態の作用について説明すれば、アンチロックブレーキ制御中に、電子コントローラからの制御電流が減圧用電磁弁23、24に出力されて、各プランジャ37を介して弁体23が、図4に示すように、弁座41の上端内周縁41aに当接した閉弁位置(内側黒丸))から開作動を開始すると、各ホイールシリンダ15,16からフィルター部材43を介して通路孔40内に流入したブレーキ液圧は、前記弁体38の先端側の受圧面38aに作用する。   Hereinafter, the operation of this embodiment will be described. During the anti-lock brake control, a control current from the electronic controller is output to the pressure reducing electromagnetic valves 23 and 24, and the valve body 23 is shown in FIG. As shown in FIG. 4, when the opening operation is started from the valve closing position (inner black circle) in contact with the inner peripheral edge 41 a of the upper end of the valve seat 41, the inside of the passage hole 40 from each wheel cylinder 15, 16 through the filter member 43. The brake fluid pressure that flows into the valve body acts on the pressure receiving surface 38a on the distal end side of the valve body 38.

そして、この弁体38の受圧面38aの受圧径Dは、該弁体38の開弁ストローク移動と前記通路孔40の先端開口40aの開口面積との相対関係で決定されるが、本実施形態では、弁座41の曲率半径R’を弁体38の曲率半径Rよりも大きく形成したことから、図4Aに示すように、前記弁体38が、閉弁時の受圧径Dである0から僅かに開方向(上方向)へストロークしてQ位置になり、受圧径Dが1になると、ここでの受圧径Dの1は0よりも僅かに小さくなり、さらに開方向へストローク移動してQ1位置になると受圧径Dが3となり、これが0よりも大きくなる。   The pressure receiving diameter D of the pressure receiving surface 38a of the valve body 38 is determined by the relative relationship between the valve opening stroke movement of the valve body 38 and the opening area of the tip opening 40a of the passage hole 40. Then, since the curvature radius R ′ of the valve seat 41 is formed larger than the curvature radius R of the valve body 38, the valve body 38 starts from 0, which is the pressure receiving diameter D when the valve is closed, as shown in FIG. 4A. When the stroke is slightly in the opening direction (upward) to the Q position and the pressure receiving diameter D becomes 1, the pressure receiving diameter D of 1 becomes slightly smaller than 0 and the stroke moves further in the opening direction. At the Q1 position, the pressure receiving diameter D becomes 3, which is larger than 0.

すなわち、弁体38が弁座41に着座している際の弁体38の曲率半径Rと、ここから弁体38が所定量僅かに上方向へストロークして、該弁体38の球径中心から半径R方向に伸びた線の先端が弁座41の曲率半径R’面上に存在しているまでの前記弁体38の半径R、Rの各中心間の距離Xの区間と、弁体38の球径中心と弁座41とテーパ面46との境界点までの最短距離Yとなる位置に弁体38が位置するまでの区間で、受圧径Dの減少が発生する。   That is, the curvature radius R of the valve body 38 when the valve body 38 is seated on the valve seat 41, and the valve body 38 slightly strokes upward by a predetermined amount from here, and the center of the spherical diameter of the valve body 38 A section of the distance X between the centers of the radii R and R of the valve body 38 until the tip of the line extending in the direction of radius R from the curvature radius R ′ surface of the valve seat 41 exists, and the valve body The pressure receiving diameter D decreases in a section until the valve body 38 is positioned at the position where the shortest distance Y is from the center of the spherical diameter 38 to the boundary point between the valve seat 41 and the tapered surface 46.

したがって、この範囲では弁体38に対する先端開口40aからの流体圧が僅かに減少して、弁体38は、図4B及び図5に示すように、一時的に閉弁方向へ下降して発振現象が起こるが、かかる受圧径Dの減少変化率がきわめて小さいことから、発振の波形振幅が十分に小さくなる。   Therefore, in this range, the fluid pressure from the tip opening 40a with respect to the valve body 38 is slightly reduced, and the valve body 38 is temporarily lowered in the valve closing direction as shown in FIGS. However, since the rate of decrease in the pressure receiving diameter D is extremely small, the oscillation waveform amplitude is sufficiently small.

その後、弁体38がさらに開弁ストローク移動すると、受圧径Dが2〜3まで拡大することから、この範囲では発振現象が全くなくなり、さらに開弁方向へストローク移動すると、受圧径Dが3〜4までに再び減少して、この間で発振現象が起こるが、この場合も受圧径Dの減少変化率がきわめて小さいことから、発振の波形振幅が十分に小さくなっている。つまり、この受圧径Dが3〜4になると、弁体38の半径延長線の交点が前記テーパ状の開口縁部46になることから、その受圧径Dが0の場合とほぼ同じ大きさになって、その減少変化率が十分小さいことから、発振の波形振幅が十分に小さくなるのである。   Thereafter, when the valve body 38 further moves through the valve opening stroke, the pressure receiving diameter D increases to 2 to 3, so that the oscillation phenomenon disappears completely in this range, and when the valve moves further in the valve opening direction, the pressure receiving diameter D becomes 3 to 3. In this case, the decrease rate of decrease in the pressure receiving diameter D is extremely small, and therefore the oscillation waveform amplitude is sufficiently small. That is, when the pressure receiving diameter D is 3 to 4, the intersection of the radial extension lines of the valve body 38 becomes the tapered opening edge 46, so that the pressure receiving diameter D is substantially the same as when the pressure receiving diameter D is 0. Thus, since the decrease rate of change is sufficiently small, the waveform amplitude of oscillation is sufficiently small.

さらに開弁方向へストローク移動すると受圧径Dは、4〜5間では変化することなく一定になることから、発振現象が起こらない。   Further, when the stroke is moved in the valve opening direction, the pressure receiving diameter D becomes constant without changing between 4 and 5, so that no oscillation phenomenon occurs.

前述した弁体38の開弁ストローク移動に伴う受圧径Dの0〜5まで変化を数式に表すと以下のようになる。   The change from 0 to 5 of the pressure receiving diameter D accompanying the valve opening stroke movement of the valve body 38 described above is expressed as follows.

ここで、θ:受圧角、R:弁体の半径、R’:弁座(圧痕球)の半径、r:通路孔の先端開口径、r’:テーパ開口縁部の内側半径、α:開口縁部のテーパ角、X:プランジャ(弁体)ストローク量、X’:弁体の着座〜弁体の中心一致までのストローク量   Here, θ: pressure receiving angle, R: radius of valve body, R ′: radius of valve seat (indentation sphere), r: diameter of opening of tip of passage hole, r ′: inner radius of tapered opening edge, α: opening Edge taper angle, X: Plunger (valve) stroke amount, X ′: Stroke amount from seating of valve body to centering of valve body

以上のように、本実施形態では、弁体38の開弁初期における受圧径Dの減少変化率を従来技術に比較して十分に小さくすることができることから、通路孔40の先端開口40aでの流体圧の変動、つまり弁体38の発振の波形振幅を十分に抑制することが可能になる。   As described above, in the present embodiment, the rate of decrease in the pressure receiving diameter D at the initial opening of the valve body 38 can be sufficiently reduced as compared with the prior art. The fluctuation of the fluid pressure, that is, the waveform amplitude of the oscillation of the valve body 38 can be sufficiently suppressed.

この結果、かかる実施形態のような、ブレーキバイワイヤ装置などに適用した場合には、弁体38を中間位置に保持制御する比例制御や過渡時の作動応答性を向上させることが可能になる。また、前記比較的大きな発振による異音の発生をも防止できる。   As a result, when applied to a brake-by-wire device or the like as in this embodiment, it is possible to improve the proportional control for holding and controlling the valve body 38 at the intermediate position and the operation response during transition. Moreover, it is possible to prevent the generation of abnormal noise due to the relatively large oscillation.

本発明は、前記各実施形態の構成に限定されることなく、電磁弁の適用対象として、アンチロックブレーキ装置以外の機器類やアクチュエータなどに適用することも可能である。   The present invention is not limited to the configuration of each of the embodiments described above, and can also be applied to devices, actuators, and the like other than the antilock brake device as an application target of the electromagnetic valve.

本発明にかかる電磁弁の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows embodiment of the solenoid valve concerning this invention. 電磁弁が適用されるブレーキ液圧制御装置の回路図である。It is a circuit diagram of a brake fluid pressure control device to which a solenoid valve is applied. A〜Cは同実施形態に供されるバルブシートの弁座を形成する成形工程を示す概略図である。AC is the schematic which shows the formation process which forms the valve seat of the valve seat provided to the embodiment. Aは本実施形態の弁座から弁体が開弁ストローク移動状態に伴う受圧径の変化を示す概略図、Bは前記受圧径の変化に伴う発振現象を示す対応グラフである。A is a schematic diagram showing a change in pressure receiving diameter as the valve element moves from the valve seat according to the present embodiment, and B is a corresponding graph showing an oscillation phenomenon accompanying a change in the pressure receiving diameter. 本実施形態における弁体の開弁ストローク移動に伴う時間と液圧との関係から発振現象を示すグラフである。It is a graph which shows an oscillation phenomenon from the relationship between the time and the hydraulic pressure which accompany valve opening stroke movement in this embodiment. 従来技術における受圧径と発振現象との関係を示し、Aは弁座から弁体が開弁ストローク移動状態に伴う受圧径の変化を示す概略図、Bは前記受圧径の変化に伴う発振現象を示す対応グラフである。The relationship between the pressure receiving diameter and the oscillation phenomenon in the prior art is shown. A is a schematic diagram showing a change in the pressure receiving diameter as the valve body moves from the valve seat to the valve opening stroke, and B is an oscillation phenomenon accompanying the change in the pressure receiving diameter. It is a corresponding | compatible graph shown. 従来技術における弁体の開弁ストローク移動に伴う時間と液圧との関係から発振現象を示すグラフである。It is a graph which shows an oscillation phenomenon from the relationship between the time and the hydraulic pressure which accompany valve opening stroke movement in a prior art.

符号の説明Explanation of symbols

23…減圧用電磁弁
34…電磁コイル
37…プランジャ
38…弁体
38a…受圧面
39…バルブシート
40…通路孔
40a…先端開口
41…弁座
D…受圧径
R…弁体の曲率半径
R’…弁座の曲率半径
23 ... Solenoid valve for pressure reduction 34 ... Electromagnetic coil 37 ... Plunger 38 ... Valve body 38a ... Pressure receiving surface 39 ... Valve seat 40 ... Passage hole 40a ... End opening 41 ... Valve seat D ... Pressure receiving diameter R ... Radius of curvature R ' ... curvature radius of valve seat

Claims (6)

電磁コイルに通電した際に発生する磁力によって摺動するプランジャと、
該プランジャの先端部に設けられた弁体と、
前記プランジャと同軸上に配置されて内部軸方向に通路孔が貫通形成されたバルブシートと、
前記通路孔の先端開口部に形成されて、前記弁体が離着座する弁座と、を備え、
前記プランジャの摺動に伴って前記弁体が弁座から離着座して前記通路孔の開先端開口を開閉する電磁弁構造であって、
前記弁座の形状を、前記弁体の開弁ストローク移動に伴って前記通路孔の先端開口面積との相対関係で決定される前記弁体の受圧径の減少変化率が小さくなるように形成したことを特徴とする電磁弁構造。
A plunger that slides due to the magnetic force generated when the electromagnetic coil is energized;
A valve body provided at the tip of the plunger;
A valve seat disposed coaxially with the plunger and having a passage hole formed in the inner axial direction;
A valve seat that is formed at a distal end opening of the passage hole and from which the valve body is seated;
An electromagnetic valve structure that opens and closes the open end opening of the passage hole by the valve body being separated from the valve seat as the plunger slides,
The shape of the valve seat is formed so that the rate of change in the pressure-receiving diameter of the valve body, which is determined by the relative relationship with the tip opening area of the passage hole as the valve opening stroke of the valve body moves, is reduced. A solenoid valve structure characterized by that.
電磁コイルに通電した際に発生する磁力によって摺動するプランジャと、
該プランジャの先端部に設けられた球面状の弁体と、
前記プランジャと同軸上に配置されて内部軸方向に通路孔が貫通形成されたバルブシートと、
前記通路孔の先端開口部に形成されて、前記弁体が離着座する球面状の弁座と、を備え、
前記プランジャの摺動に伴って前記弁体が弁座から離着座して前記通路孔の開先端開口を開閉する電磁弁構造であって、
前記弁座の曲率半径を、前記弁体の曲率半径よりも大きく設定したことを特徴とする電磁弁構造。
A plunger that slides due to the magnetic force generated when the electromagnetic coil is energized;
A spherical valve body provided at the tip of the plunger;
A valve seat disposed coaxially with the plunger and having a passage hole formed in the inner axial direction;
A spherical valve seat that is formed at a tip opening of the passage hole, and on which the valve body is seated;
An electromagnetic valve structure that opens and closes the open end opening of the passage hole by the valve body being separated from the valve seat as the plunger slides,
An electromagnetic valve structure in which a curvature radius of the valve seat is set larger than a curvature radius of the valve body.
前記弁座の外周側にほぼテーパ状の開口縁部を形成したことを特徴とする請求項1または2に記載の電磁弁構造。 The electromagnetic valve structure according to claim 1, wherein a substantially tapered opening edge is formed on an outer peripheral side of the valve seat. 前記電磁弁は、消磁されているときに閉弁状態となる常閉型であることを特徴とする請求項1〜3のいずれかに記載の電磁弁構造。 The electromagnetic valve structure according to claim 1, wherein the electromagnetic valve is a normally closed type that is in a closed state when demagnetized. 前記電磁弁内を通流する作動流体は、開弁方向へ流動することを特徴とする請求項1〜4のいずれかに記載の電磁弁構造。 The electromagnetic valve structure according to any one of claims 1 to 4, wherein the working fluid flowing through the electromagnetic valve flows in a valve opening direction. 軸方向に往復運動するプランジャと、
該プランジャの先端部に設けられたほぼ球状の弁体と、
該弁体に対向して通路孔が設けられ、該通路孔の開口部に前記弁体より半径の大きなほぼ球状の弁座が形成され、
該弁座の外周にほぼテーパ状の開口縁部が形成された電磁弁の製造方法であって、
前記開口縁部を切削加工によってほぼテーパ状に形成する第1の工程と、
該第1の工程後に、前記開口縁部のテーパ面によって位置決めし、前記弁座を治具によって球面状に圧痕形成して該曲率半径を前記弁体の曲率半径よりも大きく設定する第2の工程と、
を有することを特徴とする電磁弁の製造方法。
A plunger that reciprocates in the axial direction;
A substantially spherical valve body provided at the tip of the plunger;
A passage hole is provided facing the valve body, and a substantially spherical valve seat having a larger radius than the valve body is formed at the opening of the passage hole,
A method of manufacturing a solenoid valve in which a substantially tapered opening edge is formed on the outer periphery of the valve seat,
A first step of forming the opening edge in a substantially tapered shape by cutting;
After the first step, positioning is performed by the tapered surface of the opening edge, the valve seat is indented into a spherical shape by a jig, and the curvature radius is set larger than the curvature radius of the valve body. Process,
A method for manufacturing a solenoid valve, comprising:
JP2005339725A 2005-11-25 2005-11-25 Structure of solenoid valve and method of manufacturing the same Abandoned JP2007146914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005339725A JP2007146914A (en) 2005-11-25 2005-11-25 Structure of solenoid valve and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005339725A JP2007146914A (en) 2005-11-25 2005-11-25 Structure of solenoid valve and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2007146914A true JP2007146914A (en) 2007-06-14

Family

ID=38208558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005339725A Abandoned JP2007146914A (en) 2005-11-25 2005-11-25 Structure of solenoid valve and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2007146914A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012166727A (en) * 2011-02-16 2012-09-06 Toyota Motor Corp Hydraulic control device, pressure reduction control valve and boosting control valve
JP2013515220A (en) * 2009-12-23 2013-05-02 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Solenoid valve device
JP2014185734A (en) * 2013-03-25 2014-10-02 Suncall Corp Seal valve and manufacturing method of the same
JP2018054058A (en) * 2016-09-30 2018-04-05 日伸工業株式会社 On-off valve and its process of manufacture, cap member insertion structure and its process of manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013515220A (en) * 2009-12-23 2013-05-02 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Solenoid valve device
US10184584B2 (en) 2009-12-23 2019-01-22 Robert Bosch Gmbh Magnetic valve device
JP2012166727A (en) * 2011-02-16 2012-09-06 Toyota Motor Corp Hydraulic control device, pressure reduction control valve and boosting control valve
JP2014185734A (en) * 2013-03-25 2014-10-02 Suncall Corp Seal valve and manufacturing method of the same
JP2018054058A (en) * 2016-09-30 2018-04-05 日伸工業株式会社 On-off valve and its process of manufacture, cap member insertion structure and its process of manufacture

Similar Documents

Publication Publication Date Title
JP4697088B2 (en) solenoid valve
US8939430B2 (en) Electromagnetic linear valve
EP2407359A1 (en) Vehicular braking apparatus comprising a reservoir
JPH09502947A (en) Solenoid valves for automobile brake systems, especially with slip control
JP2004360750A (en) Solenoid valve
CN102741599A (en) Electromagnetic valve
WO2003050441A1 (en) Solenoid-operated proportional flow control valve
JP4914521B2 (en) Magnet valve
JP2004340325A (en) Solenoid controlled valve
JP2007146914A (en) Structure of solenoid valve and method of manufacturing the same
JP5234101B2 (en) solenoid valve
JP5994925B2 (en) solenoid valve
JP2007055521A (en) Solenoid valve for brake control
JPH11108230A (en) Differential pressure control valve, inspection method for the same, regulating method for the same, and vehicular brake device
JP5891841B2 (en) solenoid valve
JP4293133B2 (en) solenoid valve
JP2009008269A (en) Differential pressure control valve, inspection method for differential pressure control valve, regulating method for differential pressure control valve, and vehicular brake device
JP2004175177A (en) Brake liquid pressure maintaining apparatus for vehicle
JP5760961B2 (en) Hydraulic control valve device
KR20150124691A (en) Electro hydraulic brake
JP5165446B2 (en) solenoid valve
JPH10507812A (en) Pressure-limited solenoid valves for slip-controlled brake systems in motor vehicles.
JP2010025217A (en) Solenoid valve
JP6460779B2 (en) Solenoid valve and vehicle brake fluid pressure control device
EP1318056A2 (en) Valve and method for a brake control actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080304

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20081224