JPH11230252A - Earthquak mitigating method for structure and variable damper - Google Patents

Earthquak mitigating method for structure and variable damper

Info

Publication number
JPH11230252A
JPH11230252A JP3715798A JP3715798A JPH11230252A JP H11230252 A JPH11230252 A JP H11230252A JP 3715798 A JP3715798 A JP 3715798A JP 3715798 A JP3715798 A JP 3715798A JP H11230252 A JPH11230252 A JP H11230252A
Authority
JP
Japan
Prior art keywords
variable
damping device
column
additional seismic
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3715798A
Other languages
Japanese (ja)
Inventor
Naomiki Niwa
直幹 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP3715798A priority Critical patent/JPH11230252A/en
Publication of JPH11230252A publication Critical patent/JPH11230252A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the vibrational response of a structure more effectively at an earthquake or like by switching the damping coefficient of a variable damper so that the vibration of an additional aseismatic element such as a brace is employed or increased for higher damping force. SOLUTION: On receiving information, or oil pressures P1 and P2 in hydraulic chambers 5a and 5b defined in left and right and a relative displacement δ1 of a piston 3 to a cylinder 2 inside a variable damper, a controller 8 feeds a control command to a flow control valve 7 depending on these data. The variable damper is disposed between a framework and an additional aseismatic element such as a brace to use the relative vibration of the additional aseismatic element with respect to the framework. The damping coefficient C of the variable damper is controlled such that its damping force is increased while the vibration of the additional aseismatic element is increased. In parallel to the flow control valve 7 of the variable damper, a relief valve 10 is arranged to prevent the additional aseismatic element from suffering an excessive force when the damping coefficient is changed over from the minimum value Cmin to the maximum value Cmax .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、地震時等におけ
る構造物の応答を低減するための構造物の制震方法およ
びその制震方法に用いられる可変減衰装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure damping method for reducing the response of a structure during an earthquake or the like and a variable damping device used in the method.

【0002】[0002]

【従来の技術】構造物の柱梁架構内に減衰装置を可変と
する可変減衰装置(例えば、特公平7−45781号公
報参照)をブレース等の付加耐震要素を介して設置する
制震システムがある。
2. Description of the Related Art A vibration damping system in which a variable damping device (see, for example, Japanese Patent Publication No. 7-45781) for changing a damping device is installed in a beam-column structure of a structure through an additional seismic element such as a brace is known. is there.

【0003】そのような制震システムを用いた制震方法
は各種考えられている。例えば、特公平7−47896
号公報や特許第2513297号公報に記載されたもの
等がある。
[0003] Various vibration control methods using such a vibration control system have been considered. For example, Tokiko 7-47896
And Japanese Patent No. 2513297.

【0004】[0004]

【発明が解決しようとする課題】これらは、図7の架構
例(柱梁架構を構成する柱11、梁12と付加耐震要素
としてのブレース13との間に可変減衰装置1を設置し
ている)および振動モデル(Mは柱梁架構等の質量、K
1 は柱梁架構等の剛性、mは付加耐震要素の質量、K2
は付加耐震要素の剛性、Cは可変減衰装置の減衰係数、
δ1 は可変減衰装置のシリンダとロッド間の変位、δ2
は付加耐震要素の変位、δは柱梁架構の層変位)に示す
ように、構造物に地震等の振動外力が入力した際に可変
減衰装置1の減衰係数Cを制御することにより、柱梁架
構に減衰力を付与して柱梁架構、ひいては構造物全体の
応答を低減するものであるが、主として柱梁架構の応答
をもとに制御しているため、図8の荷重−変形関係で示
す構造上の制約範囲を越えることができない。
In these examples, a variable damping device 1 is installed between a column 11, a beam 12 and a brace 13 as an additional seismic element which constitute a frame shown in FIG. ) And a vibration model (M is the mass of the beam-column structure, K
1 is the rigidity of the beam-column structure, m is the mass of the added seismic element, K 2
Is the rigidity of the additional seismic element, C is the damping coefficient of the variable damper,
δ 1 is the displacement between the cylinder and rod of the variable damper, δ 2
Is the displacement of the additional seismic resistance element, and δ is the layer displacement of the beam-column structure) by controlling the damping coefficient C of the variable damping device 1 when a vibration external force such as an earthquake is input to the structure. Although the damping force is applied to the frame to reduce the response of the beam-to-column structure, and ultimately the entire structure, the response is mainly controlled based on the response of the beam-to-column structure. It cannot exceed the range of structural restrictions shown.

【0005】本願発明は、地震時等にブレース等の付加
耐震要素の振動を利用、増加させるよう可変減衰装置の
減衰係数を切り換えることにより減衰力を高め、より効
果的に構造物の応答を低減することができる制震方法お
よびその制震方法に使用する可変減衰装置を提供するこ
とを目的としたものである。
The present invention increases the damping force by switching the damping coefficient of a variable damping device so as to utilize and increase the vibration of an additional seismic element such as a brace during an earthquake or the like, thereby increasing the damping force and reducing the response of the structure more effectively. It is an object of the present invention to provide a vibration control method capable of performing the vibration control and a variable damping device used in the vibration control method.

【0006】[0006]

【課題を解決するための手段】本願の請求項1に係る発
明は、構造物の柱梁架構内に付加耐震要素を設け、柱梁
架構と付加耐震要素間に可変減衰装置を設置し、構造物
に地震等の振動外力が入力した際の柱梁架構の応答等を
もとに可変減衰装置の減衰係数を制御することにより、
柱梁架構に減衰力を付与して構造物の応答を低減する構
造物の制震方法において、前記付加耐震要素の前記柱梁
架構に対する相対的な振動を利用し、前記付加耐震要素
の振動を増加させつつ可変減衰装置の減衰力を増すよう
に前記可変減衰装置の減衰係数を制御することを特徴と
するものである。
According to a first aspect of the present invention, an additional seismic element is provided in a column-beam frame of a structure, and a variable damping device is installed between the column-beam frame and the additional seismic element. By controlling the damping coefficient of the variable damping device based on the response of the beam-column structure when an external force such as an earthquake is input to the object,
In a vibration damping method for a structure in which a damping force is applied to a beam-column structure to reduce a response of the structure, a relative vibration of the additional earthquake-resistant element with respect to the beam-column frame is used, and the vibration of the additional earthquake-resistant element is reduced. The damping coefficient of the variable damping device is controlled so as to increase the damping force of the variable damping device while increasing the damping force.

【0007】すわなち、ブレースあるいは剛性の小さい
ものとしては間柱等の付加耐震要素と柱梁架構の間に可
変減衰装置を設置し、その制御において付加耐震要素の
振動を利用することで、地震等による振動外力のエネル
ギーを付加耐震要素により多く蓄えさせ、消費させるこ
とで、構造物の応答を低減させようとするものである。
[0007] In other words, a variable damping device is installed between an additional seismic element such as a stud and a column having a low rigidity, and the vibration of the additional seismic element is used in the control thereof. The purpose of this invention is to reduce the response of a structure by storing and consuming more energy of the external force due to vibration or the like in the additional seismic element.

【0008】請求項2は、請求項1の制震方法におい
て、油封式の可変減衰装置の構造を限定したものであ
り、柱梁架構と付加耐震要素の一方に連結されるシリン
ダと、前記シリンダ内で往復動し、前記柱梁架構と付加
耐震要素の他方に連結されるロッドを備えたピストン
と、前記ピストンの両側に形成された油圧室と、前記両
油圧室を連結する流路と、前記流路に設けられた流量制
御弁と、前記流量制御弁の開度を制御する制御手段とを
有する可変減衰装置を用いる場合である。
According to a second aspect of the present invention, in the vibration damping method according to the first aspect, the structure of the oil-sealed variable damping device is limited, and a cylinder connected to one of a beam-column frame and an additional seismic element is provided. Reciprocating within, a piston having a rod connected to the other of the beam-column frame and the additional seismic element, a hydraulic chamber formed on both sides of the piston, and a flow path connecting the two hydraulic chambers, In this case, a variable damping device having a flow control valve provided in the flow path and control means for controlling an opening of the flow control valve is used.

【0009】請求項3は、さらに可変減衰装置の構成を
限定したものであり、後述する請求項4に係る可変減衰
装置を請求項2記載の制震方法に適用する場合である。
A third aspect of the present invention further restricts the configuration of the variable damping device, and is a case where a variable damping device according to a fourth aspect described below is applied to the vibration damping method according to the second aspect.

【0010】本願の請求項4に係る可変減衰装置は、柱
梁架構と付加耐震要素の一方に連結されるシリンダと、
前記シリンダ内で往復動し、前記柱梁架構と付加耐震要
素の他方に連結されるロッドを備えたピストンと、前記
ピストンの両側に形成された油圧室と、前記両油圧室を
連結する流路と、前記流路に設けられた流量制御弁と、
前記流量制御弁の開度を制御する制御手段とを有する可
変減衰装置において、前記制御手段による流量制御弁の
開度の制御により減衰係数Cを最小値Cminと最大値C
max との間で切換え可能であり、前記両油圧室にはそれ
ぞれの油圧P1 (t) 、P2 (t) を測定するための油圧計
が取り付けられ、さらに前記シリンダとロッドの相対変
位δ1 を求める変位計が設けられており、前記制御手段
により、初期状態の減衰係数Cを最大値Cmax とし、下
記式または式、 (dδ(t) /dt)・δ2 (t) <0 … (dδ(t) /dt)・(dδ(t−Δt) /dt) … を満足すれば、最小値Cmin に切り換え、次に下記
式、 |dδ1 (t) /dt|<V0 … が満足される状態で最大値Cmax に切り換え、次に式
または式が満足されるまで最大値Cmax を維持するよ
うに設定したことを特徴とするものである。
[0010] The variable damping device according to claim 4 of the present application includes a cylinder connected to one of the beam-column frame and the additional seismic element,
A piston having a rod that reciprocates in the cylinder and is connected to the other of the beam-column frame and the additional seismic element, a hydraulic chamber formed on both sides of the piston, and a flow path connecting the two hydraulic chambers And a flow control valve provided in the flow path,
A variable damping device having control means for controlling the opening degree of the flow control valve, wherein the control means controls the opening degree of the flow control valve to reduce the damping coefficient C to a minimum value C min and a maximum value C min.
is switchable between the max, the two hydraulic each of the chamber pressure P 1 (t), the hydraulic gauge is attached to measure P 2 (t), further relative displacement of the cylinder and the rod δ A displacement meter for determining 1 is provided, and the control means sets the damping coefficient C in the initial state to a maximum value Cmax , and the following equation or equation: (dδ (t) / dt) · δ 2 (t) <0 If (dδ (t) / dt) · (dδ (t−Δt) / dt) is satisfied, the value is switched to the minimum value C min , and then the following equation: | dδ 1 (t) / dt | <V 0 Are switched to the maximum value Cmax when... Are satisfied, and then set so as to maintain the maximum value Cmax until the expression or the expression is satisfied.

【0011】ただし、C=Cmax の状態で、 dδ(t) /dt= d(δ1 (t) +δ2 (t) )/dt … δ2 (t) =F(t) /K2 … ここで、δ1 は可変減衰装置のシリンダとロッドの相対
変位、δ2 は可変減衰装置設置位置での付加耐震要素の
変位、Fは可変減衰装置の発生する減衰力(F(t) =A
・(P1 (t) −P2 (t) )、Aはピストン面積、P
1 (t) 、P2 (t) はピストン両側の油圧室の油圧、K2
は付加耐震要素の剛性。
However, when C = Cmax , dδ (t) / dt = d (δ 1 (t) + δ 2 (t)) / dt ... δ 2 (t) = F (t) / K 2 . Here, δ 1 is the relative displacement between the cylinder and the rod of the variable damper, δ 2 is the displacement of the additional seismic element at the variable damper installation position, and F is the damping force generated by the variable damper (F (t) = A
· (P 1 (t) -P 2 (t)), A is the piston area, P
1 (t) and P 2 (t) are the hydraulic pressures in the hydraulic chambers on both sides of the piston, K 2
Is the rigidity of the added seismic element.

【0012】なお、この可変減衰装置を設置した構造物
において、式に示されるように減衰力の制限機構を設
けてCmax への切換え時の衝撃力を回避した状態で、シ
ステム(装置、制御、通信)の時間遅れを補償するため
には、V0 をそれに応じて大きく設定することで対処す
ることができる。
In the structure equipped with this variable damping device, the system (device, control, control) is provided in a state where a damping force limiting mechanism is provided as shown in the equation to avoid the impact force at the time of switching to Cmax . , in order to compensate for the time delay of the communication) it can be addressed by setting greatly according to V 0 to it.

【0013】請求項5は請求項4に係る可変減衰装置に
おいて、減衰係数が最小値Cmin から最大値Cmax に切
り換わる際に、可変減衰装置の発生する減衰力Fが設定
値以上に増加しないように、前記流路に前記流量制御弁
とともに、リリーフ弁を設けてある場合を限定したもの
である。
According to a fifth aspect of the present invention, in the variable damping device according to the fourth aspect, when the damping coefficient switches from the minimum value C min to the maximum value C max , the damping force F generated by the variable damping device increases beyond a set value. In this case, a case where a relief valve is provided in the flow path together with the flow control valve is limited.

【0014】[0014]

【発明の実施の形態】図1は、本願発明の一実施形態に
おける油封式の可変減衰装置1の概要を示したもので、
主な構成としては、シリンダ2、ピストン3、ピストン
ロッド4、シリンダ2内のピストン3の左右に形成され
た油圧室5a,5b、両油圧室5a,5b間をつなぐ流
路6に設けられた流量制御弁7、流量制御弁7の開度を
制御する制御手段としてのコントローラ8を有する。
FIG. 1 shows an outline of an oil-sealed variable damping device 1 according to an embodiment of the present invention.
The main components are provided in a cylinder 2, a piston 3, a piston rod 4, hydraulic chambers 5a and 5b formed on the left and right sides of the piston 3 in the cylinder 2, and a flow path 6 connecting the two hydraulic chambers 5a and 5b. It has a flow control valve 7 and a controller 8 as control means for controlling the opening of the flow control valve 7.

【0015】また、両油圧室5a,5bには、油圧計9
a,9bが設けられており、これらの油圧計9a,9b
によって測定される油圧P1 ,P2 と、変位計(図示せ
ず)によって測定されるシリンダ2とピストン3の相対
変位δ1 の情報が、コントローラ8に送られ、その情報
に基づいてコントローラ8が流量制御弁7に制御指令を
送る。
A hydraulic pressure gauge 9 is provided in both hydraulic chambers 5a and 5b.
a, 9b are provided, and these oil pressure gauges 9a, 9b
Information of the hydraulic pressures P 1 and P 2 measured by the pressure sensor and the relative displacement δ 1 of the cylinder 2 and the piston 3 measured by the displacement meter (not shown) are sent to the controller 8, and based on the information, the controller 8 Sends a control command to the flow control valve 7.

【0016】流量制御弁7は開度指令が全閉のとき減衰
係数の最大値Cmax 、全開のとき減衰係数の最小値C
min を装置に与える。
The flow control valve 7 has a maximum damping coefficient C max when the opening degree command is fully closed, and a minimum damping coefficient C when the opening degree command is fully opened.
Give min to the device.

【0017】なお、この例では流量制御弁7と並列にリ
リーフ弁10を設け、減衰係数がCmin からCmax に切
り換わる際に生じる衝撃力による損傷を防ぎ、付加耐震
要素に過大な力が生じないように、減衰力Fが一定以上
に増加しない機構としている。
In this example, a relief valve 10 is provided in parallel with the flow control valve 7 to prevent damage due to an impact force that occurs when the damping coefficient switches from Cmin to Cmax. The mechanism is such that the damping force F does not increase more than a certain value so as not to occur.

【0018】図2は、このような減衰力Fの制限機構を
用いた場合の制震方法の定常状態における層間の荷重−
変形関係を示したものである。この例では、減衰力Fの
制限値Fmax を、構造上の制約を受ける図8のFと合わ
せてあるが、構造上の制約を超えるエキルギー吸収が果
たせる層間の荷重−変形関係となっている。
FIG. 2 shows the load between the layers in the steady state of the vibration control method using such a damping force F limiting mechanism.
It shows a deformation relationship. In this example, the limit value Fmax of the damping force F is matched with F in FIG. 8 which is subject to structural constraints, but has a load-deformation relationship between layers that can achieve energy absorption exceeding the structural constraints. .

【0019】図7(b) の1ユニットの振動モデルを設定
して、シミュレーション解析例を以下に示す。ここで用
いた諸元は、 M=9800t、 m=9.8t、 K1 =4t/cm、 K2 =1t/cm、 Cmax =1000t/kine、 Cmin =0t/kine、 Fmax =10t であり、そのため剛性比はN=K2 /K1 =0.25、
1 のみによる固有周期は約10秒となる。
An example of a simulation analysis by setting a vibration model of one unit shown in FIG. 7B is shown below. Here specifications used was, M = 9800t, m = 9.8t , K 1 = 4t / cm, K 2 = 1t / cm, C max = 1000t / kine, C min = 0t / kine, F max = 10t , and the therefore the rigidity ratio is N = K 2 / K 1 = 0.25,
Natural period only by K 1 is about 10 seconds.

【0020】この振動系に固有周期10秒、最大加速度
1cm/sec2 の正弦波を50秒間入力する。
A sine wave having a natural period of 10 seconds and a maximum acceleration of 1 cm / sec 2 is input to this vibration system for 50 seconds.

【0021】本制震方法での変位δ、速度dδ/dt、
減衰力Fの時刻歴波形により、制御の様子を図3(a) に
示す。
The displacement δ, velocity dδ / dt,
FIG. 3 (a) shows a control state based on the time history waveform of the damping force F.

【0022】最大変位は約4cmであり、制御をしない場
合の図3(b) の変位28cmと比較すると1/7程度に低
減されている。
The maximum displacement is about 4 cm, which is reduced to about 1/7 as compared with the displacement of 28 cm shown in FIG.

【0023】層の荷重−変形関係を図4に示す。これ
は、ほぼ図2に示したような荷重−変形関係となってい
ることが確認できる。
FIG. 4 shows the load-deformation relationship of the layers. This can be confirmed to have a load-deformation relationship substantially as shown in FIG.

【0024】また、本願発明の場合、通常の制御方法で
はあまり大きな応答低減効果が得られない剛性比Nが小
さな場合にも有効である。
The present invention is also effective when the rigidity ratio N is small, at which a large response reduction effect cannot be obtained by the ordinary control method.

【0025】例えば、図5(a) に剛性比N=0.05
で、本制震方法を適用した場合の変位、速度、減衰力の
時刻歴波形を示す。これと、図5(b) に示した最適なパ
ッシブダンパの場合の変位24cmと比較すると、本制御
により変位12cmと、1/2程度にさらに低減できてい
ることがわかる。
For example, FIG. 5A shows a rigidity ratio N = 0.05.
Shows the time history waveforms of displacement, velocity, and damping force when this vibration control method is applied. Comparing this with the displacement of 24 cm in the case of the optimal passive damper shown in FIG. 5 (b), it can be seen that the displacement can be further reduced to about 12 cm by this control, which is about 12 cm.

【0026】剛性比の小さな場合の可変減衰装置1の設
置例の1つとして、間柱14に設置した場合を図6に示
す。この例のように本発明では、これまで剛性比が小さ
くなるため効果が期待できなかった設置方法でも十分な
効果を発揮するため、制震装置設置の自由度が増大す
る。
FIG. 6 shows a case where the variable damping device 1 is installed on the stud 14 as an example of the installation of the variable damping device 1 when the rigidity ratio is small. As in this example, in the present invention, since the rigidity ratio is small, a sufficient effect can be exerted even in an installation method in which the effect cannot be expected, so that the degree of freedom in installing the vibration damping device is increased.

【0027】[0027]

【発明の効果】柱梁架構内に可変減衰装置を設置し
て、ブレース等の付加耐震要素にエネルギーをより多く
蓄え、消費することで主体架構である柱梁架構の応答低
減を果たすことができる。
According to the present invention, a variable damping device is installed in a beam-column structure, and more energy is stored and consumed in additional seismic elements such as braces, so that the response of the beam-column frame as a main frame can be reduced. .

【0028】可変減衰装置はバルブの開度をコントロ
ールするため、わずかなエネルギーにより駆動でき、省
エネルギーの制震構造物となる。
Since the variable damping device controls the opening degree of the valve, it can be driven by a small amount of energy, and becomes an energy-saving vibration control structure.

【0029】特に、付加耐震要素の剛性が柱梁架構の
剛性と比較して小さい場合において有効である。
This is particularly effective when the rigidity of the additional seismic element is smaller than the rigidity of the beam-column frame.

【0030】さらに、減衰力の制限値を設けること
で、可変減衰切換え時の衝撃を発生させないようにする
ことができる。
Further, by providing a limit value of the damping force, it is possible to prevent an impact from occurring at the time of variable damping switching.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の一実施形態における可変減衰装置の
概要を示した図である。
FIG. 1 is a diagram showing an outline of a variable attenuation device according to an embodiment of the present invention.

【図2】本願発明の制震方法における荷重−変形関係の
概要を示すグラフである。
FIG. 2 is a graph showing an outline of a load-deformation relationship in the vibration control method of the present invention.

【図3】(a) は本願発明の制震方法のシミュレーション
における変位δ、速度dδ/dt、減衰力Fの時刻歴波
形による制御の様子を示すグラフ、(b) は制御を行わな
い場合の変位δの時刻歴波形を示すグラフである。
3A is a graph showing a state of control based on a time history waveform of a displacement δ, a velocity dδ / dt, and a damping force F in a simulation of the vibration control method of the present invention, and FIG. 6 is a graph showing a time history waveform of a displacement δ.

【図4】図3のシミュレーションにおける層の荷重−変
形関係を示すグラフである。
FIG. 4 is a graph showing a load-deformation relationship of a layer in the simulation of FIG. 3;

【図5】付加耐震要素の剛性が小さい場合のシミュレー
ションの結果を示したもので、(a) は本願発明の制震方
法によった場合の変位δ、速度dδ/dt、減衰力Fの
時刻歴波形による制御の様子を示すグラフ、(b) は最適
なパッシブダンパを設置した場合の変位δの時刻歴波形
を示すグラフである。
FIG. 5 shows the results of a simulation in the case where the rigidity of the additional seismic element is small. FIG. 5 (a) shows the time of displacement δ, velocity dδ / dt, and damping force F according to the vibration control method of the present invention. 7B is a graph showing a state of control using a history waveform, and FIG. 7B is a graph showing a time history waveform of a displacement δ when an optimal passive damper is installed.

【図6】剛性が小さい付加耐震要素の例として、柱梁架
構と間柱の間に可変減衰装置を設置した場合の概要図で
ある。
FIG. 6 is a schematic view showing a case where a variable damping device is installed between a beam-column frame and a stud as an example of an additional seismic element having low rigidity.

【図7】(a) は可変減衰装置を設置した一般的な柱梁架
構を示す図、(b) はその振動モデル図である。
FIG. 7 (a) is a diagram showing a general beam-column frame provided with a variable damping device, and FIG. 7 (b) is a vibration model diagram thereof.

【図8】可変減衰装置を用いた従来の制震方法における
構造上の制約のもとでの荷重−変形関係の概要を示すグ
ラフである。
FIG. 8 is a graph showing an outline of a load-deformation relationship under a structural constraint in a conventional vibration damping method using a variable damping device.

【符号の説明】[Explanation of symbols]

1…可変減衰装置、2…シリンダ、3…ピストン、4…
ピストンロッド、5a,5b…油圧室、6…流路、7…
流量制御弁、8…コントローラ、9a,9b…油圧計、
10…リリーフ弁、11…柱、12…梁、13…ブレー
ス、14…間柱
DESCRIPTION OF SYMBOLS 1 ... Variable damping device, 2 ... Cylinder, 3 ... Piston, 4 ...
Piston rod, 5a, 5b ... hydraulic chamber, 6 ... flow path, 7 ...
Flow control valve, 8 ... controller, 9a, 9b ... oil pressure gauge,
10 relief valve, 11 pillar, 12 beam, 13 brace, 14 stud

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 構造物の柱梁架構内に付加耐震要素を設
け、柱梁架構と付加耐震要素間に可変減衰装置を設置
し、構造物に地震等の振動外力が入力した際の柱梁架構
の応答等をもとに可変減衰装置の減衰係数を制御するこ
とにより、柱梁架構に減衰力を付与して構造物の応答を
低減する構造物の制震方法において、前記付加耐震要素
の前記柱梁架構に対する相対的な振動を利用し、前記付
加耐震要素の振動を増加させつつ可変減衰装置の減衰力
を増すように前記可変減衰装置の減衰係数を制御するこ
とを特徴とする構造物の制震方法。
An additional seismic element is provided in a column-beam frame of a structure, a variable damping device is installed between the column-beam frame and the additional seismic element, and a beam-column when an external vibration force such as an earthquake is input to the structure. By controlling the damping coefficient of the variable damping device based on the response of the frame, etc., the damping force is applied to the beam-column frame to reduce the response of the structure. A structure, wherein the damping coefficient of the variable damping device is controlled so as to increase the damping force of the variable damping device while increasing the vibration of the additional seismic element using the relative vibration with respect to the column-beam frame. How to control the vibration.
【請求項2】 前記可変減衰装置は、前記柱梁架構と付
加耐震要素の一方に連結されるシリンダと、前記シリン
ダ内で往復動し、前記柱梁架構と付加耐震要素の他方に
連結されるロッドを備えたピストンと、前記ピストンの
両側に形成された油圧室と、前記両油圧室を連結する流
路と、前記流路に設けられた流量制御弁と、前記流量制
御弁の開度を制御する制御手段とを有するものである請
求項1記載の構造物の制震方法。
2. The variable damping device according to claim 1, wherein the variable damping device is a cylinder connected to one of the column-beam frame and the additional seismic element, and reciprocates in the cylinder to be connected to the other of the column-beam frame and the additional seismic element. A piston having a rod, hydraulic chambers formed on both sides of the piston, a flow path connecting the two hydraulic chambers, a flow control valve provided in the flow path, and an opening degree of the flow control valve. The method of controlling a structure according to claim 1, further comprising control means for controlling.
【請求項3】 前記可変減衰装置は、前記流量制御弁の
開度の制御により減衰係数Cを最小値Cmin と最大値C
max との間で切換え可能としたものであり、 可変減衰装置の初期状態の減衰係数Cを最大値Cmax
し、下記式または式、 (dδ(t) /dt)・δ2 (t) <0 … (dδ(t) /dt)・(dδ(t−Δt) /dt) … を満足すれば、最小値Cmin に切り換え、次に下記
式、 |dδ1 (t) /dt|<V0 … が満足される状態で最大値Cmax に切り換え、次に式
または式が満足されるまで最大値Cmax を維持するこ
とを特徴とする請求項2記載の構造物の制震方法。ただ
し、C=Cmax の状態で、 dδ(t) /dt= d(δ1 (t) +δ2 (t) )/dt … δ2 (t) =F(t) /K2 … ここで、 δ1 は可変減衰装置のシリンダとロッドの相対変位、 δ2 は可変減衰装置設置位置での付加耐震要素の変位、 Fは可変減衰装置の発生する減衰力(F(t) =A・(P
1 (t) −P2 (t) )、 Aはピストン面積、 P1 (t) 、P2 (t) はピストン両側の油圧室の油圧、 K2 は付加耐震要素の剛性。
3. The variable damping device controls a damping coefficient C to a minimum value C min and a maximum value C by controlling an opening of the flow control valve.
The maximum damping coefficient C of the variable damping device is defined as a maximum value Cmax , and the following equation or equation: (dδ (t) / dt) · δ 2 (t) < 0 satisfies (dδ (t) / dt) · (dδ (t−Δt) / dt)..., Then switches to the minimum value C min , and then the following equation: | dδ 1 (t) / dt | <V 3. The method according to claim 2, further comprising switching to the maximum value Cmax when 0 ... Is satisfied, and then maintaining the maximum value Cmax until the expression or the expression is satisfied. However, in the state of C = Cmax , dδ (t) / dt = d (δ 1 (t) + δ 2 (t)) / dt ... δ 2 (t) = F (t) / K 2 δ 1 is the relative displacement between the cylinder and the rod of the variable damper, δ 2 is the displacement of the additional seismic element at the position where the variable damper is installed, and F is the damping force generated by the variable damper (F (t) = A · (P
1 (t) -P 2 (t )), A is the piston area, P 1 (t), P 2 (t) is a piston on both sides of the hydraulic chamber of the hydraulic, K 2 is the stiffness of the additional seismic elements.
【請求項4】 柱梁架構と付加耐震要素の一方に連結さ
れるシリンダと、前記シリンダ内で往復動し、前記柱梁
架構と付加耐震要素の他方に連結されるロッドを備えた
ピストンと、前記ピストンの両側に形成された油圧室
と、前記両油圧室を連結する流路と、前記流路に設けら
れた流量制御弁と、前記流量制御弁の開度を制御する制
御手段とを有する可変減衰装置において、 前記制御手段による流量制御弁の開度の制御により減衰
係数Cを最小値Cminと最大値Cmax との間で切換え可
能であり、 前記両油圧室にはそれぞれの油圧P1 (t) 、P2 (t) を
測定するための油圧計が取り付けられ、さらに前記シリ
ンダとロッドの相対変位δ1 を求める変位計が設けられ
ており、前記制御手段により、 初期状態の減衰係数Cを最大値Cmax とし、下記式ま
たは式、 (dδ(t) /dt)・δ2 (t) <0 … (dδ(t) /dt)・(dδ(t−Δt) /dt) … を満足すれば、最小値Cmin に切り換え、次に下記
式、 |dδ1 (t) /dt|<V0 … が満足される状態で最大値Cmax に切り換え、次に式
または式が満足されるまで最大値Cmax を維持するよ
うに設定したことを特徴とする可変減衰装置。ただし、
C=Cmax の状態で、 dδ(t) /dt= d(δ1 (t) +δ2 (t) )/dt … δ2 (t) =F(t) /K2 … ここで、 δ1 は可変減衰装置のシリンダとロッドの相対変位、 δ2 は可変減衰装置設置位置での付加耐震要素の変位、 Fは可変減衰装置の発生する減衰力(F(t) =A・(P
1 (t) −P2 (t) )、 Aはピストン面積、 P1 (t) 、P2 (t) はピストン両側の油圧室の油圧、 K2 は付加耐震要素の剛性。
4. A cylinder coupled to one of the beam-column frame and the additional seismic element, a piston having a rod reciprocating in the cylinder and coupled to the other of the column-beam frame and the additional seismic element, A hydraulic chamber formed on both sides of the piston, a flow path connecting the two hydraulic chambers, a flow control valve provided in the flow path, and control means for controlling an opening of the flow control valve. In the variable damping device, the damping coefficient C can be switched between a minimum value C min and a maximum value C max by controlling the opening degree of the flow control valve by the control means. An oil pressure gauge for measuring 1 (t) and P 2 (t) is provided, and a displacement gauge for obtaining a relative displacement δ 1 between the cylinder and the rod is provided. The coefficient C is defined as a maximum value Cmax , and the following equation or Formula If (dδ (t) / dt) · δ 2 (t) <0 ... (dδ (t) / dt) · (dδ (t-Δt) / dt) ... satisfied, the minimum value C min switching, then the following equation, | dδ 1 (t) / dt | <V 0 ... switched to the maximum value C max in a state to be satisfied, then maintain the maximum value C max to formula or formula is satisfied A variable damping device characterized by being set as follows. However,
Under the condition of C = Cmax , dδ (t) / dt = d (δ 1 (t) + δ 2 (t)) / dt ... δ 2 (t) = F (t) / K 2 where δ 1 Is the relative displacement between the cylinder and the rod of the variable damper, δ 2 is the displacement of the additional seismic element at the position where the variable damper is installed, and F is the damping force generated by the variable damper (F (t) = A · (P
1 (t) -P 2 (t )), A is the piston area, P 1 (t), P 2 (t) is a piston on both sides of the hydraulic chamber of the hydraulic, K 2 is the stiffness of the additional seismic elements.
【請求項5】 減衰係数が最小値Cmin から最大値C
max に切り換わる際に、可変減衰装置の発生する減衰力
Fが設定値以上に増加しないように、前記流路に前記流
量制御弁とともに、リリーフ弁を設けてある請求項4記
載の可変減衰装置。
5. The damping coefficient changes from a minimum value C min to a maximum value C min.
5. The variable damping device according to claim 4, wherein a relief valve is provided in the flow path together with the flow control valve so that the damping force F generated by the variable damping device does not increase beyond a set value when switching to max. .
JP3715798A 1998-02-19 1998-02-19 Earthquak mitigating method for structure and variable damper Pending JPH11230252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3715798A JPH11230252A (en) 1998-02-19 1998-02-19 Earthquak mitigating method for structure and variable damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3715798A JPH11230252A (en) 1998-02-19 1998-02-19 Earthquak mitigating method for structure and variable damper

Publications (1)

Publication Number Publication Date
JPH11230252A true JPH11230252A (en) 1999-08-27

Family

ID=12489774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3715798A Pending JPH11230252A (en) 1998-02-19 1998-02-19 Earthquak mitigating method for structure and variable damper

Country Status (1)

Country Link
JP (1) JPH11230252A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163502A (en) * 2013-02-27 2014-09-08 Kajima Corp Control method of hydraulic damper opening/closing control valve and hydraulic damper for use in the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163502A (en) * 2013-02-27 2014-09-08 Kajima Corp Control method of hydraulic damper opening/closing control valve and hydraulic damper for use in the method

Similar Documents

Publication Publication Date Title
US5311709A (en) Variable damping device for seismic response controlled structure
US5984062A (en) Method for controlling an active truss element for vibration suppression
JPH08260747A (en) Damping device for vibration damping of structure
Ha et al. Mitigation of seismic responses on building structures using MR dampers with Lyapunov‐based control
JPH10121775A (en) Oil damper for vibration control
JP2004052920A (en) Hydraulic damper
JPH11230252A (en) Earthquak mitigating method for structure and variable damper
JP2513358B2 (en) Active damping system using cylinder-locking device
JPH07293038A (en) Damping device
JPH062450A (en) High-damping device for vibration control structure having damping coefficient of multi-folded line type
JP3672604B2 (en) Damping device for damping structures
JP3606044B2 (en) Damping method for structures and damper for damping
JP2959554B1 (en) Hydraulic damper for vibration control and vibration control structure
JPH05231028A (en) Highly damping structure for controlling deformation in axial direction of column
JPH0559230B2 (en)
JP2541065B2 (en) High damping structure for wind response control
JP2513297B2 (en) Active damping system for variable-stiffness structures with variable damping mechanism
JP2601070B2 (en) High damping structure
JPH09317808A (en) High rigidity damper
JPH1163081A (en) Vibration frequency sensitive hydraulic damping apparatus
JP2722992B2 (en) Damping structure
JPH02209568A (en) Active type attenuation system for variable rigidity structure having variable damping mechanism
JP2600559B2 (en) High attenuation building
JP2541073B2 (en) Vibration control method for structures
JP2528563B2 (en) High damping device for vibration control structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040623

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060830

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Effective date: 20061211

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424