JP6000872B2 - Control method of hydraulic damper open / close control valve and hydraulic damper used in the method - Google Patents

Control method of hydraulic damper open / close control valve and hydraulic damper used in the method Download PDF

Info

Publication number
JP6000872B2
JP6000872B2 JP2013037790A JP2013037790A JP6000872B2 JP 6000872 B2 JP6000872 B2 JP 6000872B2 JP 2013037790 A JP2013037790 A JP 2013037790A JP 2013037790 A JP2013037790 A JP 2013037790A JP 6000872 B2 JP6000872 B2 JP 6000872B2
Authority
JP
Japan
Prior art keywords
hydraulic
control valve
open
pressure
close control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013037790A
Other languages
Japanese (ja)
Other versions
JP2014163502A (en
Inventor
栗野 治彦
治彦 栗野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2013037790A priority Critical patent/JP6000872B2/en
Publication of JP2014163502A publication Critical patent/JP2014163502A/en
Application granted granted Critical
Publication of JP6000872B2 publication Critical patent/JP6000872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Description

本発明は地震や風等の振動外力による建物の揺れを低減するために使用される制震用の油圧ダンパに備えられる開閉制御弁を制御する油圧ダンパ開閉制御弁の制御方法、及びその方法に使用される油圧ダンパに関するものである。   The present invention relates to a control method of a hydraulic damper on / off control valve for controlling an on / off control valve provided in a hydraulic damper for vibration control used to reduce shaking of a building due to vibration external force such as earthquake and wind, and to the method The present invention relates to a hydraulic damper used.

建物の揺れを低減するための油圧ダンパ形式の制震装置として、開閉制御弁の開度を全開と全閉の2段階に制御可能とした可変減衰装置がある(特許文献1、2参照)。   As a hydraulic damper type damping device for reducing the shaking of a building, there is a variable damping device capable of controlling the opening / closing control valve in two stages of fully open and fully closed (see Patent Documents 1 and 2).

この種の油圧ダンパは図15に示すようにシリンダとシリンダ内を往復動する両ロッド型のピストンと、ピストンの両側に設けられた油圧室と、この両油圧室をつなぐ流路に設けられた開閉制御弁等を基本構造とし、開閉制御弁の開度を切り替えることで、油圧ダンパの減衰係数を最大値Cmaxと最小値Cminの2段階に切り替えられることに特徴がある。開閉制御弁の開閉を行う方法としては、電磁弁を用いてコントローラから電流制御を行う方法(例えば特許文献1参照)や、油圧変動(圧力差の発生)を用いて自動的に開閉制御する油圧回路を用いる方法(例えば特許文献2参照)等がある。   As shown in FIG. 15, this type of hydraulic damper is provided in a cylinder, a double rod type piston that reciprocates in the cylinder, a hydraulic chamber provided on both sides of the piston, and a flow path that connects the two hydraulic chambers. It has a feature that the damping coefficient of the hydraulic damper can be switched between two levels of a maximum value Cmax and a minimum value Cmin by using an open / close control valve or the like as a basic structure and switching the opening degree of the open / close control valve. As a method for opening and closing the open / close control valve, a method of performing current control from a controller using an electromagnetic valve (see, for example, Patent Document 1), or a hydraulic pressure that is automatically controlled to open / close using hydraulic pressure fluctuation (generation of a pressure difference). There is a method using a circuit (for example, see Patent Document 2).

このような油圧ダンパは図16−(a)に示すように建物層間にブレース等を介して取り付けられるため、ブレースとダンパを合わせた装置部の力学特性は図16−(b)に示すような、剛性Kのバネと減衰係数Cのダッシュポットが直列結合したマックスウェルモデルで表される。   Since such a hydraulic damper is attached between building layers via a brace as shown in FIG. 16- (a), the mechanical characteristics of the device unit including the brace and the damper are as shown in FIG. 16- (b). , A spring having rigidity K and a dashpot having a damping coefficient C are represented by a Maxwell model connected in series.

図17−(a)〜(c)に従来の切替則で制御された油圧ダンパの動きを模式的に示す。建物が最大振幅(図17−(a))から反対側の最大振幅(図17−(b))まで振動している最中は、開閉制御弁を閉じ、C=Cmaxとしてブレースをダンパに剛結し、変形振幅の最大点(図17−(b))で一度、弁を開いてC=Cminとしてブレースに蓄えられた歪エネルギを除荷吸収したのち、再度、弁を閉じてC=Cmaxとする(図17−(c))。このように開閉制御弁の弁開度の切り替えを振動の振幅最大点で行うことによるダンパ荷重と層間変形の関係は図18に示すような形になる。   FIGS. 17A to 17C schematically show the movement of the hydraulic damper controlled by the conventional switching law. While the building is oscillating from the maximum amplitude (Fig. 17 (a)) to the maximum amplitude on the opposite side (Fig. 17 (b)), the open / close control valve is closed and the brace is rigidly attached to the damper. Finally, once the valve is opened at the maximum point of deformation amplitude (FIG. 17- (b)) and the strain energy stored in the brace is unloaded and absorbed as C = Cmin, the valve is closed again and C = Cmax. (FIG. 17- (c)). Thus, the relationship between the damper load and the interlayer deformation formed by switching the valve opening degree of the open / close control valve at the maximum point of vibration amplitude is as shown in FIG.

図18中、荷重変形関係のループ面積がダンパによる振動エネルギの吸収量を表しており、Cが一定の一般的な油圧ダンパと比べて大きなエネルギ吸収を行い、構造物の振動をより大きく低減することができることが分かる。   In FIG. 18, the loop area related to load deformation represents the amount of vibration energy absorbed by the damper, which absorbs a larger amount of energy than a general hydraulic damper with a constant C, and greatly reduces the vibration of the structure. I can see that

図19はダンパ荷重とダッシュポットのみの変形(層間変形からブレース変形を除いたダンパ変形)の関係を示す。Cが一定の一般的な油圧ダンパではダッシュポットの変形は層間変形の振幅δより小さな値に限定されるのに対し、振動の最大振幅点で一度弁を開いてC=Cminとする切替制御を行うことで、ダッシュポットには層間変形と同じδの変形が生じる。切替制御はダッシュポット(油圧ダンパ)の変形を拡大する効果があり、これがエネルギ吸収効率が向上する理由である。   FIG. 19 shows the relationship between the damper load and the deformation of only the dashpot (the damper deformation excluding the brace deformation from the interlayer deformation). In a general hydraulic damper with a constant C, the deformation of the dashpot is limited to a value smaller than the amplitude δ of the interlayer deformation. On the other hand, switching control is performed so that C = Cmin by opening the valve once at the maximum amplitude point of vibration. By doing so, the dashpot undergoes the same δ deformation as the interlayer deformation. The switching control has the effect of expanding the deformation of the dashpot (hydraulic damper), which is the reason why the energy absorption efficiency is improved.

特許第2959554号公報(段落0024〜0039、図1〜図4)Japanese Patent No. 2995954 (paragraphs 0024 to 0039, FIGS. 1 to 4) 特許第4042366号公報(請求項1、請求項2、段落0025〜0069、図1〜図4)Japanese Patent No. 4042366 (Claim 1, Claim 2, Paragraphs 0025 to 0069, FIGS. 1 to 4)

図18に示された荷重変形関係は、図16−(b)のマックスウェルモデルの減衰係数Cを切り替えることで実現できる理論上最大のループである。従ってこれを上回るにはモータを電力で駆動する等、外部からのエネルギ供給により制御力を加えるアクティブ(能動的)な方法しかないと考えられてきた。   The load deformation relationship shown in FIG. 18 is the theoretically maximum loop that can be realized by switching the damping coefficient C of the Maxwell model shown in FIG. Therefore, it has been considered that there is only an active method of applying a control force by supplying energy from the outside, such as driving a motor with electric power, to exceed this.

本発明は上記背景より、受動的な抵抗要素しか有しない油圧ダンパを用いながらも、図18に示したループ面積を上回るエネルギ吸収能力を発揮する開閉制御弁の制御方法を提案するものである。   The present invention proposes a control method for an open / close control valve that exhibits an energy absorption capacity exceeding the loop area shown in FIG. 18 while using a hydraulic damper having only passive resistance elements.

請求項1に記載の発明の油圧ダンパ開閉制御弁の制御方法は、シリンダと、このシリンダ内を往復動するピストンと、このピストンの両側に設けられた油圧室と、この両油圧室をつなぐ流路に接続され、開放状態と閉鎖状態が切り替えられる開閉制御弁を備えた油圧ダンパにおいて、 前記油圧ダンパが、前記シリンダに接続され、圧油を蓄え可能な補助油圧タンクと、前記補助油圧タンクと前記各油圧室との間に接続され、開放状態と閉鎖状態が切り替えられる開閉制御弁を備え、
前記ピストンがいずれかの向きに移動している最中は、開閉制御弁を閉鎖させて一方側の油圧室に圧力を発生させ、前記ピストンの移動する向きが反転したときに高圧側となった前記一方側の油圧室と前記補助油圧タンクを連結するいずれかの前記開閉制御弁を開放させて前記一方側の油圧室内の圧油を前記補助油圧タンクに移動させ、
その後、開放している前記開閉制御弁を閉鎖させると共に、前記両油圧室を連結する前記開閉制御弁を開放させて高圧側の油圧室内の圧力を解放させ、両油圧室A、B間の圧力差を解消した後、開放している前記開閉制御弁を閉鎖させると共に、前記一方側の反対側である他方の油圧室と前記補助油圧タンクを連結するいずれかの前記開閉制御弁を開放させて前記補助油圧タンク内の圧油を前記他方の油圧室に移動させ、開放している前記開閉制御弁を閉鎖させる一連の操作をすることをを構成要件とする。
According to a first aspect of the present invention, there is provided a control method for a hydraulic damper on / off control valve comprising a cylinder, a piston that reciprocates in the cylinder, hydraulic chambers provided on both sides of the piston, and a flow connecting the hydraulic chambers. A hydraulic damper having an open / close control valve connected to a road and capable of switching between an open state and a closed state , wherein the hydraulic damper is connected to the cylinder and can store pressure oil, and the auxiliary hydraulic tank, An open / close control valve connected between each hydraulic chamber and capable of switching between an open state and a closed state ,
While the piston is moving in either direction, the full open / close control valve is closed to generate pressure in the hydraulic chamber on one side, and when the direction of movement of the piston is reversed, it becomes the high pressure side. Opening one of the open / close control valves connecting the one hydraulic chamber and the auxiliary hydraulic tank to move the pressure oil in the one hydraulic chamber to the auxiliary hydraulic tank;
Thereafter, the open / close control valve is closed, and the open / close control valve connecting the both hydraulic chambers is opened to release the pressure in the hydraulic chamber on the high pressure side. After the difference is eliminated, the open / close control valve that is open is closed, and any open / close control valve that connects the other hydraulic chamber on the opposite side of the one side to the auxiliary hydraulic tank is opened. It is a constituent requirement that the pressure oil in the auxiliary hydraulic tank is moved to the other hydraulic chamber and a series of operations for closing the open / close control valve is performed.

油圧ダンパは図1−(a)に示すように前記した特許文献2の油圧ダンパと共通する構造を持ち、ピストン3の両側に区画された油圧室A、B間に並列に接続された流路4の一部に両油圧室A、Bを連結する開閉制御弁Cが接続される。開閉制御弁Cは閉鎖状態に制御(保持)されているときに、ピストンロッド3Aに連結される、例えばフレーム20内のブレース21等、耐震要素等のつなぎ材(以下、ブレース21)を油圧ダンパ1に固定した状態にする。各油圧室A、Bを結ぶ流路4は分岐し、その分岐した流路5、6に補助油圧タンク7が接続され、補助油圧タンク7と各油圧室A、B間を結ぶ流路5、6の一部に開閉制御弁D、Eが接続される。   As shown in FIG. 1- (a), the hydraulic damper has a structure common to the hydraulic damper of Patent Document 2 described above, and a flow path connected in parallel between hydraulic chambers A and B partitioned on both sides of the piston 3. An opening / closing control valve C that connects both hydraulic chambers A and B is connected to a part of 4. When the open / close control valve C is controlled (held) in a closed state, a hydraulic damper is used to connect a connecting material (hereinafter referred to as a brace 21) such as a brace 21 in the frame 20, such as a brace 21 or the like, which is connected to the piston rod 3A. 1 is fixed. The flow path 4 connecting the hydraulic chambers A and B is branched, and the auxiliary hydraulic tank 7 is connected to the branched flow paths 5 and 6, and the flow path 5 connecting the auxiliary hydraulic tank 7 and the hydraulic chambers A and B, Open / close control valves D and E are connected to a part of 6.

補助油圧タンク7と各油圧室A、Bを連結する開閉制御弁D、Eの内、いずれか一方の開閉制御弁D(E)は両油圧室A、Bの内、ピストン3のいずれかの油圧室A(B)側への移動に起因していずれかの油圧室A(B)が相対的に高圧になった後、ピストン3の移動の向きが反転したときに開放して高圧側の油圧室A(B)からの圧油を補助油圧タンク7に移動させる。他方の開閉制御弁E(D)は高圧側の油圧室A(B)からの圧油の補助油圧タンク7への移動後、両油圧室A、Bを連結する開閉制御弁Cが一旦、開放し、両油圧室A、Bの圧力が平衡した後、開閉制御弁Cが閉鎖したときに開放して補助油圧タンク7からの圧油を他方側の油圧室B(A)に移動させる。   Of the open / close control valves D and E that connect the auxiliary hydraulic tank 7 and the respective hydraulic chambers A and B, one of the open / close control valves D (E) is one of the hydraulic chambers A and B or the piston 3. After one of the hydraulic chambers A (B) becomes relatively high pressure due to the movement toward the hydraulic chamber A (B) side, the piston 3 is opened when the direction of movement of the piston 3 is reversed. The pressure oil from the hydraulic chamber A (B) is moved to the auxiliary hydraulic tank 7. The other open / close control valve E (D) once opens the open / close control valve C connecting the hydraulic chambers A and B after the pressure oil from the high pressure side hydraulic chamber A (B) moves to the auxiliary hydraulic tank 7. Then, after the pressures of the hydraulic chambers A and B are balanced, the hydraulic control chamber C is opened when the open / close control valve C is closed, and the pressure oil from the auxiliary hydraulic tank 7 is moved to the other hydraulic chamber B (A).

油圧室Aと油圧室Bに区別はなく、開閉制御弁D、Eにも区別はない。図1−(a)で言えば、油圧室Aが最初に高圧側になったときに、油圧室Aからの圧油が油圧室Aと補助油圧タンク7を連結する開閉制御弁Dを経て補助油圧タンク7に流れる。開閉制御弁Cの開放による両油圧室A、Bの圧力の平衡後、補助油圧タンク7からの圧油が油圧室Bと補助油圧タンク7を連結する開閉制御弁Eを経て油圧室Bに流れるが、油圧室Bが最初に高圧側になったときには油圧室Bからの圧油が開閉制御弁Eを経て補助油圧タンク7に流れる。その後、補助油圧タンク7からの圧油が開閉制御弁Dを経て油圧室Aに流れることになる。   There is no distinction between the hydraulic chamber A and the hydraulic chamber B, and there is no distinction between the open / close control valves D and E. In FIG. 1- (a), when the hydraulic chamber A first becomes the high pressure side, the pressure oil from the hydraulic chamber A is assisted through the open / close control valve D that connects the hydraulic chamber A and the auxiliary hydraulic tank 7. It flows to the hydraulic tank 7. After equilibration of the pressures of both hydraulic chambers A and B due to opening of the open / close control valve C, the pressure oil from the auxiliary hydraulic tank 7 flows into the hydraulic chamber B via the open / close control valve E connecting the hydraulic chamber B and the auxiliary hydraulic tank 7. However, when the hydraulic chamber B first becomes the high pressure side, the pressure oil from the hydraulic chamber B flows to the auxiliary hydraulic tank 7 through the opening / closing control valve E. Thereafter, the pressure oil from the auxiliary hydraulic tank 7 flows into the hydraulic chamber A through the opening / closing control valve D.

建物が振動している最中の本発明の方法を採用した油圧ダンパ1とブレース21の動きを模式的に示す図2−(a)〜(e)により油圧ダンパ1の動作を説明する。フレーム20が振動により一方向に変形している最中(図2−(a)から(b)の間)は全ての開閉制御弁C、D、Eを閉鎖状態に保持(制御)することにより油圧ダンパ1がブレース21に剛結された状態にある。請求項1における「ピストンがいずれかの向きに移動している最中」とは、フレーム20が振動により一方向に変形している間はずっと(継続的に)の意味である。   The operation of the hydraulic damper 1 will be described with reference to FIGS. 2A to 2E schematically showing the movement of the hydraulic damper 1 and the brace 21 employing the method of the present invention while the building is vibrating. While the frame 20 is deformed in one direction due to vibration (between FIGS. 2A to 2B), by holding (controlling) all the open / close control valves C, D, E in the closed state. The hydraulic damper 1 is in a state of being rigidly connected to the brace 21. In the first aspect, “while the piston is moving in any direction” means (continuously) as long as the frame 20 is deformed in one direction by vibration.

層間変形に応じた荷重がブレース21に発生したときに、ピストン3を挟んだいずれか一方側の油圧室A(B)に圧力が発生する。フレーム20の振動の最大振幅点でまず、圧力が発生した油圧室A(B)と補助油圧タンク7を連結する開閉制御弁D(E)を開放させ、油圧室A(B)の圧油を補助油圧タンク7に移動させる。フレーム20が振動の最大振幅点を迎えたときは請求項1における「ピストンの移動する向きが反転したとき」に相当する。油圧室A(B)からの圧油の補助油圧タンク7への移動の際、油圧室A(B)の圧力は少し下がり、固定状態にあったピストン3の油圧室A(B)側への移動が可能になり、それに応じてブレース21も少し除荷される(図2−(c))。   When a load corresponding to the interlayer deformation is generated in the brace 21, pressure is generated in the hydraulic chamber A (B) on either side across the piston 3. First, at the maximum amplitude point of vibration of the frame 20, the open / close control valve D (E) that connects the hydraulic chamber A (B) where the pressure is generated and the auxiliary hydraulic tank 7 is opened, and the hydraulic oil in the hydraulic chamber A (B) is discharged. Move to auxiliary hydraulic tank 7. When the frame 20 reaches the maximum amplitude point of vibration, this corresponds to “when the direction of movement of the piston is reversed” in claim 1. When the pressure oil from the hydraulic chamber A (B) moves to the auxiliary hydraulic tank 7, the pressure in the hydraulic chamber A (B) decreases slightly, and the piston 3 that has been in the fixed state moves toward the hydraulic chamber A (B). The movement becomes possible, and the brace 21 is unloaded a little accordingly (FIG. 2- (c)).

油圧室Aと補助油圧タンク7の圧力が等しくなった時点で、開閉制御弁Dを閉鎖させて開閉制御弁Cを開放させると、ブレース21の荷重が完全に除荷されてブレース21は中立位置に戻る(図2−(d))。このとき、高圧側の油圧室A(B)内の圧力が解放(除荷)され、両油圧室A、B間の圧力差が解消される。ブレースの除荷完了後、開閉制御弁Cを閉鎖させると共に、開閉制御弁Eを開放させると、補助油圧タンク7の圧油が他方側の油圧室Bに流入する。このとき、油圧室Bの圧力が油圧室Aの圧力より高くなるため、シリンダ2内ではピストン3が油圧室A側に押された状態となり、ブレース21に力が加わり、図2−(b)と逆向きにブレース21が変形する(図2−(e))。補助油圧タンク7の圧力と油圧室Bの圧力が等しくなった時点で開閉制御弁Eを閉鎖させる。   When the pressure in the hydraulic chamber A and the auxiliary hydraulic tank 7 becomes equal, when the opening / closing control valve D is closed and the opening / closing control valve C is opened, the load of the brace 21 is completely unloaded and the brace 21 is in the neutral position. Return to FIG. 2- (d). At this time, the pressure in the hydraulic chamber A (B) on the high pressure side is released (unloaded), and the pressure difference between the hydraulic chambers A and B is eliminated. When the opening / closing control valve C is closed and the opening / closing control valve E is opened after the unloading of the brace is completed, the pressure oil in the auxiliary hydraulic tank 7 flows into the hydraulic chamber B on the other side. At this time, since the pressure in the hydraulic chamber B becomes higher than the pressure in the hydraulic chamber A, the piston 3 is pushed toward the hydraulic chamber A in the cylinder 2, and a force is applied to the brace 21, and FIG. The brace 21 is deformed in the opposite direction (FIG. 2- (e)). When the pressure in the auxiliary hydraulic tank 7 and the pressure in the hydraulic chamber B become equal, the open / close control valve E is closed.

図2−(b)から図2−(e)までの一連の開閉動作に要する時間は建物振動周期と比較して十分短いため、ブレース21にオフセットの変形(荷重)が加わった状態で、外力の向きの変化に伴い、逆向きの振動が始まる。   Since the time required for the series of opening / closing operations from FIG. 2B to FIG. 2E is sufficiently short compared to the building vibration cycle, the external force is applied in a state where an offset deformation (load) is applied to the brace 21. With the change of direction, the reverse vibration starts.

図3は本発明の方法によるダンパ荷重と層間変形の関係を、従来の切替制御および一般の油圧ダンパと比較して示した図であり、図中のa〜eの点は図2−(a)〜(e)に対応している。図4はダンパ荷重と油圧ダンパのみの変形(層間変形からブレース変形を除いた変形)の関係を示す。補助油圧タンクに圧力を一旦移動させ、それをブレースにオフセット変形を加えることに利用することで、ダンパ部の変形を層間変形δ以上に拡大できることが分かる。   FIG. 3 is a view showing the relationship between the damper load and the interlayer deformation according to the method of the present invention in comparison with a conventional switching control and a general hydraulic damper, and points a to e in FIG. ) To (e). FIG. 4 shows the relationship between the damper load and the deformation of only the hydraulic damper (deformation excluding brace deformation from interlayer deformation). It can be seen that the deformation of the damper portion can be expanded to more than the interlayer deformation δ by temporarily moving the pressure to the auxiliary hydraulic tank and using it to apply offset deformation to the brace.

ところで、図2−(e)の完了後、開閉制御弁Eを閉鎖させると、補助油圧タンク7には圧油(圧力)が残る可能性があるが、この圧油は補助油圧タンク7に残留させられることで振動の繰り返しに伴い、エネルギ吸収効率の向上に寄与し得る。図5は静止状態から振動を開始した時の荷重−変形の軌跡を示す。振動の繰り返しに伴い、補助油圧タンク7の圧力が累積されていくため、エネルギ吸収効率が上昇し、数回で定常状態に達する。図5中の符号(数字)はフレーム20が変形する前の状態からの層間変形の繰り返しに伴う荷重変形の経路を示す。このように補助油圧タンク7の残圧は良い方向に作用するが、く、建物の振動周期は図2−(a)〜(e)の一連の開閉動作に比べてゆっくりであるため、振動中に補助油圧タンク7の圧力が抜けてしまう可能性もある。   By the way, when the open / close control valve E is closed after the completion of FIG. It can contribute to the improvement of energy absorption efficiency with repetition of vibration. FIG. 5 shows a load-deformation locus when vibration is started from a stationary state. As the vibration is repeated, the pressure in the auxiliary hydraulic tank 7 is accumulated, so that the energy absorption efficiency is increased and reaches a steady state several times. Reference numerals (numerals) in FIG. 5 indicate the path of load deformation accompanying the repeated interlayer deformation from the state before the frame 20 is deformed. Thus, although the residual pressure of the auxiliary hydraulic tank 7 acts in a good direction, the vibration cycle of the building is slower than the series of opening and closing operations shown in FIGS. 2- (a) to (e). In addition, the pressure in the auxiliary hydraulic tank 7 may be released.

図6は図2−(e)の後に補助油圧タンク7の残圧が完全に抜けてしまうと仮定した場合の荷重変形関係を示す。図5と比較すると、ややループ面積は小さいものの、従来の切替制御よりも大きなエネルギ吸収が実現されることに変わりはない。   FIG. 6 shows a load deformation relationship when it is assumed that the residual pressure in the auxiliary hydraulic tank 7 is completely released after FIG. Compared with FIG. 5, although the loop area is slightly smaller, the energy absorption is still greater than that of the conventional switching control.

図7は図16−(b)に示すマックスウェルモデルの剛性Kに対する補助油圧タンクの等価剛性kが定常1サイクルのエネルギ吸収量に与える影響を示す。振動中に補助油圧タンクの圧力が維持されるか(図5の場合)、抜けてしまうか(図6の場合)により、最適な剛性設定値と効率が変化するが、概ねk/Kが0.5〜3.0程度に設定できれば、従来の切替制御の約1.5倍以上の効率が実現される。kの値が上記範囲を大幅に外れると効率は低下するものの、従来の切替制御よりも効率が低下することはない。補助油圧タンクに圧力を蓄える方法として、作動流体の圧縮剛性を利用する場合、補助油圧タンクの容量をV、作動流体の体積弾性係数をG、ダンパのピストン面積をAとすると、ダンパからみた補助油圧タンクの等価剛性kはk=GA/Vと表される。 FIG. 7 shows the influence of the equivalent stiffness k of the auxiliary hydraulic tank on the stiffness K of the Maxwell model shown in FIG. The optimum stiffness setting value and efficiency change depending on whether the pressure of the auxiliary hydraulic tank is maintained during vibration (in the case of FIG. 5) or is released (in the case of FIG. 6), but k / K is approximately 0. If it can be set to about .5 to 3.0, the efficiency of about 1.5 times or more of the conventional switching control is realized. If the value of k deviates significantly from the above range, the efficiency is lowered, but the efficiency is not lowered as compared with conventional switching control. As a method of storing pressure in the auxiliary hydraulic tank, when using the compression rigidity of the working fluid, if the auxiliary hydraulic tank capacity is V, the volumetric elastic modulus of the working fluid is G, and the piston area of the damper is A The equivalent rigidity k of the hydraulic tank is expressed as k = GA 2 / V.

一方、ばね等を用いた方式の補助油圧タンクを使用すれば、剛性調整は更に容易になる。作動流体(油)の圧縮剛性は高いことから、補助油圧タンクの容量が小さければ、k/Kが3.0程度より大きくなるため、それを避けるには十分に大きなタンク容量を与える(k=GA/VのVを大きくする)必要があるが、ピストン式アキュムレータのような方式であれば、直接、ばね剛性の調節が可能になることに基づく。 On the other hand, if an auxiliary hydraulic tank using a spring or the like is used, the rigidity adjustment is further facilitated. Since the compression rigidity of the working fluid (oil) is high, if the capacity of the auxiliary hydraulic tank is small, k / K is larger than about 3.0, and therefore a sufficiently large tank capacity is given to avoid it (k = It is necessary to increase the V of GA 2 / V). However, if the system is a piston type accumulator, the spring stiffness can be directly adjusted.

請求項1に記載の方法に使用される油圧ダンパは外部からの電流の供給により開閉制御弁C、D、Eの開閉を操作する電気的駆動手段を備える場合(請求項2)と、両油圧室A、B間の圧力差の変動に基づいて開閉制御弁C、D、Eの開閉を操作する油圧式駆動手段を備える場合(請求項3)があり、電気的駆動手段と油圧式駆動手段を併せ持つ場合(請求項4)もある。電気的駆動手段は主に電磁弁を用いる方法であり、油圧式駆動手段は主に油圧で駆動する切替弁を用いる方法である。   The hydraulic damper used in the method according to claim 1 includes an electric drive means for operating opening / closing control valves C, D, E by supplying an external current (Claim 2), and both hydraulic pressures. There are cases where hydraulic drive means for operating opening / closing control valves C, D, E based on fluctuations in the pressure difference between the chambers A, B is provided (Claim 3), and electrical drive means and hydraulic drive means are provided. (Claim 4). The electric drive means is a method mainly using an electromagnetic valve, and the hydraulic drive means is a method using a switching valve driven mainly by hydraulic pressure.

フレーム20がいずれかの向きに最も変形したときに、両油圧室A、Bを連結する間開閉制御弁Cを直ちに開放状態にさせて油圧室A、B間の圧油の移動を自由にさせることなく、一旦、高圧側になった油圧室A(B)内の圧油を補助油圧タンク内へ流入させて油圧エネルギを保持してから間開閉制御弁Cを開放状態にさせ、油圧室A、B間の圧力を平衡状態にした後に、補助油圧タンク内の油圧エネルギを反対側の油圧室B(A)に注入するため、フレーム20の層間変形よりブレース21の変形を拡大することができる。   When the frame 20 is most deformed in either direction, the open / close control valve C is immediately opened while the hydraulic chambers A and B are connected to freely move the hydraulic oil between the hydraulic chambers A and B. The hydraulic oil in the hydraulic chamber A (B) that has reached the high pressure side is allowed to flow into the auxiliary hydraulic tank to maintain the hydraulic energy, and the open / close control valve C is opened, so that the hydraulic chamber A Since the hydraulic energy in the auxiliary hydraulic tank is injected into the opposite hydraulic chamber B (A) after the pressure between B and B is brought into an equilibrium state, the deformation of the brace 21 can be expanded more than the interlayer deformation of the frame 20. .

この結果、1サイクルのフレーム20の変形の間の荷重(油圧ダンパ荷重)と変形(層間変形)の関係を表す履歴ループが従来の履歴ループより大きい面積のループを描くことが可能になるため、エネルギ吸収効率が向上する。   As a result, the hysteresis loop representing the relationship between the load (hydraulic damper load) and the deformation (interlayer deformation) during the deformation of the frame 20 in one cycle can be drawn with a larger area than the conventional history loop. Energy absorption efficiency is improved.

(a)は本発明の油圧ダンパの構造を模式化して示した断面図、(b)は(a)の一例としての図8に示す油圧回路図を模式化して示した断面図である。(A) is sectional drawing which showed typically the structure of the hydraulic damper of this invention, (b) is sectional drawing which showed typically the hydraulic circuit diagram shown in FIG. 8 as an example of (a). (a)は図1に示す油圧ダンパを組み込んだフレームがいずれかの向きに変形している途中の様子を示した立面図、(b)は(a)の状態から最大の層間変形を生じたときの様子を示した立面図、(c)は(b)の状態の直後に開閉制御弁Dを開放状態にしたときの様子を示した立面図、(d)は(c)の状態の直後に開閉制御弁Dを閉じて開閉制御弁Cを開放状態にした(ピストンの移動を自由にした)ときの様子を示した立面図、(e)は(d)の状態の直後に開閉制御弁Cを閉じて開閉制御弁Eを開放状態にしたときの様子を示した立面図である。(A) is an elevation view showing a state in which the frame incorporating the hydraulic damper shown in FIG. 1 is deformed in either direction, and (b) is the largest interlayer deformation from the state of (a). (C) is an elevation view showing the state when the open / close control valve D is opened immediately after the state of (b), and (d) is an elevation view of (c). FIG. 5E is an elevation view showing the state when the open / close control valve D is closed and the open / close control valve C is opened immediately after the state (the piston is free to move); FIG. It is the elevation which showed a mode when the on-off control valve C was closed and the on-off control valve E was made into the open state. 図2−(a)〜(e)に示す制御がなされたときの1サイクルの振動時の油圧ダンパの荷重−変形(層間変形)関係を示した履歴特性図である。FIG. 2 is a hysteresis characteristic diagram showing a load-deformation (interlayer deformation) relationship of a hydraulic damper during one cycle of vibration when the control shown in FIGS. 2- (a) to (e) is performed. 図3中の層間変形からフレームの変形量を差し引いたときの油圧ダンパの荷重−変形(層間変形)関係を示した履歴特性図である。FIG. 4 is a hysteresis characteristic diagram showing a load-deformation (interlayer deformation) relationship of a hydraulic damper when a frame deformation amount is subtracted from the interlayer deformation in FIG. 3. 半サイクルの振動の間、補助油圧タンクの圧力が維持されると想定した場合の荷重−変形(層間変形)関係を示した履歴特性図である。FIG. 6 is a hysteresis characteristic diagram showing a load-deformation (interlayer deformation) relationship when it is assumed that the pressure of the auxiliary hydraulic tank is maintained during half-cycle vibration. 半サイクルの振動の間、補助油圧タンクの圧力が維持されないと想定した場合の荷重−変形(層間変形)関係を示した履歴特性図である。FIG. 6 is a hysteresis characteristic diagram showing a load-deformation (interlayer deformation) relationship when it is assumed that the pressure of the auxiliary hydraulic tank is not maintained during half-cycle vibration. 図2−(b)に示す力学モデルの剛性Kに対する補助油圧タンクの等価剛性kの比k/Kと、1サイクルのエネルギ吸収量の、従来型の切替制御がなされた油圧ダンパのエネルギ吸収量に対する比率との関係を示したグラフである。The ratio k / K of the equivalent stiffness k of the auxiliary hydraulic tank to the stiffness K of the dynamic model shown in FIG. 2- (b) and the energy absorption amount of the hydraulic damper subjected to the conventional switching control of the energy absorption amount of one cycle. It is the graph which showed the relationship with the ratio with respect to. 各開閉制御弁に付属したソレノイドへのコントローラからの指令に基づいて各開閉制御弁の開閉を制御する場合の、油圧ダンパと各開閉制御弁との接続例を示した油圧回路図である。FIG. 3 is a hydraulic circuit diagram showing an example of connection between a hydraulic damper and each open / close control valve when opening / closing of each open / close control valve is controlled based on a command from a controller to a solenoid attached to each open / close control valve. 油圧ダンパの両油圧室間の圧力差に起因して各開閉制御弁の開閉を制御する場合の、油圧ダンパと各開閉制御弁との接続例を示した油圧回路図である。FIG. 3 is a hydraulic circuit diagram showing an example of connection between a hydraulic damper and each open / close control valve when opening / closing of each open / close control valve is controlled due to a pressure difference between both hydraulic chambers of the hydraulic damper. 図9に示す例に図8に示す例におけるコントローラとその指令に基づいて動作するソレノイドを付加した場合の、油圧ダンパと各開閉制御弁との接続例を示した油圧回路図である。FIG. 10 is a hydraulic circuit diagram showing an example of connection between the hydraulic damper and each open / close control valve when the controller shown in FIG. 9 and the solenoid that operates based on its command are added to the example shown in FIG. 9. (a)は図1−(a)に示す油圧ダンパの両油圧室間を連結する位置にリリーフ弁12を組み込んだ状態を表す模式図、(b)は(a)に示す油圧室間に接続されるリリーフ弁が作動したときの油圧ダンパの荷重−変形(層間変形)関係を示した履歴特性図である。(A) is a schematic diagram showing a state in which the relief valve 12 is incorporated at a position where the two hydraulic chambers of the hydraulic damper shown in FIG. 1- (a) are connected, and (b) is connected between the hydraulic chambers shown in (a). FIG. 6 is a hysteresis characteristic diagram showing a load-deformation (interlayer deformation) relationship of a hydraulic damper when a relief valve is activated. 図8に示す例における油圧ダンパの油圧室間の流路にリリーフ弁を接続した場合の、油圧ダンパと各開閉制御弁との接続例を示した油圧回路図である。FIG. 9 is a hydraulic circuit diagram illustrating a connection example between a hydraulic damper and each open / close control valve when a relief valve is connected to a flow path between hydraulic chambers of the hydraulic damper in the example illustrated in FIG. 8. 図9に示す例における油圧ダンパの油圧室間の流路と、バッファとアキュムレータ間の2箇所にリリーフ弁を接続した場合の、油圧ダンパと各開閉制御弁との接続例を示した油圧回路図である。FIG. 9 is a hydraulic circuit diagram showing an example of connection between the hydraulic damper and each on-off control valve when relief valves are connected to the flow path between the hydraulic chambers of the hydraulic damper and the buffer and accumulator in the example shown in FIG. It is. 図10に示す例における油圧ダンパの油圧室間の流路と、バッファとアキュムレータ間の2箇所にリリーフ弁を接続した場合の、油圧ダンパと各開閉制御弁との接続例を示した油圧回路図である。FIG. 10 is a hydraulic circuit diagram showing an example of connection between the hydraulic damper and each open / close control valve when a relief valve is connected to the passage between the hydraulic chambers of the hydraulic damper in the example shown in FIG. 10 and two places between the buffer and the accumulator. It is. 開閉制御弁を有する従来の減衰係数切替型油圧ダンパの構造を模式化して示した断面図である。It is sectional drawing which showed typically the structure of the conventional damping coefficient switching type hydraulic damper which has an on-off control valve. (a)は図15に示す油圧ダンパを柱・梁のフレーム内に配置されるブレース等の耐震要素とフレーム間に跨って設置した様子を示した立面図、(b)は(a)に示すブレースと油圧ダンパを合わせた装置部の力学モデルを示した模式図である。15A is an elevation view showing a state in which the hydraulic damper shown in FIG. 15 is installed across the frame between the seismic element such as a brace arranged in the column / beam frame, and FIG. It is the schematic diagram which showed the mechanical model of the apparatus part which match | combined the brace and hydraulic damper which are shown. (a)は図16−(a)に示すフレームがいずれかの向きに最大の層間変形を生じたときの様子を示した立面図、(b)は逆向きに最大の層間変形を生じたときの様子を示した立面図、(c)は(b)の状態の直後に開閉制御弁を開いてシリンダ内のピストンの移動を自由にしたときの様子を示した立面図である。FIG. 16A is an elevation view showing a state in which the frame shown in FIG. 16A causes the maximum interlayer deformation in either direction, and FIG. 16B shows the maximum interlayer deformation in the opposite direction. (C) is an elevational view showing a state when the opening / closing control valve is opened immediately after the state of (b) to freely move the piston in the cylinder. 図17−(a)〜(c)に示す1サイクルの振動時の油圧ダンパの荷重−変形(層間変形)関係を示した履歴特性図である。FIG. 18 is a hysteresis characteristic diagram showing a load-deformation (interlayer deformation) relationship of the hydraulic damper during vibration of one cycle shown in FIGS. 17 (a) to (c). 図18中の層間変形からブレースの変形量を差し引いたときの油圧ダンパの荷重−変形(ダンパ変形)関係を示した履歴特性図である。FIG. 19 is a hysteresis characteristic diagram showing a load-deformation (damper deformation) relationship of the hydraulic damper when the amount of brace deformation is subtracted from the interlayer deformation in FIG. 18.

以下、図8〜図13を用いて本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to FIGS.

油圧ダンパ1はシリンダ2と、シリンダ2内を往復動するピストン3と、ピストン3の両側に設けられた油圧室A、Bと、両油圧室A、Bをつなぐ流路4に接続され、開放状態と閉鎖状態が切り替えられる開閉制御弁Cと、シリンダ2に接続され、圧油を蓄え可能な補助油圧タンク7と、補助油圧タンク7と各油圧室A、Bとの間に接続され、開放状態と閉鎖状態が切り替えられる開閉制御弁D、Eを備える。
The hydraulic damper 1 is connected to a cylinder 2, a piston 3 that reciprocates in the cylinder 2, hydraulic chambers A and B provided on both sides of the piston 3, and a flow path 4 that connects both hydraulic chambers A and B, and is opened. An open / close control valve C that can be switched between a state and a closed state, an auxiliary hydraulic tank 7 that is connected to the cylinder 2 and can store pressure oil, and is connected between the auxiliary hydraulic tank 7 and each of the hydraulic chambers A and B, and is opened. Open / close control valves D and E that are switched between a state and a closed state are provided.

図8は外部からの電流の供給により全開閉制御弁C、D、Eの開閉を操作する電気的駆動手段としてのコントローラ8からの指令に基づいて図1−(b)に示す油圧ダンパ1の全開閉制御弁C〜Eの制御を行う場合の油圧ダンパ1と各開閉制御弁C〜Eとの接続例を示す。   FIG. 8 shows the hydraulic damper 1 shown in FIG. 1- (b) on the basis of a command from the controller 8 as an electric drive means for operating the opening / closing of all the opening / closing control valves C, D, E by supplying an external current. An example of connection between the hydraulic damper 1 and each of the on / off control valves C to E when controlling all the on / off control valves C to E is shown.

図1−(a)に示す例では全ての開閉制御弁C〜Eが方向性を持たないため、油圧室Aが高圧側になったときに、油圧室A内の圧油が開閉制御弁Dを通じて補助油圧タンク7に移動し、補助油圧タンク7内の圧油が開閉制御弁Eを通じて反対側の油圧室Bに移動する。油圧室Bが高圧側になったときには、油圧室B内の圧油が開閉制御弁Eを通じて補助油圧タンク7に移動し、補助油圧タンク7内の圧油が開閉制御弁Dを通じて反対側の油圧室Aに移動する。   In the example shown in FIG. 1- (a), since all the open / close control valves C to E have no directionality, when the hydraulic chamber A becomes the high pressure side, the pressure oil in the hydraulic chamber A is switched to the open / close control valve D. The pressure oil in the auxiliary hydraulic tank 7 moves to the opposite hydraulic chamber B through the open / close control valve E. When the hydraulic chamber B reaches the high pressure side, the pressure oil in the hydraulic chamber B moves to the auxiliary hydraulic tank 7 through the open / close control valve E, and the pressure oil in the auxiliary hydraulic tank 7 passes through the open / close control valve D to the opposite hydraulic pressure. Move to chamber A.

図1−(b)は図1−(a)における開閉制御弁C〜Eが方向性を有する場合の図1−(a)の別の例としての油圧ダンパの構造を模式化して示す。図8は図1−(b)に示す油圧回路図の具体例に相当する。図1−(a)では圧油が開閉制御弁Dを通じて油圧室Aと補助油圧タンク7間を高圧側から低圧側へ移動でき、開閉制御弁Eを通じて油圧室Bと補助油圧タンク7間を高圧側から低圧側へ移動できる。これに対し、(b)では切替弁2Aにより、高圧側のいずれかの油圧室A(B)からの圧油が開閉制御弁Dを通じて補助油圧タンク7へ移動でき、補助油圧タンク7からの圧油が開閉制御弁Eを通じて同じく高圧側のいずれかの油圧室B(A)へ移動できる。   FIG. 1- (b) schematically shows the structure of a hydraulic damper as another example of FIG. 1- (a) when the on-off control valves C to E in FIG. 1- (a) have directionality. FIG. 8 corresponds to a specific example of the hydraulic circuit diagram shown in FIG. In FIG. 1- (a), the pressure oil can move between the hydraulic chamber A and the auxiliary hydraulic tank 7 from the high pressure side to the low pressure side through the open / close control valve D, and the high pressure between the hydraulic chamber B and the auxiliary hydraulic tank 7 through the open / close control valve E. It can move from the side to the low pressure side. On the other hand, in (b), the pressure oil from one of the hydraulic chambers A (B) on the high pressure side can be moved to the auxiliary hydraulic tank 7 through the open / close control valve D by the switching valve 2A, and the pressure from the auxiliary hydraulic tank 7 is increased. Oil can move to one of the high pressure side hydraulic chambers B (A) through the open / close control valve E.

図1−(b)においてピストン3の移動により油圧室Aが高圧側であるとき、切替弁2Aにより、高圧側油圧室Aと開閉制御弁Dの流路が連結される。ピストン3の移動の向きが反転したときに、開閉制御弁Dを開くと、油圧室Aからの圧油は開閉制御弁Dを通じて補助油圧タンク7に移動する。補助油圧タンク7と油圧室Aの圧力が平衡になった後、一旦、開閉制御弁Dを閉鎖し、続いて開閉制御弁Cを開くと、油圧室Aの圧力が油圧室Bへ流れて解放される。油圧室A、B間の圧力差が解消されたときに開閉制御弁Cを閉じると、既にピストン3は僅かながら反対方向への移動を開始しているため、先ほどは低圧側であった反対側の油圧室Bが僅かながら高圧側となるため、切替弁2Aが切り替わり、油圧室Bと開閉制御弁Eの流路が連結される。その後、開閉制御弁Eを開くと、補助油圧タンク7の圧油が油圧室Bに移動する。図1−(b)中、切替弁2Aは高圧側の油圧室A(B)を開閉制御弁D及び開閉制御弁Eに連結する役目を果たすが、開閉制御弁D、Eに(a)に示すような両方向弁を使用する場合は必要ではない。   1B, when the hydraulic chamber A is on the high pressure side due to the movement of the piston 3, the switching valve 2A connects the flow path between the high pressure side hydraulic chamber A and the open / close control valve D. When the opening / closing control valve D is opened when the direction of movement of the piston 3 is reversed, the pressure oil from the hydraulic chamber A moves to the auxiliary hydraulic tank 7 through the opening / closing control valve D. After the pressure in the auxiliary hydraulic tank 7 and the hydraulic chamber A reaches equilibrium, once the open / close control valve D is closed and then the open / close control valve C is opened, the pressure in the hydraulic chamber A flows into the hydraulic chamber B and is released. Is done. When the opening / closing control valve C is closed when the pressure difference between the hydraulic chambers A and B is eliminated, the piston 3 has already started to move slightly in the opposite direction. Since the hydraulic chamber B is slightly on the high pressure side, the switching valve 2A is switched, and the flow path of the hydraulic chamber B and the open / close control valve E is connected. Thereafter, when the opening / closing control valve E is opened, the pressure oil in the auxiliary hydraulic tank 7 moves to the hydraulic chamber B. In FIG. 1- (b), the switching valve 2A serves to connect the high-pressure side hydraulic chamber A (B) to the on-off control valve D and the on-off control valve E. It is not necessary when using a bidirectional valve as shown.

図8に示す例では開閉制御弁Dと開閉制御弁Eのそれぞれには、開閉制御弁Dと開閉制御弁Eの開閉を操作するソレノイドバルブD1、E1が接続され、開閉制御弁Cには開閉制御弁Cの開閉を操作するソレノイドバルブC1が接続される。この例では両油圧室A、Bに、両油圧室A、Bの内、いずれかの油圧室A(B)が高圧側になったときに、高圧側の油圧室A(B)からの圧油を開閉制御弁Dと開閉制御弁C側へ流す切替弁2Aを接続している。   In the example shown in FIG. 8, solenoid valves D1 and E1 for operating the opening / closing control valve D and the opening / closing control valve E are connected to the opening / closing control valve D and the opening / closing control valve E, respectively. A solenoid valve C1 that operates to open and close the control valve C is connected. In this example, when either of the hydraulic chambers A and B is in the high pressure side, the pressure from the high pressure side hydraulic chamber A (B) is A switching valve 2A for flowing oil to the opening / closing control valve D and the opening / closing control valve C side is connected.

切替弁2Aは両油圧室A、Bを結ぶ流路4に接続される。切替弁2Aはいずれか一方の油圧室A(B)内の圧力が他方の油圧室B(A)内の圧力を上回ったときに、高圧側の油圧室A(B)内の圧油が流路4と流路5に流れる状態にするように設定されている。   The switching valve 2A is connected to a flow path 4 that connects both hydraulic chambers A and B. In the switching valve 2A, when the pressure in one hydraulic chamber A (B) exceeds the pressure in the other hydraulic chamber B (A), the pressure oil in the hydraulic chamber A (B) on the high pressure side flows. The flow is set to flow in the channel 4 and the channel 5.

切替弁2Aには開閉制御弁(ポペット弁)Cと開閉制御弁(ポペット弁)Dに油圧室A、Bからの圧油が移動し得る流路4、5が接続され、流路5に接続される補助油圧タンク7の先に、開閉制御弁Dを通過した圧油が開閉制御弁(ポペット弁)Eに移動し得る流路6が接続される。開閉制御弁Dに接続されたソレノイドバルブD1のソレノイドD2は励磁されたときにのみ、高圧側の油圧室A(B)内の圧油の開閉制御弁Dの通過を自由にする状態にあり、切替弁2Aを経て開閉制御弁Dに移動する圧油はソレノイドバルブD1がコントローラ8からの指令を受け(通電し)、ソレノイドD2が励磁されたときに開閉制御弁Dを通過して開閉制御弁E側へ向かうが、開閉制御弁Eは平常時にソレノイドバルブE1によって閉鎖した状態にあるため、開閉制御弁Dを通過した圧油は補助油圧タンク7へ移動する。   The switching valve 2A is connected to the open / close control valve (poppet valve) C and the open / close control valve (poppet valve) D to the flow passages 4 and 5 through which the hydraulic oil from the hydraulic chambers A and B can move. Connected to the tip of the auxiliary hydraulic tank 7 is a flow path 6 through which the pressure oil that has passed through the opening / closing control valve D can move to the opening / closing control valve (poppet valve) E. Only when the solenoid D2 of the solenoid valve D1 connected to the opening / closing control valve D is excited, the pressure oil in the hydraulic chamber A (B) on the high pressure side is free to pass through the opening / closing control valve D; The pressure oil that moves to the opening / closing control valve D via the switching valve 2A receives the command from the controller 8 (energized), and passes through the opening / closing control valve D when the solenoid D2 is excited. Although it goes to the E side, since the opening / closing control valve E is normally closed by the solenoid valve E1, the pressure oil that has passed through the opening / closing control valve D moves to the auxiliary hydraulic tank 7.

開閉制御弁Cに接続されたソレノイドバルブC1のソレノイドC2は励磁されたときにのみ、流路4に進入した圧油の開閉制御弁Cの通過を自由にする状態にあり、流路4に進入した圧油はソレノイドバルブC1がコントローラ8からの指令を受け(通電し)、ソレノイドC2が励磁されたときに開閉制御弁Cを通過して低圧側の油圧室B(A)に流れ得る状態にする。   The solenoid C2 of the solenoid valve C1 connected to the opening / closing control valve C is in a state in which the pressure oil that has entered the flow path 4 is allowed to freely pass through the opening / closing control valve C only when excited, and enters the flow path 4. When the solenoid valve C1 receives a command from the controller 8 (energized) and the solenoid C2 is excited, the pressurized oil passes through the open / close control valve C and can flow into the low pressure side hydraulic chamber B (A). To do.

開閉制御弁Eに接続されたソレノイドバルブE1のソレノイドE2は励磁されたときにのみ、補助油圧タンク7から流路6に進入した圧油の開閉制御弁Eの通過を自由にする状態にあり、補助油圧タンク7から流路6に進入した圧油はソレノイドバルブE1がコントローラ8からの指令を受け(通電し)、ソレノイドE2が励磁されたときに開閉制御弁Eを通過して高圧側の油圧室B(A)に流れ得る状態にする。   Only when the solenoid E2 of the solenoid valve E1 connected to the open / close control valve E is excited, the pressure oil that has entered the flow path 6 from the auxiliary hydraulic tank 7 is in a state of freely passing through the open / close control valve E, The pressure oil that has entered the flow path 6 from the auxiliary hydraulic tank 7 receives a command (energized) by the solenoid valve E1 from the controller 8 and passes through the open / close control valve E when the solenoid E2 is energized. A state in which it can flow into the chamber B (A) is set.

コントローラ8には例えば両油圧室A、Bに設置された圧力計11、11の計測値が送信され、コントローラ8はいずれか一方の油圧室A(B)の圧力が上昇から下降へと変化したことを検出したときに(図2−(b))、ソレノイドバルブD1に通電の指令を送信し、ソレノイドD2を励磁させ、開閉制御弁Dを開放状態にする(図2−(c))。コントローラ8はフレーム20の層間変形量を計測する変位計等から送られる計測値等や、両油圧室A、B間の圧力差の変化により判明する計測値に基づいて、層間変形の向きが反転したことを判断することもある。   For example, the measured values of the pressure gauges 11 and 11 installed in both the hydraulic chambers A and B are transmitted to the controller 8, and the controller 8 changes the pressure in one of the hydraulic chambers A (B) from increasing to decreasing. When this is detected (FIG. 2- (b)), an energization command is transmitted to the solenoid valve D1, the solenoid D2 is excited, and the open / close control valve D is opened (FIG. 2- (c)). The controller 8 reverses the direction of interlayer deformation based on measurement values sent from a displacement meter or the like that measures the amount of interlayer deformation of the frame 20 and measurement values that are found by changes in the pressure difference between the hydraulic chambers A and B. Sometimes it is judged.

開閉制御弁Dが開放すると(図2−(c))、いずれか高圧側になった油圧室A(B)内から流路5に進入した圧油が開閉制御弁Dを通過して補助油圧タンク7に移動し、一時的に蓄えられる。高圧側の油圧室A(B)内の圧油の補助油圧タンク7への移動により高圧側の油圧室A(B)内の圧力が降下し、高圧側の油圧室A(B)内の圧力と補助油圧タンク7の圧力が平衡する状態に至る。   When the open / close control valve D is opened (FIG. 2- (c)), the pressure oil that has entered the flow path 5 from within the hydraulic chamber A (B) on the high pressure side passes through the open / close control valve D to assist the hydraulic pressure. It moves to the tank 7 and is temporarily stored. The pressure in the hydraulic chamber A (B) on the high pressure side drops due to the movement of the pressure oil in the hydraulic chamber A (B) on the high pressure side to the auxiliary hydraulic tank 7 and the pressure in the hydraulic chamber A (B) on the high pressure side. And the pressure of the auxiliary hydraulic tank 7 reaches a state of equilibrium.

コントローラ8は油圧室A(B)と補助油圧タンク7の圧力が平衡したことを検出したときに、ソレノイドバルブD1への通電を遮断すると同時に、ソレノイドバルブC1に通電の指令を送信し、ソレノイドC2を励磁させ、開閉制御弁Dを閉鎖させながら、開閉制御弁Cを開放状態にする(図2−(d))。開閉制御弁Cが開放することで、両油圧室A、B間の圧油の移動が自由になり、両油圧室A、B間の圧力差が解消され、平衡状態に至る。   When the controller 8 detects that the pressures in the hydraulic chamber A (B) and the auxiliary hydraulic tank 7 are balanced, the controller 8 cuts off the energization to the solenoid valve D1, and at the same time transmits an energization command to the solenoid valve C1, and the solenoid C2 And the open / close control valve C is opened while closing the open / close control valve D (FIG. 2- (d)). By opening the opening / closing control valve C, the pressure oil moves freely between the hydraulic chambers A and B, the pressure difference between the hydraulic chambers A and B is eliminated, and an equilibrium state is reached.

コントローラ8は両油圧室A、B内の圧力が平衡した時点で、ソレノイドバルブC1への通電を遮断した後、ソレノイドバルブE1に通電の指令を送信し、ソレノイドE2を励磁させ、開閉制御弁Cを閉鎖させた後、開閉制御弁Eを開放状態にする(図2−(e))。開閉制御弁Cを閉じる時点で、層間変形は僅かながら反対方向への移動を開始しているため、開閉制御弁Cを閉じると、開閉制御弁Dを開く時には高圧側であった油圧室A(B)の圧力よりも、低圧側であった油圧室B(A)の圧力が僅かながら上昇する。このため、切替弁2Aが切り替わり、補助油圧タンク7から開閉制御弁Eを通過した圧油が流れる流路6は油圧室B(A)と連結される。従って、開閉制御弁Eを開放すると、油圧室B(A)内より相対的に高圧である補助油圧タンク7内の圧油が流路6を通じて流れ込み、補助油圧タンク7の圧力と平衡になるまで油圧室B(A)の圧力が高められることになる。   When the pressures in the hydraulic chambers A and B are balanced, the controller 8 cuts off the energization to the solenoid valve C1, and then sends an energization command to the solenoid valve E1 to excite the solenoid E2, thereby opening and closing the control valve C. Is closed, and the open / close control valve E is opened (FIG. 2- (e)). At the time of closing the open / close control valve C, the interlayer deformation starts to move slightly in the opposite direction. Therefore, when the open / close control valve C is closed, the hydraulic chamber A ( The pressure in the hydraulic chamber B (A), which was on the low pressure side, slightly increases from the pressure in B). For this reason, the switching valve 2A is switched, and the flow path 6 through which the pressure oil that has passed through the opening / closing control valve E from the auxiliary hydraulic tank 7 flows is connected to the hydraulic chamber B (A). Accordingly, when the opening / closing control valve E is opened, the pressure oil in the auxiliary hydraulic tank 7 having a relatively higher pressure than in the hydraulic chamber B (A) flows through the flow path 6 until the pressure in the auxiliary hydraulic tank 7 is balanced. The pressure in the hydraulic chamber B (A) is increased.

図9は両油圧室A、B間の圧力差の発生(油圧変動)に起因して図1に示す油圧ダンパ1の全ての開閉制御弁C〜Eの制御を行う場合の油圧ダンパ1と各開閉制御弁C〜Eとの接続例を示す。この例においても両油圧室A、Bに、両油圧室A、Bの内、いずれかの油圧室A(B)が高圧側になったときに、高圧側の油圧室A(B)からの圧油を開閉制御弁Dと開閉制御弁Cに流す切替弁2Aを接続している。   FIG. 9 shows the hydraulic damper 1 and each of the hydraulic dampers 1 when each of the on-off control valves C to E of the hydraulic damper 1 shown in FIG. 1 is controlled due to the occurrence of a pressure difference between the hydraulic chambers A and B (hydraulic fluctuation). An example of connection with the open / close control valves C to E is shown. Also in this example, when one of the hydraulic chambers A and B is on the high pressure side, the hydraulic chamber A (B) from the high pressure side hydraulic chamber A (B) A switching valve 2A for flowing pressure oil to the opening / closing control valve D and the opening / closing control valve C is connected.

この場合は、コントローラ8による開閉制御弁C、D、Eの制御がないため、図8におけるソレノイドバルブC1〜E1に代わり、開閉制御弁C、D、Eには切替弁C3、D3、D4が接続される。切替弁C3と切替弁D3は平常時の状態では開閉制御弁C、Dの開閉を操作する圧油の流れをスプリングの力によって阻止することで、開閉制御弁C、Dを閉じた状態に維持している。開閉制御弁Eは、切替弁C3、D3が平常時の状態にあり、且つ補助油圧タンク7内の圧力が高圧側の油圧室A(B)内の圧力を上回るときに開いて、補助油圧タンク7内の圧油が高圧側の油圧室A(B)に流れ込むようになっている。   In this case, since the controller 8 does not control the on-off control valves C, D, and E, the on-off control valves C, D, and E have switching valves C3, D3, and D4 instead of the solenoid valves C1 to E1 in FIG. Connected. The switching valve C3 and the switching valve D3 maintain the open / close control valves C and D in a closed state by blocking the flow of pressure oil for operating the open / close control valves C and D by a spring force in a normal state. doing. The open / close control valve E opens when the switching valves C3 and D3 are in a normal state and the pressure in the auxiliary hydraulic tank 7 exceeds the pressure in the high-pressure side hydraulic chamber A (B). The pressure oil in 7 flows into the hydraulic chamber A (B) on the high pressure side.

流路5に開閉制御弁Dと並列に接続されたバッファ9内の圧力が高圧側の油圧室A(B)の圧力を上回ったときに、切替弁D3は開閉制御弁Dの開閉を可能にする圧油の流れを自由にする状態にスプリングの力に抗して切り替わり、開閉制御弁Dを開放状態にする(図2−(c))。図9の例では切替弁D3とその切り替えを操作するバッファ9とこれに圧油を流す逆止弁9Aの組み合わせが図8の例におけるソレノイドバルブD1に相当し、開閉制御弁Dの開閉を操作する働きをする。   When the pressure in the buffer 9 connected to the flow path 5 in parallel with the open / close control valve D exceeds the pressure in the high pressure side hydraulic chamber A (B), the switching valve D3 can open / close the open / close control valve D. It switches to the state which makes the flow of the pressure oil to make free against the force of a spring, and opens and closes the on-off control valve D (FIG.2- (c)). In the example of FIG. 9, the combination of the switching valve D3, the buffer 9 for operating the switching, and the check valve 9A for supplying pressure oil thereto corresponds to the solenoid valve D1 in the example of FIG. To work.

ピストン3の一方向への移動により、いずれか一方の油圧室A(B)の圧力が上昇中は高圧側の油圧室A(B)内の圧油が流路5から逆止弁9Aを通ってバッファ9内に入り込む。ピストン3の移動方向が反転すると、高圧側の油圧室A(B)内の圧力はそれに応じて低下するが、バッファ9と高圧側の油圧室A(B)を連結する流路に逆止弁9Aが備えられていることで、バッファ9の圧力の低下が阻止されるため、バッファ9内の圧力が高圧側の油圧室A(B)の圧力を上回ることになる。この結果、切替弁D3が切り替わって開閉制御弁Dが開放し(図2−(c))、高圧側の油圧室A(B)内の圧油が流路5から開閉制御弁Dを経由して補助油圧タンク7へ移動する。   While the pressure in one of the hydraulic chambers A (B) is rising due to the movement of the piston 3 in one direction, the pressure oil in the hydraulic chamber A (B) on the high pressure side passes through the check valve 9A from the flow path 5. To enter the buffer 9. When the moving direction of the piston 3 is reversed, the pressure in the high pressure side hydraulic chamber A (B) decreases accordingly, but a check valve is provided in the flow path connecting the buffer 9 and the high pressure side hydraulic chamber A (B). Since 9A is provided, the pressure in the buffer 9 is prevented from decreasing, so that the pressure in the buffer 9 exceeds the pressure in the hydraulic chamber A (B) on the high pressure side. As a result, the switching valve D3 is switched to open the opening / closing control valve D (FIG. 2- (c)), and the pressure oil in the hydraulic chamber A (B) on the high pressure side passes through the opening / closing control valve D from the flow path 5. To the auxiliary hydraulic tank 7.

高圧側の油圧室A(B)内の圧油の補助油圧タンク7への移動に伴い、高圧側の油圧室A(B)内の圧力と補助油圧タンク7内の圧力が平衡したときに、切替弁D3に接続され、平常時に切替弁D3を通じたバッファ9からの流れを阻止している切替弁D4がバッファ9からの流れを自由にする状態に切り替わり、バッファ9からの圧油が切替弁D4に接続されたアキュムレータ10に流れ込む。バッファ9からの圧油のアキュムレータ10への移動によりバッファ9内の圧力が降下し、高圧側の油圧室A(B)内の圧力と平衡すると、切替弁D3がスプリングの力で平常時の状態に復帰し、開閉制御弁Dが閉鎖する。   When the pressure oil in the high pressure side hydraulic chamber A (B) and the pressure in the auxiliary hydraulic tank 7 are balanced with the movement of the pressure oil in the high pressure side hydraulic chamber A (B) to the auxiliary hydraulic tank 7, The switching valve D4, which is connected to the switching valve D3 and prevents the flow from the buffer 9 through the switching valve D3 in the normal state, switches to a state in which the flow from the buffer 9 becomes free, and the pressure oil from the buffer 9 is switched to the switching valve. It flows into the accumulator 10 connected to D4. When the pressure in the buffer 9 drops due to the movement of the pressure oil from the buffer 9 to the accumulator 10 and equilibrates with the pressure in the hydraulic chamber A (B) on the high pressure side, the switching valve D3 is in a normal state by the force of the spring. The opening / closing control valve D is closed.

バッファ9内の圧油がアキュムレータ10に更に流れ込むことで圧力が降下し、高圧側の油圧室A(B)内の圧力を下回ると、切替弁D3は通常の位置に復帰し、切替弁C3が切り替わり、開閉制御弁Cを開放状態にする(図2−(d))。開閉制御弁Cの開放により開閉制御弁Cを通じた油圧室A、B間の圧油の移動が自由になり、油圧室A、B間の圧力が平衡する。油圧室A、B間の圧力が平衡することで、切替弁C3がスプリングの力で平常時の状態に復帰しようと動き始める。切替弁C3は僅かな移動量で開閉制御弁Cの背圧の流路を閉鎖し、完全に平常時の状態に復帰したときに開閉制御弁Eの背圧の流路が連結されるように設定されているため、切替弁C3が平常時の状態に復帰する途中で、まず開閉制御弁Cが閉鎖する。   When the pressure oil in the buffer 9 further flows into the accumulator 10 and the pressure drops and falls below the pressure in the high pressure side hydraulic chamber A (B), the switching valve D3 returns to the normal position, and the switching valve C3 Switching is performed to open / close the control valve C (FIG. 2- (d)). Opening the opening / closing control valve C frees the movement of the pressure oil between the hydraulic chambers A and B through the opening / closing control valve C, and the pressure between the hydraulic chambers A and B is balanced. When the pressure between the hydraulic chambers A and B is balanced, the switching valve C3 starts to return to the normal state by the force of the spring. The switching valve C3 closes the back pressure flow path of the open / close control valve C with a small amount of movement so that the back pressure flow path of the open / close control valve E is connected when it is completely restored to the normal state. Since it is set, the switching control valve C is first closed while the switching valve C3 is returning to the normal state.

このとき、ピストン3は僅かながらも反対方向へ移動を開始しているため、開閉制御弁Cが閉鎖状態に戻ると、直前まで低圧側であった油圧室B(A)の圧力が直前まで高圧側であった油圧室A(B)より高くなって切替弁2Aが切り替わり、開閉制御弁Eからの流路6は直前まで低圧側であった油圧室B(A)と連結される。その後、切替弁C3が完全に平常時の位置に復帰すると、開閉制御弁Eを閉鎖状態に保っていた背圧の流路が、直前まで低圧側であった油圧室B(A)に連結される。補助油圧タンク7の圧力は油圧室B(A)内の圧力よりも上回っているため、開閉制御弁Eが開放し、補助油圧タンク7内の圧油が流路6を通じて油圧室B(A)内に流れ込む。このとき、開閉制御弁Cは閉鎖状態にあるから、補助油圧タンク7内の圧力と平衡になるまで、油圧室B(A)の圧力が高められることになる。   At this time, since the piston 3 has started to move slightly in the opposite direction, when the open / close control valve C returns to the closed state, the pressure in the hydraulic chamber B (A), which was on the low pressure side until immediately before, is increased to just before. The switching valve 2A is switched to be higher than the hydraulic chamber A (B) that is on the side, and the flow path 6 from the open / close control valve E is connected to the hydraulic chamber B (A) that is on the low pressure side until just before. After that, when the switching valve C3 is completely returned to the normal position, the back pressure flow path that has kept the open / close control valve E closed is connected to the hydraulic chamber B (A) that was on the low pressure side until just before. The Since the pressure in the auxiliary hydraulic tank 7 is higher than the pressure in the hydraulic chamber B (A), the open / close control valve E is opened, and the pressure oil in the auxiliary hydraulic tank 7 passes through the flow path 6 to the hydraulic chamber B (A). Flows in. At this time, since the open / close control valve C is in a closed state, the pressure in the hydraulic chamber B (A) is increased until the pressure in the auxiliary hydraulic tank 7 is balanced.

図10は図8に示す油圧回路における開閉制御弁Cにバッファ9及び逆止弁9Aを並列に接続すると共に、バッファ9にバッファ9と連通し得るアキュムレータ10を直列に接続し、開閉制御弁Cに付属するソレノイドバルブC1とアキュムレータ10との間に図9に示す油圧回路の切替弁D3を接続し、図8に示す油圧回路と図9に示す油圧回路を合成した油圧回路を形成した場合の例を示す。   FIG. 10 shows that the buffer 9 and the check valve 9A are connected in parallel to the opening / closing control valve C in the hydraulic circuit shown in FIG. 8, and the accumulator 10 that can communicate with the buffer 9 is connected to the buffer 9 in series. 9 is connected between the solenoid valve C1 attached to the accumulator 10 and the accumulator 10 to form a hydraulic circuit in which the hydraulic circuit shown in FIG. 8 and the hydraulic circuit shown in FIG. 9 are combined. An example is shown.

図10の例では開閉制御弁Dに付属するソレノイドバルブD1のソレノイドD2と、開閉制御弁Eに付属するソレノイドバルブE1のソレノイドE2を平常時(無通電時)に閉じた状態に保ち、ソレノイドバルブC1のソレノイドC2を無通電時に図示するように開いた状態、すなわちバッファ9からの圧油が切替弁D3側へ流れ得る状態に保つ。ソレノイドC2は平常時には通電した状態に置かれることで、バッファ9から切替弁D3へ向かう圧油の流れを阻止しており、コントローラ8からの指令を受けて無通電状態になったときに図示するようにバッファ9から切替弁D3へ向かう圧油の流れが生じ得る状態にする。   In the example of FIG. 10, the solenoid D2 of the solenoid valve D1 attached to the opening / closing control valve D and the solenoid E2 of the solenoid valve E1 attached to the opening / closing control valve E are kept closed in a normal state (when no power is supplied). The solenoid C2 of C1 is kept open as shown in the figure when not energized, that is, in a state where the pressure oil from the buffer 9 can flow to the switching valve D3 side. The solenoid C2 is placed in a normally energized state to prevent the flow of pressure oil from the buffer 9 toward the switching valve D3, and is illustrated when it is in a non-energized state upon receiving a command from the controller 8. Thus, the flow of the pressure oil from the buffer 9 toward the switching valve D3 is set to a state where it can occur.

この場合、油圧室A、Bのいずれか一方の圧力が上昇から下降へ変化したとき、コントローラ8からの指令によりソレノイドバルブD1に通電し、ソレノイドD2が励磁されると、開閉制御弁Dが開放し、高圧側の油圧室A(B)内の圧油が補助油圧タンク7に移動する。その後、補助油圧タンク7内の圧力と高圧側の油圧室A(B)内の圧力が平衡したときに、コントローラ8からの指令によりソレノイドD2への通電が遮断されると同時に、ソレノイドC2への通電も遮断されると、バッファ9内に蓄えられていた圧力が高圧側の油圧室A(B)内の圧力を上回り、切替弁D3がスプリングに抗して切り替わり、開閉制御弁Cが開放する。開閉制御弁Cの開放により油圧室A、B間の圧力差が解消される。   In this case, when the pressure of either one of the hydraulic chambers A and B changes from rising to lowering, the solenoid valve D1 is energized by a command from the controller 8 and when the solenoid D2 is excited, the opening / closing control valve D is opened. Then, the pressure oil in the hydraulic chamber A (B) on the high pressure side moves to the auxiliary hydraulic tank 7. Thereafter, when the pressure in the auxiliary hydraulic tank 7 and the pressure in the hydraulic chamber A (B) on the high pressure side are balanced, energization to the solenoid D2 is interrupted by a command from the controller 8 and at the same time, When the energization is also cut off, the pressure stored in the buffer 9 exceeds the pressure in the hydraulic chamber A (B) on the high pressure side, the switching valve D3 switches against the spring, and the opening / closing control valve C opens. . By opening the opening / closing control valve C, the pressure difference between the hydraulic chambers A and B is eliminated.

油圧室A、B間の圧力差の解消に伴い、ソレノイドC2へ通電してバッファ9を通じた圧油の流れを遮断すると、制御弁Cが閉鎖し、ピストンの移動に伴い、それまで低圧側であった反対側の油圧室B(A)が相対的に高圧になり、切替弁2Aが切り替わる。続いてソレノイドE2へ通電すると、開閉制御弁Eが開放し、補助油圧タンク7内の圧油が油圧室B(A)内へ流入し、油圧室B(A)内の圧力が補助油圧タンク7の圧力と平衡するまで高められることになる。   When the pressure difference between the hydraulic chambers A and B is resolved, the solenoid C2 is energized to shut off the flow of pressure oil through the buffer 9, and the control valve C is closed. The opposite hydraulic chamber B (A) is relatively high in pressure, and the switching valve 2A is switched. Subsequently, when the solenoid E2 is energized, the open / close control valve E is opened, the pressure oil in the auxiliary hydraulic tank 7 flows into the hydraulic chamber B (A), and the pressure in the hydraulic chamber B (A) is changed to the auxiliary hydraulic tank 7. It will be increased to equilibrate with the pressure of

図10の例は、完全に自動で各開閉制御弁C〜Eの開閉が制御され、コントローラ8に依存しない図9に示す油圧回路より単純な構成でありながら、停電時等、電源からの電流供給が遮断された断電時にソレノイドC2が開くことで、特許文献2と同様の自動油圧開閉回路に切り替わるため、特許文献2と同様の切替制御が保証される利点がある。図10の例においても、ソレノイドC2、D2、E2への通電のタイミングを油圧室A、Bに設置された圧力計11、11からの計測値に基づいているが、フレーム20の層間変形の計測値に基づいて通電がされることもある。   In the example of FIG. 10, the opening / closing of each of the opening / closing control valves C to E is controlled completely automatically and has a simpler configuration than the hydraulic circuit shown in FIG. 9 that does not depend on the controller 8. Since the solenoid C2 is opened when the supply is interrupted and the solenoid C2 is opened, the automatic hydraulic switching circuit similar to that of Patent Document 2 is switched, so that the switching control similar to that of Patent Document 2 is guaranteed. In the example of FIG. 10 as well, the timing of energizing the solenoids C2, D2, and E2 is based on the measured values from the pressure gauges 11 and 11 installed in the hydraulic chambers A and B. Energization may be performed based on the value.

油圧ダンパ1が実際のフレーム20内に組み込まれるときには、油圧ダンパ1が発生する荷重(抵抗力)が過大にならず、ダンパ本体やフレーム20が損傷しないよう、すなわち油圧室A、B間の圧力差が一定値を超えないよう、図11−(a)に示すように油圧室A,B間を直接連結する流路にリリーフ弁12が接続されることがある。図11−(b)はリリーフ弁12が作動した場合の荷重−変形関係の模式図を示すが、リリーフ弁12が作動すると、荷重が最大となるタイミング(図11−(b)のP点)が層間変形が最大値を迎えるタイミングと一致しなくなることが分かる。そのため、ダンパの油圧室の圧力に基づいて開閉制御弁を制御すると、エネルギー吸収効率が損失する可能性がある。エネルギー吸収効率の損失を回避するためには、油圧ダンパ1の発生荷重がリリーフ弁12の作動荷重Frより大きい状態では、開閉制御弁の制御を行わないようにすればよい。   When the hydraulic damper 1 is incorporated in the actual frame 20, the load (resistance force) generated by the hydraulic damper 1 does not become excessive, and the damper body and the frame 20 are not damaged, that is, the pressure between the hydraulic chambers A and B. In order to prevent the difference from exceeding a certain value, the relief valve 12 may be connected to a flow path that directly connects the hydraulic chambers A and B as shown in FIG. FIG. 11- (b) shows a schematic diagram of the load-deformation relationship when the relief valve 12 is actuated. When the relief valve 12 is actuated, the timing at which the load becomes maximum (point P in FIG. 11- (b)). It can be seen that does not coincide with the timing at which the interlayer deformation reaches the maximum value. Therefore, if the open / close control valve is controlled based on the pressure in the hydraulic chamber of the damper, energy absorption efficiency may be lost. In order to avoid the loss of energy absorption efficiency, the control of the open / close control valve should not be performed in a state where the load generated by the hydraulic damper 1 is larger than the operating load Fr of the relief valve 12.

図12は図8に示す油圧回路における切替弁2A(流路4)に並列に、両油圧室A、B間の各向きの過剰な圧力差を逃がすリリーフ弁12を接続した場合である。層間変形の計測値に基づいて開閉制御弁の制御を行う場合は問題ないが、油圧室A,Bの圧力に基づいて制御する場合は、油圧室A,B間の圧力差がリリーフ弁12の作動荷重Frより大きい場合には開閉制御弁の制御を行わないアルゴリズム(プログラム)に変更すればよい。   FIG. 12 shows a case where a relief valve 12 is connected in parallel with the switching valve 2A (flow path 4) in the hydraulic circuit shown in FIG. 8 to release an excess pressure difference between the hydraulic chambers A and B in each direction. There is no problem when the open / close control valve is controlled based on the measured value of the interlayer deformation. However, when the control is performed based on the pressure in the hydraulic chambers A and B, the pressure difference between the hydraulic chambers A and B is If it is larger than the operating load Fr, the algorithm may be changed to an algorithm (program) that does not control the open / close control valve.

図13は図9に示す油圧回路における切替弁2A(流路4)に並列にリリーフ弁12を接続し、バッファ9とアキュムレータ10との間にリリーフ弁13を接続した場合の例である。リリーフ弁13によりバッファ9の圧力がリリーフ弁12の作動荷重Frを超えないように制御されるため、バッファ9内の圧力が高圧側の油圧室A(B)内の圧力を上回ることによる開閉制御弁D、C、Eの開放の動作が回避される。   FIG. 13 shows an example in which the relief valve 12 is connected in parallel to the switching valve 2 </ b> A (flow path 4) in the hydraulic circuit shown in FIG. 9 and the relief valve 13 is connected between the buffer 9 and the accumulator 10. Since the pressure of the buffer 9 is controlled by the relief valve 13 so as not to exceed the operating load Fr of the relief valve 12, the opening / closing control is performed by the pressure in the buffer 9 exceeding the pressure in the hydraulic chamber A (B) on the high pressure side. The opening operation of the valves D, C, E is avoided.

図14は図10に示す油圧回路における切替弁2A(流路4)に並列にリリーフ弁12を接続し、バッファ9とアキュムレータ10間にリリーフ弁13を接続した場合の例を示す。この場合も、断電時にソレノイドC2が開くことがあっても、リリーフ弁13によりバッファ9の圧力がリリーフ弁12の作動荷重Frを超えないように制御されるため、バッファ9内の圧力が高圧側の油圧室A(B)内の圧力を上回ることによる開閉制御弁Cの開放の動作が回避される。   FIG. 14 shows an example in which the relief valve 12 is connected in parallel to the switching valve 2A (flow path 4) in the hydraulic circuit shown in FIG. 10 and the relief valve 13 is connected between the buffer 9 and the accumulator 10. Also in this case, even if the solenoid C2 is opened at the time of power failure, the pressure in the buffer 9 is controlled by the relief valve 13 so that the pressure in the buffer 9 does not exceed the operating load Fr of the relief valve 12, so that the pressure in the buffer 9 is high. The operation of opening the on-off control valve C due to exceeding the pressure in the hydraulic chamber A (B) on the side is avoided.

1……油圧ダンパ、
2……シリンダ、
A……油圧室、B……油圧室、
2A……切替弁、
C……開閉制御弁、C1……ソレノイドバルブ、C2……ソレノイド、C3……切替弁、
D……開閉制御弁、D1……ソレノイドバルブ、D2……ソレノイド、D3……切替弁、D4……切替弁、
E……開閉制御弁、E1……ソレノイドバルブ、E2……ソレノイド、
3……ピストン、3A……ピストンロッド、
4……流路(油圧室A、B間)、
5……流路(一方の油圧室と補助油圧タンク間)、6……流路(補助油圧タンクと他方の油圧室間)、
7……補助油圧タンク、8……コントローラ、
9……バッファ、9A……逆止弁、10……アキュムレータ、11……圧力計、
12……リリーフ弁(流路)、13……リリーフ弁(バッファとアキュムレータ間)、
20……フレーム、21……ブレース。
1 …… Hydraulic damper,
2 ... Cylinder,
A ... Hydraulic chamber, B ... Hydraulic chamber,
2A …… Switching valve,
C: Open / close control valve, C1: Solenoid valve, C2: Solenoid, C3: Switching valve,
D: Open / close control valve, D1: Solenoid valve, D2: Solenoid, D3: Switching valve, D4: Switching valve,
E …… Open / close control valve, E1 …… Solenoid valve, E2 …… Solenoid,
3 ... Piston, 3A ... Piston rod,
4 …… Flow path (between hydraulic chambers A and B),
5 ... Flow path (between one hydraulic chamber and auxiliary hydraulic tank), 6 ... Flow path (between auxiliary hydraulic tank and other hydraulic chamber),
7 ... auxiliary hydraulic tank, 8 ... controller,
9: Buffer, 9A: Check valve, 10: Accumulator, 11: Pressure gauge,
12: Relief valve (flow path), 13: Relief valve (between buffer and accumulator),
20 ... frame, 21 ... brace.

Claims (4)

シリンダと、このシリンダ内を往復動するピストンと、このピストンの両側に設けられた油圧室と、この両油圧室をつなぐ流路に接続され、開放状態と閉鎖状態が切り替えられる開閉制御弁を備えた油圧ダンパにおいて、
前記油圧ダンパは、前記シリンダに接続され、圧油を蓄え可能な補助油圧タンクと、前記補助油圧タンクと前記各油圧との間に接続され、開放状態と閉鎖状態が切り替えられる開閉制御弁を備え、
前記ピストンがいずれかの向きに移動している最中は、開閉制御弁を閉鎖させて一方側の油圧室に圧力を発生させ、前記ピストンの移動する向きが反転したときに高圧側となった前記一方側の油圧室と前記補助油圧タンクを連結するいずれかの前記開閉制御弁を開放させて前記一方側の油圧室内の圧油を前記補助油圧タンクに移動させ、
その後、開放している前記開閉制御弁を閉鎖させると共に、前記両油圧室を連結する前記開閉制御弁を開放させて高圧側の油圧室内の圧力を解放させ、両油圧室間の圧力差を解消した後、開放している前記開閉制御弁を閉鎖させると共に、前記一方側の反対側である他方の油圧室と前記補助油圧タンクを連結するいずれかの前記開閉制御弁を開放させて前記補助油圧タンク内の圧油を前記他方の油圧室に移動させ、開放している前記開閉制御弁を閉鎖させる一連の操作をすることを特徴とする油圧ダンパ開閉制御弁の制御方法。
A cylinder, a piston that reciprocates in the cylinder, hydraulic chambers provided on both sides of the piston, and an open / close control valve that is connected to a flow path that connects both the hydraulic chambers and can be switched between an open state and a closed state In the hydraulic damper
The hydraulic damper includes an auxiliary hydraulic tank that is connected to the cylinder and can store pressure oil, and an open / close control valve that is connected between the auxiliary hydraulic tank and the hydraulic chambers and can be switched between an open state and a closed state. Prepared,
While the piston is moving in either direction, the full open / close control valve is closed to generate pressure in the hydraulic chamber on one side, and when the direction of movement of the piston is reversed, it becomes the high pressure side. Opening one of the open / close control valves connecting the one hydraulic chamber and the auxiliary hydraulic tank to move the pressure oil in the one hydraulic chamber to the auxiliary hydraulic tank;
After that, the open / close control valve is closed, and the open / close control valve that connects the hydraulic chambers is opened to release the pressure in the hydraulic chamber on the high pressure side, thereby eliminating the pressure difference between the hydraulic chambers. Then, the open / close control valve is closed and the open / close control valve that connects the auxiliary hydraulic tank and the other hydraulic chamber on the opposite side of the one side is opened to open the auxiliary hydraulic pressure. A control method for a hydraulic damper on / off control valve, wherein a series of operations for moving the pressure oil in a tank to the other hydraulic chamber and closing the open / close control valve is performed.
請求項1に記載の開閉制御弁の制御方法に使用される油圧ダンパであり、外部からの電流の供給により前記開閉制御弁の開閉を操作する電気的駆動手段を備えていることを特徴とする油圧ダンパ。   A hydraulic damper for use in the control method for the on / off control valve according to claim 1, comprising an electric drive means for operating the on / off control valve to be opened / closed by an external current supply. Hydraulic damper. 請求項1に記載の開閉制御弁の制御方法に使用される油圧ダンパであり、前記両油圧室間の圧力差の発生に基づいて前記開閉制御弁の開閉を操作する油圧式駆動手段を備えていることを特徴とする油圧ダンパ。   2. A hydraulic damper for use in the control method for the on / off control valve according to claim 1, comprising hydraulic drive means for operating the on / off control valve based on the occurrence of a pressure difference between the two hydraulic chambers. Hydraulic damper characterized by being 請求項1に記載の開閉制御弁の制御方法に使用される油圧ダンパであり、外部からの電流の供給により前記開閉制御弁の開閉を操作する電気的駆動手段と、前記両油圧室間の圧力差の発生に基づいて前記開閉制御弁の開閉を操作する油圧式駆動手段を備えていることを特徴とする油圧ダンパ。
A hydraulic damper used in the control method of the on / off control valve according to claim 1, wherein an electric drive means for operating the on / off control valve to open / close by supplying current from the outside, and a pressure between the two hydraulic chambers A hydraulic damper comprising hydraulic drive means for operating opening / closing of the opening / closing control valve based on occurrence of a difference.
JP2013037790A 2013-02-27 2013-02-27 Control method of hydraulic damper open / close control valve and hydraulic damper used in the method Active JP6000872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013037790A JP6000872B2 (en) 2013-02-27 2013-02-27 Control method of hydraulic damper open / close control valve and hydraulic damper used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013037790A JP6000872B2 (en) 2013-02-27 2013-02-27 Control method of hydraulic damper open / close control valve and hydraulic damper used in the method

Publications (2)

Publication Number Publication Date
JP2014163502A JP2014163502A (en) 2014-09-08
JP6000872B2 true JP6000872B2 (en) 2016-10-05

Family

ID=51614290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013037790A Active JP6000872B2 (en) 2013-02-27 2013-02-27 Control method of hydraulic damper open / close control valve and hydraulic damper used in the method

Country Status (1)

Country Link
JP (1) JP6000872B2 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5662046A (en) * 1993-12-14 1997-09-02 Hansen Inc. Method and apparatus for controlling railway truck hunting and a railway car body supported thereby
JP3211688B2 (en) * 1996-06-05 2001-09-25 鹿島建設株式会社 Structure damping method
JP3211690B2 (en) * 1996-12-17 2001-09-25 鹿島建設株式会社 Structure damping method
JPH11230252A (en) * 1998-02-19 1999-08-27 Kajima Corp Earthquak mitigating method for structure and variable damper
JP3606044B2 (en) * 1998-04-23 2005-01-05 鹿島建設株式会社 Damping method for structures and damper for damping
JP3803527B2 (en) * 2000-03-29 2006-08-02 豊興工業株式会社 Damping hydraulic damper
FR2838172B1 (en) * 2002-04-05 2004-07-02 Jacques Sirven SHOCK ABSORBER, PARTICULARLY FOR MOTOR VEHICLE
JP3939609B2 (en) * 2002-07-22 2007-07-04 日立機材株式会社 Hydraulic damper
JP4083513B2 (en) * 2002-09-02 2008-04-30 日立機材株式会社 Seismic control method for building structures
JP4358091B2 (en) * 2004-11-26 2009-11-04 鹿島建設株式会社 Damping coefficient switching type hydraulic damper
JP4884827B2 (en) * 2006-04-28 2012-02-29 日本車輌製造株式会社 Vibration suppression device
JP5330003B2 (en) * 2009-02-03 2013-10-30 カヤバ工業株式会社 Shock absorber
NL2007191C2 (en) * 2011-03-25 2012-09-26 Daf Trucks Nv Suspension system for a driver's compartment of a vehicle.

Also Published As

Publication number Publication date
JP2014163502A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
KR101319641B1 (en) Cylinder device
WO2004070230A1 (en) Attenuation coefficient switching type hydraulic damper
JP5564541B2 (en) Actuator
US10066646B2 (en) Actuator unit
JPH01122717A (en) Active suspension device
JP6872641B2 (en) Controllable buffer
CA2898616C (en) Actuator unit
JP6000872B2 (en) Control method of hydraulic damper open / close control valve and hydraulic damper used in the method
CN116658560A (en) Cylinder device
JP2014062578A (en) Hydraulic damper
JP2012076668A (en) Vibration isolation damper for railway vehicle
TW593861B (en) Damping coefficient switching-type oil hydraulic shock absorber
JP4491292B2 (en) Vibration control device
JP2009029555A (en) Lifter device
JP4426956B2 (en) Shock absorber
JP6675923B2 (en) Suspension device
JP7141553B1 (en) Cylinder device
JP2005172014A (en) Control method for load eliminating control valve
JP2021006734A (en) Hydraulic damper and control method for opening/closing control valve thereof
JP4419488B2 (en) Vehicle suspension system
JP2017196920A (en) Suspension device
JP2001193780A (en) Hydraulic seismic control damper
JP2005155278A (en) Unloading control valve in seismic response control device
JPH03107640A (en) Damping device
JP2018155317A (en) Hydraulic damper and vibration control structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160831

R150 Certificate of patent or registration of utility model

Ref document number: 6000872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250